
Available online at www.sciencedirect.com

Information and Computation 205 (2007) 1652–1670

www.elsevier.com/locate/ic

Magic numbers in the state hierarchy of finite automata�

Viliam Geffert
Department of Computer Science, P.J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia

Received 2 March 2007
Available online 7 August 2007

Abstract

A number d is magic for n, if there is no regular language for which an optimal nondeterministic finite state
automaton (nfa) uses exactly n states and, at the same time, the optimal deterministic finite state automaton (dfa)
uses exactly d states. We show that, in the case of unary regular languages, the state hierarchy of dfa’s, for the family
of languages accepted by n-state nfa’s, is not contiguous. There are some “holes” in the hierarchy, i.e., magic numbers
in between values that are not magic. This solves, for automata with a single letter input alphabet, an open problem
of existence of magic numbers. Actually, most of the numbers is magic in the unary case. As an additional bonus, we
also get a new universal lower bound for the conversion of unary d-state dfa’s into equivalent nfa’s: nondeterminism
does not reduce the number of states below log2 d, not even in the best case.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Descriptional complexity; Finite-state automata; Regular languages

1. Introduction

Automata theory is one of the oldest topics in theoretical computer science, and also a popular first step to
study this field. In spite of that, some important problems concerning regular languages are still open. The most
famous problem is whether a two-way nondeterministic finite state automaton with n states can be converted
into an equivalent two-way deterministic automaton using only a polynomial number of states [20]. (See also
[8].)

At first glance, the situation is clear for one-way automata, the fundamental standard model for regular lan-
guages. By the classical subset construction [19], one of the oldest results, we know that a nondeterministic finite
state automaton (nfa) with n states can be replaced by an equivalent deterministic finite state automaton (dfa)
with d states, such that n � d � 2n. It is also known that the exponential blow-up cannot be improved.In the

� This work was supported by the Slovak Grant Agency for Science (VEGA) under contract “Combinatorial Structures and Complexity
of Algorithms,” and by the Science and Technology Assistance Agency under contract APVT-20-004104. A preliminary version appeared
in: Proc. Math. Found. Comput. Sci., Lect. Notes Comput. Sci., vol. 4162, Springer-Verlag, 2006, pp. 412–423.

E-mail address: viliam.geffert@upjs.sk (V. Geffert).

0890-5401/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2007.07.001

V. Geffert / Information and Computation 205 (2007) 1652–1670 1653

worst case, d = 2n. (For examples of such languages, see [16,18,21].) On the other hand, we also know languages
for which nondeterminism does not help at all, that is, d = n.

Thus, a natural question, raised for the first time by Iwama et al. [12], is the following:

Is it possible, for a given number n, to find a number d satisfying n� d � 2n, such that no optimal dfa using exactly d states
can be simulated by any optimal nfa using exactly n states?

In [13], such numbers were named “magic,” as numbers for which nondeterminism is especially weak.
Adopting this kind of terminology, we say that d is a muggle number for n, if it is not magic for n, i.e., if there
exists at least one optimal dfa using exactly d states which corresponds to an optimal nfa using exactly n
states.

A negative answer to the question raised above would show that all numbers between n and 2n are muggle
numbers, which would give a complete and tight state hierarchy for the relation between dfa’s and n-state nfa’s,
with no magic numbers leaving some “holes” in the hierarchy.

It turns out that the problem is easier to solve, if the size of the input alphabet is allowed to grow in n. Then
there are no magic numbers at all [14]: For each n and d , such that n � d � 2n, there exists an optimal n-state
nfa for which the optimal dfa uses exactly d states. However, the size of the input alphabet for these automata
is very large, namely, 2n−1+1. In the second part of [14], the input alphabet is reduced to 2n. However, this result
is shown by a “non-constructive” argument, proving the mere existence without giving an explicit exhibition
of the witness regular languages. Finally, in [7], the complete state hierarchy is shown by a simpler “construc-
tive” proof, displaying explicitly the witness automata and, at the same time, reducing the input alphabet size
to n+2.

In chronological order, the first work concerning this problem [12] was devoted to binary regular languages,
i.e., a family of languages with a fixed input alphabet. It was shown, for each n, that the values in the form
d = 2n−2k or d = 2n−2k−1, where 0 � k � n/2−2, are not magic. Later, in [13], this result has been extended
for some new values of d , in the form d = 2n−k , where 5 � k � 2n−2, such that k satisfies also an additional
coprimality condition. In [14], new muggle numbers have been found at the opposite end, namely, we have a
binary witness language for each d satisfying n � d � 1+ n·(n+1)/2. In addition, the paper extends the result
for values in the form d = n+2k−k , where 1 � k � n. Finally, in [7], a superpolynomial number of muggle
numbers has been presented for the binary alphabet, namely, for each sufficiently large n, each d satisfying
n � d � e�(n

1/3·ln2/3 n) is muggle.
Summing up, for input alphabets growing in n, we have the complete state hierarchy, all numbers between n

and 2n are muggle numbers. On the other hand, there are many muggle numbers with binary witness languages,
but no number has been shown to be magic in the binary case. The completeness of the state hierarchy for the
regular languages over the binary alphabet (or any fixed input alphabet) is thus an open problem.

In this paper, we shall focus our attention on the state hierarchy of unary regular languages, i.e., on automata
with a single letter input alphabet. Unary (tally) languages play an important role in theoretical computer sci-
ence, as languages with a very low information content. Many of their properties are quite different from the
general or binary case. (See, e.g., [3,4,5,6,8,17].)

For unary regular languages, we first present an almost exact approximation of Gmax(n) and Gmin(n), the larg-
est and the smallest muggle numbers for n, respectively. Then we shall prove the existence of magic numbers
between Gmin(n) and Gmax(n). Thus, in the unary case, the state hierarchy of dfa’s, for the family of languages
accepted by n-state nfa’s, is not contiguous. We shall actually show a much stronger result, namely, that most
of the numbers between Gmin(n) and Gmax(n) are magic. (A typical structure of the state hierarchy is shown in
Fig. 2.)

In order to prove the existence of magic numbers for unary automata, we need to revise some of their proper-
ties first. In 1986, Chrobak [4] introduced a new normal form for unary nfa’s. It was shown that each unary nfa
M using at most n states can be replaced by an equivalent nfa M ′ consisting of an initial deterministic segment
of length O(n2) and some m disjoint deterministic loops of lengths �̃1, . . . , �̃m, with the total number of states in
loops bounded by �̃1+· · ·+�̃m � n.M ′ makes only a single nondeterministic decision, after passing through the
initial segment, when it chooses one of the m loops.

This normal form reduced the cost of eliminating nondeterminism in the unary case, to F(n)+ O(n2) �
e(1+o(1))·

√
n·ln n states, where F(n) denotes the Landau’s function. (For exact definition of this function, see (1) in

1654 V. Geffert / Information and Computation 205 (2007) 1652–1670

Section 2.) This is far better than 2n states required by the standard subset construction.1 Chrobak presented
also a lower bound, namely, F(n−1), however, without a proof showing that the witness regular language cannot
be replaced by a better language, and hence without a proof that the lower bound cannot be lifted up.

We shall need to introduce a more refined version of the Chrobak normal form, namely, we are going to
reduce the length of the initial segment to n2−2 states and, at the same time, the number of states in loops to
n−1. This will reduce the cost of eliminating nondeterminism from F(n)+ O(n2) states to F(n−1)+ (n2−2).

Such improvement seems to be marginal at first glance. However, in Section 5, we shall present an optimal nfa
using exactly n states, such that its optimal deterministic counterpart uses exactly F(n−1)+ kn states, for some
kn ∈ {0, . . . , n2−2}. Thus, the new upper bound presented here is almost equal to the actually existing optimum,
and hence the cost of eliminating nondeterminism is determined almost exactly. A potential difference of at
most n2−2 states is negligible, compared with the growth rate of F(n), which is e(1+o(1))·

√
n·ln n. (The difference

between F(n) and F(n−1) is much more significant.)
This improvement is required, among others, to obtain a sufficiently precise approximation for the largest

muggle number, namely, Gmax(n) = F(n−1)+ k ′n, for some k ′n ∈ {0, . . . , n2−2}.
Then we shall derive some properties of unary automata that are deterministic. Among others, an optimal

dfa consisting of an initial segment of length s and a loop of length � cannot be simulated by a dfa using a shorter
initial segment or a loop of length �′ that factorizes into a “simpler” product of prime powers than does �, even
if the new machine uses far more states in total.

After that, utilizing the conflict between the properties of optimal dfa’s and the revised Chrobak normal
form for nfa’s, we can prove the existence of magic numbers. As a simple consequence, we shall also get a new
universal lower bound for the conversion of unary d-state dfa’s into equivalent nfa’s: nondeterminism does not
reduce the number of states below log2 d , not even in the best case.

2. Preliminaries

We first briefly recall some basic definitions and notation on finite state automata. For more details, we refer
the reader to [10,11], or any other standard textbook.

A nondeterministic finite automaton (nfa) is a quintuple M = (Q,�, �, qS, F), where Q denotes a finite set of
states,� is a finite set of input symbols, � : Q ×�→ 2Q a transition function, qS ∈ Q an initial state, and F ⊆ Q
a set of final (accepting) states. The language accepted by M will be denoted, as usual, by L(M).

The automatonM is deterministic (dfa), if ‖�(q, s)‖ = 1, for each q ∈ Q and each s ∈ �. Throughout the paper,
‖X ‖ denotes the cardinality of the set X .

