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Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 040 01 Košice,
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Abstract. We examine the deterministic and nondeterministic state
complexity of complements, stars, and reversals of regular languages.
Our results are as follows:
1. The nondeterministic state complexity of the complement of an

n-state NFA language over a five-letter alphabet may reach each
value in the range from log n to 2n.

2. The state complexity of the star (reversal) of an n-state DFA lan-
guage over a growing alphabet may reach each value in the range
from 1 to 3

42n (from log n to 2n, respectively).
3. The nondeterministic state complexity of the star (reversal) of an

n-state NFA binary language may reach each value in the range
from 1 to n + 1 (from n − 1 to n + 1, respectively).

We also obtain some partial results on the nondeterministic state com-
plexity of the complements of binary regular languages. As a bonus, we
get an exponential number of values that are non-magic, which improves
a similar result of Geffert (Proc. 7th DCFS, Como, Italy, 23–37).

1 Introduction

Regular languages and finite automata are among the oldest and simplest topics
in formal language theory. They have been intensively studied since the forties.
Nevertheless, some important problems are still open. The most famous is the
question of how many states are sufficient and necessary for two-way determinis-
tic finite automata to simulate two-way nondeterministic finite automata [1,17].

Recently, there have been a new interest in automata theory; for a discus-
sion, we refer to [10,20]. Many researchers have investigated various problems
concerning descriptional complexity which studies the costs of description of
languages by different formal systems. Here we focus on the deterministic and
nondeterministic state complexity of complements, stars, and reversals of regular
languages.

In 1997, at the 3rd Conference on Developments in Language Theory, Iwama
at al. [11] stated the question of whether there always exists a minimal nonde-
terministic finite automaton (NFA) of n states whose equivalent minimal deter-
ministic finite automaton (DFA) has exactly α states for all integers n and α
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satisfying that n � α � 2n. The question has also been considered in [12], where
an integer Z with n < Z < 2n is called a “magic number” if no DFA of Z states
can be simulated by any NFA of n states. In [13] it has been shown that there
are no magic numbers, that is, appropriate automata have been described for all
integers n and α. However, the constructions have used a growing alphabet of
size 2n−1 + 1. Later, in [5], the size of the alphabet has been decreased to n + 2,
and finally, in [16], the result has been proved for a fixed four-letter alphabet.
On the other hand, there are a lot of magic numbers in a unary case [6]. The
problem remains open for binary and ternary alphabets.

A similar question for complements of regular languages has been examined
in [15]. Using a growing alphabet of size 2n+1 it has been proved that all values
in the range from log n to 2n can be obtained as the nondeterministic state
complexity of an n-state NFA language. Here we improve this result by showing
that it still holds for a fixed five-letter alphabet. We also consider a binary case,
and, as a bonus, we get an exponential number of so called “non-magic” values.

We next investigate the deterministic and nondeterministic state complexity
of stars and reversals of regular languages. In all cases, we show that the whole
range of complexities up to the known upper bounds can be obtain. To prove the
results on state complexity we use growing alphabets. In the nondeterministic
case, a binary alphabet is enough to describe appropriate automata.

To conclude this section let us mention some other related works. Magic num-
bers for symmetric difference NFAs have been studied by Zijl [22]. In [9], it has been
shownthatthedeterministicandnondeterministic statecomplexityofunionandin-
tersection of regular languagesmay reach each value from 1 up to the upper bounds
mn or m+n+1.Similar results for the nonterminal complexity of some operations
on context-free languages have been recently obtained by Dassow and Stiebe [4].

2 Preliminaries

In this section, we give some basic definitions, notations, and preliminary results
used throughout the paper. For further details, we refer to [18,19].

Let Σ be a finite alphabet and Σ∗ the set of all strings over the alphabet
Σ including the empty string ε. The length of a string w is denoted by |w|. A
language is any subset of Σ∗. The complement of a language L is denoted by
Lc, its star by L∗, and it reversal by LR. We denote the cardinality of a finite
set A by |A| and its power-set by 2A.

