
Basic Operations

on Binary Suffix-Free Languages�

Roland Cmorik1 and Galina Jirásková2

1 Institute of Computer Science, P.J. Šafárik University,
Jesenná 5, 041 54 Košice, Slovakia

roland.cmorik@gmail.com
2 Mathematical Institute, Slovak Academy of Sciences,

Grešákova 6, 040 01 Košice, Slovakia
jiraskov@saske.sk

Abstract. We give a characterization of nondeterministic automata ac-
cepting suffix-free languages, and a sufficient condition on deterministic
automata to accept suffix-free languages. Then we investigate the state
complexity of basic operations on binary suffix-free regular languages. In
particular, we show that the upper bounds on the state complexity of all
the boolean operations as well as of Kleene star are tight in the binary
case. On the other hand, we prove that the bound for reversal cannot be
met by binary languages. This solves several open questions stated by
Han and Salomaa (Theoret. Comput. Sci. 410, 2537-2548, 2009).

1 Introduction

A language is suffix-free if it does not contain two strings, one of which is a proper
suffix of the other. Motivating by suffix-freeness property of some codes used in
information processing and data compression, Han and Salomaa [8] examined
state complexity of basic operations on suffix-free regular languages. This is
a part of research devoted to investigation of the state complexity of regular
operations in various subclasses of the class of regular languages [1,3,4,5,7,9,10].

Here we continue this research, and study the class of suffix-free languages in
more detail. We first give a characterization of nondeterministic finite automata
recognizing suffix-free languages. Using this characterization we state a sufficient
condition on a deterministic finite automaton to accept a suffix-free language.
This allows us to avoid proofs of suffix-freeness of languages throughout the
paper. Then we study the state complexity of operations in the class of binary
suffix-free languages. In particular, we show that the bounds for all the boolean
operations as well as for Kleene star are tight in the binary case. On the other
hand, the bound for reversal, that is tight in the ternary case [8], cannot be met
by binary languages. We provide lower and upper bounds on the state complexity
of reversal of binary suffix-free languages. In the case of concatenation, where
witness languages in [8] are defined over a four-letter alphabet, we give ternary
worst-case languages. We conclude the paper with several open problems.

� Supported by VEGA grants 1/0035/09 and 2/0183/11, and grant APVV-0035-10.

Z. Kotásek et al. (Eds.): MEMICS 2011, LNCS 7119, pp. 94–102, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Basic Operations on Binary Suffix-Free Languages 95

2 Suffix-Free Languages and Suffix-Free Automata

We assume that the reader is familiar with basic notions of formal languages
and automata theory, and for all unexplained notions, we refer to [13,14]. State
complexity of a regular language L, sc(L), is the smallest number of states in
any complete deterministic finite automaton (dfa) recognizing language L. Non-
deterministic finite automata (nfa’s) throughout the paper are ε-free.

If w = uv, then v is a suffix of w, and if, moreover, v �= w, then v is a proper
suffix of w. A language L is suffix-free if for every string w in L, no proper suffix
of w is in L. An automaton is suffix-free if it accepts a suffix-free language.

If an automaton accepts a non-empty suffix-free language, then it is non-
returning, that is, no transition goes to the initial state [8]. A suffix-free minimal
dfa must have a dead state, that is, a rejecting state that goes to itself on every
symbol [8]. Our first theorem provides a characterization of suffix-free nfa’s.
Then, a lemma providing a sufficient condition for a dfa to be suffix-free follows.
We use the lemma several times to prove the suffix-freeness of automata.

Theorem 1 (Characterization of Suffix-Free NFA’s). Consider a non-
returning nfa without unreachable states and with the initial state s. Let Lq be
the set of strings accepted by the nfa from state q. The nfa accepts a suffix-free
language if and only if for each state q with q �= s, the language Ls∩Lq is empty.

Proof. Let a non-returning nfa accept a suffix-free language. Assume for a con-
tradiction that there is a state q with q �= s such that Ls ∩ Lq �= ∅. Then there
exists a string w that is accepted by the nfa from both s and q. Since state q is
reachable, the initial state s goes to state q by a non-empty string u. Then the
nfa accepts both strings w and uw, which is a contradiction. The converse can
be proved by contradiction in a similar way. ��
Lemma 1. Consider a non-returning dfa without unreachable states and with
the sole final state. If there do not exist two distinct states that go to the same
useful state by the same symbol of the input alphabet, then the dfa accepts a
suffix-free language.