Two automata are equivalent, if they accept the same language. An nfa (dfa) M is optimal, if no nfa (dfa,
respectively) with fewer than ‖Q‖ states is equivalent to M. (It is well known that the optimal dfa is unique, for
each regular language, but we may potentially have several different optimal nfa’s for the same language.)

All automata in this paper are unary, so we can fix the input alphabet to� = {1}. We also simplify the notation
for transitions, a single-step transition q′ ∈ �(q, 1) is presented in the form of an edge q→ q′. A path beginning
in q, ending in q′, and reading a string 1

u from the input (thus, consisting of u consecutive edges) can be displayed
in a more compact form q 1u−−→ q′. Finally, q q′ indicates reachability by a path of any length (including zero,
for q = q′).

The factorization of integers will also be important in the subsequent considerations. For a more detailed
exposition concerning number theory, the reader is referred to [9,23].

Let X be a finite multiset of positive integers, with possible repetition of elements. Then lcm X denotes the
least common multiple of all elements in X , gcdX the greatest common divisor of these elements, maxX the
largest element in X , and minX the smallest element.

The Fundamental Theorem of Arithmetic states that each � > 1 can be uniquely factorized in the form � =
p
�1
i1
· p�2
i2
· . . . · p�eie , where p�1

i1
, p�2
i2

, . . . , p�eie are some prime powers, with �i � 1 and pif /= pig for f /= g. The set of

1 In chronological order, this normal form was first presented by Ljubič in [15], together with upper and lower bounds for eliminating

nondeterminism, of order eO(
√
n·ln n) and e�(

√
n·ln n), respectively. However, the normal form presented by Chrobak in [4] produces tighter

upper and lower bounds, both for nfa’s and their deterministic counterparts.

V. Geffert / Information and Computation 205 (2007) 1652–1670 1655

prime powers used in the factorization of �will be denoted by ϕ(�) = {p�1
i1

, p�2
i2

, . . . , p�eie }. Clearly, � =∏
p�∈ϕ(�) p

�.
We shall also need a cost of factorization, defined by

	(�) =∑
p�∈ϕ(�) p

�.

By definition, ϕ(1) = Ø, which gives 	(1) = 0. The following simple properties of the factorization cost will be
required later.

Lemma 2.1. For each � � 1, 	(�) � �. If, moreover, � divides some �′, then 	(�) � 	(�′).
Proof. The statement is trivial for �= 1. If �> 1, then 	(�) =∑

p�∈ϕ(�) p
� � ∏

p�∈ϕ(�) p
� = �, using the fact that

prime powers are numbers greater than or equal to 2, and hence their sum cannot be larger than their product.
Second, if � divides some �′, then, for each p� ∈ ϕ(�), there must exist some p�

′ ∈ ϕ(�′), such that �′ � �.
Therefore, 	(�) =∑

p�∈ϕ(�) p
� � ∑

p�
′ ∈ϕ(�′) p

�′ = 	(�′). �

Lemma 2.2. For each �1, �2, . . . , �m, 	(lcm{�1, �2, . . . , �m}) � ∑m
i=1	(�i).

Proof. Clearly, if a prime power p� ∈ ϕ(lcm{�1, . . . , �m}), it must appear in a factorization of at least one of
the numbers �1, . . . , �m. That is, p� ∈ ϕ(�i), for some i ∈ {1, . . . ,m}. Therefore, ϕ(lcm{�1, . . . , �m}) ⊆ ϕ(�1) ∪ . . . ∪
ϕ(�m). But then

	(lcm{�1, . . . , �m}) =
∑

p�∈ϕ(lcm{�1,...,�m})
p� �

∑

p�∈ϕ(�1)∪...∪ϕ(�m)
p�

�
m∑

i=1

∑

p�∈ϕ(�i)
p� =

m∑

i=1

	(�i) . �

The following function will play a crucial role in our considerations. Let

F(n) = max{lcm{�1, �2, . . . , �m} : �1+�2+· · ·+�m = n} . (1)

This function, giving the largest least common multiple among all partitions of n, is known as Landau’s func-
tion. It already plays an important role in the group theory. The best known approximation of F(n) is due to
Szalay [22]: F(n) = e

√
n·(ln n+ln ln n−1+(ln ln n−2+o(1))/ ln n). For our purposes, this approximation can be simplified

as follows:

F(n) = e(1+o(1))·
√
n·ln n. (2)

The asymptotic notation in the formula above (and, in the same way, throughout the paper) is interpreted as
follows. The exact value of F(n) can be expressed in the form F(n) = e(1+r(n))·

√
n·ln n, where r(n) is a real function

satisfying limn→∞ r(n) = 0 and r(n) � 0, for each n. If we did not guarantee the condition r(n) � 0, we should
use e(1±o(1))·

√
n·ln n instead. The meaning of the expression e(1−o(1))·

√
n·ln n should be obvious.

3. Unary nondeterministic automata

This section is devoted to a more refined version of the so called Chrobak normal form for unary nfa’s.
We shall begin with an auxiliary lemma stating that each computation path passing through a state q can be

made to execute a loop beginning and ending in this state, provided that such a loop does exist, and that the
remaining part of the computation is sufficiently long. (The lemma is a variant of the Dominant Loop Theorem,
presented in [5].)

1656 V. Geffert / Information and Computation 205 (2007) 1652–1670

Lemma 3.1. LetM be a unary nfa with at most n states. Then, if there exists a computation path q1 1�−−→ q 1
−−→ q2
for some states q1, q, q2 inM, and if there also exists a loop q 1�−−→ q, such that
 � n·�, the path q1 1�−−→ q 1
−−→ q2
can be replaced by an equivalent path q1 1�−−→ q 1�−−→ q 1
−�−−→ q2.

Proof. Since
 � n·�, the string 1

 can be decomposed into at least n segments, all of equal length �, except for

some residual part of length at the end, where 0 � < �. Thus, the path from q1 to q2 can be represented in
the form

q1 1�−−→ q = r0 1�−−→ r1 1�−−→ r2 . . . ra−1 1�−−→ ra 1 −−→ q2 ,

where a � n and r0, r1, . . . , ra are some states. Hence, the segment between r0 and q2 contains more than n states,
placed exactly � positions apart. Using a simple pigeonhole argument, some state must be repeated, i.e., we have
ri = rj , for some 0 � i < j � a. Therefore, we must pass through a loop of length (j−i)·�, beginning and ending
in ri = rj . This allows us to divide the segment 1

 into three segments 1

1, 1

(j−i)·�, 1

2, corresponding, respectively,

to the computations executed before this loop, the loop itself, and the part following this loop:

q1 1�−−→ q = r0 1
1−−→ ri
1(j−i)·�−−→ rj 1
2−−→ q2 .

But then the original path can be replaced by an equivalent computation — beginning and ending in the same
states and reading the same portion of the input — in which the loop of length (j−i)·� is replaced by the loop
q 1�−−→ q, iterated j−i times:

q1 1�−−→ q 1�−−→ q 1�−−→ q . . . q 1�−−→ q︸ ︷︷ ︸
j−i times

= r0 1
1−−→ ri = rj 1
2−−→ q2 .

Since i < j, the loop q 1�−−→ q is iterated at least once. Thus, we have obtained a computation path
q1 1�−−→ q 1�−−→ q 1

′
−−→ q2, where
′ = (j−i−1)·�+
1 +
2 =
 − �, which completes the proof. �

Definition 3.2 (Cardinal loops and states). Let M be a unary nfa with at most n states. Fix some loops in M,
together with some states along these loops, as cardinal, in the following way. (There are several cases to con-
sider, illustrated by Fig. 1.)
Case (a). There is no path qS

1�−−→ qS beginning and ending in the initial state qS, for no � > 0. That is, no loop
passes through qS, and hence qS does not belong to any strongly connected component. Partition the state set
into Q = Q0 ∪ Q1 ∪ . . . ∪ Qm ∪ Q∞ as follows:

Q0 contains all states that are reachable from qS, but not reachable by computation paths passing through
some loops. This implies, among others, that the states in Q0 do not belong to any strongly connected
component, and that qS ∈ Q0.

Qi , for i = 1, . . . ,m, contains all states forming the ith strongly connected component in Q, reachable directly
from Q0. That is, if q ∈ Qi , for some i, then (i) all states q′ with paths q q′ q are included in Qi , and
(ii) there must exist a path qS q consisting only of states in Q0 ∪ Qi .

Q∞ contains all remaining states inQ. That is, the states that are either not reachable at all, or the states reach-
able only by computation paths passing through some states in

⋃m
i=1 Qi , but not belonging toQ0 ∪⋃m

i=1 Qi .

Now, for each i = 1, . . . ,m, let �̃i denote the length of the shortest loop in Qi . For each Qi , fix one such loop
(there may potentially be more than one), and also a state q̃i ∈ Qi along this loop. The fixed loops of lengths
�̃1, �̃2, . . . , �̃m will be cardinal loops, the states q̃1, q̃2, . . . , q̃m fixing some positions along these loops will be cardinal
states. (IfQ does not contain any reachable strongly connected component, which can happen only ifM accepts
a finite language, there are no cardinal loops or states, i.e., m = 0 and Q = Q0 ∪ Q∞.)

It is easy to see that all these loops are elementary, i.e., no states are repeated in the course of a single iteration
in any of them. Moreover, since these loops are in pairwise disjoint components and there is no loop passing
through qS,

�̃1+�̃2+· · ·+�̃m � n−1 . (3)

V. Geffert / Information and Computation 205 (2007) 1652–1670 1657

Fig. 1. Fixing cardinal loops and cardinal states. Partitioning of the state set into Q = Q0 ∪ Q1 ∪ . . . ∪ Qm ∪ Q∞ is represented by dotted
territorial boundaries, cardinal loops are marked by wavy lines twining around the edges, and cardinal states by filled bullets.