A deterministic finite automaton (DFA) is a 5-tuple M = (Q, Σ, δ, q0, F ),
where Q is a finite set of states, Σ is a finite input alphabet, δ is the transition
function that maps Q × Σ to Q, q0 is the initial state, q0 ∈ Q, and F is the set
of accepting states, F ⊆ Q. In this paper, all DFAs are assumed to be complete,
that is, the next state δ(q, a) is defined for each state q in Q and each symbol a
in Σ. The transition function δ is extended to a function from Q × Σ∗ to Q in
a natural way. A string w in Σ∗ is accepted by the DFA M if the state δ(q0, w)
is an accepting state of the DFA M . The language accepted by the DFA M,
denoted L(M), is the set of strings {w ∈ Σ∗ | δ(q0, w) ∈ F}.
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A nondeterministic finite automaton (NFA) is a 5-tuple M = (Q, Σ, δ, q0, F ),
where Q, Σ, q0 and F are defined in the same way as for a DFA, and δ is the
nondeterministic transition function that maps Q × Σ to 2Q. The transition
function can be naturally extended to the domain Q × Σ∗. A string w in Σ∗ is
accepted by the NFA M if the set δ(q0, w) contains an accepting state of the
NFA M. The language accepted by the NFA M is the set of strings L(M) =
{w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅}.

Two automata are said to be equivalent if they accept the same language. A
DFA (an NFA) M is called minimal if all DFAs (all NFAs, respectively) that
are equivalent to M have at least as many states as M . It is well-known that
a DFA M = (Q, Σ, δ, q0, F ) is minimal if (i) all its states are reachable from
the initial state, and (ii) no two its different states are equivalent (states p
and q are said to be equivalent if for all strings w in Σ∗, the state δ(p, w) is
accepting iff the state δ(q, w) is accepting). Each regular language has a unique
minimal DFA, up to isomorphism. However, the same result does not hold for
NFAs.

The (deterministic) state complexity of a regular language is the number of
states in its minimal DFA. The nondeterministic state complexity of a regu-
lar language is defined as the number of states in a minimal NFA accepting
this language. A regular language with deterministic (nondeterministic) state
complexity n is called an n-state DFA language (an n-state NFA language,
respectively).

Every nondeterministic finite automaton M = (Q, Σ, δ, q0, F ) can be con-
verted to an equivalent deterministic finite automaton M ′ = (2Q, Σ, δ′, q′0, F ′)
using an algorithm known as the “subset construction” in the following way. Ev-
ery state of the DFA M ′ is a subset of the state set Q. The initial state of the DFA
M ′ is the set {q0}. The transition function δ′ is defined by δ′(R, a) =

⋃
r∈R δ(r, a)

for each state R in 2Q and each symbol a in Σ. A state R in 2Q is an accepting
state of the DFA M ′ if it contains at least one accepting state of the NFA M.
The DFA M ′ need not be minimal since some states may be unreachable or
equivalent. Sometimes, also NFAs with a set of initial states are considered. In
such a case, the subset construction starts with this set being the initial state of
an equivalent DFA.

To prove that an NFA is minimal we use a fooling-set lower-bound technique
[2,3,7]. After defining a fooling set, we recall the lemma from [2] describing this
lower-bound technique.

Definition 1. A set of pairs of strings {(xi, yi) | i = 1, 2, . . . , n} is said to be
a fooling set for a regular language L if for every i and j in {1, 2, . . . , n},

(1) the string xiyi is in the language L, and
(2) if i �= j, then at least one of the strings xiyj and xjyi is not in L.

Lemma 1 (Birget [2]). Let a set of pairs of strings {(xi, yi) | i = 1, 2, . . . , n}
be a fooling set for a regular language L. Then every NFA for the language L
needs at least n states. ��
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3 Complements

We start with the complements of regular languages. In the deterministic case,
there is not much to say. The state complexity of a language and its complement
is the same since to get a DFA for the complement we can simply exchange the
accepting and the rejecting states in a DFA for the given language. The nonde-
terministic case is completely different. Given an n-state NFA we can apply the
subset construction, and then exchange the accepting and the rejecting states,
which gives an upper bound 2n on the size of an NFA for the complement. This
upper bound is known to be tight [17,3], and can be reached by the complement
of a binary regular language [14].

