
Theoretical Computer Science 383 (2007) 140–152
www.elsevier.com/locate/tcs

State complexity of combined operations

Arto Salomaaa, Kai Salomaab, Sheng Yuc,∗

a Turku Centre for Computer Science, Lemminkäisenkatu 14, 20520 Turku, Finland
b School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada

c Department of Computer Science, The University of Western Ontario, London, Ontario, N6A 5B7, Canada

Abstract

We study the state complexity of combined operations. Two particular combined operations are studied: star of union and star
of intersection. It is shown that the state complexity of a combined operation is not necessarily similar to the combination of the
individual state complexities of the participating operations.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: State complexity; Combined operations; Regular languages

1. Introduction

State complexity is a topic of many recent publications. State complexity is not only a fundamental topic in
theoretical computer science, but also having important practical implications in automata applications [20]. There
were a number of papers related to state complexity published in the past. However, since the publication of [21],
a much larger number of papers in the area of state complexity have appeared. The following, for example, is a
list of some of the papers published recently: [2–8,11–16,18–21]. Notice that in all those papers, state complexity
is considered for only individual operations, e.g. union, intersection, catenation, and Kleene star. We know that, in
practice, not only individual operations but also combinations of operations are often required to be performed on
finite automata. The state complexity of combined operations should also be studied.

The state complexity of a combination of operations may not necessarily equal to the composition of the state
complexities of the individual operations. For example, given an m-state DFA language L1 and an n-state DFA
language L2, what is the state complexity of (L1 ∪ L2)

∗ (i.e. the number of states of a minimal DFA that accepts
(L1 ∪ L2)

∗ in the worst case)? It is known that the state complexity of the union of an m-state DFA language and an
n-state DFA language is mn, and the state complexity of the (Kleene) star of an n-state DFA language is 2n−1

+ 2n−2.
Then is it true that the state complexity of (L1 ∪ L2)

∗ would be 2mn−1
+ 2mn−2? In this paper, we will show that it is

not true for this combination of operations. The result is even in a different order. However, in some other cases, the
state complexity of a combination of operations may be very similar to the composition of the state complexities of

∗ Corresponding author.
E-mail addresses: asalomaa@utu.fi (A. Salomaa), ksalomaa@cs.queensu.ca (K. Salomaa), syu@csd.uwo.ca (S. Yu).

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.04.015

http://www.elsevier.com/locate/tcs
mailto:asalomaa@utu.fi
mailto:ksalomaa@cs.queensu.ca
mailto:syu@csd.uwo.ca
http://dx.doi.org/10.1016/j.tcs.2007.04.015

A. Salomaa et al. / Theoretical Computer Science 383 (2007) 140–152 141

individual operations. We will show in this paper that (L1 ∩ L2)
∗, where L1 and L2 are regular languages, is in this

category.
In the case of combination of two operations, the first operation may restrict its result to a special type of DFA.

Then the worst cases for the second operation in the general setting may or may not be among the outputs of the
first operation. Therefore, the state complexity of a combination of operations may or may not be the same as the
composition of the state complexities of the individual operations. Each case has to be studied individually.

In this paper, we study only two different cases, i.e. (L1 ∪ L2)
∗ and (L1 ∩ L2)

∗ for two regular languages L1 and
L2. We hope that results on the state complexity of other combined operations on regular languages will be obtained
in the near future.

In the next section, we introduce the basic notations that are necessary for this paper and review the definition of
state complexity. In Section 3, we study the state complexity of the combination of union and star. In Section 4, we
study the state complexity of the combination of intersection and star. We conclude the paper in Section 5.

2. Preliminaries

A deterministic finite automaton (DFA) is denoted by a 5-tuple A = (Q,Σ , δ, q0, F), where Q is the finite set of
states, Σ is the finite input alphabet, δ : Q × Σ → Q is the state transition function, q0 ∈ Q is the initial state, and
F ⊆ Q is the set of final states. A DFA is said to be complete if δ(q, a) is defined for all q ∈ Q and a ∈ Σ .

In this paper, the state transition function δ is often extended to δ̂ : 2Q
×Σ → 2Q , where 2Q denotes the power set

of Q, i.e. the set of all subsets of Q. The function δ̂ is defined by δ̂(R, a) = {δ(r, a) | r ∈ R}, for R ⊆ Q and a ∈ Σ .
We just write δ instead of δ̂ if there is no confusion.

For a rather complete background knowledge in automata theory, the reader may refer to [9,17,22].
State complexity is a descriptional complexity measure for regular languages based on the deterministic finite

automaton model. The state complexity of a regular-language operation also gives a lower bound for the space as well
as the time complexity of the same operation. In many cases, the bounds given are tight.

The state complexity of a regular language L , denoted sc(L), is the number of states in the minimal complete DFA
accepting L . The state complexity of a class L of regular languages, denoted sc(L), is the supremum among all sc(L),
L ∈ L. When we speak about the state complexity of an operation on regular languages, we mean the state complexity
of the languages resulting from the operation. For example, we say that the state complexity of the intersection of an
m-state DFA language, i.e. a language accepted by an m-state complete DFA, and an n-state DFA language is exactly
mn. This means that mn is the state complexity of the class of languages each of which is the intersection of an m-state
DFA language and an n-state DFA language. In other words, there exist two regular languages that are accepted by
an m-state DFA and an n-state DFA, respectively, such that the intersection of them is accepted by a minimal DFA of
mn states, and this is the worst case. So, in a certain sense, state complexity is a worst-case complexity.

3. Star of union

We first consider the state complexity of the star-of-union combined operation, i.e. the combination that includes
first the union of two regular languages and then the star of the resulting language from the union. In this section, we
prove an upper bound first, and then provide examples that can reach the bound.

3.1. An upper bound

Let L i be recognized by a DFA of size mi , i = 1, 2. From the state complexities of the individual operations of
union and star [21,22] we know that

sc((L1 ∪ L2)
∗) ≤ 2m1m2−1

+ 2m1m2−2.