Case (b). There exists a loop qS
1�−−→ qS beginning and ending in the initial state qS, for some 1 � � � n−1. That

is, qS belongs to some strongly connected component. Here, we get a partition in the form Q = Q1 ∪ Q∞, that is,
Q0 = Ø, qS ∈ Q1, and hence m = 1. Therefore, we fix some shortest loop beginning and ending in qS as cardinal,
of length �̃1, and take q̃1 = qS as the only cardinal state. It is easy to see that the condition (3) is satisfied again,
since

∑m
i=1 �̃i = �̃1 � � � n−1.

Case (c). There exists a loop beginning and ending in qS, but the length of any such loop is at least n. Since the
shortest loop does not repeat the same state twice, we have a path qS

1n−−→ qS, visiting all states in Q. Therefore,
the entire state set Q forms a single strongly connected component Q1. By enumerating all states in order in
which they appear in the loop qS

1n−−→ qS, we get

qS = q0→ q1→ q2 . . . qn−2→ qn−1→ q0 . (4)

There are now two subcases:
Case (c1). Besides the transitions displayed in (4), there exists at least one more edge inM. Such edge must be of
the form qe← qf , with 1 � e � f � n−1. (Otherwise, we get either an edge already displayed in (4), or a loop
qS qS shorter than n. Both cases lead to contradictions.)

Now, let ē be the smallest e � 1 such that there exists a “backward” edge qē← qf , for some f � ē. Then let
f̄ be the smallest f � ē with a backward edge qē← qf̄ . Finally, fix the loop qē→ qē+1 . . . qf̄−1→ qf̄ → qē as
cardinal, and fix q̃1 = qē as the only cardinal state. Clearly, the condition (3) is satisfied even in this case, since
the only cardinal loop is of length �̃1 = f̄−ē+1 � n−1.
Case (c2). The automaton M does not have any transitions except for those displayed in (4). In this case, M
is already deterministic. We shall call such automaton a trivial loop of length n, and handle this special case
separately. (Among others, here we do not try to fix any cardinal loops or states.)

1658 V. Geffert / Information and Computation 205 (2007) 1652–1670

The following technical theorem serves as a tool for converting nondeterministic automata into a normal
form.

Theorem 3.3. LetM be a unary nfa with at most n > 1 states, different from the trivial loop of length n, with cardinal
loops of lengths �̃1, �̃2, . . . , �̃m and cardinal states q̃1, q̃2, . . . , q̃m, as introduced by Def. 3.2.Then, for each u � n2−2,
the string 1

u is accepted by M if and only if

(i) there exists an i ∈ {1, . . . ,m} (that is, also a strongly connected component Qi with a cardinal loop �̃i and a
cardinal state q̃i),

(ii) there exists an r ∈ {0, . . . , �̃i−1} (a number modulo �̃i),
(iii) there exists a q′ ∈ F (a final state of M),
(iv) there exists an � � n−1, with a computation path qS

1�−−→ q̃i ,

(v) there exists a
 � n2−n−1, with a computation path q̃i 1
−−→ q′,
(vi) such that (�+
) mod �̃i = r,
(vii) and u mod �̃i = r.

Proof. The argument for the “�⇒” part follows the cases (a), (b), (c1), and (c2), introduced by Definition 3.2
for fixing the cardinal loops and states.
Case (a), part I. Here we assume that there is no loop beginning and ending in the initial state qS, that is, qS ∈ Q0.
If 1

u is accepted by M, there must exist an accepting path, in the form qS
1u−−→ q′, for some q′ ∈ F . This gives a

final state of the item (iii).
Since u � n2−2 � n, some states must be repeated along the path qS

1u−−→ q′, consisting of at least n+1 states.
Thus, the path must pass through at least one state not belonging to Q0. (See also Definition 3.2 and Fig. 1.) On
the other hand, by assumption, qS ∈ Q0. Now, take the first state p ∈ Q0 along this path, which gives

qS
1�0−−→︸ ︷︷ ︸

in Q0

p 1
0−−→ q′, (5)

for some �0,
0 satisfying �0+
0 = u, such that all states in the segment qS
1�0−−→ p belong to Q0, except for

the state p at the very end. Since p ∈ Q0 is reachable directly from Q0, we have that p ∈ Qi , for some strongly
connected component Qi . (That is, p ∈ Q∞.) This gives an i ∈ {1, . . . ,m} of the item (i).

Note that both p and the cardinal state q̃i are in the same strongly connected component Qi . Thus, M must
also have a path from p to q̃i , in the form

p = r0→ r1→ r2 . . . ra−1→ ra = q̃i , (6)

where r0, r1, r2, . . . , ra are states along the shortest path p q̃i . Combining this with (5), we shall show, by
induction on j = 0, 1, . . . , a, the existence of the path

qS p = r0→ r1 . . . rj−1→︸ ︷︷ ︸
1
�j

rj ︸︷︷︸
1

j

q′, (7)

for some �j ,
j satisfying �j+
j = u. That is, the new path begins and ends in the same states as the original
qS

1u−−→ q′, reading the same portion of the input. So far, the induction hypothesis has been shown for j=0. We
are now going to extend it from j to j+1.

First, recall that all states in the segment qS p , except for p , are in Q0, and hence they are all different,
since the states in Q0 do not belong to any strongly connected component. Second, all states in the segment
r0 rj are in Qi , and they are also all different, since (6) represents the shortest path connecting p with q̃i .
Third, Q0 ∩ Qi = Ø, and hence the states in the path qS

1�j−−→ rj must be all different. Thus, the length of this
path, measured in the number of states, is at most n. Moreover, if j < a, this length does not exceed n−1, since
the state ra is excluded. Expressing this length in the number of edges, we get

�j � n−2 , if j < a ,
�j � n−1 , if j = a . (8)

V. Geffert / Information and Computation 205 (2007) 1652–1670 1659

Consider now j < a. Here, we can utilize the fact that both rj and rj+1 belong to the same strongly connected
component Qi . Thus, there exists a path

rj→ rj+1 rj .

Using the shortest path of this kind, we get that the segment rj+1 rj does not repeat the same state twice, nor
does it contain rj or rj+1, except for the very beginning and very end. But then rj→ rj+1 rj is an elementary
loop, of length � n−1. (Recall that qS does not lie along any loop, which saves one state.)

Using (8), we then get
j = u−�j � (n2−2)− (n−2) = n·(n−1) � n· . This allows us to use Lemma 3.1 and
replace the path in (7) by an equivalent path iterating, at least once, the loop rj→ rj+1 1 −1−−→ rj:

qS p = r0→ r1 . . . rj−1→ rj→︸ ︷︷ ︸
1
�j+1

rj+1 1 −1−−→ rj︸ ︷︷ ︸
1

j+1

q′.

Thus, we have �j+1,
j+1 satisfying �j+1+
j+1 = u. This argument can be repeated for j = 0, 1, . . . , a−1, which
gives

qS p = r0→ r1 . . . ra−1→︸ ︷︷ ︸
1
�a

ra = q̃i ︸︷︷︸
1

a

q′,

with �a+
a = u and �a � n−1, using (7) and (8), for j = a.
Now we can take � = �a, which gives an � � n−1 of the item (iv), together with a path qS

1�−−→ q̃i . Finally,
let
′0 =
a.
Case (a), part II. Now the input 1

u is accepted by a new computation path, passing through a cardinal state, in
the form qS

1�−−→ q̃i 1

′
0−−→ q′, with �+
′0 = u.

Recall that the state q̃i fixes some position along the cardinal loop of length �̃i . Thus, we have also q̃i 1�̃i−−→ q̃i .
But then the accepting computation can be expressed in the form

qS
1�−−→ q̃i 1�̃i−−→ q̃i . . . q̃i 1�̃i−−→ q̃i︸ ︷︷ ︸

k times

1

′
k−−→ q′, (9)

where the loop q̃i 1�̃i−−→ q̃i is iterated k times, for some k � 0, and for some residual path, of length
′k , following
this iteration. So far, this statement has been shown only for k = 0.

However, if
′k � n·�̃i , we can use Lemma 3.1 and replace the path q̃i 1

′
k−−→ q′ by an equivalent path iterating,

at least once, the loop q̃i 1�̃i−−→ q̃i:

qS
1�−−→ q̃i 1�̃i−−→ q̃i . . . q̃i 1�̃i−−→ q̃i︸ ︷︷ ︸

k times

1�̃i−−→ q̃i 1

′
k+1−−→ q′.

Now the loop of length �̃i is iterated k+1 times, followed by a residual computation path of length
′k+1, such
that �̃i+
′k+1 =
′k .

This argument can be repeated for k = 0, 1, 2, . . . , until we get, for some k , a value
′k < n·�̃i . But then, using
(3), we get that
′k � n·�̃i − 1 � n·(n−1)− 1 = n2−n−1. The final value
 =
′k gives a
 � n2−n−1 of the item
(v), together with a path q̃i 1
−−→ q′.

Finally, let r = u mod �̃i . This gives an r ∈ {0, . . . , �̃i−1} of the item (ii), satisfying also the condition of the
item (vii). It only remains to show that the condition of the item (vi) is valid as well. However, using
 =
′k
together with (9), we get that u can be expressed in the form u = �+ k ·�̃i +
, for some k � 0, and hence
(�+
) mod �̃i = u mod �̃i = r.