Here we deal with the question of what values can be reached as the size
of a minimal NFA accepting the complement of an n-state NFA language. In
[15] it has been shown that all values from log n to 2n can be reached, however,
appropriate automata have been defined over a growing alphabet of size 2n+1. In
this section, we prove that this result still holds for a fixed five-letter alphabet.
For each α with log n � α � 2n, we describe a minimal n-state NFA M with a
five-letter input alphabet such that every minimal NFA for the complement of
the language L(M) has exactly α states. In the second part of this section, we
study a binary case, and show that here the whole range of complexities from
3 logn to n + 2n/3 can be obtained. As a bonus, we get an exponential number
of so called non-magic values, which improves a similar result of Geffert [5].

The first two lemmata solve special cases of α = n and α = 2n. The next one
has been recently proved in [16].

Lemma 2 ([15]). For every n � 1, there exists a minimal binary NFA M of n
states such that every minimal NFA for the complement of the language L(M)
has n states. ��
Lemma 3 ([14]). For every n � 1, there exists a minimal binary NFA M of n
states such that every minimal NFA for the complement of the language L(M)
has 2n states. ��
Lemma 4 ([16], Theorem 1). For all integers n and α with n < α < 2n,
there exists a minimal NFA of n states with a four-letter input alphabet whose
equivalent minimal DFA has exactly α states. ��
We use the automata from the lemma above to prove the next result which shows
that the nondeterministic state complexity of the complement of an
n-state NFA language over a five-letter alphabet may reach an arbitrary value
from n + 1 to 2n − 1.

Lemma 5. For all integers n and α with n < α < 2n, there exists a minimal
NFA M of n states with a five-letter input alphabet such that every minimal NFA
for the complement of the language L(M) has α states.

Proof. Let n < α < 2n. Then there is an integer k such that 1 � k � n − 1 and
n − k + 2k � α < n − (k + 1) + 2k+1. It follows that α = n − (k + 1) + 2k + m,
where m is an integer such that 1 � m < 2k.
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Let C = Cn,k,m = (Q, {a, b, c, d}, δC, q0, {k}), where Q = {0, 1, . . . , n − 1}, be
the n-state NFA from Lemma 4 whose minimal DFA has α states.

Now, let M = Mn,k,m = (Q, {a, b, c, d, f}, δ, q0, {k}) be an n-state NFA ob-
tained from the NFA C by adding transitions on a new symbol f so that by f ,
state i with 0 � i � k − 1 goes to {i + 1}, state k goes to {0, 1, . . . , k}, and each
other state goes to the empty set.

Let M ′ be the DFA obtained from the NFA M by the subset construction.
It can be shown that the DFA M ′ has α reachable states. After exchanging the
accepting and the rejecting states we get a DFA of the same number of states for
the language L(M)c. To prove the lemma it is sufficient to show that every NFA
for the language L(M)c needs at least α states. This can be shown by describing
a fooling set for the language L(M)c of size α. ��

As a corollary of Lemmata 2, 3, and 5, and taking into account that (Lc)c = L,
we get the following result.

Theorem 1. For all integers n and α with log n � α � 2n, there exists a
minimal nondeterministic finite automaton M of n states with a five-letter in-
put alphabet such that every minimal nondeterministic finite automaton for the
complement of the language L(M) has exactly α states. ��

The second part of this section is devoted to the nondeterministic state com-
plexity of the complements of binary regular languages. The first lemma deals
with values from n + 4 up to 2�n/3� − 1, the second one covers the remaining
cases.

Lemma 6. For all integers n and α with n + 4 � α < n + 2�n/3�, there exists
a minimal binary NFA M of n states such that every minimal NFA for the
complement of the language L(M) has α states.