Here we show that the state complexity of (L1 ∪ L2)
∗, in fact, is always considerably less than the above bound

obtained directly from state complexities of the individual operations.
Let L i = L(Ai) where Ai is a complete DFA Ai = (Qi ,Σ , δi , q0,i , Fi), i = 1, 2. Note that we assume that Q1

and Q2 are disjoint. We construct a DFA

A = (Q,Σ , δ, q0, F) (1)

142 A. Salomaa et al. / Theoretical Computer Science 383 (2007) 140–152

for the language (L1 ∪ L2)
∗. As the state set we choose

Q = {q0} ∪ P ∪R (2)

where

P = {P1 ∪ P2 | ∅ 6= Pi ⊆ Qi − Fi , i = 1, 2},

and

R = {R ⊆ Q1 ∪ Q2 | q0,1, q0,2 ∈ R, R ∩ (F1 ∪ F2) 6= ∅}.

If q0,1 6∈ F1 and q0,2 6∈ F2, the initial state q0 is a new symbol. (In this case the empty word is not in L1 ∪ L2.) If
q0,1 ∈ F1 or q0,2 ∈ F2, we choose q0 = {q0,1, q0,2} in which case q0 is an element of R.

The set of accepting states F is chosen to be R ∪ {q0}.
The transition function δ is defined as follows:

(i) For all b ∈ Σ , δ(q0, b) =

{
{δ1(q0,1, b), δ2(q0,2, b)} if δi (q0,i , b) ∩ Fi = ∅, i = 1, 2,

{δ1(q0,1, b), δ2(q0,2, b), q0,1, q0,2} otherwise.
(ii) Let Ri ⊆ Qi , i = 1, 2, be such that R1 ∪ R2 ∈ Q. For all b ∈ Σ we define

δ(R1 ∪ R2, b) =

{
δ1(R1, b) ∪ δ2(R2, b) if δi (Ri , b) ∩ Fi = ∅, i = 1, 2,

δ1(R1, b) ∪ δ2(R2, b) ∪ {q0,1, q0,2} otherwise. (3)

Note that if q0 = {q0,1, q0,2}, the transitions defined for q0 in (i) and (ii) coincide.

The computation of A begins by simulating both the computation of A1 and A2. Always when one of A1 or A2
enters a final state, A should also enter both start states q0,1 and q0,2. It is easy to verify that L(A) = (L(A1)∪L(A2))

∗.
In order to obtain an upper bound for the operation “star of union” we count the number of states of A. Denote

|Qi | = mi and |Fi | = ki , i = 1, 2. In the following we assume that:

1 ≤ ki < mi , i = 1, 2. (4)

Note that (4) holds in all but the trivial cases where L(Ai) is Σ ∗ or ∅.
The cardinality of P is (2m1−k1 − 1)(2m2−k2 − 1). Thus we obtain

|Q| = (2m1−k1 − 1)(2m2−k2 − 1) + X + Y, (5)

where X is the cardinality of R and has the value

X =

{
2m1+m2−2 if q0,1 ∈ F1 or q0,2 ∈ F2,

2m1+m2−2
− 2m1−k1−1+m2−k2−1 if q0,1 6∈ F1 and q0,2 6∈ F2.

Above, in the case where q0,1 6∈ F1 and q0,2 6∈ F2, 2m1−k1−1+m2−k2−1 is the number of all sets Z ⊆ (Q1 ∪ Q2) −

{q0,1, q0,2} that do not contain any states of F1 ∪ F2, and hence the corresponding set {q0,1, q0,2}∪ Z is not inR. Note
that P and R are always disjoint and in this case {q0,1, q0,2} ∪ Z is in P .

Also we observe that {q0} is part of R except in the case when q0,1 6∈ F1 and q0,2 6∈ F2. The value of the term Y in
the sum (5) is

Y =

{
1 if q0,1 6∈ F1 and q0,2 6∈ F2,

0 otherwise.

Since 1 ≤ ki < mi , i = 1, 2, the upper-bound (5) reaches the worst case

(2m1−1
− 1)(2m2−1

− 1) + 2m1+m2−2
= 2m1+m2−1

− 2m1−1
− 2m2−1

+ 1 (6)

when A1 and A2 both have one final state and at least one of the start states of A1 and A2 is a final state. Therefore,
we have the following theorem:

Theorem 3.1. Let L i = L(Ai) and Ai be a complete DFA of mi states i = 1, 2. Then (L1 ∪ L2)
∗ is accepted by a

complete DFA of no more than 2m1+m2−1
− 2m1−1

− 2m2−1
+ 1 states.

The direct composition of state complexities for the star of union of an m1-state DFA language and an m2-state
DFA language (see [21]) gives a bound 2m1m2−1

+ 2m1m2−2 which is considerably worse than (6).

A. Salomaa et al. / Theoretical Computer Science 383 (2007) 140–152 143

Fig. 1. DFA A1.

3.2. Worst-case example

3.2.1. Case m1 ≥ 3 and m2 ≥ 3
We construct DFAs of size mi ≥ 3, i = 1, 2, over the alphabet Σ = {a, b, c} such that the state complexity of

(L(A1) ∪ L(A2))
∗ reaches the upper-bound (6). In the next two subsections we explain how the construction can be

modified for the case where m1 or m2 is less than three.
We choose

A1 = (R,Σ , δ1, r0, {r0}) where R = {r0, r1, . . . , rm1−1}, (7)

• δ1(r j , a) = r(j+1) (mod m1)
, j = 0, 1, . . . , m1 − 1,

• δ1(r j , b) = r j , j = 0, 1, . . . , m1 − 1,
• δ1(r0, c) = r1, δ1(r j , c) = r j , j = 1, 2, . . . , m1 − 1,

and,

A2 = (P,Σ , δ2, p0, {p0}) where P = {p0, p1, . . . , pm2−1}, (8)

• δ2(p j , b) = p(j+1) (mod m2)
, j = 0, 1, . . . , m2 − 1,

• δ2(p j , a) = p j , j = 0, 1, . . . , m2 − 1,
• δ2(p0, c) = p1, δ2(p j , c) = p j , j = 1, 2, . . . , m2 − 1.