This completes the argument for the “�⇒” part, Case (a).
Case (b). Assume now that there exists a loop beginning and ending in qS, of length at most n−1. Here, we have
only one strongly connected component that can be reached directly from qS, namely, Q1, with q̃1 = qS ∈ Q1,
and �̃1 � n−1. But then the accepting computation path starts already in the cardinal state q̃1 = qS. Therefore,

1660 V. Geffert / Information and Computation 205 (2007) 1652–1670

it can be expressed in the form qS
1�−−→ q̃i 1

′
0−−→ q′, where � = 0 � n−1, i = 1, q′ is a final state, and 1

′0 is the
entire input string 1

u. The rest of the argument is the same as in Case (a), part II.
Case (c1). Here we assume that the shortest loop qS qS is of length n (i.e., all states are in a single component
Q1), but there exists a shorter loop not passing through qS. Recall that the cardinal loop of length �̃1 � n−1 has
been fixed by using a backward edge qē← qf̄ with the smallest possible value of ē � 1, and that q̃1 = qē.

Clearly, any path qS
1u−−→ q′ accepting the input of length u � n2−2 must repeat some states. Therefore, it

must also pass through at least one backward edge qf → qe, with f � e, that is, through an edge not increasing
the index of the state. (Otherwise, the path length is bounded by n.) All edges preceding the first backward edge
along the path qS

1u−−→ q′ are forward edges, incrementing the state index by one. Thus, the path is in the form

qS = q0→ q1→ q2 qf−1→ qf → qe︸ ︷︷ ︸
backwards for the first time

q′.

If e � 1, the state qe is a target state of a backward edge inM that does not point to q0. But the state qē is the
state with the smallest index among all such states. Therefore, ē � e � f . If e = 0, then f = n−1, the largest
index value. (Smaller values of f are covered by Case (b) above.) Therefore, ē � n−1 = f . In both cases, ē � f .
But then the sequence q0, q1, q2, . . . , qf must contain the state qē = q̃1, which gives

qS = q0→ q1→ q2 . . . qē = q̃1 . . . qf → qe q′.

By taking � = ē � f � n−1, i = 1, and
′0 = u−�, we get qS
1�−−→ q̃i 1

′
0−−→ q′. The rest of the argument pro-

ceeds in the same way as in Case (a), part II.
Case (c2). This is here only for completeness. By assumption of the theorem,M is different from the trivial loop
of length n, and hence this case has been excluded.
The “⇐�” part. Suppose that some u � n2−2 satisfies the conditions listed in the items (i) – (vii). First, u �
n2−2 = (n−1)+ (n2−n−1) � �+
, by items (iv) and (v). Second, u mod �̃i = r = (�+
) mod �̃i , using (vii)
and (vi), for i and r introduced by (i) and (ii). Therefore, u can be expressed in the form u = �+
 + k ·�̃i , for
some k � 0.

But then, by the use of the computation paths introduced by (iv) and (v), together with the cardinal loop
q̃i 1�̃i−−→ q̃i , iterated k times, we can compose the path

qS
1�−−→ q̃i 1�̃i−−→ q̃i . . . q̃i 1�̃i−−→ q̃i︸ ︷︷ ︸

k times

1
−−→ q′,

where q′ is a final state, by (iii). Thus, the input 1
u is accepted by M, which completes the proof. �

Using the above theorem, we can fix some “significant” parts of nondeterministic computations so that they
can be “precomputed” in advance.

Definition 3.4. LetM be a unary nfa with at most n states, different from the trivial loop of length n, with cardinal
loops of lengths �̃1, �̃2, . . . , �̃m and cardinal states q̃1, q̃2, . . . , q̃m. For each i ∈ {1, . . . ,m} and each r ∈ {0, . . . , �̃i−1},
define

• a boolean predicate Pi,r =true/false, depending on whether
(iii) there exists a q′ ∈ F,
(iv) there exists an � � n−1, with a computation path qS

1�−−→ q̃i ,
(v) there exists a
 � n2−n−1, with a computation path q̃i 1
−−→ q′,
(vi) such that (�+
) mod �̃i = r,

• a set of indices Ri = {r′ ∈ {0, . . . , �̃i−1} : Pi,r′ = true},
• a language Li,r = {1u : u � n2−2 and u mod �̃i = r},
• a language L0 = {1u : u < n2−2 and u ∈ L(M)}.

It is easy to see that, for each given i ∈ {1, . . . ,m} and each given r ∈ {0, . . . , �̃i−1}, the truth of the predicate
Pi,r can be precomputed without knowing u, the length of the input. This only requires to iterate over all possible

V. Geffert / Information and Computation 205 (2007) 1652–1670 1661

values of q′ ∈ F, � = 0, . . . , n−1, and
 = 0, . . . , n2−n−1, and verify the existence of the paths qS
1�−−→ q̃i and

q̃i 1
−−→ q′, for any combination of these such that (�+
) mod �̃i = r. (This, in turn, only requires to know the
transition table of M, together with the allocation of cardinal loops and states.) Having computed the truth of
all predicates Pi,r , we can easily precompute the sets Ri as well. Now we are ready for converting nfa’s into the
normal form.

Theorem 3.5 (Chrobak normal form revised). Let M be a unary nfa with at most n > 1 states, different from the
trivial loop of length n. Then M can be replaced by an equivalent nfa M ′ consisting of an initial deterministic path
of length s̃ � n2−2, and some m disjoint deterministic loops of lengths �̃1, . . . , �̃m, with the total number of states in
loops bounded by �̃1+· · ·+�̃m � n−1. M ′ makes a single nondeterministic decision (if any), after passing through
the initial path, when it chooses one of the m loops (if m > 1).

Proof. By Theorem 3.3, the string 1
u of length u � n2−2 is in L(M) if and only if it satisfies the statement of

the items (i) – (vii). Using notation of Definition 3.4, this holds if and only if there exist an i ∈ {1, . . . ,m} and an
r ∈ {0, . . . , �̃i−1}, such that Pi,r = true and 1

u ∈ Li,r . This, in turn, holds if and only if there exists an i ∈ {1, . . . ,m}
and an r ∈ Ri , such that 1

u ∈ Li,r . But then, using the fact that no string shorter than n2−2 is in any Li,r , but all
accepted short strings are in L0, the language L(M) can be expressed in the form

L(M) = L0 ∪ ⋃m
i=1

⋃
r∈Ri Li,r .

It is easy to construct a machine M ′ for L0 ∪ ⋃m
i=1

⋃
r∈Ri Li,r . It consists of

• an initial deterministic segment, made up of some states p1, p2, . . . , pn2−2, connected by edges pk→ pk+1, for
k = 1, . . . , n2−3, with p1 as the initial state,
• a separate deterministic loop of length �̃i , for each i ∈ {1, . . . ,m}, made up of some states qi,0, qi,1, . . . , qi,�̃i−1,

connected by edges qi,k→ qi,(k+1) mod �̃i
, for k = 0, . . . , �̃i−1,

• edges pn2−2→ qi,0, for i ∈ {1, . . . ,m}, connecting the initial segment to each of the loops. This is the only
nondeterministic decision, ever made.
• Finally, mark as accepting each state qi,k in the loop of length �̃i such that ri,k = (n2−2+k) mod �̃i ∈ Ri , and
• mark as accepting each state pk in the initial segment such that 1

k−1 ∈ L(M).

Note that p1 1u−−→ qi,k if and only if u = (n2−2+k)+ j ·�̃i , for some j � 0. This, in turn, holds if and only if
u � n2−2 and u mod �̃i = ri,k , which holds if and only if 1

u ∈ Li,ri,k . Since qi,k is an accepting state if and only if
ri,k ∈ Ri , the paths ending in the loop �̃i accept exactly the strings belonging to

⋃
r∈Ri Li,r . The combination of

�̃1, �̃2, . . . , �̃m gives
⋃m
i=1

⋃
r∈Ri Li,r , while the initial segment is responsible for short inputs in L0.

Clearly,M ′ uses n2−2 states in the initial segment, and �̃1+· · ·+�̃m � n−1 states are in the loops, by (3). �
Now we can make the above automaton deterministic.

Theorem 3.6. Let M be a unary nfa with at most n > 1 states, different from the trivial loop of length n. Then M
can be replaced by an equivalent dfa M ′′ consisting of an initial segment of length s̃ � n2−2, and a loop of length
�̃ satisfying 	(�̃) � n−1.

Proof. The deterministic automaton M ′′ is obtained by the standard subset construction [19], from the nfa M ′
constructed in Theorem 3.5.

First, this gives an initial segment of states {p1}, {p2}, . . . , {pn2−2}, connected by edges {pk}→ {pk+1}, for k =
1, . . . , n2−3, since the initial segment inM ′ is deterministic. Second,wehave the edge {pn2−2}→ {q1,0, q2,0, . . . , qm,0},
since M ′ nondeterministically chooses one of the m loops after passing through the initial segment.

The remaining edges are in the form {q1,e1 , . . . , qm,em}→ {q1,f1 , . . . , qm,fm}, where fi = (ei+1) mod �̃i , for each
i ∈ {1, . . . ,m}, since q1,e1 , . . . , qm,em lie along the deterministic loops, of respective lengths �̃1, . . . , �̃m. Thus, after
passing through the initial segment, M ′′ enters a loop of length �̃ = lcm{�̃1, . . . , �̃m}.

In general, the subset construction produces 2t states, if the original nfa consists of t states. However, if we
reduce the state set of M ′′ to the subset that is actually reachable from the initial state {p1}, the total number of
states is (n2−2)+ �̃.

