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Abstract. We prove that every two-way nondeterministic finite au-
tomaton with n states has an equivalent one-way nondeterministic finite
automaton with at most

(
2n

n+1

)
states. We also show this bound is exact.

1 Introduction

Converting an arbitrary one-way nondeterministic finite automaton (1nfa) to
an equivalent one-way deterministic finite automaton (1dfa) has long been the
archetypal problem of descriptional complexity. Rabin and Scott [1][2] proved
that starting with an n-state 1nfa one can always construct an equivalent 1dfa
with at most 2n−1 states;1 later observations [3,4][5,6,7,8] established the tight-
ness of this upper bound, in the strong sense that, for all n, some n-state 1nfa
has no equivalent 1dfa with fewer than 2n − 1 states. So, we often say that the
trade-off from 1nfas to 1dfas is exactly 2n − 1. (Fig. 1a.)

The fact that this problem initiated the discussion on issues of descriptional
complexity is only one aspect of its significance. A more interesting aspect is that
its solution fully uncovered and elegantly described the relationship between the
computations of the two types of machines. This is supported not only by the
fact that the demonstrated upper and lower bounds match exactly (as opposed
to merely asymptotically), but also —and more crucially— by the central role
that a well-understood set-theoretic object plays in the associated proof: what
the theorem really tells us is that every 1nfa N can be simulated by a 1dfa
that has one distinct state for each non-empty subset of states of N which (as
an instantaneous description of N) is both realizable and irreplaceable. From
this, the demonstrated trade-off is then only a counting argument away, plus a
clever search for 1nfas that indeed manage to keep all of their instantaneous
descriptions realizable and irreplaceable.

In the present study we offer a similar analysis for the conversion of an arbi-
trary two-way nondeterministic finite automaton (2nfa) to a one-way equivalent:
we prove that the trade-off from 2nfas to 1nfas is exactly

(
2n

n+1

)
. As above, we

first identify the correct set-theoretic object that ‘lives’ in the relation between
2nfa and 1nfa computations, and then easily extract the trade-off.
1 In this article, all finite automata are allowed to be incomplete: their transition

functions may be partial, and thus computations may hang inside the input.
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Two-way finite automata were introduced in the late 50’s [9,2,10] and shown
equivalent to 1dfas. Originally, their definition included neither endmarkers nor
nondeterminism, so they were just single-pass two-way deterministic finite au-
tomata (zdfas). However, they soon grew into full-fledged two-way deterministic
finite automata (2dfas) and nondeterministic versions (znfas and 2nfas), which
all remained equivalent to 1dfas. Since then, the cost of the 2nfa-to-1nfa con-
version has been addressed sporadically.

Shepherdson’s proof [10] implied every n-state 2nfa can be converted into a
1nfa with at most n2n2

states. A cheaper simluation via crossing sequences [11,
Sect. 2.6] has also been known, with only O(22n lg n) states. However, a straight-
forward elaboration on [10] shows the cost can be brought down to even n(n+1)n.
Which still wastes exponentially many states, as Birget [12] showed 8n + 2 are
always enough, via an argument based on length-preserving homomorphisms.
Here, we establish the still exponentially smaller upper bound of

(
2n

n+1

)
.

On the other hand, exponential lower bounds have also been known, even
when the starting automaton is deterministic [7,12] and single-pass [6,13]. For
example, Damanik [13] gives a language that costs ≤ 4n +2 on zdfas, but ≥ 2n

on 1nfas. Here, we give a lower bound that matches
(

2n
n+1

)
, even when we start

from a zdfa. Hence, the ability of a 2nfa to move its head bidirectionally strictly
inside the input can alone cause all the hardness a simulating 1nfa must subdue.

The conversions from 1nfas to 1dfas and from 2nfas to 1nfas are only two
of a dozen different conversions among the four basic automata models (1dfas,
1nfas, 2dfas, and 2nfas) for the regular languages. Each of the 12 arrows in
Fig. 1 represents one of these conversions and defines the associated problem of
finding the exact trade-off. Of the 12 problems, some are little harder than clever
exercises, but others are decades-old open questions on the power of nondeter-
minism —a surprising range in difficulty. We present a quick review.