Proof. Let n+4 � α < n+2�n/3� and let k = �n/3	. Then α can be expressed as
α = n +

∑k−1
i=0 ci · 2i, where ci ∈ {0, 1} for i = 0, 1, . . . , k − 1. Denote by

m = max{i | ci = 1} and � = |{i > 0 | ci = 1}|. Since α � n + 4, we have
m � 2.

Define an n-state NFA M = (Q, {a, b}, δ, p1, {1}), where Q = {p1, p2, . . . , pk}∪
{s1, s2, . . . , sk} ∪ {1, 2, . . . , n − 2k}, and δ is defined as follows (see Fig. 1). If
1 � i < k and ci = 0, then δ(pi, a) = {si}, δ(si, a) = {pi+1}, and δ(pi, b) =
δ(si, b) = ∅. If 1 � i < k and ci = 1, then δ(pi, a) = {pi+1}, δ(pi, b) = {si},
δ(si, a) = {si, i}, and δ(si, b) = {si}. Next, δ(pk, a) = {sk}, δ(pk, b) = {�, � − 1},
δ(sk, a) = {n − 2k}, and δ(sk, b) = ∅ if c0 = 0 and δ(sk, b) = {� + 1, �} if
c0 = 1. Finally, δ(q, a) = δ(q, b) = {q − 1} if 2 � q � n − 2k, δ(1, a) = {sm} ∪
{1, 2, . . . , m + 1}, and δ(1, b) = ∅.

Notice that there is a chain of a’s going from state p1 to state 1, which goes
through all pi’s, those si’s with ci = 0, and states n − 2k, n − 2k − 1, . . . , 2, 1.
The length of this chain is n − 1 − �, i.e., the string an−1−� is in L(M). Next,
for all i with ci = 1, all strings with an a in the i-th position from the end are
accepted by M from state si, and no string in b∗ is accepted from si.
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Fig. 1. The nondeterministic finite automaton M

It can be shown that the NFA M is minimal, the DFA M ′ obtained from the
NFA M by the subset construction has α reachable states, and there is a fooling
set for the language L(M)c of size α. ��

Lemma 7. For all integers n and α with n+1 � α � 2n, there exists a minimal
binary NFA M of n states such that every minimal NFA for the complement of
the language L(M) has α states. ��

By Lemmata 2, 6, 7, and the fact that (Lc)c = L, we have the next result.

Theorem 2. For all integers n and α with 3 logn � α < n + 2�n/3�, there
exists a minimal binary NFA M of n states such that every minimal NFA for
the complement of the language L(M) has exactly α states. ��

As a corollary, we get an exponential number of non-magic values in a binary
case, which improves the current number 2Ω(n1/3 ln2/3 n) obtained by Geffert [5]
using binary bounded languages.

Corollary 1. For every n � 1, all values from n to n + 2�n/3� are non-magic
in a binary case, that is, for each integer α with n � α < n+2�n/3�, there exists
a minimal binary NFA of n states whose equivalent minimal DFA has α states.

Proof. Consider a binary NFA M described in Lemmata 2, 6, 7, for a given α.
The DFA obtained from this NFA by the subset construction has α reachable
sets. These sets must be inequivalent because otherwise we would have a smaller
DFA for the language L(M), and so, also a smaller DFA for the language L(M)c.
However, every NFA for the language L(M) needs at least α states, a contradic-
tion. Thus the minimal DFA for the language L(M) has α states as desired. ��

4 Stars

This section deals with the deterministic and nondeterministic state complexity
of stars of regular languages.
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The upper bound on the state complexity of star operation is known to be
3
42n [21]. In the first part of this section, we show that each value from 1 to
this upper bound can be reached as the state complexity of the star of an
n-state DFA language. With an upper bound n + 1, we prove a similar result
for the nondeterministic state complexity of stars in the second part of this sec-
tion. To get the result in the deterministic case we use a growing alphabet. In
the nondeterministic case, a binary alphabet is enough to describe appropriate
automata.

