
Theoretical Computer Science 410 (2009) 2377–2392

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

State complexity of power
Michael Domaratzki a,∗, Alexander Okhotin b,c
a Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
b Academy of Finland, Helsinki, Finland
c Department of Mathematics, University of Turku, Turku FIN-20014, Finland

a r t i c l e i n f o

Keywords:
Descriptional complexity
Finite automata
State complexity
Combined operations
Concatenation
Power

a b s t r a c t

The number of states in a deterministic finite automaton (DFA) recognizing the language Lk,
where L is regular language recognized by an n-state DFA, and k > 2 is a constant, is shown
to be at most n2(k−1)n and at least (n − k)2(k−1)(n−k) in the worst case, for every n > k
and for every alphabet of at least six letters. Thus, the state complexity of Lk isΘ(n2(k−1)n).
In the case k = 3 the corresponding state complexity function for L3 is determined as
6n−3
8 4

n
− (n − 1)2n − n with the lower bound witnessed by automata over a four-letter

alphabet. The nondeterministic state complexity of Lk is demonstrated to be nk. This bound
is shown to be tight over a two-letter alphabet.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

State complexity, which is themeasure of theminimal number of states in any DFA accepting a given regular language, is
one of the most well-studied descriptional complexity measures for formal languages; the topic has been an active research
area for over ten years. Many results related to the state complexity of various operations on formal languages have been
examined.We note in particular that the state complexity of concatenationwas obtained byMaslov [10] and further studied
by Yu et al. [16] and Jirásek et al. [7], who determined the effect of the number of final states on the state complexity. The
state complexity of concatenation over a unary alphabet was considered by Yu et al. [16] and subsequently by Pighizzini and
Shallit [11], while Holzer and Kutrib [6] have studied the state complexity of concatenationwith respect to nondeterministic
finite automata (NFA).
Recently, A. Salomaa et al. [14] initiated the study of the state complexity of combinations of basic operations. More such

operationswere subsequently examined [4,5,8,9,15,16]. In each result, a certain combination of operations over independent
arguments is examined to determine its exact state complexity; in many cases, the state complexity of the combined
operation is less than the direct composition of the deterministic state complexities of the individual operations.
As noted by K. Salomaa and Yu [15], an interesting research topic is the state complexity of combined operations with

‘‘nonlinear variables’’, that is, combined operations in which one or more operands are used in several positions in the
expression. Rampersad [12] gives results on nonlinear combined operations by studying the state complexity of powers of
a language: Lk for k > 2. In particular, Rampersad shows that if the state complexity of L is n, then L2 has state complexity at
most n2n − 2n−1, and this bound can be reached for any n > 3 over an alphabet of size two. Rampersad also addresses the
problem of the state complexity of Lk with k > 3 for unary languages L, but leaves the state complexity of Lk for k > 3 and
arbitrary alphabets open.
In this paper,we consider this problemof the state complexity of Lk for L over an alphabet of size at least two. In particular,

we show a general bound for the Lk which holds for any k > 2. A lower bound which is optimal up to a constant factor

∗ Corresponding author.
E-mail addresses:mdomarat@cs.umanitoba.ca (M. Domaratzki), alexander.okhotin@utu.fi (A. Okhotin).

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.02.025

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:mdomarat@cs.umanitoba.ca
mailto:alexander.okhotin@utu.fi
http://dx.doi.org/10.1016/j.tcs.2009.02.025

2378 M. Domaratzki, A. Okhotin / Theoretical Computer Science 410 (2009) 2377–2392

(with the constant depending on k) is given over a six-letter alphabet. For the state complexity of L3, we show an improved
upper bound and a matching lower bound over a four-letter alphabet.
Finally, we address the problem of nondeterministic state complexity of power. We show that if the nondeterministic

state complexity of L is n, then the nondeterministic state complexity of Lk is nk for all k > 2, and give a matching lower
bound over a binary alphabet.

2. Definitions

For additional background in formal language and automata theory, see Rozenberg and A. Salomaa [13]. LetΣ be a finite
set of symbols, called letters. The set Σ is called an alphabet. A string over Σ is any finite sequence of letters from Σ . The
empty string, which contains no letters, is denoted ε. The set Σ∗ is the set of all strings over Σ . A language L is any subset
ofΣ∗. If x = a1a2 · · · an is a string, with ai ∈ Σ , then the length of x, denoted by |x|, is n.
Given languages L1, L2 ⊆ Σ∗, L1L2 = {xy : x ∈ L1, y ∈ L2} is the concatenation of L1 and L2. The kth power of a language

L is defined recursively as L1 = L and Lk = LLk−1 for all k > 2.
A deterministic finite automaton (DFA) is a quintuple A = (Q ,Σ, δ, q0, F)whereQ is a finite set of states,Σ is an alphabet,

δ : Q × Σ → Q is the transition function, q0 ∈ Q is the distinguished start state and F ⊆ Q is the set of final states. We
extend δ to a function acting on Q × Σ∗ in the usual way: δ(q, ε) = q for all q ∈ Q , and δ(q, wa) = δ(δ(q, w), a) for any
q ∈ Q , w ∈ Σ∗ and a ∈ Σ . A DFA A = (Q ,Σ, δ, q0, F) is said to be complete if δ is defined for all pairs (q, a) ∈ Q × Σ . In
this paper, we assume that all DFAs are complete.
A string w is accepted by A if δ(q0, w) ∈ F . The language L(A) is the set of all strings accepted by A: L(A) = {w ∈ Σ∗ :

δ(q0, w) ∈ F}. A language L is regular if there exists a DFA A such that L(A) = L.
A nondeterministic finite automaton (NFA) is a quintuple A = (Q ,Σ, δ, q0, F) where Q , Σ , q0 and F are as in the

deterministic case, but the transition function is δ : Q × Σ → 2Q . The extension of δ to Q × Σ∗ is accomplished by
δ(q, ε) = q and δ(q, wa) = ∪q′∈δ(q,w)δ(q′, a). For an NFA A, L(A) = {w ∈ Σ∗ : δ(q0, w) ∩ F 6= ∅}. It is known that NFAs
accept exactly the regular languages.
The (deterministic) state complexity of a regular language L, denoted sc(L), is the minimum number of states in any DFA

which accepts L. Similarly, the nondeterministic state complexity of L is the minimum number of states in any NFA which
accepts L, and is denoted by nsc(L).
Given a DFA A = (Q ,Σ, δ, q0, F), a state q ∈ Q is said to be reachable if there exists a string w ∈ Σ∗ such that

δ(q0, w) = q. Given two states q1, q2 ∈ Q , we say that they are equivalent if δ(q1, w) ∈ F if and only if δ(q2, w) ∈ F
for allw ∈ Σ∗. If a pair of states is not equivalent, we say that they are inequivalent.

3. State complexity of Lk

In this section, we consider the state complexity of Lk, while treating the value k as a constant. We show an upper bound
which is based on reachability of states, while an explicit lower bound with respect to an alphabet of size six is also given.
The upper and lower bounds differ by a multiplicative factor of 2k(k−1) nn−k = Θ(1).

3.1. Upper bound

Let L be a regular language with sc(L) = n, and assume that the minimal DFA for L has f final states. Note that the
construction of Yu et al. [16, Thm. 2.3] for concatenation gives the following upper bound on Lk for an arbitrary k > 2:

n2(k−1)n −
f (2nk − 1)
2(2n − 1)

−
f
2
.

We now describe the construction of a DFA for Lk, which we use throughout what follows. Let A = (Q ,Σ, δ, 0, F) be an
arbitrary DFA. Assume without loss of generality that Q = {0, 1, . . . , n− 1}.
For a subset P ⊆ Q and forw ∈ Σ∗, we use the notation δ(P, w) = {δ(p, w) | p ∈ P}.
The DFA for L(A)k is defined as Ak = (Qk,Σ, δk, Sk, Fk) with the set of states Qk = Q × (2Q)k−1, of which the initial

state is Sk = (0,∅, . . . ,∅) if 0 /∈ F and Sk = (0, {0}, . . . , {0}) if 0 ∈ F , while the set of final states Fk consists of all states
(i, P1, P2, . . . , Pk−1) ∈ Qk such that Pk−1 ∩ F 6= ∅.
The transition function δk : Qk ×Σ → Qk is defined as δk((i, P1, P2, . . . , Pk−1), a) = (i′, P ′1, P

′

2, . . . , P
′

k−1)where:

(1) i′ = δ(i, a).
(2) if i′ ∈ F , then P ′1 = {0} ∪ δ(P1, a). Otherwise, P

′

1 = δ(P1, a).
(3) for all 1 6 j 6 k− 2, if P ′j ∩ F 6= ∅, then P ′j+1 = {0} ∪ δ(Pj+1, a). Otherwise, P

′

j+1 = δ(Pj+1, a).