Above we assume that R ∩ P = ∅. DFA A1 and A2 are shown in Figs. 1 and 2, respectively.
Let A = (Q,Σ , δ, q0, F) be constructed from A1 and A2 as in (1). Here Q is as in (2). Since r0 and p0 are

accepting states of Ai , for i = 1, 2, respectively, the start state q0 is the set {r0, p0}. The set of accepting states
consists of all subsets of R ∪ P such that {r0, p0} ⊆ R ∪ P . Note that r0 and p0 are the only accepting states of A1
and A2, respectively.

It is sufficient to show that all states of Q are pairwise inequivalent and that all states of Q are reachable from the
start state {r0, p0}.

First we show that all states are pairwise inequivalent. Let

U = U1 ∪ U2 and V = V1 ∪ V2 (9)

be distinct states of Q, U1, V1 ⊆ R, U2, V2 ⊆ P . We consider the case where U1 6= V1. The other possibility
where U2 6= V2 is completely symmetrical since the a- and b-transitions play symmetrical roles in A1 and A2, and
c-transitions are defined in the same way in A1 and A2.

Without loss of generality we can assume that there exists an element x ∈ U1 − V1, the other possibility again
being symmetrical. If x = r0, then U is an accepting state of A. Note that r0 ∈ U1 and U1 ∪ U2 ∈ Q (where Q is as
in (2)) imply that p0 ∈ U2. On the other hand, since V is an element of Q and r0 6∈ V , it follows that also p0 6∈ V .
Thus V is not an accepting state, and consequently U and V are inequivalent.

144 A. Salomaa et al. / Theoretical Computer Science 383 (2007) 140–152

Fig. 2. DFA A2.

In the following we consider the case where

x = ri , 1 ≤ i ≤ m1 − 1. (10)

We claim that

δ(U, am1−i−1ca) ∈ F. (11)

Note that in A1 the transition function δ1 on input am1−i−1 takes the state ri to rm1−1. The input c does not change
state rm1−1 and input a takes rm1−1 to r0. The last δ transition on input a according to (3) then adds also p0 to the
current set. Thus (11) holds.

On the other hand, we claim that

δ(V, am1−i−1ca) 6∈ F. (12)

In A2 the transitions corresponding to input a just cycle the states. Since ri 6∈ V1, it follows that rm1−1 6∈

δ1(V1, am1−i−1). In addition to simulating transitions of δ1 (and δ2), the transitions of δ, according to (3), sometimes
can add the state r0 (or p0) to the current set of states. However, since i ≥ 1, a computation started from an “added”
state r0 cannot on input am1−i−1 reach the state rm1−1. Thus we conclude that

rm1−1 6∈ δ(V, am1−i−1).

We note that c-transitions change r0 and p0 to, respectively, r1 and p1. The c-transitions keep all the other states fixed.
Thus it follows that:

δ(V, am1−i−1c) ∩ {r0, p0, rm1−1} = ∅. (13)

Note that here we are using the property that

m1 ≥ 3, that is, rm1−1 6= r1. (14)

Now we use one more a-transition. Since a-transitions according to δ2 do not change any states of V2 ⊆ P , the
Eq. (13) implies that

r0, p0 6∈ δ(V, am1−i−1ca),

and (12) holds. Now (11) and (12) mean that U and V are inequivalent.
It remains to show that all states of Q (as in (2)) are reachable from the start state of A, {r0, p0}. First we establish

some claims. The first claim says that all elements of Q that contain from P only the state p0 or p1 (respectively, from
R only the state r0 or r1) are reachable.

Claim 1. (i) (a) Let r0 ∈ R′
⊆ R. Then R′

∪ {p0} is reachable.

(b) Let r0 6∈ R′
⊆ R. Then R′

∪ {p1} is reachable.

A. Salomaa et al. / Theoretical Computer Science 383 (2007) 140–152 145

(ii) (a) Let p0 ∈ P ′
⊆ P. Then {r0} ∪ P ′ is reachable.

(b) Let p0 6∈ P ′
⊆ P. Then {r1} ∪ P ′ is reachable.

Proof. We consider only case (i). Case (ii) is completely symmetric due to the symmetry in the definitions of A1 and
A2. We use induction on |R′

|. First let |R′
| = 1. Now in case (a), R′

∪ {p0} = {r0, p0} and there is nothing to prove.
For case (b) we observe that δ({r0, q0}, c) = {r1, q1} and from {r1, q1} we can reach any state {ri , q1}, 1 ≤ i ≤ m1 −1,
using only a-transitions.

Now inductively we assume that (i) holds for all subsets R′ of R of cardinality at most k, 1 ≤ k < m1, and consider
the case where

R′
= {ri1 , ri2 , . . . , rik+1}, 0 ≤ i1 < i2 < . . . ik+1 ≤ m1 − 1.

First in (a) we have that i1 = 0. By the inductive assumption the set

X = {ri2 , . . . , rik+1} ∪ {p1}

is reachable. We note that r0 6∈ X since i2 > 0. Now

δ(X, bm2−1) = R′
∪ {p0}. (15)

Note that the transitions of δ2 on input bm2−1 take p1 to p0. When reaching state p0 the transitions of δ according
to (3) add the state r0 to the current set. Otherwise b-transitions do not change any of the elements ri2 , . . . , rik+1 ,
and (15) holds.

Second for (b) we consider the case i1 > 0. By the inductive assumption the set

Y = {ri2−i1+1, . . . , rik+1−i1+1} ∪ {p1}

is reachable. Again r0 6∈ Y . We note that

δ(Y, bm2−1c) = Y ∪ {r1, p1}.