Let us start with recalling binary languages that reach the upper bound on
the state complexity of star operation. Let k � 2 and let Ak be the binary k-state
DFA depicted in Fig. 2. The following result has been shown by Yu, Zhuang and
Salomaa [21].

2
a,b

1 k
a a,b ... a,b

3

a
bb

Fig. 2. The deterministic finite automaton Ak

Lemma 8 ([21]). For every k � 2, the minimal DFA for the language L(Ak)∗

has 3
42k states. ��

Using automata Ak described above we prove the folloving lemma.

Lemma 9. For all integers n and k with 2 � k � n, there exists a minimal DFA
Bn,k of n states with a four-letter input alphabet such that the minimal DFA for
the language L(Bn,k)∗ has n − k + 3

42k states.

Proof. If k = n, then take the DFA An from Lemma 8. Let 2 � k � n − 1 and
let Σ = {a, b, c, d}.

Let us construct an n-state DFA Bn,k with the input alphabet Σ from the
k-state DFA Ak by adding new states k + 1, k + 2, . . . , n, which go to itself
by a, b, c except for state k + 1 which goes to state 1 by a, b, c. Each of the
states in {1, 2, . . . , k} goes to state k + 1 by c and to state k + 2 by d. By d,
state n goes to state 1, and state q with k + 1 � q � n − 1 to state q + 1.
The DFA Bn,k is shown in Fig. 3 and is minimal since no two of its states
are equivalent. If k = n − 1, then the DFA Bn,k is defined over the alphabet
{a, b, c}.

Construct an NFA B′ be for the language L(Bn,k)∗ from the DFA Bn,k by
adding a new initial (and accepting) state q0 which goes to state 2 by a, to state
1 by b, to state k + 1 by c, and to state k + 2 by d. Next, add transitions by a
and by b from state k − 1 to state 1.

Let B′′ be the DFA obtained from the NFA B′ by the subset construction.
The DFA B′′ has n − k + 3

42k reachable and pairwise inequivalent states, and
the lemma follows. ��
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Fig. 3. The deterministic finite automaton Bn,k

Using automata Bn,k we prove the following result showing that the state complex-
ity of the star of an n-state DFA language may be arbitrary from n + 1 to 3

42n.

Lemma 10. For all n and α with n+1 � α � 3
42n, there is a minimal DFA M

of n states such that the minimal DFA for the language L(M)∗ has α states.

Proof. If α = n − k + 3
42k, where 2 � k � n, then take the n-state DFA Bn,k

from Lemma 9. Otherwise, let k be an integer such that n − k + 3
42k < α <

n − (k + 1) + 3
42k+1. Then α = n − k + 3

42k + m for some integer m with
1 � m � 2k−1 + 2k−2 − 2.

Let S1, S2, . . . , S�, where � = 2k−1 +2k−2 −2, be all subsets of {1, 2, . . . , k−1}
and all subsets {1, k} ∪ T with T ⊆ {2, 3, . . . , k − 1}, except for the empty-
set and the set {1, 2, . . . , k}, ordered in such a way that S1 = {1}, and the
sets of a smaller cardinality precede the sets with a larger cardinality. Now let
S1, S2, . . . , Sm be the first m sets in the sequence.

Construct the DFA M = Mn,k,m from the DFA Bn,k by adding transitions
on m new symbols f1, f2, . . . , fm so that by symbol fi (1 � i � m), each state q
in Si goes to itself, and each state q in {1, 2, . . . , n} \ Si goes to state k + 1.

Let M ′ be an NFA for the language L(M)∗ obtained from the DFA M by
adding a new initial (and accepting) state q0 as in Lemma 9. By fi (1 � i � m),
state q0 goes to state 1 if 1 ∈ Si, and to state k + 1 if 1 /∈ Si. If the accepting
state k is in Si, then we add the transition by fi from state k to state 1.