According to this definition, it is easy to see that if δk(Sk, w) = (i, P1, . . . , Pk−1), then δ(0, w) = i and further ` ∈ Pj if and
only if there exists a factorization w = u0u1 . . . uj−1v with u0, u1, . . . , uj−1 ∈ L(A) and with δ(0, v) = `. It follows that
L(Ak) = L(A)k.

M. Domaratzki, A. Okhotin / Theoretical Computer Science 410 (2009) 2377–2392 2379

Fig. 1. Representing states from Qk as diagrams.

Fig. 2. Transition table of Ak,n and its action on (Ak,n)k . States with no arrow originating from them are unchanged by the letter.

The above construction of Ak will be used throughout this paper. States from Qk will be represented by diagrams as in
Fig. 1. Each row represents one of the k components of Qk, with the jth row representing the jth component. Accordingly,
the top row is an element of Q , and all other rows represent subsets of Q . A solid dot will represent that a particular state is
an element of the component: the left-most column represents state 0, the next left-most state 1, etc.
Since |Qk| = n2(k−1)n, the following upper bound on the state complexity of the kth power can be inferred:

Lemma 1. Let k > 2 and let L be a regular language with sc(L) = n. Then the state complexity of Lk is at most n2(k−1)n.

3.2. Lower bound

In order to establish a close lower bound on the state complexity of the kth power, it is sufficient to present a sequence
of automata Ak,n (2 6 k < n) over the alphabetΣ = {a, b, c, d, e, f }, with every Ak,n using n states, so that L(Ak,n)k requires
Ω(n2(k−1)n) states.
Let each Ak,n have a set of states Q = {0, 1, . . . , n − 1}, of which 0 is the initial state, n − 1 is the sole final state, and

where the transitions are defined as follows:

δ(j, a) =

{j+ 1 if 1 6 j 6 n− k− 1,
1 if j = n− k,
j otherwise,

δ(j, b) =

{j+ 1 if n− k+ 1 6 j 6 n− 2,
n− k+ 1 if j = n− 1,
j otherwise,

δ(j, c) =

{1 if j = 0,
0 if j = 1,
j otherwise,

δ(j, d) =
{
1 if j = n− k+ 1,
j otherwise,

δ(j, e) =

{n− 1 if j = 0,
j− 1 if n− k+ 2 6 j 6 n− 1,
j otherwise,

δ(j, f) =
{
n− 1 if j = 1,
n− 2 otherwise.

We now construct a DFA (Ak,n)k for the language L(Ak,n)k as described in Section 3.1. Its set of states is Qk = Q × (2Q)k−1,
and its initial state is (0,∅, . . . ,∅).
Fig. 2 shows the effect of the letters from Σ on states from Qk. In particular, the letter a rotates the elements in the

range {1, . . . , n − k} forward, and leaves the remaining states unchanged. The letter b rotates those states in the range
{n−k+1, . . . , n−1} forward, also leaving the rest of the states unchanged. An occurrence of the letter c swaps the states 0
and 1, leaving all others unchanged, while d collapses the state n− k+1 onto state 0, leaving all other elements unchanged.
The letter emaps the state 0 onto the state n− 1, as well as shifts those states in the range {n− k+ 1, . . . , n− 1} back by
one. Finally, the letter f collapses all states except 1 onto n− 2, and maps 1 to n− 1.
We recall that, according to the construction of (Ak,n)k, n− 1 ∈ Pi implies 0 ∈ Pi+1 for all 1 6 i < k− 1. In the diagrams,

this means that a state at the end of one row implies the existence of a state at the beginning of the next row (if such a row
is present).
Wenowshow the reachability and inequivalence of a large subset of states,whichwill establish the lower bound. Lemmas

2 and 3 will establish that the states are reachable, and Lemma 4 shows that all such states are inequivalent.

Lemma 2. Every state of the form (n− k+1, P1, . . . , Pk−1), where Pi \ {1, . . . , n− k} = {0, n− k+ i+1} for all 1 6 i < k−1
and Pk−1 \ {1, . . . , n− k} = {0}, is reachable from the initial state.

There are 2(k−1)(n−k) such states, and their general form is presented in the diagram in Fig. 3(b). In these diagrams, white
areas without a dot indicate regions that are empty: no states are present in these regions. Grey areas in the diagram
represent regions which may or may not be filled: any state in Pi in a grey region may or may not be present.

2380 M. Domaratzki, A. Okhotin / Theoretical Computer Science 410 (2009) 2377–2392

Fig. 3. Outline of the reachability proof for Lk .

Fig. 4. Adding j to Pi using the string an−k−j+1bk−1−iccbiaj−1 .

Proof. All states of this form will be reached by induction on the total number of elements in P1, . . . , Pk−1.
Basis:

∑k−1
i=1 |Pi| = 2(k− 2)+ 1, that is, Pi = {0, n− k+ i+ 1} for all i < k− 1 and Pk−1 = {0}, see Fig. 3(a). Then the

state is (n− k+ 1, {0, n− k+ 2}, {0, n− k+ 3}, . . . , {0, n− 1}, {0}), and it is reachable from the initial state (0,∅, . . . ,∅)
by ek−1bk−1.

Induction step: Let (n − k + 1, P1, P2, . . . , Pk−1) be an arbitrary state with Pi \ {1, . . . , n − k} = {0, n − k + i + 1} for
1 6 i < k − 1 and with Pk−1 \ {1, . . . , n − k} = {0}. Let 1 6 i 6 k − 1 and 1 6 j 6 n − k be any numbers with j /∈ Pi. The
goal is to reach the state (j0, P1, . . . , Pi−1, Pi ∪ {j}, Pi+1, . . . , Pk−1) from (j0, P1, P2, . . . , Pk−1), which is sufficient to establish
the induction step.
In order to add j to Pi, we apply the string an−k−j+1bk−1−iccbiaj−1, as shown in Fig. 4. The prefix an−k−j+1 rotates the empty

square to column 1, the next substring bk−1−i rotates the element n−k+ i−2 ∈ Pi−1 to column n−1, then cc swaps columns
0 and 1 twice, effectively filling the empty square, and the suffix biaj−1 rotates the columns back to their original order. �

It remains to move the solid dot in the top row to any column among 1, . . . , n− k.

Lemma 3. Every state of the form (j0, P1, . . . , Pk−1), where 1 6 j0 6 n − k, Pi \ {1, . . . , n − k} = {0, n − k + i + 1} for all
1 6 i < k− 1 and Pk−1 \ {1, . . . , n− k} = {0}, is reachable from the initial state.

There are (n− k)2(k−1)(n−k) such states, illustrated in the diagram in Fig. 3(c), in which the arrow represents the range of
j0.

Proof. Let (j0, P1, . . . , Pk−1) be an arbitrary state which satisfies the conditions of the lemma. We claim that there exists a
reachable state (n − k + 1, P ′1, . . . , P

′

k−1) such that, after reading da
j0−1, we arrive at the state (j0, P1, . . . , Pk−1). This will

establish the lemma.
Define P ′i as follows. Take P

′

i \ {1, . . . , n− k} = {0, n− k+ i+ 1} for all 1 6 i < k− 1 and P
′

k−1 \ {1, . . . , n− k} = {0}.
Next, P ′i ∩ {1, . . . , n − k} = {` − j0 + 1 : ` ∈ Pi} where subtraction and addition are taken modulo n − k in the range
{1, . . . , n− k}.
Then the state (n− k+ 1, P ′1, . . . , P

′

k−1) is reachable by Lemma 2, and the subsequent computation upon reading da
j0−1

is presented in Fig. 5. By d, the automaton goes from this state to (1, P ′1, . . . , P
′

k−1). Next, after the application of a
j0−1, each

P ′i is properly rotated (in the range {1, . . . , n− k}) to Pi, that is, the automaton proceeds to (j0, P1, . . . , Pk−1). �

Lemma 4. All states of the above form are pairwise inequivalent.