On input bm2−1 everything works as above in (15), that is, δ2 takes p1 to p0, and δ adds r0 to the current set. Then c
takes r0 and p0 to r1 and p1, respectively. Finally,

δ(Y ∪ {r1, p1}, ai1−1) = R′
∪ {p1}. �

We introduce the following notions: let

R1 = {ri1 , . . . , rik }, 0 ≤ i1 < · · · < ik < m1,

be a subset of R. By the cyclic j-shift of R1, 0 ≤ j ≤ m1 − 1, we mean the set {ri ′1
, . . . , ri ′k

} where

i ′s = is + j (mod m1), s = 1, . . . , k.

The cyclic j-shift of R1 is denoted as R1[j]. In the same way we define the cyclic j-shift of a subset P1 of P ,
0 ≤ j ≤ m2 − 1.

Intuitively, the following lemma says that if the current subset of P contains p1, then the current subset of R can
perform an arbitrary cyclic shift, and this operation does not change the subset of P except by adding/removing the
state p0. Recall that according to transitions of A as defined in (3) the current state must always have both r0 and p0,
or neither one of them.

Claim 2. Let R1 ⊆ R and P1 ⊆ P and assume that p1 ∈ P1. Let j ∈ {1, . . . , m1 − 1}. Denote

P ′

1 =

{
P1 ∪ {p0} if r0 ∈ R1[j],
P1 − {p0} if r0 6∈ R1[j]. (16)

Then R1[j] ∪ P ′

1 is reachable from R1 ∪ P1.

146 A. Salomaa et al. / Theoretical Computer Science 383 (2007) 140–152

Proof. Assume originally p0 6∈ P1 and r0 6∈ R1. We can cycle the set R1 using a-transitions. When a state of R1
reaches r0 this adds p0 to the set P1. As long as consecutive elements of R1 are “passing by” r0 we continue to cycle
just using a-transitions. When after a sequence of consecutive elements of R1 have “passed by” r0, the last a-transition
adds a “new” element r0 to the subset of R (since p0 is in the current set). Then we apply a c-transition that removes
both r0 and p0. After this the shifted version of R1 again has the same number of elements as R1. Since p1 is in the
original set P1, after the c-transition the current subset of P is again P1.

In case originally p0 ∈ P1 and r0 ∈ R1, we again cycle using a-transitions as long as elements of R1 are passing by
r0, and after that apply a c-transition. This transition removes the element r0 that was added by the last a-transition.
The c-transition removes also p0 and this is in accordance with the definition of P ′

1 in (16). �

Now we show that all states of Q of the form R1 ∪ P1, where

R1 6= R and P1 6= P (17)

are reachable. The case where R1 = R or P1 = P is handled separately afterwards. Let R1 and P1 be arbitrary as
in (17).

Let R1[j], 1 ≤ j ≤ m1 − 1, be a cyclic shift of R1 such that r0 6∈ R1[j] and r1 ∈ R1[j]. We can find j as above
since R1 6= R. By Claim 1 (i), R1[j] ∪ {p1} is reachable.

Denote

P1 = {pi1 , . . . , pik }, 0 ≤ i1 < · · · < ik ≤ m2 − 1, 1 ≤ k < m2.

We show that the set R1[j] ∪ P1 is reachable from R1[j] ∪ {p1}. Intuitively, this is done by “generating” the elements
of P1 one-by-one starting from pk , i.e. p1 becomes pk and the rest of the elements are added using transition rules (3)
of A.

We begin the computation from the state R1[j] ∪ {p1} by reading ik − ik−1 − 1 symbols b. These transitions do not
add any states of P and just move p1 to “position pik−ik−1 ”.1 Next we apply a-transitions until some element of R1[j]
reaches position r0, we denote the resulting cyclic shift of R1 by R1[j ′]. Since r0 ∈ R1[j ′], the last a-transition adds
also p0 to the current set of states. Now we apply a b-transition, this shifts p0 and pik−ik−1 by one, and adds a “new”
element p0 to the current set (since r0 remains in the current set). Thus the current set has the following elements of
P:

{p0, p1, pik−ik−1+1} (18)

Now by Claim 2 we can cyclically shift R1[j ′] back to the set R1[j]. According to Claim 2, this operation changes
the current subset (18) of P just by removing p0 (since r0 6∈ R1[j]).

We continue in the same way to add new elements of P . After the next step the current set has elements p1,
pik−1−ik−2+1 and pik−ik−2+1 of P . If i1 > 0 (that is, p0 6∈ P1), in this way we add all k elements of P1 but keep them
in a position that is shifted “backwards” i1 −1 steps so that pi1 is in position p1, pi2 is in position pi2−i1+1, and so on.
Then using Claim 2, we cyclically shift R1[j] to R1. According to Claim 2 this does not change the current elements
of P . Note that since p0 6∈ P1 and R1 ∪ P1 ∈ Q, it has to be that r0 6∈ R1. Finally using input word bi1−1 we shift all
the elements of P into correct positions. This does not change the elements of R1 and the resulting set is R1 ∪ P1.

The situation is slightly different when i1 = 0, that is, p0 ∈ P1, and consequently also r0 ∈ R1. Now as above
we first generate the k − 1 elements of P1 − {p0}. Then using Claim 2 we shift R1[j] to a set R1[j ′] that has the
property that r0 6∈ R1[j ′] and R1 is obtained from R1[j ′] by a-transitions in such a way that all the intermediate sets
of elements contain r0. Note that R1[j ′] is simply the cyclic shift of R1 where the continuous segment of states of R1
that overlaps r0 is just about to reach r0. After this operation, using b-transitions we shift the current k −1 elements of
P into their correct positions pi2 , . . . , pik . Finally using a-transitions we transform R1[j ′] to R1. The first a-transition
adds the state p0 to the current set and the remaining a-transitions do not change any elements of P . By the choice of
the cyclic shift R1[j ′] this sequence of a-transitions does not at any point add a new element r0. The resulting set is
again R1 ∪ P1.