Let M ′′ be the DFA obtained from the NFA M ′ by the subset construction.
The DFA M ′′ has n − k + 3

42k + m reachable and pairwise inequivalent states,
which proves the lemma. ��

The next lemma shows that sometimes even less than n states are sufficient to
accept the star of an n-state DFA language. To describe appropriate automata
it uses unary or binary alphabets.

Lemma 11. For all integers n and k with and 1 � k � n, there exists a minimal
binary DFA M of n states such that the minimal DFA for the language L(M)∗

has k states. ��

Let us summarize the above results in the following theorem.
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Theorem 3. For all integers n and α with either 1 = n � α � 2, or n � 2
and 1 � α � 3

42n, there exists a minimal DFA M of n states with a 2n-letter
input alphabet such that the minimal DFA for the star of the language L(M) has
exactly α states. ��

The upper bound on the nondeterministic state complexity of stars of n-state
NFA languages is known to be n+1 [8]. The next theorem shows that each value
from 1 to n + 1 can be reached as the nondeterministic state complexity of the
star of an n-state binary NFA language.

Theorem 4. The nondeterministic state complexity of the star of each 1-state
NFA language is 1. If n � 2, then for every k with 1 � k � n + 1, there exists a
minimal NFA M of n states with a binary input alphabet such that every minimal
NFA for the star of the language L(M) has exactly k states. ��

5 Reversals

This section studies the deterministic and nondeterministic state complexity of
reversals of regular languages.

If a regular language is accepted by an n-state DFA, then an n-state NFA
for its reversal can be obtained from this DFA by interchanging the initial and
the accepting states, and by reversing all transitions. By applying the subset
construction to this NFA, we get a DFA for the reversal of at most 2n states.
Since the reversal of the reversal of a language is the same language, the lower
bound on the size of the minimal DFA for the reversal of an n-state DFA language
is log n (whenever n � 3; note that the reversal of an 1-state DFA language is the
same language). In this section, we show that each value from log n to 2n can be
reached as the state complexity of the reversal of an n-state DFA language. In the
second part of this section, we deal with the nondeterministic state complexity
of reversals.

We start with the following lemma showing that all values from n to 2n can
be reached as the state complexity of the reversal of an n-state DFA binary
language.

Lemma 12. For all integers n and α with 2 � n � α � 2n, there exists a
minimal binary DFA A of n states such that the minimal DFA for the language
L(A)R has α states. ��

The next lemma describes an n-state DFA language over an (n−1)-letter alpha-
bet such that the state complexity of its reversal is 2n+1. We use this automaton
later in our constructions.

Lemma 13. Let n � 3 and let Σ = {a1, . . . , an−1} be an (n−1)-letter alphabet.
There exists a minimal DFA B of n states with the input alphabet Σ such that
the minimal DFA for the language L(B)R has 2n + 1 states.
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Proof. Define an n-state DFA B = (Q, Σ, δ, n, {1}), where Q = {1, 2, . . . , n}, and
for all q = 1, 2, . . . , n and all i = 1, 2, . . . , n − 1, δ(i + 1, ai) = i and δ(q, ai) = n
if q �= i + 1, that is, by ai, state i + 1 goes to state i and each other state
goes to state n. The DFA B is minimal since if 1 � i < j � n, then the string
ai−1ai−2 · · ·a1 is accepted by the DFA B from state i but not from state j.

Let B′ be the NFA for the language L(B)R obtained from the DFA B by
interchanging the accepting and the rejecting state and by reversing all transi-
tions. Let B′′ be the DFA obtained from the NFA B′ by the subset construction.
The DFA B′′ has 2n+1 reachable and pairwise inequivalent states, which proves
the lemma. ��

The next lemma deals with the case, when α is between 2n+2 and 2n, and uses
a growing alphabet of size n + �α/2	 to describe appropriate automata.

Lemma 14. For all integers n and α with n � 3 and 2n + 2 � α � 2n, there
exists a minimal DFA C of n states such that the minimal DFA for the language
L(C)R has α states.