The arguments of [2,3,4] and this study establish that a = 2n − 1 and
d = e =

(
2n

n+1

)
, while an argument of [14] shows the trade-off for every conver-

sion from a weaker to a stronger model (dotted arrows) is exactly f = n. From
2dfas and 2nfas to 1dfas, it has been known that the trade-offs are exponen-
tial [10,15,4,5,7,16,12], although the exact values remained elusive; refining [12]
and following the rational of this study, we can show them to be as in Fig. 1
(the proofs to appear in the full version of this article). This leaves only the
questions for the conversions from 1nfas and 2nfas to 2dfas (dashed arrows),
which remain wide open: more than 30 years after they were first asked [6], not
only are the exact trade-offs unkown, but we cannot even confirm the conjecture
that they are exponential (see [17] for a discussion).

Finally, we should note that Fig. 1 shows only four of the numerous automata
that solve exactly the regular languages. Bidirectionality, nondeterminism, alter-
nation, randomness, pebbles, and other enhancements, alone or combined, lim-
ited or unrestricted, give rise to a long list of variants and to the corresponding
descriptional-complexity questions. See [18] for a comprehensive overview.

The next section defines the basic concepts. Section 3 establishes the upper
bound, while Sect. 4 proves that it is exact. We conclude in Sect. 5.
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Fig. 1. Trade-off summary (f = n on all dotted arrows; dashed arrows are open)

2 Preliminaries

We write [n] for the set {1, 2, . . . , n}. The special objects l, r, ⊥ are used for
building the disjoint union of two sets and the augmentation of a set

A � B = (A × {l}) ∪ (B × {r}) and A⊥ = A ∪ {⊥}.
When A and B are disjoint, A ∪ B is also written as A + B. The size of A is
denoted by |A|, while (A → B) denotes the set of functions from A to B.

For Σ an alphabet, we use Σ∗ for the set of all finite strings over Σ and Σe

for Σ + {�,�}, where � and � are special endmarking symbols. If w is a string,
|w| is its length and wi is its i-th symbol, for i = 1, . . . , |w|. The ‘i-th boundary
of w’ is the boundary between wi and wi+1, if i = 1, . . . , |w| − 1; or the leftmost
(rightmost) boundary of w, if i = 0 (i = |w|). (Fig. 2a.) We also write we for the
extension �w � of w and we,i for (we)i. The empty string is denoted by ε.

We present 2nfas and 1nfas as variations of the more natural model of a
2dfa. The next paragraph defines this model and some basic relevant concepts.

Two-Way Deterministic Finite Automata. We assume the reader is famil-
iar with the intuitive notion of a 2dfa. Formally, this is a triple M = (s, δ, f),
where δ is the transition function, partially mapping Q × Σe to Q × {l, r}, for
a set Q of states and an alphabet Σ, while s, f are the start and final states.

qm

0 1 2 3 4 5 6

w2 w4 w5 w6w1 w3

qm

q0

i0

(c)(b)(a)

q0

i00 6

qm

q0

i0 i0 6

Fig. 2. (a) Cells and boundaries on a 6-long w; a computation that hits left. (b) One

that hangs. (c) One that hits right, and its i-th frontier: Rc
i in circles and Lc

i in boxes.
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Here, we insist the automaton accepts only if it moves past the right endmarker�
into f , this being the only case in which an endmarker may be violated.2

Computations. Although M is typically started at s and on �, many other pos-
sibilities exist: for any w, i, q, the computation of M when started at state q on
the i-th symbol of string w is the unique sequence

compM,q,i(w) =
(
(qt, it)

)
0≤t≤m

where (q0, i0) = (q, i), 0 ≤ m ≤ ∞, every pair is derived from its predecessor
via δ and w, every pair is within w (1 ≤ it ≤ |w|) except possibly for the last one,
and the last pair is within w iff δ is undefined on the corresponding state and
symbol. We say (qt, it) is the t-th point and m the length of this computation.
If m = ∞, the computation loops. Otherwise, it hits left into qm, if im = 0; or
hangs, if 1 ≤ im ≤ |w|; or hits right into qm, if im = |w|+1 (Fig. 2). When i = 1
(respectively, i = |w|) we get the left (right) computation of M from q on w:3

lcompM,q(w) ::= compM,q,1(w) and rcompM,q(w) ::= compM,q,|w|(w).

The computation of M on w refers to the typical compM (w) ::= lcompM,s(we),
so that M accepts w ∈ Σ∗ iff compM (w) hits right (into f). Note that, since M
can violate an endmarker only when it moves past � into f , a computation of
M on an endmarked string can only loop, or hang, or hit right into f .