1 In order to make it clear that we are referring to a position in the cycle of states of P we slightly abuse terminology by referring to the position
as “pik−ik−1 ” instead of “position ik − ik−1”.

A. Salomaa et al. / Theoretical Computer Science 383 (2007) 140–152 147

Finally it remains to consider how A can reach the states not covered by (17). We show that any set (R ∪ P ′) ∈ Q,
P ′

⊆ P is reachable. By Claim 1 (ii) we know that {r0} ∪ P ′ is reachable. Using induction on k it is easy to see that
for 0 ≤ k ≤ m1 − 1,

δ({r0} ∪ P ′, ak) = {r0, r1, . . . , rk} ∪ P ′.

Note that since R ∪ P ′
∈ Q, necessarily p0 ∈ P ′. Hence each a-transition shifts the elements of R by one step and

adds a new element r0. It follows that:

δ({r0} ∪ P ′, am1) = R ∪ P ′.

Completely symmetrically we see that any set R′
∪ P ∈ Q, R′

⊆ R is reachable. Thus we have shown that all states
of Q are reachable.

3.2.2. Case m1 = 2 and m2 ≥ 3
In the previous subsection we constructed DFAs Ai of size mi ≥ 3, i = 1, 2, such that the state complexity

of (L(A1) ∪ L(A2)
∗) reaches the upper bound (6). The only place where the argument for the correctness of the

construction used the assumption mi ≥ 3 was in (14).2

Here we modify the construction of the automata A1 and A2 by adding one more alphabet symbol. Let m1 = 2,
m2 ≥ 3 and Σ = {a, b, c, d}. The DFAs A1 and A2 are defined as in (7) and (8) with the following additional
d-transitions:

δ1(r0, d) = r1, δ1(r1, d) = r0, (19)

and,

δ2(p j , d) = p1, for all j = 0, 1, . . . , m2 − 1. (20)

Let A again be constructed from A1 and A2 as in (1). Since we have shown that all the states of A are reachable using
the original transitions for {a, b, c}, the same holds also with one more alphabet symbol. As observed above, the proof
showing that all states of A are pairwise inequivalent used the assumption m1 ≥ 3 only in (14). We use the notations
from the earlier proof, see (9). The two distinct states of A are U = U1 ∪ U2 and V = V1 ∪ V2. It is sufficient to
consider the case (10) where x ∈ U1 − V1 and x 6= r0. Since m1 = 2, this means that x = r1. We observe that with
the added d-transitions

δ(U, d) ∈ F,

since δ1(r1, d) = r0. On the other hand,

δ(V, d) 6∈ F,

since necessarily V1 = {r0} and in δ2 the d-transitions take all states to p1.
Thus when A1 and A2 have the additional d-transitions (19) and (20) all states of A will be pairwise inequivalent

also in the case m1 = 2.

3.2.3. Case m1 = m2 = 2
Using the idea from the previous subsection we could handle the case m1 = m2 = 2 by adding one further

alphabet symbol with transitions defined by interchanging the roles of A1 and A2. However, the following direct
example establishes that this case can be handled with an alphabet of size four:

Example 3.1. Let Σ = {a, b, c, d}. We define the following DFAs:

• A1 = ({r0, r1},Σ , δ1, r0, {r0}), δ(r0, a) = r1, δ(r1, a) = r0, δ(r0, b) = r0, δ(r1, b) = r1, δ(r0, c) = r1,
δ(r1, c) = r0, δ(r0, d) = r1, δ(r1, d) = r1.

• A2 = ({p0, p1},Σ , δ2, p0, {p0}), δ(p0, a) = p0, δ(p1, a) = p1, δ(p0, b) = p1, δ(p1, b) = p0, δ(p0, c) = p1,
δ(p1, c) = p1, δ(p0, d) = p1, δ(p1, d) = p0.

2 It is easy to verify that the automata (7) and (8) with m1 = 2 do not reach the upper bound (6).

148 A. Salomaa et al. / Theoretical Computer Science 383 (2007) 140–152

A direct computation verifies that the minimal DFA for the language (L(A1) ∪ L(A2))
∗ has 5 states. This coincides

with the upper bound (6) when m1 = m2 = 2. �

3.2.4. The result
Theorem 3.2. Let L i be recognized by a minimal DFA with mi states, i = 1, 2.

(i) If m1, m2 ≥ 2, then

sc((L1 ∪ L2)
∗) ≤ 2m1+m2−1

− 2m1−1
− 2m2−1

+ 1 (21)

and there exist languages L1, L2 for which the above relation becomes an equality.
(ii) If m1 = 1 and m2 ≥ 2, then

sc((L1 ∪ L2)
∗) ≤ 2m2−1

+ 2m2−2 (22)

and there exist languages L1, L2 for which the above relation becomes an equality.

Proof. First consider the case where m1, m2 ≥ 2. Now in (21) the inequality holds by (6). The construction of the
DFAs A1 and A2 in subsections 3.2.1, 3.2.2 and 3.2.3 (corresponding to the different cases where m1, m2 ≥ 3 or one
or both of m1, m2 may be equal to two) establishes that the bound (21) may have the equality in the worst case. We
have not explicitly shown that the DFAs A1 and A2 used in the construction are minimal. This fact follows from the
observation that otherwise the minimal DFA A constructed for (L(A1) ∪ L(A2))

∗ would violate the upper bound (6).
For case (ii), if m1 = 1 then L1 = Σ ∗ or L1 = ∅. In the former case sc(L1 ∪ L2)

∗
= 1. In the latter case

(L1 ∪ L2)
∗

= L∗

2 and (22) follows by the state complexity upper bound for Kleene-star [21,22]. For the worst-case
example we can choose L1 = ∅ and for L2 use the worst-case example for the state complexity of the Kleene-star
operation [21,22]. �

In the last remaining case, if m1 = m2 = 1 then, assuming that L1 and L2 are over the same alphabet Σ , (L1∪L2)
∗

is necessarily Σ ∗ or {ε}. Note that if we take the union of languages over distinct alphabets, the state complexity of
the operation would change since we require that all DFAs are complete.