Proof. We first require the following three claims:

M. Domaratzki, A. Okhotin / Theoretical Computer Science 410 (2009) 2377–2392 2381

Fig. 5.Moving j to position j0 using the string daj0−1 .

Claim 1. Let (j, P1, . . . , Pk−1) be an arbitrary state and 1 6 i 6 k− 1. After reading the string (cf)k−i, the automaton (Ak,n)k is
in a final state if and only if 0 ∈ Pi.

Proof. The proof is by induction on i, starting with i = k− 1.
For i = k − 1, first suppose that 0 ∈ Pk−1. Then after reading c , the automaton is in the state (j′, P ′1, . . . , P

′

k−1) with
1 ∈ P ′k−1. After reading f , the automaton is in the state (j

′′, P ′′1 , . . . , P
′′

k−1)with n− 1 ∈ P
′′

k−1. This is a final state, as required.
Now, suppose that 0 /∈ Pk−1. After reading c , we are in the state (j′, P ′1, . . . , P

′

k−1) with 1 /∈ P
′

k−1. After reading f , the
automaton is in the state (j′′, P ′′1 , . . . , P

′′

k−1) where n − 1 /∈ P ′′k−1, as f maps all states but 1 to the state n − 2. Thus, as
n− 1 /∈ P ′′k−1, the state is not final.
Assume that the statement holds for all i with ` < i 6 k − 1. We now establish it for i = ` < k − 1. Assume first that

0 /∈ P`. Again, after reading cf , we are in a state (j′, P ′1, . . . , P
′

k−1) where n − 1 /∈ P
′

`. Thus, cf does not add 0 to P
′

`+1. On
the other hand, the application of cf ensures that P ′`+1 ⊆ {n − 2, n − 1}, since f maps all states into that pair, and 0 is not
added to P ′`+1 after reading cf . Thus, 0 /∈ P

′

`+1. By induction, after reading (cf)
k−`−1 from (j′, P ′1, . . . , P

′

k−1) we are not in a
final state.
Now assume that 0 ∈ P`. After reading cf , we can verify that we are in a state (j′, P ′1, . . . , P

′

k−1) where n − 1 ∈ P`, and
thus 0 ∈ P`+1. Now, by induction, after reading (cf)k−`−1 we arrive at a final state. �

Claim 2. For all j (0 6 j 6 n− 1), the string an−k−j+1f (cf)k−1 is accepted from (j0, P1, . . . , Pk−1) if and only if j = j0.

Proof. To establish this claim, first note that if j = j0, then an−k−j+1moves to a state (1, P ′1, . . . , P
′

k−1), which is thenmapped
to (n− 1, P ′′1 , . . . , P

′′

k−1) by f . Thus, after reading a
n−k−j+1f , we have 0 ∈ P ′′1 . By Claim 1, after reading (cf)

k−1, we arrive at a
final state.
On the other hand, if j 6= j0, then an−k−j+1 maps j0 to a state which is mapped to n− 2 after reading f . Thus, after reading

an−k−j+1f , the DFA is in a state (n− 2, P ′1, P
′

2, . . . , P
′

k−1)with 0 /∈ P
′

1: we have just read f , which maps all elements to either
n − 1 or n − 2, and the first component is not n − 1, which would add 0 to P ′1. Again, using Claim 1, we can establish that
upon reading (cf)k−1, such a state (n− 2, P ′1, . . . , P

′

k−1) proceeds to a non-final state. �

Claim 3. For all i, j, with 1 6 i 6 k−1 and 0 6 j 6 n−1, the string an−k−j+1f (cf)k−1−i is accepted from a state (j0, P1, . . . , Pk−1)
if and only if j ∈ Pi.

Proof. If j ∈ Pi, then reading an−k−j+1, the automatonmoves to a state (j′0, P
′

1, . . . , P
′

k−1)where 1 ∈ P
′

i , which is subsequently
mapped to a state (j′′0, P

′′

1 , . . . , P
′′

k−1)where n−1 ∈ P
′′

i by f . Thus, if i < k−1, then 0 ∈ P
′′

i+1. By Claim1, after reading (cf)
k−i−1,

(j′′0, P
′′

0 , . . . , P
′′

k−1) proceeds to a final state. Otherwise, if i = k − 1, then (cf)
k−i−1

= ε, and since n − 1 ∈ P ′′k−1, the state
(j′′0, P

′′

1 , . . . , P
′′

k−1) is final.
If j /∈ Pi, then after reading an−k−j+1 the automaton moves to a state (j′0, P

′

1, . . . , P
′

k−1) with 1 /∈ P
′

i , and the subsequent
transition by f moves it to (j′′0, P

′′

1 , . . . , P
′′

k−1)with n− 1 /∈ P
′′

i . If i = k− 1, the string ends here and it is not accepted, which
settles the case. Otherwise, if i < k− 1, consider that we have just read an f , which maps every element to either n− 1 or
n − 2; then, as n − 1 /∈ P ′′i , we must have that 0 /∈ P

′′

i+1. Again, by Claim 1, after reading (cf)
k−i−1, we arrive at a non-final

state. �

With these three claims, we can easily establish that if (j0, P1, P2, . . . , Pk−1) 6= (j′0, P
′

1, P
′

2, . . . , P
′

k−1), then there exists a
stringw ∈ a∗f (cf)∗ such that exactly one of the states leads to a final state on readingw. This proves Lemma 4. �

Theorem 1. For every n-state regular language L, with n > 1 the language Lk requires at most n2(k−1)n states. Furthermore for
every k > 2, n > k + 1 and alphabet Σ with |Σ | > 6, there exists an n-state regular language L ⊆ Σ∗ such that Lk requires at
least (n− k)2(k−1)(n−k) states.

Proof. By Lemmas 1, 3 and 4. �

Corollary 1. For every constant k > 2, the state complexity of Lk isΘ(n2(k−1)n).

4. State complexity of L3

The state complexity of L2 is known precisely from Rampersad [12], who determined it as n2n − 2n−1 for n > 3. For the
next power, the cube, Corollary 1 asserts that the state complexity of L3 is Θ(n4n), and Theorem 1 states in particular that
it lies between (n− 3)4(n−3) and n4n for each n > 4. We now obtain a precise expression for this function.

2382 M. Domaratzki, A. Okhotin / Theoretical Computer Science 410 (2009) 2377–2392

Fig. 6. Unreachable states in Lemma 5.

4.1. Upper bound

Let A = (Q ,Σ, δ, 0, F) be an arbitrary DFA. Assume without loss of generality that Q = {0, 1, . . . , n − 1}. Recall from
Section 3.1 the construction for Ak for k = 3. In particular, A3 = (Q3,Σ, δ3, S3, F3)with the set of states Q3 = Q × 2Q × 2Q ,
in which the initial state is S3 = (0,∅,∅) if 0 /∈ F and S3 = (0, {0}, {0}) if 0 ∈ F , while F3 consists of all states (i, P, R) ∈ Q3
with R ∩ F 6= ∅.
The transition function δ3 : Q3 ×Σ → Q3 is defined as follows: δ3((i, P, R), a) = (i′, P ′, R′)where:

(1) i′ = δ(i, a).
(2) if i′ ∈ F , then P ′ = {0} ∪ δ(P, a). Otherwise, P ′ = δ(P, a).
(3) if P ′ ∩ F 6= ∅, then R′ = {0} ∪ δ(R, a). Otherwise, R′ = δ(R, a).

We now give a description of unreachable states in A3. We will again use diagrams as in the case of Lk in Section 3 to
represent states; in this case, as we are considering the cube, the diagrams will have three rows.

Lemma 5. The following states in Q3 are unreachable:

(a) (i, P, R) such that i ∈ F and 0 /∈ P.
(b) (i, P, R) such that P ∩ F 6= ∅ and 0 /∈ R.
(c) (i,∅, R) where R 6= ∅.

Additionally, when there is only one final state and this final state is not initial (assume without loss of generality that it is state
n− 1), the following states are also unreachable:

(d) (i, {i},Q) where 0 6 i < n− 1.
(e) (i, {i},Q \ {i}) where 0 6 i < n− 1.
(f) (0,Q , {0}).