Proof. By Theorem 1, if the dfa is not suffix-free, then there exists a string w
accepted from the initial state and also from some other state. The two accepting
paths end in the sole final state. So these paths must meet in some useful state q.
The two predecessors of q on the two paths go to q by the same symbol. ��

3 Basic Operations on Binary Suffix-Free Languages

Han and Salomaa investigated the upper bounds for complexity of Kleene star,
reversal and concatenation in [8]. They also presented witness languages for these
bounds, however, the problem of tightness for small alphabets remained open.
Here we investigate the complexity of mentioned operations on small alphabets.

First, we study the complexity of difference (K \L) and symmetric difference
(K ⊕ L) that were not considered in [8]. Here we use the same witness binary
languages as Olejár has used in [9] for union and intersection.

96 R. Cmorik and G. Jirásková

Theorem 2 (Boolean Operations). Let K and L be suffix-free languages over
an alphabet Σ with sc(K) = m and sc(L) = n, where m,n ≥ 4. Then

1. sc(K ∩ L) ≤ mn− 2(m+ n− 3);
2. sc(K ∪ L), sc(K ⊕ L) ≤ mn− (m+ n− 2);
3. sc(K \ L) ≤ mn− (m+ 2n− 4).

All the bounds are tight if |Σ| ≥ 2.

Proof. The cases of intersection and union hold according to [9]. Let QK , QL,
FK , FL, sK , sL and dK , dL denote the sets of states, final states, the initial states,
and the dead states of suffix-free dfa’s for K and L, respectively. Consider the
cross-product automaton for difference and symmetric difference, respectively.
They differ only in final states. The set of final states is (FK ×QL) \ (FK ×FL)
for difference and (FK ×QL ∪QK × FL) \ (FK × FL) for symmetric difference.
No pair (sK , q) with q �= sL and (p, sL) with p �= sK is reachable in the cross-
product automaton since the two dfa’s are non-returning. So we can remove
these m + n − 2 unreachable states. Moreover, in the case of difference, there
is no string accepted from a state, the first component of which is dK . We can
replace all such n− 2 states with one dead state. Therefore, the minimal dfa for
difference has at most mn − (m + n − 2) − (n − 2) states, and for symmetric
difference at most mn− (m+ n− 2) states.

For tightness, consider the languagesK and L accepted by dfa’s A and B from
[9], shown in Fig. 1, where dead states m and n, as well as all the transitions to
dead states, are omitted. By Lemma 1, both languages are suffix-free.

Consider the cross-product automaton for the language K − L, where the
set of final states is {(m − 1, j) | j �= n − 1}. In the proofs of Lemma 6 and
Lemma 7 in [9], it is shown that states (i, j) for i = 2, . . . ,m and j = 2, . . . , n,
and the initial state (1, 1) are reachable. We show that these states are pairwise
distinguishable. State (m,n) is the only dead state. State (1, 1) is distinguished
from any other state by a string starting with b. Consider two distinct states
(i, j) and (k, �), where 2 ≤ i, k ≤ m − 1, and 2 ≤ j, � ≤ n. If i < k, then the
string anbm−1−k is accepted from (k, �) and rejected from (i, j). If i = k, then we
can move the two states into two distinct states (m−1, j′) and (m−1, �′) in row
m− 1 by a word in b∗. If j′ < �′, then the string an−1−j′ is rejected from state
(m− 1, j′) and accepted from state (m− 1, �′). This proves distinguishability of
all the mn− (m+ 2n− 4) states.