The worst-case example for the tight upper bound of Theorem 3.2 uses a three-letter alphabet when mi ≥ 3,
i = 1, 2, and a four-letter alphabet when one or both of m1 and m2 can be equal to two. It remains an open question
whether the upper bound (6) can be reached by regular languages over a two-letter alphabet.

4. Star of intersection

If L1 is accepted by a DFA with m states and L2 is accepted by a DFA with n states, from [21] we know that the
state complexity of (L1 ∩ L2)

∗ is at most 2mn−1
+ 2mn−2. In contrast to the above section we show that the state

complexity of star of intersection may become at least reasonably close to the composition of the worst-case state
complexities of the individual operations.

In the following, we first consider the general cases, i.e. when m, n ≥ 3, and then consider small values of m and
n at the end of the section.

4.1. The general cases

Let m, n ≥ 3 and L1 and L2 be accepted by DFAs of m states and n states, respectively. First we give a construction
where sc((L1 ∩ L2)

∗) reaches at least

2m(n−2) (23)

Afterwards we describe how this bound can be improved.
Let A = (P,Σ , δA, 0, {m − 1}) and B = (Q,Σ , δB, 0, {n − 1}),

P = {0, 1, . . . , m − 1}, Q = {0, 1, . . . , n − 1}, m, n ≥ 3,

Σ = {a, b, c, d, e}

For easier readability transitions defined by δA and δB will be listed later (when they are used).

A. Salomaa et al. / Theoretical Computer Science 383 (2007) 140–152 149

The language (L1 ∩ L2)
∗ is recognized by the DFA C = (U,Σ , δC , r0, F) where

U = {r0} ∪ {X | ∅ 6= X ⊆ P × Q − {(m − 1, n − 1)}} (24)
∪ {Y ⊆ P × Q | (0, 0), (m − 1, n − 1) ∈ Y }

Here r0 6∈ P × Q is a new symbol, and δC is defined by the following: let x ∈ Σ .
Then δC (r0, x) = {(δA(0, x), δB(0, x)}, and for Z ⊆ P × Q (such that Z is in U)

δC (Z , x) =

{(δA(z1, x), δB(z2, x) | (z1, z2) ∈ Z} ∪ {(0, 0)}

if (m − 1, n − 1) = (δA(z1, x), δB(z2, x)) for some (z1, z2) ∈ Z ,

{(δA(z1, x), δB(z2, x)) | (z1, z2) ∈ Z}, otherwise.
(25)

and F = {r0} ∪ {X ∈ U | (m − 1, n − 1) ∈ X}.
In the following when there is no danger of confusion, we identify a singleton set {(i, j)} with (i, j), (i, j) ∈ P×Q.

For example, we can write δC ((i, j), x) instead of δC ({(i, j)}, x), x ∈ Σ .
First we show that all the states of C are inequivalent. For this purpose we define the transitions for input elements

a and b as follows:

δA(i, a) = i + 1(mod m), i = 0, . . . , m − 1. (26)
δA(i, b) = i, i = 0, . . . , m − 1. (27)
δB(j, a) = j, j = 0, . . . n − 1. (28)
δB(j, b) = j + 1(mod n), j = 0, . . . , n − 1. (29)

The state r0 is an accepting state and cannot be equivalent with any state Z ⊆ P × Q that does not contain the pair
(m − 1, n − 1). On the other hand, if (m − 1, n − 1) ∈ Z then δC (Z , am) ∈ F and δC (r0, am) 6∈ F .

Next consider any distinct states Z1, Z2 ∈ P × Q. Without loss of generality there is an element (i, j) ∈ Z1 − Z2,
0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1. We observe that δC (Z1, am−i−1bn− j−1) ∈ F and δC (Z2, am−i−1bn− j−1) 6∈ F . Note
that δA × δB with input am−i−1bn− j−1 takes state (i, j) to (m − 1, n − 1), and with this input δA × δB does not take
any state (i ′, j ′) 6= (i, j) to the state (m − 1, n − 1). Also, note that δC differs from δA × δB only in that according
to (25) the transitions of δC may create additional copies of (0, 0). However, with (any suffix of) am−i−1bn− j−1, δC
does not take (0, 0) to (m − 1, n − 1) unless i = j = 0. Thus (m − 1, n − 1) 6∈ δC (Z2, am−i−1bn− j−1). This means
that Z1 and Z2 are not equivalent.

The total number of states of C is 2mn−1
+2mn−2. Since all the states are pairwise inequivalent, the state complexity

of (L1 ∩ L2)
∗ is at least the number of reachable states of C . In order to establish the lower bound (23), it is sufficient

to show that any set X ⊆ P × Q such that

{(i, n − 2) | 0 ≤ i ≤ m − 1} ⊆ X and {(i, n − 1) | 0 ≤ i ≤ m − 1} ∩ X = ∅ (30)

is reachable in C . This is done in a sequence of claims.

Claim 3. P × Q is reachable.

Proof. Let (i, j) ∈ P × Q be any state. When performing the transitions of δA × δB starting from (i, j) and using
input word (am−1b)n , the state cycles through all the elements of P × Q. Thus if Z ⊂ P × Q (that is, Z is a proper
subset of P × Q) when computing δC (Z , (am−1b)n) necessarily the computation starting from some element of Z
reaches the state (m−1, n−1) at a time when no state is “at (0, 0)”. More formally, there exists a prefix w of (am−1b)n

such that (m − 1, n − 1) ∈ (δA × δB)(Z) and (0, 0) 6∈ (δA × δB)(Z). Let w = w′x , x ∈ {a, b}. According to (25)
this means that the transition δC (δC (Z , w′), x) adds (0, 0) to the current subset of P × Q. On the other hand, for any
Y ⊆ P × Q and x ∈ {a, b}, |δC (Y, x)| ≥ |Y |. Note that (δA × δB)(·, x) is a permutation of P × Q and δC is the same
as δA × δB except that it may add the state (0, 0).