The six cases listed in this lemma are illustrated by the diagrams in Fig. 6.

Proof. Cases (a) and (b) follow immediately from the definition of δ3: if a final state appears in a component, 0must be added
to the next component. Case (c) also follows from the definition of δ3: elements of R can only be added when elements of P
are already present, and once some states appear in P , they will never completely disappear, since the DFA is complete.
We now turn to case (d). Let i 6= n− 1 and assume that δ3((i′, P ′, R′), a) = (i, {i},Q) for some state (i′, P ′, R′) and some

letter a. Since i is not a final state, the third component of (i, {i},Q) must be obtained as δ(R′, a) = Q , which may only
happen if R′ = Q . Then δ(Q , a) = Q , that is, a is a permutation, so every state has a unique inverse image, and we must
have that P ′ = {i′}. Thus, the preceding state (i′, P ′, R′) is (i′, {i′},Q), which is of the same form. Therefore, the states of the
form (i, {i},Q) are reachable only from the states of the same form, and hence unreachable from the start state.
Case (e) is similar to case (d). Assume that δ3((i′, P ′, R′), a) = (i, {i},Q \ {i}) for some state (i′, P ′, R′) and some letter a,

where i 6= n − 1. Since i is not final, the third component of (i, {i},Q \ {i}) is obtained as δ(R′, a) = Q \ {i}. On the other
hand, δ(i′, a) = i, so in fact δ(Q , a) = Q and a is a permutation. Therefore, P ′ = {i′} and R′ = Q \ {i′}, that is, the state
(i, {i},Q \ {i}) is again reachable only from a state (i′, {i′},Q \ {i′}) of the same form. This group of states is therefore also
not reachable from the initial state.
Finally, for case (f), consider the state (0,Q , {0}). Let (j, P, R) ∈ Q3 and a ∈ Σ be such that δ3((j, P, R), a) = (0,Q , {0}).

As 0 /∈ F , we have that Q = δ(P, a). Thus, it must be that P = Q . But now, j is the unique state such that δ(j, a) = 0 and
R = {j}. Thus, δ3((j,Q , {j}), a) = (0,Q , {0}). If j 6= 0, then the state (j,Q , {j}) is already unreachable by case (b). Thus, the
only other possibly reachable state leading to (0,Q , {0}) is itself, and the state is unreachable. �

Note that Lemma 5 does not consider the case of the initial state being the unique final state. This case is in fact trivial in
terms of state complexity, which will be discussed in the proof of Lemma 6 below.

M. Domaratzki, A. Okhotin / Theoretical Computer Science 410 (2009) 2377–2392 2383

Lemma 6. Let L be a regular language with sc(L) = n > 3. Then the state complexity of L3 is at most

6n− 3
8

4n − (n− 1)2n − n. (1)

This upper bound is reachable only if the minimal DFA A for L has a unique final state that is not initial, and only if all states in the
corresponding automaton A3 are reachable except those in Lemma 5.

Proof. Let A be a DFA with n states and f final states.
We first note that if A has only one final state, we may assume without loss of generality that it is not the initial state.

Indeed, if the lone final state is also the initial state, then L(A) = L(A)∗. Thus L(A)k = L(A)∗ for all k > 1, and the state
complexity is unaffected by taking powers (and the upper bound given by (1) obviously holds). Therefore, in what follows,
in the cases where A has only one final state we assume that it is not the initial state.
Consider first the case of more than one final state. Then the conditions (a), (b) and (c) from Lemma 5 are applicable. The

total number of states is n4n. We can also count the number of unreachable states:

(a) f 22n−1 states of the form (i, P, R) such that i ∈ F and 0 /∈ P .
(b) If 0 /∈ F , there are n(2f − 1)22n−f−1 states of the form (i, P, R) such that P ∩ F 6= ∅ and 0 /∈ R. Of them,
f (2f − 1)22n−f−2 states also satisfy i ∈ F and 0 /∈ P , and hence have already been excluded by (a). In total, there
are n(2f − 1)22n−f−1 − f (2f − 1)22n−f−2 new unreachable states.
On the other hand, if 0 ∈ F , there are n(2f − 1)22n−f−1 − f (2f−1 − 1)22n−f−1 states of the form (i, P, R) such that

P ∩ F 6= ∅ and 0 /∈ R not already excluded by (a).
(c) (n− f)(2n − 1) states of the form (i,∅, R) not already excluded by (a).

The refined total of reachable states in the case that 0 /∈ F is:

n4n − f 22n−1 − (2f − 1)22n−f−2(2n− f)− (n− f)(2n − 1). (2)

In the case where 0 ∈ F , it is

n4n − f 22n−1 − ((2n− f)2f−1 − (n− f))22n−f−1 − (n− f)(2n − 1). (3)

For one final state, cases (d), (e) and (f) of Lemma 5 yield an additional 2(n− 1)+ 1 = 2n− 1 states which are unreachable.
Thus, the total for one final state (which is not the initial state by assumption) is, using (2),

n4n − 22n−1 − 22n−3(2n− 1)− (n− 1)(2n − 1)− 2n+ 1. (4)

Simplifying the above, we get the expression 6n−38 4
n
− (n− 1)2n − n.

Now, consider the case of f > 2:we can easily verify that f (2f−1−1)22n−f−1 < f (2f−1)22n−f−2, and hence the expression
in (3) is larger than (2). Thus, in order to show that (4) is the true upper bound, we must show that it is larger than (3). That
is, we must show that the inequality

n4n − f 22n−1 − ((2n− f)2f−1 − (n− f))22n−f−1 − (n− f)(2n − 1) <
6n− 3
8

4n − (n− 1)2n − n

holds for all n > 3 and 2 6 f 6 n− 1.
Rewriting the left-hand side of the inequality, we get

n4n − f 22n−1 −
(
(2n− f)2f−1 − (n− f)

)
22n−f−1 − (n− f)(2n − 1)

= 4n
(
n
2
−
f
4
+
n− f
2f+1

−
n− f
2n

)
+ (n− f)

6 4n
(
n
2
−
1
2
+
n− 2
8

)
+ (n− 2) = 4n

(
5n− 6
8

)
+ (n− 2).

In the above inequality, we use the facts that n > 3 and 2 6 f 6 n − 1. Now, note that subtracting the final quantity
4n(5n−68)+ (n− 2) from the right-hand side of the original inequality gives(

n+ 3
8

)
4n − (n− 1)2n − 2n+ 2.

It is now easy to verify that this quantity is strictly above zero for all n > 3. �

2384 M. Domaratzki, A. Okhotin / Theoretical Computer Science 410 (2009) 2377–2392

Fig. 7.Witness automata An for cube.

4.2. Lower bound

We now turn to showing that the upper bound in Lemma 6 is attainable over a four-letter alphabet. Consider a sequence
of DFAs {An}n>3 defined over the alphabetΣ = {a, b, c, d}, where each automaton An has the set of statesQ = {0, . . . , n−1},
of which 0 is the initial state and n− 1 is the only final state, while the transition function is defined as follows:

δ(i, a) =

{i+ 1 if 0 6 i 6 n− 3,
1 if i = n− 2,
n− 1 if i = n− 1,

δ(i, b) =

{0 if i = 0,
i+ 1 if 1 6 i 6 n− 2,
1 if i = n− 1,

δ(i, c) =

{n− 1 if i = 0,
i if 1 6 i 6 n− 1,
0 if i = n− 1,

δ(i, d) =
{
i if 0 6 i 6 n− 2,
0 if i = n− 1.

The form of these automata is illustrated in Fig. 7. Note that the transition tables for a, b and c are permutations of the set
of states, and therefore, for every σ ∈ {a, b, c}, one can consider its inverse σ−1 : Q → Q . Denote by σ−1(j) for j ∈ Q , the
unique state k such that δ(k, σ) = j. One can consider sequences of negative symbols; for any ` > 0 denote by σ−`(j) the
unique state kwith δ(k, σ `) = j.
This notation is naturally extended to sets of states: for any set P ⊆ {0, . . . , n − 1}, for any letter σ ∈ {a, b, c} and for

any ` > 0, we use the notation σ−`(P) to denote the uniquely defined set P ′ ⊆ {0, . . . , n− 1} such that δ(P ′, σ `) = P .
We use the construction for (An)3 given in Section 3.1. We also again use diagrams as in the case of Lk in Section 3 to

represent states.
We now establish three lemmas to show reachability of all states in (An)3: first those states whose third component is

empty, then those of the form (i, P, R)where i /∈ P , and finally those with i ∈ P .