Fig. 1. Binary suffix-free dfa’s meeting the upper bounds for Boolean operations

Basic Operations on Binary Suffix-Free Languages 97

In the case of symmetric difference K ⊕L, the set of final states of the cross-
product automaton is {(i, j) | i = m− 1 or j = n− 1} − {(m − 1, n− 1)}. The
proof of reachability is the same as above. State (m,n) is the only dead state,
and state (1, 1) is distinguished from any other state by a string starting with
b. State (m− 1, n− 1) is distinguished from any other rejecting state by string
am. Consider two distinct rejecting states (i, j) and (k, �), both different from
(m − 1, n − 1). If i = k and j < �, then they can be distinguished by an−1−j .
If i < k, then string bm−1−iam distinguishes them. Now consider two distinct
accepting states. States (m−1, n−2) and (m−2, n−1) can be distinguished by
aa. Every other pair of accepting states can be distinguished by b since either
one state of the pair goes to an accepting state and the second one to a rejecting
state, or both go to different rejecting and, as shown above, distinguishable
states. This concludes our proof. ��

The next theorem shows that the upper bound 2n−2 + 1 for Kleene star, shown
to be tight for a four-letter alphabet [8], is tight even in the binary case.

Theorem 3 (Star). Let L be a suffix-free language over an alphabet Σ with
sc(L) = n, where n ≥ 6. Then sc(L∗) ≤ 2n−2 + 1. The bound is tight if |Σ| ≥ 2.

Proof. The upper bound is from [8]. For tightness, consider the binary dfa A
depicted in Fig. 2, where n ≥ 6. By Lemma 1, automaton A is suffix-free.

Fig. 2. Binary suffix-free dfa meeting the bound 2n−2 + 1 for star

According to [8], we can obtain an nfa for L(A)∗ from automaton A by adding
a new transition from state 1 to itself by b, and making the initial state final.
Furthermore we can omit the dead state. Let us denote the obtained (n−1)-state
nfa for L(A)∗ by A′. If we omit the initial state of nfa A′, and consider state
1 as the initial state, then we get an (n − 2)-state nfa which is isomorphic to
the reverse of the (n− 2)-state Šebej’s automaton [12] meeting the upper bound
2n−2 for reversal. This means that in the subset automaton corresponding to nfa
A′, all the subsets of {1, 2, . . . , n−2} are reachable and pairwise distinguishable.
The initial state of the subset automaton is state {0}, which is final. The string
a3 distinguishes state {0} from any other final state. ��

Now we investigate the state complexity of concatenation of two suffix-free lan-
guages. The upper bound is (m − 1)2n−2 + 1 by [8], where its tightness for a
four-letter alphabet is also proved. We start with the ternary case.

98 R. Cmorik and G. Jirásková

Fig. 3. Suffix-free dfa’s meeting the bound (m− 1)2n−2 + 1 for concatenation

Theorem 4 (Concatenation: Ternary Case). Let K and L be suffix-free
languages over an alphabet Σ with sc(K) = m and sc(L) = n, where m ≥ 4,
n ≥ 3. Then sc(KL) ≤ (m− 1)2n−2 + 1, and the bound is tight if |Σ| ≥ 3.

Proof. The upper bound is from [8]. For tightness, consider ternary regular lan-
guagesK and L accepted by the dfa’s A and B shown in Fig. 3; to keep the figure
transparent, we omit the dead states qm−1 and n− 1, and all the transitions to
the dead states. By Lemma 1, languages K and L are suffix-free.

Construct an nfa for languageKL from dfa’s A and B by adding the transition
on c from state q2 to state 1 and by declaring q2 as a rejecting state.

The initial state of the corresponding subset automaton is {q0}. We first show
that for every subset X of {1, 2, . . . , n−2}, state {q2}∪X is reachable. The proof
is by induction on |X |. The basis, |X | = 0, holds since {q2} is reached from {q0}
by ca. Assume that for every subset Y of {1, 2, . . . , n − 2} of size k − 1 state
{q2} ∪ Y is reachable. Let

X = {j1, j2, . . . , jk} with j1 < j2 < · · · < jk

be a subset of {1, 2, . . . , n− 2} of size k. Let

Y = {j2 − j1 + 1, . . . , jk − j1 + 1}.
Then state {q2}∪Y is reachable by the induction hypothesis. Next, state {q2}∪Y
goes to {q2} ∪ X by cbj1−1. Now if i ∈ {1, . . . ,m − 2}, then state {qi} ∪ X is
reached from state {q2}∪X by string am−4+i. State {qm−1}∪X is reached from
state {q2}∪X by bn−3ab. This proves the reachability of (m− 1)2n−2+1 states.