Frontiers. Fix a computation c = ((qt, it))0≤t≤m and consider the i-th boundary
of the input (Fig. 2c). This is crossed ≥ 0 times. Collect into a set Rc

i (respec-
tively, Lc

i) all states that result from a left-to-right (right-to-left) crossing,

Rc
i = {qt+1 | 0 ≤ t < m & it = i & it+1 = i + 1},

Lc
i = {qt+1 | 0 ≤ t < m & it = i + 1 & it+1 = i},

also requiring that Rc
i0−1 contains q0.4 The pair (Lc

i , R
c
i ) partially describes the

behavior of c over the i-th boundary and we call it the i-th frontier of c. Note
that the description is indeed partial, as the pair contains no information on
the order in which c exhibits the states around the boundary or on number of
times each state is exhibited. For a full description one would need instead the
i-th crossing sequence of c [11]. However, for our purposes, the extra information
provided by the complete description is redundant.

Variations. If in the definition of M above more than one next moves are
allowed at each step, we say the automaton is nondeterministic (a 2nfa). This

2 So, on �, δ moves right or hangs. On �, it moves left, hangs, or moves right into f .
3 Note that, when w is the empty string, the left computation of M from q on w is just

lcompM,q(ε) =
(
(q, 1)

)
and therefore hits right into q, whereas the corresponding

right computation rcompM,q(ε) =
(
(q, 0)

)
hits left into q.

4 This reflects the convention that the starting state of any computation is considered
to be the result of an ‘invisible’ left-to-right step.
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formally means that δ totally maps Q × Σe to the powerset of Q × {l, r} and
implies that C = compM,q,i(w) is now a set of computations. If then

P = {p | some c ∈ C hits right into p},
we say C hits right into P ; and w is accepted iff compM (w) hits right into {f}.

If the head of M never moves to the left, we say M is one-way (a 1nfa).5

If no computation of M ‘continues after arriving at an endmarker’, we say M is
single-pass (a znfa; or a zdfa, if M is deterministic).

3 The Upper Bound

Fix an n-state 2nfa N = (s, δ, f) over alphabet Σ and state set Q. In this section
we build an equivalent

(
2n

n+1

)
-state 1nfa N ′ via an optimal construction.

Frontiers. Assume momentarily that N is deterministic and c = compN (w) is
accepting, for some l-long input w. Consider the i-th frontier (Lc

i , R
c
i ) of c, for

some i �= 0, l + 2. The number of states in Rc
i equals the number of times c left-

to-right crosses the i-th boundary: each crossing contributes a state into Rc
i and

no two crossings contribute the same state, or else c would be looping. Similarly,
|Lc

i | equals the number of times c right-to-left crosses the i-th boundary. Now,
since c accepts, it goes from � all the way past �, forcing the rightward crossings
on every boundary to be exactly 1 more than the leftward crossings. Hence,

|Lc
i | + 1 = |Rc

i |,
which remains true even on the leftmost boundary (i = 0, under our convention
from Footn. 4) and also on the rightmost one (i = l + 2). So, the equality holds
over every boundary and motivates the following definition.

Definition 1. A frontier of N is any (L, R) with L, R ⊆ Q and |L| + 1 = |R|.
So, if the computation of a 2dfa on a particular input is accepting, then all
frontiers of the computation are frontiers of this 2dfa.

For our nondeterministic N , though, the argument breaks, as a state repeti-
tion under a cell may not imply looping. However, it does imply a cycle. So, let
us call a computation minimal if it contains no cycles (i.e., if every two of its
points are distinct) and repeat the previous argument to establish the following.

Lemma 1. All frontiers of an accepting minimal computation of N on some
input are frontiers of N .

Compatibilities Among Frontiers. Suppose c is an accepting minimal com-
putation of N on an l-long w and let F c

i = (Lc
i , R

c
i ) be its i-th frontier, for each

i = 0, 1, . . . , l + 2 (Fig. 3). Note that the first and last frontiers are always

F c
0 = (∅, {s}) and F c

l+2 = (∅, {f}),
as c starts at s, ends in f , and never right-to-left crosses an outer boundary.
5 Note that our 1nfas work on endmarked inputs, a deviation from typical definitions.
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Fig. 3. (a) An accepting minimal c ∈ compN (w), for |w| = 6, state set {0, 1, . . . , 5},
s = 0, f = 5. (b) The same c arranged in frontiers; the even-indexed ones are circled.

Fi+1

w1 wl

0 1 l + 1 l + 2l2 i i + 1

wi−1 wi wi+1

R′
R

L
L′

i − 1 i + 2 i i + 1

wi

R

L
L′

R′

Fi Fi+1Fi

Fig. 4. (a) Two successive frontiers, on the left. (b) The associated ρ, on the right.