Thus δC (r0, (am−1b)n·(mn−1)
= P × Q. �

Note that so far we have defined the transitions of A and B only for input symbols a and b. Now we continue with
the definition of δA and δB for inputs c, d and e.

δA(i, c) = i, i = 0, . . . , m − 1, (31)
δB(j, c) = n − 2, j = 0, , . . . , n − 1. (32)

150 A. Salomaa et al. / Theoretical Computer Science 383 (2007) 140–152

Thus, δC (·, c) will take any element (i, j) to (i, n − 2).

δA(i, d) = i, i = 0, . . . , m − 1 (33)
δB(j, d) = j, j = 0, . . . , n − 3, δB(n − 2, d) = n − 1, δB(n − 1, d) = n − 2. (34)

The above means that δC (·, d) only interchanges elements (i, n − 2) and (i, n − 1), 1 ≤ i ≤ m − 1.

δA(i, e) = i, i = 0, . . . , m − 1, (35)
δB(j, e) = j + 1, j = 0, . . . , n − 4, δB(k, e) = k, k ∈ {n − 3, n − 2, n − 1}. (36)

The operation δC (·, e) changes (i, j) to (i, j + 1) when 0 ≤ j ≤ n − 4. Otherwise, δC is the identity.
We introduce some notation. For 0 ≤ j ≤ n − 1 let

Y j = {(i, j) | 0 ≤ i ≤ m − 1}. (37)

First we note that δC (P × Q, c) = {(i, n − 2) | 0 ≤ i ≤ m − 1} = Yn−2. Combining this observation with Claim 3
we get:

Claim 4. The set Yn−2 is reachable. �

Let 0 ≤ j ≤ n − 2. We define the following family of sets:

T j = {Z ⊆ P × Q | (∀k)(j ≤ k ≤ n − 3) ⇒ Yk ∩ Z = ∅ &
Yn−2 ⊆ Z & Yn−1 ∩ Z = ∅}.

The family T0 consists of exactly the set Yn−2. For 1 ≤ j ≤ n − 2 the family T j consists of all sets Z such that
Yn−2 ⊆ Z , Z does not have any elements of sets Y j , Y j+1, . . . , Yn−3 and no elements of Yn−1. The intersection of Z
with Y0, . . . , Y j−1 can be arbitrary.

Claim 5. All sets in T j are reachable, j ∈ {0, . . . , n − 2}.

Proof. We prove the claim using induction on j . The claim holds when j = 0 since T0 consists of only the set Yn−2
which is reachable by Claim 4. Assume now that the claim holds when j = r , 0 ≤ r ≤ n − 3. An arbitrary subset of
Tr+1 can be written in the form

X = Z0 ∪ Z1 ∪ · · · ∪ Zr ∪ Yn−2 (38)

where Zs is an arbitrary subset of Ys , s = 0, . . . , r . (The notation Ys is as in (37).) For s = 0, . . . , r − 1, denote

Z ′
s = {(i, s) | (i, s + 1) ∈ Zs+1, 0 ≤ i ≤ m − 1}.

We denote

X ′
= Z ′

0 ∪ Z ′

1 ∪ · · · ∪ Z ′

r−1 ∪ Yn−2.

We note that X ′
∈ Tr , and by the induction hypothesis X ′ is reachable. Since the transition δC (·, e) just increases the

second component of elements by one when the second component is at most n − 4, we note that δC (X ′, e) = X ′′

where

X ′′
= Z1 ∪ · · · ∪ Zr ∪ Yn−2.

Now we just need to show how we can add the states of Z0 to X ′′. We perform m transitions with input symbol a.
After these transitions each Zs , 1 ≤ s ≤ r , will be the same as before. Always when (i, 0) ∈ Z0, 0 ≤ i ≤ m − 1, we
can add (i, 0) to X ′′ by performing

two d transitions after the (m − i)th a-transition, 0 ≤ i ≤ m − 1. (39)

Note that the first d-transition “moves” Yn−2 to Yn−1. Since (m − 1, n − 1) ∈ Yn−1, this transition adds (0, 0) to
X ′′. The second d-transition moves Yn−1 back to Yn−2. The two consecutive d-transitions do not change the set in
any other way except by adding the element (0, 0). When the pairs of d-transitions are inserted in between the m
a-transitions according to (39), after this sequence of transitions the set X ′′ has been changed to X ′′

∪ Z0 which is the
set we wanted in (38). �

A. Salomaa et al. / Theoretical Computer Science 383 (2007) 140–152 151

The family Tn−2 consists of exactly all the sets (30). It follows that the state complexity of the language recognized
by C is at least 2m(n−2) as claimed in (23).

If we are allowed to add three new symbols to Σ , we can add to the DFA C transitions that change the first
components of elements of P × Q analogously as the transitions (31)–(36) change the second components. Let us
denote the modified DFA by C ′. The new transitions together with the a- and b-transitions (26)–(29) give us 2n(m−2)

reachable subsets of P × Q. By deducting the subsets that occur also in (30) we obtain the following lower bound for
the state complexity of L(C ′)

sc(L(C ′)) ≥ 2m(n−2)
+ 2n(m−2)

− 2mn−2(m+n+1). (40)

Strictly speaking C ′ will of course have more reachable states than the lower bound given by (40). For example,
just by using the a-transitions and b-transitions as given by (26)–(29) from the states in (30) we can obtain further
new states. However, computing the precise number of reachable states would be quite involved (since translations
into states of Yn−1 may contain the final state (m − 1, n − 1) which will then change also the subset of Y0). The lower
bound (40) has a simple format.