1662 V. Geffert / Information and Computation 205 (2007) 1652–1670

Moreover, by Lemmas 2.2 and 2.1, the length �̃ has a very low factorization cost, bounded by 	(�̃) =
	(lcm{�̃1, . . . , �̃m}) � ∑m

i=1	(�̃i) � ∑m
i=1 �̃i � n−1. �

There is one special case that should not be forgotten. If the original nfa M does not contain any reachable
strongly connected component (which can happen only ifM accepts a finite language), the construction in Case
(a) of Definition 3.2 does not fix any cardinal loops or states, i.e., m = 0. As a consequence, Theorem 3.5 gives
an nfaM ′ with m = 0, that is, just an initial path consisting of n2−2 states, with no loops.2 But then, in the sub-
set construction of Theorem 3.6, the edge {pn2−2}→ {q1,0, q2,0, . . . , qm,0} degenerates into {pn2−2}→Ø, where Ø
denotes the empty set, which is a rejecting state inM ′′. Consequently, we get also the edge Ø→Ø, that is, a loop of
length �̃ = 1. But then	(�̃) = 	(1) = 0 � n−1. Note also that here we have lcm{�̃1, �̃2, . . . , �̃m} = lcm Ø = 1 = �̃,
taking, by definition, lcm Ø = 1.

Theorem 3.7. Let M be a unary nfa with at most n > 1 states. Then M can be replaced by an equivalent dfa M ′′
using at most d � F(n−1)+ (n2−2) � e(1+o(1))·

√
n·ln n states.

Proof. First, if M is different from the trivial loop of length n, M ′′ is obtained by the use of Theorem 3.6.
This automaton uses d = �̃+ (n2−2) states, with 	(�̃) � n−1. This allows us to express �̃ in the form �̃ =
lcm{1, . . . , 1, p�1

i1
, . . . , p�eie }, where “1” is repeated (n−1)−	(�̃) times and {p�1

i1
, . . . , p�eie } is the set of prime powers

forming the factorization of �̃. The sum of these numbers is exactly 1+· · ·+1+ p�1
i1
+· · ·+p�eie = (n−1)−	(�̃)+

	(�̃) = n−1. But then �̃ � max{lcm{�1, . . . , �f } : �1+· · ·+�f = n−1} = F(n−1). Thus, using (2), the number of
states in M ′′ can be bounded by d = �̃+ (n2−2) � F(n−1)+ (n2−2) � e(1+o(1))·

√
n·ln n.

For completeness, ifM turns out to be the trivial loop of length n, thenM is already deterministic, so we take
M ′′ = M, with d = n. But then d � F(n−1)+ (n2−2), if n > 1. �

We shall conclude this section by a simple by-product that will not be required later, but which we consider
to be interesting by itself. It shows that a superpolynomial gap between the size of unary nfa’s and dfa’s can be
obtained only by machines not having the initial state in any strongly connected component.

Corollary 3.8. LetM be a unary nfa with at most n states, with a loop passing through its initial state. ThenM can
be replaced by an equivalent dfa with at most O(n2) states.

Proof. Because of the loop beginning and ending in the initial state, Case (a) is excluded in the construction
of Definition 3.2. This either fixes exactly one cardinal loop, i.e., m = 1, or M turns out to be the trivial loop of
length n. In the first case, Theorem 3.6 gives an M ′′ using n2−2 states in the initial segment, and with a loop
of length �̃ = lcm{�̃1, . . . , �̃m} = lcm{�̃1} = �̃1 � n−1. Thus, M ′′ uses O(n2) states. The same upper bound holds
even if M is a trivial loop of length n. �

4. Unary deterministic automata

Now we are going to derive some properties of unary automata that are deterministic. Before passing further,
we need to prove the following technical lemma.

Lemma 4.1. Let m1,m2, and g be some positive integers with gcd{m1,m2}= 1.Then, for each k ∈ {0, . . . , g−1},
{(k + i·m2g) mod (m1g) : i = 0, . . . ,m1−1} = {k + j ·g : j = 0, . . . ,m1−1} .

Proof. Consider the sequence �0,�1, . . . ,�m1−1, where

�i = (k + i·m2g) mod (m1g) , for i = 0, . . . ,m1−1 .

First, for each i, the value of �i is a remainder after integer division by m1g, and hence �i ∈ {0, . . . ,m1g−1}.
Second, it can be expressed in the form �i = k + i·m2g−Mi ·m1g, for a suitable integerMi�0. Using k ∈ {0, . . . ,
g−1}, this gives �i mod g = k mod g = k .

2 Theorem 3.3 remains also valid, the condition u� n2−2 simply excludes all accepted inputs. Similarly, Definition 3.4 does not produce
any predicates Pi,r , index sets Ri , or languages Li,r .

V. Geffert / Information and Computation 205 (2007) 1652–1670 1663

On the other hand, there are exactlym1 values such that x mod g = k and, at the same time, x ∈ {0, . . . ,m1g−1}.
More exactly, these values form the set

X = {k + j ·g : j = 0, . . . ,m1−1} .

By the argument above, we have shown that {�0,�1, . . . ,�m1−1} ⊆ X . Since ‖X ‖ = m1, the equality of these
two sets can be proved by showing that the values �0,�1, . . . ,�m1−1 are all distinct.

So suppose, for contradiction, that �i1 = �i2 , for some 0 � i1 < i2 � m1−1. But then (k + i1 ·m2g) mod
(m1g) = (k + i2 ·m2g) mod (m1g), and hence ((i2−i1)·m2g) mod (m1g) = 0. That is, (i2−i1)·m2g is an integer
multiple of m1g, which implies that (i2−i1)·m2 is an integer multiple of m1. But, by assumption, gcd{m1,m2} =
1, and hence the factorization of m2 into a product of primes does not contain a single prime p used in
the factorization of m1. Therefore, i2−i1 must be an integer multiple of m1. But this contradicts the fact
that 1 � i2−i1 � m1−1. Thus, �0,�1, . . . ,�m1−1 are all distinct, and therefore {�0,�1, . . . ,�m1−1} = X , which
completes the proof. �

It is obvious that the transition function of an optimal unary dfa is determined by two quantities, the length
of the initial segment and the length of the subsequent loop. If already the initial state is a part of the loop, we
say that the segment length is zero. However, two dfa’s of the same segment and loop lengths can still differ in
the distribution of their final states.

Theorem 4.2. LetM1,M2 be two unary dfa’s accepting the same language L, consisting of initial segments of lengths
s1, s2 and loops of lengths �1, �2, respectively.Then L can also be accepted by a dfaM consisting of an initial segment
of length s = min{s1, s2} and a loop of length � = gcd{�1, �2}.
Proof. Without loss of generality, we can assume that s1 � s2. Then the input of length s2 is sufficiently long so
that both M1 and M2 pass through the initial segments and get into some states that are already parts of their
loops. This gives two states, p0 for M1 and r0 for M2, fixing some positions along the loops of M1 and M2.

Now we can enumerate the �1 states in the loop of M1 in order in which they appear along the loop, starting
from the state p0. Similarly, we can enumerate the �2 states in the loop of M2, starting from r0. This way we get
a sequence p0, p1, . . . , p�1−1 in M1 and r0, r1, . . . , r�2−1 in M2, such that

qS,1
1s2−−→ p0 1e−−→ pe , for e = 0, . . . , �1−1 ,

qS,2
1s2−−→ r0 1f−−→ rf , for f = 0, . . . , �2−1 ,

where qS,1, qS,2 are the initial states of M1,M2, respectively.
Let g = gcd{�1, �2}. Then �1, �2 can be expressed in the form �1 = m1g and �2 = m2g, for some m1,m2 such

that gcd{m1,m2} = 1. For each k ∈ {0, . . . , g−1}, we can now consider the inputs of lengths uk ,0, uk ,1, . . . , uk ,m1−1,
where

uk ,i = s2 + k + i·m2g , for i = 0, . . . ,m1−1 .

First, using k � g−1 � �2−1 and the fact that the loop inM2 is of length �2 = m2g, we get the path qS,2
1uk ,i−−→ rk ,

for each i. Thus, in M2, the computation paths for all inputs uk ,0, uk ,1, . . . , uk ,m1−1 end up in the same state.
This implies that either (i) these strings are all in L, or (ii) none of these strings is in L. This holds for each
k ∈ {0, . . . , g−1}.

Consider now the behaviour of M1, for the same inputs uk ,0, uk ,1, . . . , uk ,m1−1. Here, the loop is of length
�1 = m1g, and hence, for each i = 0, . . . ,m1−1, we get the path qS,1

1uk ,i−−→ p(k+i·m2g) mod (m1g). Recall thatM1 andM2
accept the same language L. Therefore, either (i) the states in the setQk = {p(k+i·m2g) mod (m1g) : i = 0, . . . ,m1−1}
are all accepting, or (ii) none of these states is accepting. But, by Lemma 4.1,

Qk = {pk+j·g : j = 0, . . . ,m1−1} .

1664 V. Geffert / Information and Computation 205 (2007) 1652–1670

Summing up, we were able to partition the loop of M1 into the state sets Q0,Q1, . . . ,Qg−1, such that, for
each k ∈ {0, . . . , g−1}, the set Qk consists of exactly m1 states, distributed evenly g positions apart along the
loop. Moreover, for each k ∈ {0, . . . , g−1}, either (i) the states in Qk are all accepting, or (ii) none of them is
accepting.

This implies that if we take any two states pa, pb along the loop, such that the distance between them is an
integer multiple of g, then pa is accepting if and only if pb is accepting. But then pa, pb must be equivalent,
since, for each string 1

u, the states pa′ , pb′ , obtained by the paths pa 1u−−→ pa′ and pb 1u−−→ pb′ , are again an integer
multiple of g positions apart. Thus, the states in Qk are all equivalent, for each k ∈ {0, . . . , g−1}.