Also note that, for (L, R) = (Lc
i , R

c
i ) and (L′, R′) = (Lc

i+1, R
c
i+1) two succes-

sive frontiers (Fig. 4a), it should always be that R ∩ L′ = ∅: otherwise, c would
be repeating a state under wi and would not be minimal. Hence, R + L′ contains
as many states as many (occurences of) states there are in L and R′ together:

|R + L′| = |R| + |L′| =
(|L| + 1

)
+

(|R′| − 1
)

= |L| + |R′| = |L � R′|.
So, bijections can be found from R + L′ to L � R′. Among them, a very natural
one (Fig. 4b): for each q ∈ R + L′ find the unique step in c that produces q
under wi (this is either a rightward crossing of boundary i or a leftward crossing
of boundary i + 1; the minimality of c guarantees uniqueness); the next step
left-to-right crosses boundary i+1 into some state p ∈ R′ or right-to-left crosses
boundary i into some p ∈ L; depending on the case, map q to (p, r) or (p, l)
respectively. If ρ : R + L′ → L � R′ is this mapping, it is easy to verify that it is
injective (because c is minimal) and therefore bijective, as promised. In addition,
ρ clearly respects the transition function: ρ(q) ∈ δ(q, wi), for all q ∈ R + L′.6

Overall, we see that the sequence of frontiers exhibited by an accepting min-
imal c ∈ compN (w) obeys some restrictions. We now formally summarize them.
6 Throughout this argument, wi really refers to we,i+1. This is wi only when i �= 0, l+1.



550 C. Kapoutsis

Definition 2. Let (L, R), (L′, R′) be frontiers of N and a ∈ Σe. We say that
(L, R) is a-compatible to (L′, R′) iff R ∩L′ = ∅ and some bijection ρ : R + L′ →
L � R′ respects the transition function on a: for all q ∈ R + L′: ρ(q) ∈ δ(q, a).

Definition 3. Suppose w ∈ Σ∗ is l-long and F0, F1, . . . , Fl+2 is a sequence of
frontiers of N . We say the sequence fits w iff

1. F0 = (∅, {s}),
2. for all i = 0, 1, . . . , l + 1: Fi is we,i+1-compatible to Fi+1,
3. Fl+2 = (∅, {f}).

Lemma 2. If compN (w) contains an accepting computation, then some se-
quence of frontiers of N fits w.

Proof. Every accepting computation gives rise to a minimal accepting one. ��

The Main Observation. The converse of Lemma 2 is also true: if a sequence
of frontiers of N fits w, then compN (w) contains an accepting computation.

To prove this, fix an l-long w and assume some sequence of frontiers of N

F0 = (L0, R0), F1 = (L1, R1), . . . , Fl+2 = (Ll+2, Rl+2)

fits w. We show the stronger claim that, for every i, the states of Ri can be
produced by |Ri| right-hitting computations on �w1 · · ·wi−1: one starting at s
and on �, each of the others starting at some q ∈ Li and on wi−1.

Claim. For all i = 0, 1, . . . , l + 2, some bijection πi : (Li)⊥ → Ri is such that
1. some c ∈ lcompN,s(�w1 · · ·wi−1) hits right into πi(⊥), and
2. for all q ∈ Li, some c ∈ rcompN,q(�w1 · · ·wi−1) hits right into πi(q).

(Here, we take w0 and wl+1 to mean the endmarkers � and �, respectively.) Note
that our main observation follows from this claim for i = l + 2.

To prove the claim, we use induction on i. The base case i = 0 is trivial. For
the inductive step (Fig. 5a), assume i < l + 2, let (L, R) = (Li, Ri), (L′, R′) =
(Li+1, Ri+1), a = we,i+1, and consider the bijections guaranteed by the inductive
hypothesis, π = πi : L⊥ → R, and the fact that (L, R) is a-compatible to (L′, R′),
ρ : R + L′ → L � R′. Based on π, ρ and a third function σ, we build a bijection
π′ = πi+1 : (L′)⊥ → R′ that satisfies (1), (2) of the claim. First, we introduce σ.

Definition of σ: pick some q ∈ R and take a trip around under �w1w2 · · ·wi−1a

q,
r0

ρ(q),
r1

πρ(q),
r2

ρπρ(q),
r3

πρπρ(q),
r4

. . . (1)

by alternately following ρ and π, until the first time ‘ρ fails to return a state
in L’.7 Let r0, r1, r2, . . . be the states that we visit. We distinguish two cases.
7 Note that we abuse notation here. Bijection ρ can only return a pair of the form

(p,l) or (p,r). So, in the description (1) above, ρ(·) really means ‘the first component
of ρ(·), if the second component is l’. Similarly, ‘ρ fails to return a state in L’ means
‘ρ returns a pair of the form (p,r)’. Hopefully, the abuse does not confuse.
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Fig. 5. (a) An example for the inductive step for the main observation. E.g., note that

σ maps the 3rd and 5th (from top) states of R to ⊥, while the 4th state is mapped to

the 1st state of R′. (b) A nice input, that has a path. (c) A nice input with no path.