It remains to show that these states are pairwise distinguishable. Since string
cac is accepted by the nfa only from state q0, the initial state {q0} of the subset
automaton is distinguishable from any other state. States {qi}∪X and {qj}∪Y
with i < j are distinguished by am−ic. Finally, two states {qi}∪X and {qi}∪Y
with X �= Y differ in a state j in {1, 2, . . . , n − 2}, and so the string bn−j−1

distinguishes the two states. ��
Next we investigate the binary case. We present an m-state dfa and an n-state
dfa such that the state complexity of L(A)L(B) is (m − 1)2n−2 providing that
m− 2 and n− 2 are relatively prime numbers.

Basic Operations on Binary Suffix-Free Languages 99

Fig. 4. Suffix-free dfa’s A and B on binary alphabet

Theorem 5 (Concatenation: Binary Case). Let m ≥ 4, n ≥ 3, and let m−2
and n − 2 be relatively prime. There exist binary suffix-free regular languages
K and L with sc(K) = m and sc(L) = n such that sc(KL) ≥ (m− 1)2n−2.

Proof. Let K and L be the languages accepted by dfa’s A and B shown in Fig. 4.
By Lemma 1, languages K and L are suffix-free. Construct an nfa for KL from
dfa’s A and B by adding the transition on b from state q2 to state 1, and by
declaring q2 as a rejecting state.

The lengths of the cycles in A and B are m− 2 and n− 2, respectively. Since
m − 2 and n − 2 are relatively prime, there exist integers y and x such that
(m− 2)y ≡ 1 (mod n− 2) and (n− 2)x ≡ 1 (mod m− 2).

The initial state of the subset automaton is {q0}. We first show that for
every subset X of {1, 2, . . . , n − 2}, state {q2} ∪ X is reachable. The proof is
by induction on |X |. The basis, |X | = 0, holds since {q2} is reached from the
initial state {q0} by ba. Let X = {j1, j2, . . . , jk} with j1 < j2 < · · · < jk be
a subset of {1, 2, . . . , n − 2} of size k. State {q2} ∪ X is reached from state
{q2}∪ {j2 − j1 +1, . . . , jk − j1 +1} by ba(m−2)y(j1−1). Now if i ∈ {1, . . . ,m− 2},
then state {qi} ∪X is reached from state {q2} ∪X by string a(n−2)x(m−4+i). If
i = m − 1 and X �= {1, . . . , n − 2}, then there exists some z ∈ {1, . . . , n − 2}
such that z /∈ X . By string a(m−2)y(n−2−z)+1, state {q3} ∪ X ′ is reached from
{q2} ∪X , where X ′ is a rotation of X such that 1 /∈ X ′. Then from this state,
we can reach {qm−1} ∪ X ′ by reading b. Then we can reach the desired state
{qm−1}∪X by reading az−1. This proves the reachability of (m− 1)2n−2 states.

It remains to show that these states are pairwise distinguishable. Since string
bab is accepted by the nfa only from state q0, the initial state {q0} of the subset
automaton is distinguishable from any other state. States {qi}∪X and {qj}∪Y
with i < j are distinguished by am−ib. Finally, states {qi}∪X and {qi}∪Y with
X �= Y differ in a state j in {1, 2, . . . , n− 2}, and so string an−j−1 distinguishes
the two states. ��

Han and Salomaa [8] proved that 2n−2 + 1 states are sufficient for reversal of
suffix-free languages. They met this bound using a ternary alphabet. Theorem 6
shows that this upper bound cannot be met in the binary case.

100 R. Cmorik and G. Jirásková

Theorem 6 (Reversal). Let L be a suffix-free regular language with sc(L) = n,
where n ≥ 3. Then sc(LR) ≤ 2n−2 + 1. The bound is tight in the ternary case,
but cannot be met in the binary case.

Proof. The bound is tight in the ternary case as shown in [8]. Let us suppose
by contradiction that there exists a minimal n-state suffix-free dfa A over a
binary alphabet such that the minimal dfa for the language L(A)R has 2n−2+1
states. Let the set of states of A be Q, with the initial state s and the dead
state d. Construct nfa AR from the dfa A by reversing all the transitions, and
by swapping the role of the initial and final states. The dead state d becomes
unreachable in AR, so we can omit it. The subset automaton corresponding to
nfa AR, after removing unreachable states, is a minimal dfa for L(A)R [2].