Lemma 7. Every state of the form (i, P,∅), where

(I) i /∈ P;
(II) n− 1 /∈ P;
(III) if i = n− 1, then 0 ∈ P,

is reachable by a string from {a, b}∗.

In other words, Lemma 7 claims that all states (i, P, R) with i /∈ P and R = ∅ that are not deemed unreachable by
Lemma 5 are in fact reachable.

Proof. Induction on |P|.
Basis: P = ∅. A state (i,∅,∅)with 0 6 i < n− 1 is reachable via ai from the start state (0,∅,∅).
Induction step. The proof is organized into several cases, some of which are split into subcases. Each case is illustrated

in Fig. 8.
Case 1: i = n− 1. Consider a state S = (n− 1, P,∅)with 0 ∈ P and n− 1 /∈ P .
Case 1(a): If 1 /∈ P , then S is reachable from (n− 2, b−1(P \ {0}),∅) by b, while the latter state is reachable according to

the induction hypothesis, as |b−1(P \ {0})| < |P|.
Case 1(b): If 1 ∈ P , then S is reachable by a from (n − 1, a−1(P \ {0}),∅), which is in turn reachable by the induction

hypothesis.
Case 2: i = 1. Consider any state S = (1, P,∅)with 1, n− 1 /∈ P .
Case 2(a): If 0 ∈ P , then S is reachable from (n − 1, {0} ∪ b−1(P \ {0}),∅) by b, where the latter state was shown to be

reachable in the previous case.
Case 2(b): If 0 /∈ P , consider the greatest number ` with ` ∈ P . The state (1, {0} ∪ (P \ {`}),∅) is reachable as in Case

2(a), and from this state the automaton goes to S by bn−1−`a`.
Case 3: i 6= n − 1. Finally, any state S = (i, P,∅) with 0 6 i 6 n − 2 and n − 1 /∈ P is reachable from the state

(1, a−(i−1)(P),∅) by ai−1. States of the latter form have been shown to be reachable in Case 2. �

M. Domaratzki, A. Okhotin / Theoretical Computer Science 410 (2009) 2377–2392 2385

Fig. 8. Reachability of states (i, P,∅) in Lemma 7.

The above Lemma 7will now be extended to reach all states (i, P, R)with i /∈ P that are not unreachable due to Lemma 5.

Lemma 8. Every state of the form (i, P, R), where

(I) i /∈ P;
(II) |P| > 1;
(III) if i = n− 1, then 0 ∈ P;
(IV) if n− 1 ∈ P, then 0 ∈ R,

is reachable.

Proof. Induction on |R|. The basis, R = ∅, is given by Lemma 7. For the induction step, we have three major cases, each of
which is broken into several subcases. These cases are illustrated in Fig. 9.

Case 1: n− 1 ∈ P .
Case 1(a): 1 /∈ P , i 6= 1. Then the state (b−1(i), b−1(P), b−1(R \ {0})) is reachable by the induction hypothesis, and from

it the state (i, P, R) is reachable by b.
Case 1(b): 1 /∈ P , i = 1, 0 /∈ P . Then (1, P, R) is reachable from (1, c−1(P), c−1(R \ {0})) by c , where the latter state is

reachable by the induction hypothesis.
Case 1(c): 1 /∈ P , i = 1, 0 ∈ P . Then the state (n− 1, b−1(P), b−1(R \ {0})) is reachable by the induction hypothesis, and

from this state the automaton goes by b to (1, P, R).
Case 1(d): 1 ∈ P . Let j be the greatest number, such that 1, . . . , j ∈ P . Then either i > j or i = 0, and in each case (i, P, R)

is reachable from (b−j(i), b−j(P), b−j(R)) by bj. The latter state has n − 1 ∈ b−j(P) and 1 /∈ b−j(P), and hence it has been
proved to be reachable in Cases 1(a)–1(c).

Case 2: n− 1 /∈ P , n− 1 ∈ R.
Case 2(a): 0 ∈ P . This state is reachable by c from (c−1(i), c−1(P), c−1(R)), which has n − 1 ∈ c−1(P) and is therefore

reachable as in Case 1.
Case 2(b): 0 /∈ P . Let j be the least number in P . Then this state is reachable by aj from (a−j(i), a−j(P), a−j(R)), which is

reachable as in Case 2(a).
Case 3: n− 1 /∈ P , n− 1 /∈ R.
Case 3(a): 0 ∈ P , 0 ∈ R. This case is further split into three subcases depending on the cardinality of P and R:

(3(a1)) First assume |P| > 2 and let j be the least element of P\{0}. Then (i, P, R) is reached by bj from (b−j(i), b−j(P), b−j(R)),
which is in turn reachable as in Case 1, since n− 1 ∈ b−j(P).

(3(a2)) Similarly, if |R| > 2, then setting j as the least element of R \ {0} one can reach (i, P, R) by bj from
(b−j(i), b−j(P), b−j(R)), which has n− 1 ∈ b−j(R) and hence is reachable as in Case 1 or Case 2.

(3(a3)) The remaining possibility is |P| = |R| = 1, that is, P = {0} and R = {0}. Consider the state (1, {n − 1}, {0}),
which was shown to be reachable in Case 1(b). From this state, the automaton goes to (1, {0}, {0}) by d and then to
(i, {0}, {0}) by bi−1.

2386 M. Domaratzki, A. Okhotin / Theoretical Computer Science 410 (2009) 2377–2392

Fig. 9. Reachability of (i, P, R)with i /∈ P: cases in the proof of Lemma 8.

Case 3(b): 0 6 i 6 n − 2, P ∩ R 6= ∅. Let j ∈ P ∩ Q be the least such number. Then this state is reachable by aj from
(a−j(i), a−j(P), a−j(R)), which is reachable as in Case 3(a).
Case 3(c): 0 6 i 6 n−2, P∩R = ∅. Since P, R 6= ∅, there exists at least one pair (j, k)with j ∈ P and j+k (mod n−1) ∈ R.

Consider one of the pairs with theminimal value of k. Then j+1, . . . , j+k (mod n−1) /∈ P , and hence this state is reachable
by bkaj from (b−k(a−j(i)), b−k(a−j(P)), b−k(a−j(R))), which is itself reachable as in Case 2(a).
Case 3(d): i = n− 1, P 6= {0, 1, . . . , n− 2}. Assume 0 /∈ R (if 0 ∈ R, then this state falls under Case 3(a)). Let j be the least

number not in P . Then this state is reachable by aj−1 from the state (n− 1, a−(j−1)(P), a−(j−1)(R)), which has 1 /∈ a−(j−1)(P)
and is therefore reachable by b from (n− 2, b−1(a−(j−1)(P)), b−1(a−(j−1)(R))). The latter state has n− 1 /∈ b−1(a−(j−1)(P));
if n− 1 /∈ b−1(a−(j−1)(R)), it is reachable as in Case 3(b) or in Case 3(c), and if n− 1 ∈ b−1(a−(j−1)(R)), it is reachable as in
Case 2.
Case 3(e): i = n− 1, P = {0, 1, . . . , n− 2}. Again, it can be assumed that 0 /∈ R. This time define j as the least number in

R, which exists since R 6= ∅. In this case the state in question is reachable by aj from (n − 1, P, a−j(R)), which is reachable
as in Case 3(a) because 0 ∈ a−j(R). �

It remains to reach all states (i, P, R) with i ∈ P that are not unreachable by Lemma 5, which is done in the following
lemma:

Lemma 9. Every state of the form (i, P, R), where

(I) i ∈ P;
(II) |P| > 1;
(III) if i = n− 1, then 0 ∈ P;
(IV) if n− 1 ∈ P, then 0 ∈ R;

M. Domaratzki, A. Okhotin / Theoretical Computer Science 410 (2009) 2377–2392 2387

Fig. 10. Reachability of (i, P, R)with i ∈ P: cases in the proof of Lemma 9.

(V) if P = {i}, then R 6= Q and R 6= Q \ {i}.
(VI) if i = 0 and P = Q , then R 6= {0}

is reachable.