We state the result in the following theorem:

Theorem 4.1. Let m1, m2 ≥ 3 and Σ be of cardinality eight. Then there exist languages L i over Σ recognized by an
mi -state DFA, i = 1, 2, such that

sc((L1 ∩ L2)
∗) ≥ 2m1(m2−2)

+ 2m2(m1−2)
− 2m1m2−2(m1+m2+1). �

By increasing the alphabet size the lower bound (40) could be further increased. However, we do not know whether
the bound given by the individual state complexities of intersection and star, 2m1m2−1

+ 2m1m2−2, can be reached.
We conjecture that the above bound can be reached if we are allowed to use a variable size alphabet, that is, if Σ

may depend on m1 and m2.

4.2. Small values of m and n

By using large alphabets it can be verified that when m, n ≤ 3, the star-of-intersection can reach exactly
2mn−1

+ 2mn−2. We have an example of two three-state DFA’s A1, A2 such that sc(L(A1) ∩ L(A2))
∗

= 384.

5. Conclusion

We have studied the state complexities of two different combinations of operations on regular languages: star
of union and star of intersection. In the first combination, the state complexity of the combination is very different
from the composition of the state complexities of the individual operations. In the second combination, they are very
similar. These two results show that although the composition of the state complexities of individual operations gives
an upper bound to the state complexity of the combination of individual operations, this upper bound may or may not
be tight. The tight upper bound can be far from this bound. Our first result in this paper has shown this case. The state
complexity of a combination of operations has to be studied individually in order to know its result. There are many
combinations of operations on regular languages that are worth studying. Hopefully many new results on this topic
will be obtained in the near future.

For further reading

[1,10].

References

[1] J.-C. Birget, Partial orders on words, minimal elements of regular languages, and state complexity, Theoretical Computer Science 119 (1993)
267–291.

[2] C. Campeanu, K. Culik, K. Salomaa, S. Yu, State complexity of basic operations on finite languages, in: Proceedings of the Fourth International
Workshop on Implementing Automata VIII 1-11, in: LNCS, vol. 2214, 1999, pp. 60–70.

[3] C. Campeanu, K. Salomaa, S. Yu, Tight lower bound for the state complexity of shuffle of regular languages, Journal of Automata, Languages
and Combinatorics 7 (3) (2002) 303–310.

152 A. Salomaa et al. / Theoretical Computer Science 383 (2007) 140–152

[4] C. Campeanu, K. Salomaa, S. Yu, Chapter 5: state complexity of regular languages: finite versus infinite, in: C. Calude, G. Paun (Eds.), Finite
vs Infinite — Contributions to an Eternal Dilemma, Springer, 2000, pp. 53–73.

[5] M. Domaratzki, State complexity and proportional removals, Journal of Automata, Languages and Combinatorics 7 (2002) 455–468.
[6] M. Holzer, M. Kutrib, State complexity of basic operations on nondeterministic finite automata, in: Proceedings of International Conference

on Implementation and Application of Automata 2002, CIAA 2002, in: LNCS, vol. 2608, Springer, 2002, pp. 148–157.
[7] M. Holzer, M. Kutrib, Unary language operations and their nondeterministic state complexity, in: Developments in Language Theory, DLT

2002, in: LNCS, vol. 2450, Springer, 2002, pp. 162–172.
[8] M. Holzer, K. Salomaa, S. Yu, On the state complexity of k-entry deterministic finite automata, Journal of Automata, Languages and

Combinatorics 6 (4) (2001) 453–466.
[9] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison Wesley, Reading, Mass, 1979.

[10] K. Iwama, Y. Kambayashi, K. Takaki, Tight bounds on the number of states of DFAs that are equivalent to n-state NFAs, Theoretical Computer
Science 237 (2000) 485–494.

[11] G. Jirásková, State complexity of some operations on regular languages, in: Proceedings of 5th Workshop on Descriptional Complexity of
Formal Systems, 2003, pp. 114–125.

[12] G. Jirásková, State complexity of some operations on binary regular languages, Theoretical Computer Science 330 (2005) 287–298.
[13] J. Jirásek, G. Jirásková, A. Szabari, State complexity of concatenation and complementation of regular languages, International Journal of

Foundations of Computer Science 16 (2005) 511–529.
[14] G. Jirásková, A. Okhotin, State complexity of cyclic shift, in: Proceedings of DCFS 2005, Como, Italy, June 30–July 2, 2005, pp. 182–193.
[15] C. Nicaud, Average State Complexity of Operations on Unary Automata, in: MFCS’99, in: LNCS, vol. 1672, 1999, pp. 231–240.
[16] G. Pighizzini, J. Shallit, Unary language operations, state complexity and Jacobsthal’s function, International Journal of Foundations of

Computer Science 13 (1) (2002) 145–159.
[17] A. Salomaa, Theory of Automata, Pergamon Press, Oxford, 1969.
[18] A. Salomaa, D. Wood, S. Yu, On the state complexity of reversals of regular languages, Theoretical Computer Science 320 (2004) 293–313.
[19] K. Salomaa, S. Yu, NFA to DFA transformation for finite languages over arbitrary alphabets, Journal of Automata, Languages and

Combinatorics 2 (3) (1997) 177–186.
[20] S. Yu, State complexity of regular languages, Journal of Automata, Languages and Combinatorics 6 (2) (2001) 221–234.
[21] S. Yu, Q. Zhuang, K. Salomaa, The state complexities of some basic operations on regular languages, Theoretical Computer Science 125

(1994) 315–328.
[22] S. Yu, Regular languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 1, Springer-Verlag, 1997, pp. 41–110.

	State complexity of combined operations
	Introduction
	Preliminaries
	Star of union
	An upper bound
	Worst-case example
	Case m1 geq 3 and m2 geq 3
	Case m1 = 2 and m2 geq 3
	Case m1 = m2 = 2
	The result

	Star of intersection
	The general cases
	Small values of m and n

	Conclusion
	References