No subset X of Q such that s ∈ X and {s} �= X is reachable in the subset
automaton [8, Lemma 6]. It follows that the state set of the subset automaton
consists of all the subsets of Q − {s, d} and state {s}, that is, 2n−2 + 1 states
in total. This means that the set Z = Q − {s, d} is reachable in the subset
automaton. Since in dfa A there is a transition from state s to some state q in
Q − {s, d} on some letter a, in the subset automaton there is a transition on a
from Z to a subset Y such that s ∈ Y . If there are some states p, p′ in Q−{s, d}
such that p′ goes to p by a in dfa A, then p′ ∈ Y . Thus {s, p′} ⊆ Y . This is a
contradiction since such a state cannot be reachable in the subset automaton.

There remains the case when there are no states p, p′ in Q− {s, d} such that
p′ goes to p by a in dfa A. Then there are just transitions on b among the states
in Q − {s, d}. The determinization of (n − 2)-state nfa over a unary alphabet

requires eΘ(
√

(n−2) ln(n−2)) = o(2n−2 + 1) states [6]. ��
The next theorem provides upper and lower bounds on the state complexity of
the reversal of suffix-free languages in the binary case.

Theorem 7 (Reversal: Binary Case). Let f2(n) be the state complexity of
reversal of binary suffix-free languages. Then 2n/2−2+1 ≤ f2(n) ≤ 2n−4+2n−3+1
for every integer n with n ≥ 12.

Proof. Let us prove the upper bound. We will continue our considerations from
the proof of previous Theorem 6. Let K be a language over {a, b} accepted by
an n-state suffix-free minimal dfa A with the state set Q = {s, d, 1, 2, . . . n− 2},
the initial state s, and the dead state d. Without loss of generality, state s goes
to a state q in {1, 2, . . . , n− 2} by a. Construct nfa AR as in the previous proof.

First consider the case when there are two states p and p′ in {1, 2, . . . , n− 2}
such that p goes to p′ by a in dfa A. We have shown in the previous proof that
we cannot reach the subset Q − {s, d}. Moreover, we cannot reach any subset
containing both p and q due to the same argument. There are 2n−4 subsets of
Q−{s, d} that did not contain neither p nor q. And there are 2n−3 subsets that
contain at least one but not both of them. So, including the final state {s}, there
are at most 2n−4 + 2n−3 + 1 states in the corresponding subset automaton. If
among the states in {1, 2, . . . , n − 2}, there are just transitions on symbol b,

then the state complexity of KR is asymptotically equal to 1 + e
√

(n−2) ln(n−2).

Basic Operations on Binary Suffix-Free Languages 101

Now we prove the lower bound. Consider the language #Lm−2, where Lm−2

is the language over {a, b} accepted by the (m−2)-state Šebej’s dfa [12] meeting
the upper bound 2m−2 for reversal. The minimal dfa B# for #Lm−2 has m
states. Language #Lm−2 is suffix-free. Now, we can construct an automaton C
over a binary alphabet by encoding the three alphabet symbols of B# with two
symbols 0 and 1 as follows. For symbol # we use code 00, for symbol a code
10, and for b we use 11. For every state q in B#, we add two special states q′

and q′′, and replace the transitions from q as follows. The transition from q to
some q# by # is replaced with two transitions: The first one goes from q to q′

by 0, and the second one from q′ to q# by 0. The transition from q to some qa
by a is replaced with transitions from q to q′′ by 1 and from q′′ to qa by 0. The
transition from q to some qb by b is replaced with transitions from q to q′′ by
1 and from q′′ to qb by 1. All the transitions not defined above go to the dead
state. The number of states in C is 3m. However, there are m + 1 states that
are equivalent to the dead state: For the initial state s, state s′′ goes to the dead
state d by both 0 and 1. For all states q except for s, q′ goes to d by both 0 and
1, and in the case of d, also state d′′ goes to d by 0 and 1. So we can replace
all the mentioned special states with d. After removing these equivalent states,
there remains 2m − 1 states in C. Automaton C is deterministic. Let us prove
that it is suffix-free. Suppose by contradiction that C accepts a string w and
also its proper suffix v. Both are of even length, since strings of odd length are
not accepted by C. So they can be decoded as w′ and v′, respectively, where v′