Note that the last two conditions of Lemma 9 exactly match the last three cases of Lemma 5.

Proof. The proof again involves examining several cases, though this time there is no induction. These cases are illustrated
in Fig. 10. The first case is based upon Lemma 8, the other cases depend on the first case and on each other. All cases except
the last one, Case 4, deal with i 6= n− 1: Case 1 assumes n− 1 /∈ P and n− 1 /∈ R, Case 2 uses n− 1 ∈ P and Case 3 handles
the last possibility: n− 1 /∈ P and n− 1 ∈ R.

Case 1: i 6= n− 1, n− 1 /∈ P and n− 1 /∈ R (that is, the column n− 1 in a diagram is empty). Any such state is reachable
by dai from (n− 1, a−i(P), a−i(R)), which has 0 ∈ a−i(P), n− 1 /∈ a−i(P) and n− 1 /∈ a−i(R), and is therefore reachable by
Lemma 8.

Case 2: i 6= n− 1 and n− 1 ∈ P (and therefore 0 ∈ R).
Case 2(a): 0 /∈ P , and therefore i 6= 0. This state is reachable from

(
i, c−1(P), c−1(R \ {0})

)
by c , which is reachable as in

Case 1.
Case 2(b): 0 ∈ P and i 6= 0. Consider the state

(
0, b−i(P) \ {n − 1}, c−1(b−i(R)) \ {n − 1}

)
, which has empty column

n− 1 and is therefore reachable as in Case 1. From this state, the automaton goes to (n− 1, b−i(P), b−i(R)) by c , which has
0 ∈ b−i(P) and 0 ∈ b−i(R). Therefore, by bi the automaton further proceeds to (i, P, R).
Case 2(c): 0 ∈ P and i = 0. This case will be proved at the end of the proof.
Case 3: i 6= n− 1, n− 1 /∈ P and n− 1 ∈ R.
Case 3(a): |P| > 2. Let j ∈ P \ {i} and consider the state (a−j(i), c−1(a−j(P)), c−1(a−j(R))), which is reachable as in Case

2(a). From this state, the automaton goes to (a−j(i), a−j(P), a−j(R)) by c and then to (i, P, R) by aj.
Case 3(b): |P| = 1. Then this is a state of the form (i, {i}, R). By Condition (V) in the statement of the lemma, R 6= Q and

R 6= Q \ {i}. Therefore, there exists j /∈ Rwith j 6= i. If i < j, then (i, {i}, R) is reachable by bj−iai from (0, 0, b−(j−i)(a−i(R)));

2388 M. Domaratzki, A. Okhotin / Theoretical Computer Science 410 (2009) 2377–2392

the latter state has n − 1 /∈ b−(j−i)(a−i(R)), and so it is reachable as in Case 1. The same construction is applicable for any
j 6= i, if one starts from (0, 0, b−(n−1−i+j)(a−i(R))) and uses bn−1−i+jai.

Case 4: i = n−1 (and therefore 0 ∈ P and 0 ∈ R). This state is reachable by c from (0, c−1(P)\ {n−1}, c−1(R)\ {n−1}),
which is in turn reachable as in Case 1.
This completes the case study. Now it remains to prove the last case 2(c), in which i = 0, 0 ∈ P and n − 1 ∈ P (and

therefore 0 ∈ R). It follows from Condition (VI) in the statement of the lemma that there exists j > 0 with j /∈ P or j ∈ R:
indeed, if there were no such j, then P = Q and R = {0}, which would contradict Condition (VI). The proof splits into two
subcases depending on j and its membership in P and in R:

(2(c1)) j ∈ P (and therefore j ∈ R by the definition of j). This state is reachable by cbj from (n−1, c−1(b−j(P)), c−1(b−j(R))),
which is in turn reachable as in Case 4.

(2(c2)) j /∈ P . Consider the state (0, b−j(P), b−j(R)\{0}), which is reachable as in Case 1 or 3(a). From this state, the automaton
goes by bn−1 to state (0, b−j(P), b−j(R)), because b−j(P) contains the element n− 1− j, which will eventually pass
through position n− 1 and hence put 0 in R. Next, the automaton goes to (0, P, R) by bj.

This remaining case concludes the proof. �

Thus, by the previous three lemmas, all the states which are not proven to be unreachable by Lemma 5 are, in fact,
reachable. We now prove that distinct states are inequivalent.

Lemma 10. All states in Q3 are pairwise inequivalent.

Proof. Let (i, P, R) 6= (i′, P ′, R′). To show the inequivalence of these states, it is sufficient to construct a string that is accepted
from one of these states but not from the other.
If R 6= R′, then we can assume without loss of generality that there exists a state j ∈ R \ R′. If j > 1, then the string bn−1−j

is accepted from (i, P, R) but not from (i′, P ′, R′). If j = 0, then abn−2 is accepted from (i, P, R) but not from (i′, P ′, R′).
If P 6= P ′, then assumewithout loss of generality that there is a state j ∈ P \P ′. If j 6 n−2, then an−2−jdacabn−2 is accepted

from (i, P, R) but not from (i′, P ′, R′). If j = n− 1, then bn−2dacabn−2 is accepted from (i, P, R) but not from (i′, P ′, R′).
Suppose i 6= i′. If i 6 n − 2, then an−2−idacan−2dacabn−2 is accepted from (i, P, R) but not from (i′, P ′, R′). If i = n − 1,

then bn−2dacan−2dacabn−2 is accepted from (i, P, R) but not from (i′, P ′, R′). �

Theorem 2. The state complexity of L3 is at most 6n−38 4
n
− (n − 1)2n − n for all n > 3. This upper bound is reached on every

alphabet of at least 4 letters.

4.3. From cube to square

Wenow give an interesting result which states that anywitness for theworst case state complexity of L3 is also a witness
for L2 as well.

Proposition 1. Let L be a regular language with sc(L) = n > 3 and sc(L3) = 6n−3
8 4

n
− (n−1)2n−n. Then sc(L2) = n2n−2n−1.

Proof. As sc(L) > 3, we note that L 6= ∅.
Let A = (Q ,Σ, δ, 0, F) be a DFA for L and assume without loss of generality that Q = {0, . . . , n − 1}. Then A2 =

(Q2,Σ, δ2, S2, F2) is a DFA for L2 where Q2 = Q × 2Q \ {(i, P) : i ∈ F , 0 /∈ P}, S2 = (0,∅) if 0 /∈ F and S2 = (0, {0})
otherwise, F2 = {(i, P) : P ∩ F 6= ∅} and δ2 is defined as: δ2((i, P), a) = (i′, P ′)where

(1) i′ = δ(i, a).
(2) if i′ ∈ F , then P ′ = {0} ∪ δ(P, a). Otherwise, P ′ = δ(P, a).

Assume that sc(L2) < n2n − 2n−1. Then when we use the construction of Yu et al. [16], we obtain either a state which is
unreachable, or a pair of equivalent states.
Consider reachability first. Let (i, P) ∈ Q2 be arbitrary. Consider the state S ∈ Q3 defined by S = (i, P,∅) if P ∩ F = ∅

and S = (i, P, {0, i′}) for some arbitrary state i′ ∈ Q \ {0} otherwise (note that since n > 3, we can assume that i′ 6= 0). The
construction for L2 of Yu et al. excludes those states such that i ∈ F and 0 /∈ P , so we note that condition (a) of Lemma 5
does not hold for S. Further, by the definition of S, conditions (b)–(e) trivially hold. Condition (f) also holds since the third
component of S has size zero or two by definition. Thus, S does not satisfy the conditions of Lemma 5, so must be reachable.
But then (i, P)must also be reachable in A2 by the same input.
We now turn to equivalence. In what follows, for any (i1, P1), (i2, P2) ∈ Q2, we denote by (i1, P1) ∼2 (i2, P2) the fact that

for all x ∈ Σ∗, if δ2((i1, P1), x) = (i′1, P
′

1) and δ2((i2, P2), x) = (i
′

2, P
′

2), then P
′

1 ∩ F 6= ∅ if and only if P ′2 ∩ F 6= ∅. That is,∼2
is the equivalence of states for A2.
We require the following claim:

Claim 4. Let i1, i2 ∈ Q , P1, P2 ⊆ Q with (i1, P1) ∼2 (i2, P2). Let Y ⊆ Q be arbitrary. For all x ∈ Σ∗, there exists R ⊆ Q such
that

δ3((i1, P1, Y), x) = (i′1, P
′

1, R) and δ3((i2, P2, Y), x) = (i′2, P
′

2, R).