Proof. Let α = 2n + 1 + m, where 1 � m � 2n − 2n − 1.
Let k = �m/2	 and let Σm = {a1, a2, . . . , an−1, b1, b2, . . . , bk} if m is even,

and Σm = {a1, a2, . . . , an−1, b1, b2, . . . , bk, c} if m is odd.
Let Q = {1, 2, . . . , n} and T = {2, 3, . . . , n}. Now take all subsets of Q with

cardinality more than 1, and order them in a sequence

S1, Q \ S1, S2, Q \ S2, . . . , Sk, Q \ Sk, . . . , S2n−1−n−1, Q \ S2n−1−n−1,

(that is, each odd set of size at least two is followed by its complement in Q).
Define an n-state DFA C = (Q, Σm, δ, n, {1}), in which for all i = 1, . . . , n−1,

the transitions by symbol ai are the same as in the DFA B described in the proof
of Lemma 13. Next, for all j = 1, 2, . . . , k, by symbol bj , each state in Sj goes
to state 1, and each state in Q \ Sj goes to state n. If m is odd, then, moreover,
by symbol c, state 1 goes to state n, and each other state goes to state 1.

Let C′ be the NFA for the language L(C)R obtained from the DFA C by
interchanging the accepting and the rejecting state and by reversing all transi-
tions. Let C′′ be the DFA obtained from the NFA C′ by the subset construction.
The DFA C′′ has 2n + 1 + m reachable and pairwise inequivalent states, which
completes the proof of the lemma. ��

As a corollary of the three lemmata above and using the fact that (LR)R = L
we get the following result.

Theorem 5. For all integers n and α with n � 3 and log n � α � 2n, there
exists a minimal DFA M of n states with a 2n-letter input alphabet such that the
minimal DFA for the reversal of the language L(M) has exactly α states. The
minimal DFA for the reversal of a 2-state DFA language may have 2, 3, or 4
states, and the reversal of a 1-state DFA language is a 1-state DFA language. ��
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We now turn our attention to the nondeterministic state complexity of reversals
of regular languages represented by NFAs. The reversal of each 1-state NFA lan-
guage is the same language. For n � 2, the upper bound on the nondeterministic
state complexity of an n-state NFA language is known to be n+1 [8], and can be
reached by the reversal of a binary language [14]. By the reversal of this binary
language, in the case of n � 3, the lower bound n − 1 is reached. The reversal of
the n-state NFA language {w ∈ {a, b} | |w| ≡ 0 mod n} is the same language.
Thus, the nondeterministic state complexity of a 2-state NFA language is 2 or
3, and for n � 3, we get the following result.

Theorem 6. Let n � 3. Then the nondeterministic state complexity of the re-
versal of an n-state NFA binary language is either n − 1, or n, or n + 1. ��

6 Conclusions

We have investigated the deterministic and nondeterministic state complexity
of complements, stars, and reversals of regular languages. In all cases, we have
shown that the whole ranges of complexities up to the known upper bounds can
be obtained. Our results are summarized in the following tables (where [r .. s]
denotes the set of all integers α with r � α � s).

State Complexity Alphabet Size
Lc {n} trivial arbitrary
L∗ [1 .. 3

42n] Theorem 3 2n

LR [log n .. 2n] Theorem 5 2n

Nondeterministic State Complexity Alphabet Size
Lc [log n .. 2n] Theorem 1 5
L∗ [1 .. n + 1] Theorem 4 2
LR {n − 1, n, n + 1} Theorem 6 2

To prove the results on nondeterministic state complexity we have used a
fixed five-letter alphabet in the case of complements, and a binary alphabet in
the case of stars and reversals. The results on the state complexity of stars and
reversals have been shown for a growing alphabet. Whether or not they still hold
for a fixed alphabet remains open. We also have proved some partial results on
complements in a binary case, and, as a corollary, we have obtained exponentially
many “non-magic” numbers, which improves a similar result of Geffert [5].
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