is a suffix of w′ and both are accepted by B#, which is a contradiction.
Now we prove that C accepts the encoded language of B#. If the length of a

string w in {0, 1}∗ is odd, then it is rejected in C since it ends in a special state
or in d. If the length is even, then w can be decoded and it is accepted in C if and
only if the decoded w is accepted in B#. We construct nfa C′ for language L(C)R

by reversing all the transitions in C. In the corresponding subset automaton, we
can reach all the 2m−2 + 1 states which are pairwise distinguishable, as in the
subset automaton for L(B#)

R. So if n is the size of the minimal dfa for the
encoded language, then L(C)R requires at least 2n/2−2 + 1 states. ��

4 Conclusions

We gave a characterization of suffix-free nfa’s and a sufficient condition on a dfa
to accept a suffix-free language. This allowed us to avoid proofs of suffix-freeness
of all the languages we have used throughout the paper. Then we investigated
the operational state complexity of suffix-free regular languages. We solved com-
pletely the case of difference, symmetric difference, and Kleene star since we
proved that the general upper bounds for these operations can be met in the
binary case.

In the case of concatenation, we provided ternary witness languages. For the
binary case, we presented an example that almost meets the upper bound in
infinitely many cases. It remains open whether the bound for concatenation can
be met in the binary case.

102 R. Cmorik and G. Jirásková

Then we showed that the upper bound for reversal cannot be met in the
binary case, and we also gave lower and upper bounds for that case. The exact
value of the state complexity of reversal in the binary case remains open.

References

1. Bordihn, H., Holzer, M., Kutrib, M.: Determinization of finite automata accepting
subregular languages. Theoret. Comput. Sci. 410, 3209–3222 (2009)

2. Brzozowski, J.: Canonical regular expressions and minimal state graphs for definite
events. In: Mathematical Theory of Automata. MRI Symposia Series, vol. 12, pp.
529–561. Polytechnic Press, Polytechnic Institute of Brooklyn, NY (1962)

3. Brzozowski, J., Jirásková, G., Li, B.: Quotient complexity of ideal languages. In:
López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 208–221. Springer, Hei-
delberg (2010)

4. Brzozowski, J., Jirásková, G., Zou, C.: Quotient complexity of closed languages. In:
Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 84–95. Springer,
Heidelberg (2010)

5. Câmpeanu, C., Salomaa, K., Culik II, K., Yu, S.: State complexity of basic oper-
ations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS,
vol. 2214, pp. 60–70. Springer, Heidelberg (2001)

6. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,
149–158 (1986); Erratum: Theoret. Comput. Sci. 302, 497–498 (2003)

7. Han, Y.-S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free
regular languages. In: Automata, Formal Languages, and Related Topics, pp. 99–
115. University of Szeged, Hungary (2009)

8. Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. Theoret. Comput. Sci. 410, 2537–2548 (2009)

9. Jirásková, G., Olejár, P.: State complexity of intersection and union suffix-free
languages and descriptional complexity. In: Bordihn, H., Freund, R., Holzer, M.,
Kutrib, M., Otto, F. (eds.) NCMA 2009, pp. 151–166. Osterreichische Computer
Gesellschaft (2009)

10. Jirásková, G., Masopust, T.: Complexity in union-free regular languages. In: Gao,
Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 255–266. Springer,
Heidelberg (2010)

11. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM Res. De-
velop. 3, 114–129 (1959)

12. Šebej, J.: Reversal of regular languages and state complexity. In: Pardubská, D.
(ed.) ITAT 2010, pp. 47–54. P. J. Šafárik University of Košice, Slovakia (2010)

13. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company,
Boston (1997)

14. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. I, ch. 2, pp. 41–110. Springer, Heidelberg (1997)

	Basic Operations on Binary Suffix-Free Languages
	Introduction
	Suffix-Free Languages and Suffix-Free Automata
	Basic Operations on Binary Suffix-Free Languages
	Conclusions
	References