M. Domaratzki, A. Okhotin / Theoretical Computer Science 410 (2009) 2377–2392 2389

Proof. The proof is by induction on |x|. For |x| = 0, then x = ε and we have that

δ3((i1, P1, Y), ε) = (i1, P1, Y) and δ3((i2, P2, Y), ε) = (i2, P2, Y).

Assume that the result holds for all x ∈ Σ∗ with |x| < k. Let x ∈ Σ∗ be an arbitrary string of length k, and write x = x′a
where |x′| = k− 1 and a ∈ Σ . Thus, note that

δ3((i1, P1, Y), x′) = (i′1, P
′

1, R) and δ3((i2, P2, Y), x′) = (i′2, P
′

2, R)

for some R ⊆ Q . Let

δ3((i′1, P
′

1, R), a) = (i
′′

1, P
′′

1 , R1) and δ3((i′2, P
′

2, R), a) = (i
′′

2, P
′′

2 , R2)

for some i′′1, i
′′

2 ∈ Q and P
′′

1 , P
′′

2 , R1, R2 ⊆ Q .
We have two cases:

(i) P ′′1 ∩ F = ∅. By equivalence in A2, the same is true of P ′′2 . Thus, by the definition of δ3, we have that R1 = δ(R, a) and
R2 = δ(R, a) as well. Thus, R1 = R2.

(ii) P ′′1 ∩ F 6= ∅. In this case, R1 = R2 = δ(R, a) ∪ {0}.

Thus, the claim holds. �

Wenow show that all pairs of reachable states inQ2 are inequivalent. Assume not. Then there exists (i1, P1), (i2, P2) ∈ Q2
such that (i1, P1) ∼2 (i2, P2). There are three cases:

(i) P1 ∩ F = ∅ (note that P2 ∩ F = ∅ as well by equivalence of states, in particular, with x = ε). In this case, as we assume
that sc(L3) achieves the bound in Lemma 6, and as the states (i1, P1,∅) and (i2, P2,∅) are not unreachable by Lemma 5,
we must have that both (i1, P1,∅) and (i2, P2,∅) are reachable. In particular, note that conditions (d) and (e) are not
satisfied since the final component is empty and n > 3.
Further, (i1, P1,∅) and (i2, P2,∅) are equivalent in A3 by Claim 4: every state reachable from them on x has the

same third component.
(ii) P1∩F 6= ∅, but (i1, P1) 6= (0,Q) and (i2, P2) 6= (0,Q). In this case, the states (i1, P1, {0}) and (i2, P2, {0}) are reachable.
Further, as in Case (i), they are equivalent.

(iii) (i1, P1) = (0,Q) (a similar case handles (i2, P2) = (0,Q)). In this case, (i1, P1, {0, i}) and (i2, P2, {0, i}) are reachable
states in A3 for any choice of 0 < i /∈ F . They are equivalent by the same argument used in Case (i).

Thus, in all cases, we have constructed a pair of states in Q3 which are reachable and equivalent. This is a contradiction, since
each pair of states in Q3 are inequivalent, by assumption. �

We note that the reverse implication in Proposition 1 does not hold: for example, the witness languages given by
Rampersad for the worst case complexity of L2 are over a two-letter alphabet. But by the calculations in Section 6, we will
see that no language over a two-letter alphabet may give the worst case complexity for L3 for small values of n.

5. Nondeterministic state complexity

We now turn to nondeterministic state complexity. Nondeterministic state complexity for basic operations has been
examined by Holzer and Kutrib [6] and Ellul [3]. We give tight bounds on the nondeterministic state complexity for Lk for
any k > 2.
We adopt the fooling set method for proving the lower bounds on nondeterministic state complexity in the form of

Birget [1, p. 188]. A fooling set for an NFAM = (Q ,Σ, δ, q0, F) is a set S ⊆ Σ∗ ×Σ∗ such that

(a) xy ∈ L(M) for all (x, y) ∈ S and
(b) for all (x1, y1), (x2, y2) ∈ S with (x1, y1) 6= (x2, y2), either x1y2 /∈ L(M) or x2y1 /∈ L(M).

If S is a fooling set forM , then nsc(L) > |S|.

Theorem 3. For all regular languages L with nsc(L) = n and all k > 2, nsc(Lk) 6 kn. Furthermore, for all n > 2 and k > 2, the
bound is reached by a language over a binary alphabet.

Proof. The upper bound is given by the construction of Holzer and Kutrib [6] or Ellul [3] for concatenation, which states
that if nsc(L1) = n and nsc(L2) = m then nsc(L1L2) 6 n+m.
For the lower bound, consider the language Ln = an−1(ban−1)∗, which is recognized by an n-state NFA given in Fig. 11(a).

The language (Ln)k = (an−1(ban−1)∗)k is recognized by the NFA in Fig. 11(b). The following facts will be useful:

Claim 5. The only string in (Ln)k ∩ a∗ is ak(n−1).

Claim 6. The following equality holds: (Ln)k ∩ a∗ba∗ = {aj(n−1)ba(k−j+1)(n−1) : 1 6 j 6 k}. In particular, each string in the
intersection has length (k+ 1)(n− 1)+ 1.

2390 M. Domaratzki, A. Okhotin / Theoretical Computer Science 410 (2009) 2377–2392

Fig. 11. NFAs for Ln and for (Ln)k .

Table 1
Worst case complexity of Lk .

n L2 L3 L4 L5 L6 L7 L8

2 5 7 9 11 13 15 17
3 20 101 410 1331 3729 8833 18176
4 56 620 6738 65854 564566
5 144 3323 76736 1713946
6 352 16570 782092
7 832 79097

Our fooling set is Sn,k = {(ε, an−1bak(n−1))} ∪ Sn,k,1 ∪ Sn,k,2, where

Sn,k,1 = {(a(n−1)j+i, an−i−1ba(n−1)(k−j)) : 1 6 i 6 n− 1, 0 6 j 6 k− 1}

Sn,k,2 = {(a(n−1)jb, a(k−j+1)(n−1) : 2 6 j 6 k}.

The total size of the fooling set is nk, as Sn,k,1 has size k(n − 1) and Sn,k,2 has size k − 1. Further, by Claim 6, all of the
elements (x, y) ∈ Sn,k satisfy xy ∈ (Ln)k. It remains to show that for all (x1, y1), (x2, y2) ∈ Sn,k with (x1, y1) 6= (x2, y2), either
x1y2 /∈ (Ln)k or x2y1 /∈ (Ln)k. We say such pairs are inequivalent in what follows.
First note that none of an−i−1ba(n−1)(k−j) with 1 6 i 6 n − 1 and 0 6 j 6 k − 1 or a(k−j+1)(n−1) are in (Ln)k. Thus, the

element (ε, an−1bak(n−1)) is inequivalent with all elements of Sn,k,1 ∪ Sn,k,2.
Next, we consider two pairs from Sn,k,1. Take the pairs (a(n−1)j+i, an−i−1ba(n−1)(k−j)) and (a(n−1)j

′
+i′ , an−i

′
−1ba(n−1)(k−j

′)) for
some i, i′, j, j′with 1 6 i, i′ 6 n−1 and 0 6 j, j′ 6 k−1. Assume (i, j) 6= (i′, j′). Consider the string a(n−1)j+ian−i

′
−1ba(n−1)(k−j

′).
Its length is (n− 1)j+ i+ n− i′ + (n− 1)(k− j′) = (j− j′)(n− 1)+ (i− i′)+ (n− 1)(k+ 1)+ 1. Suppose j 6= j′; then
|(j− j′)(n− 1)| > n− 1, and since |i− i′| < n− 1, we have (j− j′)(n− 1)+ (i− i′) 6= 0, that is, the length of the string is
different from (n− 1)(k+ 1)+ 1. If j = j′ and i 6= i′, then (j− j′)(n− 1)+ (i− i′) = i− i′ 6= 0, and again the string is not
of length (n− 1)(k+ 1)+ 1. In each case the string is not in (Ln)k by Claim 6.
Now consider two pairs from Sn,k,2. If we take (a(n−1)jb, a(k−j+1)(n−1)) and (a(n−1)j

′

b, a(k−j
′
+1)(n−1)), for some 2 6 j < j′ 6 k,

then we can consider the string w = a(n−1)jba(k−j
′
+1)(n−1). Note that this string has length (n − 1)(k − (j′ − j) + 1) + 1 <

(n− 1)(k+ 1)+ 1. Therefore,w is not in (Ln)k by Claim 6.
Finally, it remains to consider pairs from Sn,k,1 × Sn,k,2. Consider p1 = (a(n−1)j+i, an−i−1ba(n−1)(k−j)) and p2 =

(a(n−1)j
′

b, a(k−j
′
+1)(n−1)) for some 1 6 i 6 n− 1, 0 6 j 6 k− 1 and 2 6 j′ 6 k. There are two cases:

(a) if i 6= n− 1, then consider a(n−1)j+ia(k−j
′
+1)(n−1), obtained from concatenating the first component of p1 and the second

component of p2. As i 6= n−1, the length of the above string is not divisible by n−1 and thus is certainly not in (Ln)k∩a∗
by Claim 5.