Therefore, M1 can be replaced by an equivalent dfa M with an initial segment of length s1 = min{s1, s2} and
a loop of length g = gcd{�1, �2}. �

We do not claim thatM constructed in the above theorem is optimal and cannot be improved. Nevertheless,
the theorem yields some consequences for automata that are optimal. The first application of this kind says that
we cannot simulate an optimal dfa by a new automaton using a shorter initial segment or a loop length with a
smaller factorization cost, even if the new machine uses far more states in total.

Theorem 4.3. Let M be an optimal unary dfa consisting of an initial segment of length s and a loop of length �.
Then each dfa M ′, equivalent to M, must use an initial segment of length s′ � s and a loop of length �′ satisfying
	(�′) � 	(�).

Proof. Let M and M ′ be two machines satisfying the assumptions of the theorem. By Theorem 4.2, we can
replaceM andM ′ by an equivalent dfaM ′′ with an initial segment of length s′′ = min{s, s′} and a loop of length
�′′ = gcd{�, �′}.

Suppose, for contradiction, that �′′ < �. Then the total number of states in M ′′ can be bounded by s′′+�′′ <
s′′+� = min{s, s′}+� � s+�. Thus,M ′′ uses fewer states than doesM. But this is a contradiction, sinceM is opti-
mal. Therefore, �′′ � �. On the other hand, we have that �′′ = gcd{�, �′} divides �, and hence �′′ � �. Summing
up, �′′ = �.

Second, �′′ = gcd{�, �′}divides also �′ and hence, by Lemma 2.1, we get that	(�′′) � 	(�′). Therefore,	(�′) �
	(�′′) = 	(�).

Finally, if s′ < s, then s′′+�′′ = min{s, s′}+�′′ < s+�′′ = s+�, which again contradicts the fact that M is
optimal. Therefore, s′ � s. �

The next theorem gives a lower bound for nondeterministic simulation.

Theorem 4.4. LetM be an optimal unary dfa consisting of an initial segment of length s and a loop of length �, such
that s+� > n, for some n > 1. If, moreover, either s � n2−1 or 	(�) � n, then each nfa M ′, equivalent to M, must
use more than n states.

Proof. Suppose, for contradiction, that M can be replaced by an equivalent nfa M ′ with at most n states.
If M ′ is different from the trivial loop of length n, we can use Theorem 3.6 to obtain an equivalent dfa M ′′,

consisting of an initial segment of length s′′ � n2−2, and a loop of length �′′ satisfying 	(�′′) � n−1.
But, by Theorem 4.3, the dfa M ′′, equivalent to M, must use the initial segment of length s′′ � s and the loop

of length �′′ satisfying 	(�′′) � 	(�).
Combining these facts together, we get s � s′′ � n2−2, and also 	(�) � 	(�′′) � n−1. But this contradicts

the assumption that either s � n2−1 or 	(�) � n.
Finally, ifM ′ turns out to be the trivial loop of length n, thenM ′ is already deterministic, with n < s+� states,

which contradicts the assumption that M is optimal.
In either case, we can conclude that M ′ must use more than n states. �

5. Magic and muggle numbers

We are now ready to present the state hierarchy. Originally, in [12], magic numbers were introduced for
regular languages over arbitrary input alphabets. In this paper, the definition has been adapted for the unary
case.

V. Geffert / Information and Computation 205 (2007) 1652–1670 1665

Definition 5.1 (Magic and muggle numbers). Let n and d be two positive integers. The number d is magic for n,
if there is no unary regular language for which an optimal nfa uses exactly n states and, at the same time, the
optimal dfa uses exactly d states.

Conversely, d is a muggle number for n, if it is not magic, i.e., if there exists at least one unary regular language
for which an optimal nfa uses exactly n states and, at the same time, the optimal dfa exactly d states.

Theorem 5.2. Let Gmax(n) and Gmin(n) denote, respectively, the largest and the smallest muggle numbers for n > 1.
ThenGmax(n) = F(n−1)+ kn, for some kn ∈ {0, . . . , n2−2}, which can be approximated byGmax(n) = e(1±o(1))·

√
n·ln n,

and Gmin(n) = n.
Proof. For each n, consider the sequence of languages L0,L1, . . . ,Ln2−1, where

Lk = {1k+u : u mod F(n−1) /= 0} , for k = 0, . . . , n2−1 .

The construction of a deterministic automaton Mk for Lk is straightforward. It consists of

• an initial segment p1→ p2→ p3 . . . pk→ q0, skipping the first k symbols, where p1 is the initial state, and q0
the first state of the subsequent loop,
• a loop q0→ q1→ q2 . . . qF(n−1)−1→ q0, counting modulo F(n−1).
• Finally, all states in the loop, except for q0, are marked as accepting.

It is easy to see that Mk is optimal. First, there is no pair of equivalent states among the accepting states
q1, . . . , qF(n−1)−1, because of the path q1→ q2→ q3 . . . qF(n−1)−1→ q0, ending in the rejecting state q0: For any
pair j>i, take the string of length v = F(n−1)− j. This gives the path qj 1v−−→ q0 ending in the rejecting q0,
together with qi 1v−−→ qi′ ending in some accepting state qi′ . By a similar argument, there is no pair of equivalent
states among the rejecting states p1, . . . , pk , q0, because of the path p1→ p2→ p3 . . . pk→ q0→ q1, ending in the
accepting state q1.

Thus, for each k = 0, . . . , n2−1, the number of states used by the optimal dfa Mk is exactly F(n−1)+ k .
Now, for k = 0, . . . , n2−1, let fk denote the exact number of states used in an optimal nfa for Lk .
First, we shall show that f0 � n. Let F(n−1) factorize into F(n−1) = p�1

i1
· p�2
i2
· . . . · p�eie , where p�1

i1
, . . . , p�eie

are some prime powers. Then 1
v ∈ L0 if and only if v is not divisible by F(n−1) which, in turn, holds if and

only if there exists some j ∈ {1, . . . , e} such that v is not divisible by p
�j
ij

. Therefore, L0 can be accepted by an
nfa M that, in the initial state, nondeterministically chooses one of e loops, of lengths p�1

i1
, . . . , p�eie , and then

verifies, for some j, whether the length of the input is not an integer multiple of p
�j
ij

. Clearly, such automaton

M uses 1+∑e
j=1 p

�j
ij
= 1+	(F(n−1)) states. Using (1), the value of F(n−1) can also be expressed in the form

F(n−1) = lcm{�1, . . . , �m}, for some �1, . . . , �m satisfying �1+· · ·+�m = n−1. But then, using Lemmas 2.2 and 2.1,
we get that 1+	(F(n−1)) = 1+	(lcm{�1, . . . , �m}) � 1+∑m

i=1	(�i) � 1+∑m
i=1 �i = n. Thus, we have an nfa

M with at most n states, accepting L0. We do not claim that M is optimal. For our purposes, it is sufficient to
conclude that an optimal nfa for L0 cannot use more states than does M, and hence f0 � n.

Second, we shall show that fn2−1 > n. This follows from the fact that the optimal deterministic automaton
Mn2−1 for Ln2−1, described above, contains the initial segment of length k = n2−1. But then, by Theorem 4.4, each
nfa accepting Ln2−1 must use more than n states. This must hold for optimal nfa’s as well, and hence fn2−1 > n.

Third, it is easy to see that fk+1 � fk + 1, for each k = 0, . . . , n2−2. Let M ′k be an optimal nfa for Lk , with
fk states. To obtain an nfa M ′′ (not necessarily optimal) for the language Lk+1, we need only a new initial state
q′′S , connected by a new edge q′′S→ q′S to the original initial state of M ′k . The rest of the computation is a direct
simulation of M ′k . Clearly, for each v, M ′′ accepts the input 1

1+v if and only if M ′k accepts 1
v. This way we have

obtained an nfaM ′′ for Lk+1, using only fk + 1 states. But an optimal nfaM ′k+1 accepting Lk+1 cannot use more
states than does M ′′, and hence fk+1 � fk + 1.

Summing up, we have obtained an integer sequence f0, f1, . . . , fn2−1, such that f0 � n, fn2−1 > n, and fk+1 �
fk + 1, for each k = 0, . . . , n2−2. This sequence is not necessarily monotone, nevertheless, it is easy to see that
such sequence must contain an element equal to n, that is, fk ′ = n, for some k ′ ∈ {0, . . . , n2−2}. But then Lk ′ is
a language for which the optimal nfa M ′k ′ uses exactly fk ′ = n states and, at the same time, the optimal dfa Mk ′
exactly F(n−1)+ k ′ states.

1666 V. Geffert / Information and Computation 205 (2007) 1652–1670

Therefore, the value F(n−1)+ k ′ is a muggle number for n. But then the largest muggle number for n is at
least Gmax(n) � F(n−1)+ k ′ � F(n−1). On the other hand, by Theorem 3.7, each unary nfa with n states can
be replaced by an equivalent dfa, not necessarily optimal, using at most F(n−1)+ (n2−2) states. But then an
optimal dfa does not use more states either. This gives that F(n−1) � Gmax(n) � F(n−1)+ (n2−2). Using (2),
we then get Gmax(n) = e(1+o(1))·

√
(n−1)·ln(n−1) = e(1±o(1))·

√
n·ln n.

For completeness, it is trivial to see that Gmin(n) = n. First, no optimal nfa with n states can be replaced by
an equivalent dfa with a smaller number of states. Second, the language L = {1u : u mod n = 0} requires exactly
n states, both in deterministic and nondeterministic case. �

The above theorem gives a corresponding lower bound for the simulation presented by Theorem 3.7.
Clearly, each number d < Gmin(n) or d > Gmax(n) is trivially magic for n. We are now going to prove the

existence of nontrivial magic numbers, between Gmin(n) and Gmax(n), i.e., “holes” in the state hierarchy.