(b) if i = n − 1, then consider a(n−1)j
′

ban−i−1ba(n−1)(k−j), which is the first component of p2 concatenated with the second
component of p1. Simplifying, we note that this string has an occurrence of bb, which is impossible as n > 2.

This completes the proof. �

6. Calculations

We present some numerical calculations of the worst case state complexity of Lk for k from 2 to 8 and for small values
of n. In each case, this state complexity can be computed by considering automata over an nn-letter alphabet, in which the
transitions by different letters represent all possible functions fromQ → Q . For the final states,we follow the computational
technique described by Domaratzki et al. [2], which requires only considering O(n) different assignments of final states. The
computed results are given in Table 1. For instance, the worst case complexity of L4 for all DFAs of size 6 (782092) is taken
with respect to an alphabet of size 66 = 46656.
In particular, the column for L2 starting from n = 3 is known from Rampersad [12], who obtained a closed-form

expression n2n − 2n−1; note that for n = 2 the upper bound is five states, which is slightly less than the general bound.
The case of L3 is presented in more detail in Table 2, which demonstrates the worst case state complexity of L3 over

alphabets of size 2, 3, 4 and of size nn (where n is the number of states) for automata of size n between 1 and 5. The final

M. Domaratzki, A. Okhotin / Theoretical Computer Science 410 (2009) 2377–2392 2391

Table 2
Worst case state complexity of L3 .

2 3 4 nn Upper bound

1 1 1 1 1
2 7 7 7 7
3 64 96 101 101 101
4 410 608 620 620 620
5 2277 3323 3323
6 16570 16570
7 79097 79097

column gives the upper bound from Theorem 2. Note that the table demonstrates that this upper bound cannot be reached
for small values of n on alphabets of size three or fewer.
Let usmentionhow these calculations helpedus in obtaining the theoretical results in this paper. One of our computations

considered all minimal 4-state DFAs over a 4-letter alphabet, pairwise nonisomorphicwith respect to permutations of states
and letters. There are 364644290 such automata; for each of them, the minimal DFA for its cube was computed, which took
in total less than 6 days of machine time. In total 52 DFAs giving the top result (620 states) were found, and one of themwas
exactly the DFA A4 defined in Section 4.2.We obtained the general form of the automata An that witness the state complexity
of the cube by generalizing this single example.

7. Conclusions and open problems

We have continued the investigation of the state complexity of power, previously investigated by Rampersad [12]. We
have given an upper bound for the state complexity of L3 over alphabets of size two or more, and shown that it is optimal
for alphabets of size four by giving a matching lower bound. By calculation, the bound is not attainable for alphabets of size
two or three, at least for small DFA sizes.
For the case of general Lk, we have established an asymptotically tight bound. In particular, we have shown that if L is

a regular language with state complexity n and k > 2, then the state complexity of Lk is Θ(n2(k−1)n). The upper and lower
bounds on the state complexity of Lk differ by a factor of 2k(k−1) nn−k ; we leave it as a topic for future research to improve the
bounds for k > 4.
Very recently, Ésik et al. [4] have determined the state complexity of concatenations of three and four regular languages:

L1 · L2 · L3 and L1 · L2 · L3 · L4. Unlike the cases of L3 and L4 studied in this paper, the languages being concatenated in these
expressions need not be the same. Hence, the restrictions of Lemma 5(d)–(f) are not applicable in this case, and the set of
reachable states has basically the same structure as in the case of concatenation of two languages. Accordingly, the worst
case state complexity of concatenation of multiple languages is slightly higher than that in the case of powers of a single
language.
We have also considered the nondeterministic state complexity of Lk for alphabets of size two or more, and have shown

a tight bound of kn. We leave open the problem of the nondeterministic state complexity of Lk over a unary alphabet, as the
nondeterministic state complexity of concatenation over a unary alphabet is not currently known exactly [6].

Acknowledgements

The first author’s research was conducted at the Department of Mathematics, University of Turku, during a research visit
supported by the Academy of Finland under grant 118540. The first author’s research was supported in part by the Natural
Sciences and Engineering Research Council of Canada. The second author’s work was supported by the Academy of Finland
under grant 118540.

References

[1] J.-C. Birget, Intersection and union of regular languages and state complexity, Information Processing Letters 43 (1992) 185–190.
[2] M. Domaratzki, D. Kisman, J. Shallit, On the number of distinct languages accepted by finite automata with n states, Journal of Automata, Languages
and Combinatorics 7 (2002) 469–486.

[3] K. Ellul, Descriptional complexity measures of regular languages, Master’s Thesis, University of Waterloo, Canada, 2002.
[4] Z. Ésik, Y. Gao, G. Liu, S. Yu, Estimation of state complexity of combined operations, in: C. Cămpeanu, G. Pighizzini (Eds.), 10th InternationalWorkshop
on Descriptional Complexity of Formal Systems, DCFS 2008, Charlottetown, PEI, Canada, July 16–18, 2008, pp. 168–181.

[5] Y. Gao, K. Salomaa, S. Yu, The state complexity of two combined operations: Star of catenation and star of reversal, Fundamenta Informaticae 83 (2008)
75–89.

[6] M. Holzer, M. Kutrib, Nondeterministic descriptional complexity of regular languages, International Journal of Foundations of Computer Science 14
(2003) 1087–1102.

[7] J. Jirásek, G. Jirásková, A. Szabari, State complexity of concatenation and complementation, International Journal of Foundations of Computer Science
16 (3) (2005) 511–529.

[8] G. Jirásková, A. Okhotin, On the state complexity of star of union and star of intersection, Turku Centre for Computer Science Technical Report 825,
Turku, Finland, August 2007.

2392 M. Domaratzki, A. Okhotin / Theoretical Computer Science 410 (2009) 2377–2392

[9] G. Liu, C. Martín-Vide, A. Salomaa, S. Yu, State complexity of basic operations combined with reversal, Information and Computation 206 (2008)
1178–1186.

[10] A.N. Maslov, Estimates of the number of states of finite automata, Soviet Mathematics Doklady 11 (1970) 1373–1375.
[11] G. Pighizzini, J. Shallit, Unary language operations, state complexity and Jacobsthal’s function, International Journal of Foundations of Computer

Science 13 (1) (2002) 145–159.
[12] N. Rampersad, The state complexity of L2 and Lk , Information Processing Letters 98 (2006) 231–234.
[13] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Springer, 1997.
[14] A. Salomaa, K. Salomaa, S. Yu, State complexity of combined operations, Theoretical Computer Science 383 (2–3) (2007) 140–152.
[15] K. Salomaa, S. Yu, On the state complexity of combined operations and their estimation, International Journal of Foundations of Computer Science 18

(2007) 683–698.
[16] S. Yu, Q. Zhuang, K. Salomaa, The state complexity of some basic operations on regular languages, Theoretical Computer Science 125 (1994) 315–328.

	State complexity of power
	Introduction
	Definitions
	State complexity of Lk
	Upper bound
	Lower bound

	State complexity of L3
	Upper bound
	Lower bound
	From cube to square

	Nondeterministic state complexity
	Calculations
	Conclusions and open problems
	Acknowledgements
	References