Definition 5.3 (Darkly magic numbers). A number d� 1 is darkly magic for n, if, for each positive integer � ∈
{d−n2+2, . . . , d−1, d}, 	(�) � n.

Informally, a darkly magic number must be preceded by a sufficiently long contiguous sequence of integers,
such that all of them have sufficiently high factorization costs.

Theorem 5.4. Let d be a darkly magic number for n > 1. Then, for each optimal unary dfaM using exactly d states,
an optimal nfa M ′, equivalent to M, must use more than n states. Therefore, if d is darkly magic for n, then it is
magic for each n′ � n.

Proof. We begin with a small technical detail, showing that d > n. If d ∈ {2, . . . , n}, we get	(d−1) � d−1 � n−1,
by the use of Lemma 2.1. If d = 1, then 	(d) = 0 � n−1. Thus, using a suitable �′ ∈ {d−1, d}, we are able to
obtain	(�′) � n−1, for each d � n. But this contradicts the assumption that d is darkly magic for n. Therefore,
d > n.

Now, letM be an arbitrary optimal unary dfa, using exactly d states. Clearly,M consists of an initial segment
of length s � 0 and a loop of length � � 1, such that s+� = d > n. Further, if the initial segment is of length
s � n2−2, the loop length is at least � = d−s � d − n2 + 2. But then 	(�) � n, since d is darkly magic for n.

Summing up, s+� > n, and either s � n2−1 or 	(�) � n. But then, by Theorem 4.4, each nfa M ′, equivalent
to M, must use more than n states. �

Thus, to show the existence of nontrivial magic numbers, it is sufficient to prove the existence of nontrivial
darkly magic numbers. This requires some more facts about the cost of factorization.

Lemma 5.5. Let F#(n) denote the number of different values d satisfying	(d) � n. Then F#(n) � e(1+o(1))·2
√

ln 2·√n.

Proof. For the given value of n, consider the following sets A, B, and C:

• A consists of prime powers p��a, where a = √n · ln n/(2√ln 2),
• B consists of prime powers satisfying a<p��b, where b = √n · ln2 n/ ln ln n,
• C consists of prime powers satisfying b < p� � n.

First, A is the set of all prime powers not exceeding a. But, as shown in [3], there are ∗(a) � (1+o(1)) · a/ ln a
prime powers3 smaller than or equal to a. Therefore, the number of different integers d factorizing into d =∏

p�∈ϕ(d) p
�, such that ϕ(d) ⊆ A, does not exceed

A# � 2
∗(a) � 2(1+o(1))·a/ ln a = 2(1+o(1))·(

√
n·ln n/(2√ln 2))/ ln(

√
n·ln n/(2√ln 2))

� 2(1+o(1))·(
√
n·ln n/(2√ln 2))/(1/2 · ln n) = 2(1+o(1))·

√
n/
√

ln 2 = e(1+o(1))·
√

ln 2·√n.

Second, the set B consists of prime powers satisfying a < p� � b. Consider now an integer d factorizing
into d =∏

p�∈ϕ(d) p
�, such that ϕ(d) ⊆ B, with 	(d) =∑

p�∈ϕ(d) p
� � n. Clearly, the set ϕ(d) contains at most n/a

3 The proof in [3] actually shows that lima→∞ ∗(a)·ln(a)/a = 1. However, we need only an upper bound.

V. Geffert / Information and Computation 205 (2007) 1652–1670 1667

elements, taken from B. Therefore, ϕ(d) can be represented by a unique monotonically decreasing sequence of
integers, of length �n/a�, such that all elements in the sequence are in the range {1, . . . , �b�}. (If ϕ(d) contains
fewer than �n/a� elements, the integer sequence is “padded” by appending a suitable number of 1’s at the end, so
that the length of the sequence is exactly �n/a�.) Thus, the total number of different integers d factorizing into
d =∏

p�∈ϕ(d) p
�, such that ϕ(d) ⊆ B and 	(d) � n, does not exceed the total number of such integer sequences,

which can be bounded by

B# � �b��n/a� � (
√
n · ln2 n/ ln ln n)n/(

√
n·ln n/(2√ln 2))

� (
√
n · ln2 n)2

√
ln 2·√n/ ln n = e(1/2·ln n+2·ln ln n)·2√ln 2·√n/ ln n

= e(1+4·ln ln n/ ln n)·√ln 2·√n = e(1+o(1))·
√

ln 2·√n.

Third, the set C consists of prime powers satisfying b < p� � n. Consider now an integer d factorizing into
d =∏

p�∈ϕ(d) p
�, such that ϕ(d) ⊆ C , with 	(d) =∑

p�∈ϕ(d) p
� � n. By the same reasoning as for the set B, we get

that each such integer can be represented as a different integer sequence of length �n/b�, with all elements in the
range {1, . . . , n}. Therefore, the total number of different integers d factorizing this way is at most

C# � n�n/b� � nn/(
√
n·ln2 n/ ln ln n) = eln n·(√n·ln ln n/ ln2 n) = e

√
n·ln ln n/ ln n = eo(1)·

√
n.

Finally, consider an arbitrary positive integer d =∏
p�∈ϕ(d) p

� such that 	(d) =∑
p�∈ϕ(d) p

� � n. It is easy to
see that ϕ(d) ⊆ A ∪ B ∪ C . Therefore, d can be partitioned into d = dA ·dB ·dC, so that these three integers have
all their factors in the respective sets A, B, and C . But then the total number of different numbers d satisfying
	(d) � n is

F#(n) � A# ·B# ·C# � e(1+o(1))·
√

ln 2·√n · e(1+o(1))·
√

ln 2·√n · eo(1)·
√
n � e(1+o(1))·2

√
ln 2·√n. �

Alternatively, F#(n) could be defined as the number of different lcm’s of partitions of n.

Lemma 5.6. There are at most F#(n−1)·(n2−1) � e(1+o(1))·2
√

ln 2·√n different numbers that are not darkly magic for
n> 1. Consequently, each set containing more than F#(n−1)·(n2−1) positive integers contains at least one number
that is darkly magic for n.

Proof. If d is not darkly magic for n, it can be expressed in the form d = s+�, for some � satisfying	(�) � n−1,
and some s ∈ {0, . . . , n2−2}. But there are only F#(n−1) different numbers �with factorization cost	(�) � n−1,
and n2−1 different values of s. Therefore, by Lemma 5.5, the number of different ways in which we can form
a number that is not darkly magic is bounded by F#(n−1)·(n2−1) � e(1+o(1))·2

√
ln 2·√n−1 · e2·ln n. The rest of the

argument is straightforward. �
By combining the results presented above, we get:

Theorem 5.7. LetMmin(n),Mmax(n) denote the smallest and the largest nontrivial magic numbers, andDmin(n),Dmax(n)

the smallest and the largest nontrivial darkly magic numbers for n, respectively. Except for some finitely many
n’s, such numbers do exist, and Gmin(n)<Mmin(n)�Dmin(n)<Dmax(n)�Mmax(n)<Gmax(n). In addition,Dmin(n)�
e(1+o(1))·2

√
ln 2·√n, and Dmax(n)=e(1±o(1))·

√
n·ln n.

Proof. Consider the set X = {1, . . . , F#(n−1)·(n2−1)+ 1}. By Lemma 5.6, this set contains sufficiently many ele-
ments so that it contains at least one number that is darkly magic for n. Let Dmin(n) be the smallest darkly magic
number in X . First, Dmin(n) > n, since a number that is darkly magic for nmust be larger than n, as shown in the
proof of Theorem 5.4. Second, a darkly magic number larger than n is, by Theorem 5.4, also a magic number
larger than n. Therefore, there must exist Mmin(n) � Dmin(n), the smallest magic number larger than n. Using
Gmin(n) = n, shown by Theorem 5.2, we thus get

Gmin(n) < Mmin(n) � Dmin(n) � F#(n−1)·(n2−1)+ 1 . (10)

1668 V. Geffert / Information and Computation 205 (2007) 1652–1670

Fig. 2. An example of a typical distribution of muggle and magic numbers for n. Here, the “x-axis” grows in d , the number of states in
dfa’s. The filled bullets along this axis represent muggle numbers, while the “white space” surrounding the bullets represents magic numbers.

By the same reasoning for the set Y = {Gmax(n)− F#(n−1)·(n2−1), . . . ,Gmax(n)}, which also contains suffi-
ciently many elements, we obtain

Gmax(n)− F#(n−1)·(n2−1) � Dmax(n) � Mmax(n) < Gmax(n) . (11)

(The inequality Mmax(n) /= Gmax(n) follows from the trivial fact that no number can be, at the same time, magic
and muggle for the same value of n.)

Finally, using the growth rates that were presented in Lemma 5.6 and Theorem 5.2, we obtain that F#(n−1)·
(n2−1)+ 1 � e(1+o(1))·2

√
ln 2·√n, together with Gmax(n)− F#(n−1)·(n2−1) � e(1−o(1))·

√
n·ln n − e(1+o(1))·2

√
ln 2·√n �

e(1−o(1))·
√
n·ln n. Combining this with (10) and (11), we get that Dmin(n) < Dmax(n) for each sufficiently large n,

together with the asymptotic bounds for these two values. �
Thus, the state hierarchy of dfa’s, for the family of unary languages accepted by n-state nfa’s, is not contiguous,

there are some magic numbers between the smallest and the largest muggle numbers.
Now we can go farther and show that actually most of the numbers between Gmin(n) and Gmax(n) are magic.

That is, quite surprisingly, muggle numbers are very sporadic. The structure of the state hierarchy and distribu-
tion of magic and muggle numbers is shown in Fig. 2.

Corollary 5.8. Let G#(n) denote the total number of different muggle numbers for n, and M#(n) the total num-
ber of nontrivial magic numbers for n. Then G#(n) � e(1+o(1))·2

√
ln 2·√n, and M#(n) = e(1±o(1))·

√
n·ln n. Consequently,

limn→∞ G#(n)/M#(n) = 0.

Proof. Clearly, a muggle number is not magic and hence, by Theorem 5.4, it is not darkly magic. But then, by
Lemma5.6, the total numberofmugglenumbers canbeboundedbyG#(n) � F#(n−1)·(n2−1) � e(1+o(1))·2

√
ln 2·√n.

The number of nontrivial magic numbers between Gmin(n) and Gmax(n) can be expressed in the formM#(n) =
Gmax(n)−(Gmin(n)−1)−G#(n). But G#(n) � eO(

√
n) and, by Theorem 5.2, we have Gmax(n) = e(1±o(1))·

√
n·ln n and

Gmin(n) = n. This gives M#(n) = e(1±o(1))·
√
n·ln n, and also limn→∞ G#(n)/M#(n) = 0. �

As an additional bonus, we get the following universal lower bounds.

Corollary 5.9. (a) For each d > 1, no optimal unary dfa using d states can be simulated by an nfa using fewer than
(1−o(1))/2 · ln2 d/ ln ln d � �(ln2 d/ ln ln d) states.

(b) For infinitely many d ’s, no optimal unary dfa using d states can be simulated by an nfa using fewer than
(1−o(1))/(4 ln 2) · ln2 d � o(ln2 d) states.

Proof. (a) By Theorem 3.7, no optimal dfa with d states can be simulated by an n-state nfa, if e(1+o(1))·
√
n·ln n < d .

This gives that n � 1/(1+o(1))2 · ln2 d/(2·ln ln d), which can be simplified into the form n � (1−o(1))/2 ·
ln2 d/ ln ln d .

(b) Consider the sequence Dmin(n0),Dmin(n0+1),Dmin(n0+2), . . . , starting from a sufficiently large n0. Since
Dmin(n) > Gmin(n) = n, by Theorems 5.7 and 5.2, it is obvious that this sequence must contain infinitely many
different integers. By Theorem 5.7, we also have, for each n � n0, that Dmin(n)�e(1+o(1))·2

√
ln 2·√n. This gives

that n � (1−o(1))/(4 ln 2) · ln2(Dmin(n)). Moreover, Dmin(n) is darkly magic for n and hence, by Theorem 5.4, no
optimal dfa using exactly Dmin(n) states can be simulated by an nfa using fewer than n+1 states. �

V. Geffert / Information and Computation 205 (2007) 1652–1670 1669

6. Concluding remarks

We have shown that, in the unary case, the state hierarchy of deterministic automata, for the family of lan-
guages accepted by nondeterministic automata using n states, is not contiguous. There are some “holes” in the
hierarchy, i.e., magic numbers between the smallest muggle number Gmin(n) = n and the largest muggle number
Gmax(n) = e(1±o(1))·

√
n·ln n.

We have actually obtained a much stronger result, namely, that most of the numbers between Gmin(n) and
Gmax(n) are magic. More precisely, if G#(n) is the total number of different muggle numbers for n, and M#(n)

the number of nontrivial magic numbers, then limn→∞ G#(n)/M#(n) = 0. In addition, most numbers between
Gmin(n) and Gmax(n) are magic not only for n itself, but also for each n′ � n.

Using the growth rates for Gmax(n)− Gmin(n) and G#(n), it is also easy to see that there must exist two muggle
numbers d1, d2, with d2−d1 � e�(

√
n·ln n), such that all values between d1 and d2 are magic. This illustrates that

some holes in the hierarchy, consisting of consecutive magic numbers, are quite spacious.
The above results required to revise the Chrobak normal form for unary nfa’s, which reduced the cost of

eliminating nondeterminism almost exactly to the actually existing optimum. As a by-product of this conversion,
presented in Section 3, we have obtained that a superpolynomial gap between the size of unary nfa’s and dfa’s
can be obtained only by nfa’s without any loops passing through the initial state. Otherwise, by Corollary 3.8,
the new conversion uses only O(n2) states.

We also have a new universal lower bound for the conversion of unary dfa’s into equivalent nfa’s. Clearly,
using L = {1u : u mod d = 0}, we get a dfa with d states that cannot be simulated by an nfa with a smaller number
of states. This gives an “existential” lower bound�(d), showing that, for a carefully chosen worst case example,
nondeterminism does not help at all.

On the other hand, Corollary 5.9 shows that nondeterminism never reduces the number of states below
�(ln2 d/ ln ln d), for no d , and no optimal unary dfa M using d states, not even in the best case. Moreover,
because of infinitely many “critical” values of d , nondeterminism does not reduce the number of states to
o(ln2 d). This is, to the best of the author’s knowledge, the highest known universal lower bound for the unary
dfa-to-nfa conversion. It should be pointed out that universal lower bounds are very rare in general. (For some
other examples, see [1,2].)

Some problems concerning the state hierarchy of regular languages are still open. We do not have a sufficient
upper bound forMmin(n), the smallest nontrivial magic number for n, except forMmin(n) � eO(

√
n), given by The-

orem 5.7. A better upper bound for the growth rate of Mmin(n) would result in a better universal lower bound
in Corollary 5.9. But the most important problem in this field is the completeness of the state hierarchy for the
regular languages over the binary alphabet, or any other fixed input alphabet. Very little is known about the
state hierarchy of two-way automata.

Acknowledgments

The author thanks Matúš Harminc for several useful discussions concerning the number theory.

References

[1] H. Alt, Lower bounds on space complexity for context-free recognition, Acta Inform. 12 (1979) 33–61.
[2] H. Alt, V. Geffert, K. Mehlhorn, A lower bound for the nondeterministic space complexity of context-free recognition, Inform. Process.

Lett. 42 (1992) 25–27.
[3] A. Bertoni, C. Mereghetti, G. Pighizzini, An optimal lower bound for nonregular languages, Inform. Process. Lett. 50 (1994) 289–292.

(Corrigendum: 1994, ibid. 52, 339.)
[4] M. Chrobak, Finite automata and unary languages, Theor. Comput. Sci. 47 (1986) 149–158 (Corrigendum: 2003, ibid. 302, 497–498).
[5] V. Geffert, Nondeterministic computations in sublogarithmic space and space constructibility, SIAM J. Comput. 20 (1991) 484–498.
[6] V. Geffert, Space hierarchy theorem revised, Theor. Comput. Sci. 295 (2003) 171–187.
[7] V. Geffert, (Non)determinism and the size of one-way finite automata, in: Proc. Descr. Compl. Formal Systems, IFIP & University

Milano, 2005, pp. 23–37.

1670 V. Geffert / Information and Computation 205 (2007) 1652–1670

[8] V. Geffert, C. Mereghetti, G. Pighizzini, Converting two-way nondeterministic unary automata into simpler automata, Theor. Comput.
Sci. 295 (2003) 189–203.

[9] G. Hardy, E. Wright, An Introduction to the Theory of Numbers, fifth ed., Oxford University Press, 1979.
[10] J. Hopcroft, R. Motwani, J. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 2001.
[11] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 1979.
[12] K. Iwama, Y. Kambayashi, K. Takaki, Tight bounds on the number of states of DFA’s that are equivalent to n-state NFA’s, Theor.

Comput. Sci. 237 (2000) 485–494.
[13] K. Iwama, A. Matsuura, M. Paterson, A family of NFA’s which need 2n − � deterministic states, Theor. Comput. Sci. 301 (2003)

451–462.
[14] G. Jirásková, Note on minimal finite automata, in: Proc. Math. Found. Comput. Sci., Lect. Notes Comput. Sci., 2136, Springer-Verlag,

2001, pp. 421–431.
[15] Ju.I. Ljubič, Ocenki dlja optimaĺnoj determinizacii nedeterminirovannyh avtonomnyh avtomatov, Sibirsk. Mat. Zh. V/2 (1964) 337–355.

(in Russian)
[16] O.B. Lupanov, Uber den Vergleich zweier Typen endlicher Quellen, Probleme der Kybernetik 6 (1966) 329–335. (Akademie-Verlag,

Berlin, in German)
[17] C. Mereghetti, G. Pighizzini, Optimal simulations between unary automata, SIAM J. Comput. 30 (2001) 1976–1992.
[18] F. Moore, On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite

automata, IEEE Trans. Comput. C-20 (1971) 1211–1214.
[19] M. Rabin, D. Scott, Finite automata and their decision problems, IBM J. Res. Develop. 3 (1959) 114–125.
[20] W. Sakoda, M. Sipser, Nondeterminism and the size of two-way finite automata, in Proc. ACM Symp. Theory of Comput., 1978, pp.

275–286.
[21] A. Salomaa, D. Wood, S. Yu, On the state complexity of reversals of regular languages, Theor. Comput. Sci. 320 (2004) 315–329.
[22] M. Szalay, On the maximal order in Sn and S∗n , Acta Arith. 37 (1980) 321–331.
[23] S.Y. Yau, Number Theory for Computing, Springer-Verlag, 2002.

	Introduction
	Preliminaries
	Unary nondeterministic automata
	Unary deterministic automata
	Magic and muggle numbers
	Concluding remarks