Case 1: ρ does eventually fail to return a state in L. Then the trip is finite:
r0, r1, . . . , rk, for an even k ≥ 0 and an rk ∈ R that is ρ-mapped to some q′ ∈ R′.

Case 2: ρ always returns a state in L. Then the trip is infinite and (since all
even-indexed ri and all odd-indexed ri are respectively inside the finite sets R
and L) there exist repetitions of states both on the even and on the odd indices.
Let k be the first index for which some earlier index j < k of the same parity
points to the same state: rj = rk. If k is odd, j is also odd and so j ≥ 1; then
rj = rk =⇒ ρ−1(rj) = ρ−1(rk) =⇒ rj−1 = rk−1 and k − 1 also has the
property that k is the earliest one to have, a contradiction. So, k must be even,
and so must j. In fact, j must be 0 —or we reach a contradiction, as before, with
π−1 instead of ρ−1. Hence, the first state to be revisited is r0 = q and the trip
consists of infinitely many copies of a list r0, r1, . . . , rk−1, for some even k ≥ 2
and with no two states being both equal and at indices of the same parity.

Overall, either we reach a state rk ∈ R that is ρ-mapped to a state q′ ∈ R′ or
we return to the starting state q ∈ R having repeated no state in L and no state
in R. We define σ : R → (R′)⊥ to encode exactly this information: in Case 1,
σ(q) = q′; in Case 2, σ(q) = ⊥. In either case, our trip respects π and ρ, which
in turn respect the behavior of N on � w1w2 . . . wi−1a. So, clearly: σ(q) = q′

implies some c ∈ rcompN,q(� w1 · · ·wi−1a) respects π, ρ and hits right into q′;
σ(q) = ⊥ implies some looping c ∈ rcompN,q(� w1 · · ·wi−1a) respects π, ρ and
visits only states from R when under a. This concludes the definition of σ. ��

We can now define π′. We examine three cases about its argument.

(a) some p ∈ L′ that is ρ-mapped to an r ∈ R′. Then we just let π′(p) = r.
(b) some p ∈ L′ that is ρ-mapped to an r ∈ L. Then we consider q = π(r). We

know N can start at p under a and eventually reach q under a, so we ask
what can happen after that if we keep following ρ and π. We examine σ(q).
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If σ(q) = ⊥, then we will return to q after a cycle of length≥ 2, having
visited only states of R when under a. But can this happen? If it does, then the
next-to-last and last steps in this cycle will follow ρ and π respectively, ending
in q. Since ρ, π are bijections, the last two states (before q) in this cycle must
respectively be p and r. In particular, p must appear in the cycle under a. But,
since the cycle stays within R whenever under a, we must have p ∈ R, and hence
R and L′ intersect. But then (L, R), (L′, R′) are not compatible, a contradiction.

Hence, we know σ(q) = q′ ∈ R′. And we can safely set π′(p) = q′.

(c) the special value ⊥. The reasoning is similar to the previous case. We consider
q = π(⊥) and examine σ(q). Again, σ(q) = ⊥ is impossible, as it would imply
⊥ ∈ L. Hence, σ(q) = q′ for some q′ ∈ R′ and we can safely set π′(⊥) = q′.

This concludes the definition of π′. It is easy to check π′ satisfies the condi-
tions of the claim. Hence, the inductive step is complete, as is the overall proof.

The Construction. We now describe the 1nfa N ′ simulating N . By Lemma 2
and the main observation, N ′ need simply check if some sequence of frontiers of
N fits the input. So, N ′ just ‘guesses’ such a sequence. This needs 1 state per
frontier, and a standard argument shows N has exactly

(
2n

n+1

)
of them.

4 The Lower Bound

In this section, we exhibit an n-state 2nfa N that has no equivalent 1nfa with
fewer than

(
2n

n+1

)
states. In fact, N will even be deterministic and single-pass.

The Witness. Fix n ≥ 1 and consider the alphabet Γ = ([n] +([n] → [n])) ×
{l, r}. Of all strings in Γ ∗, we will only care about the ones following the pattern

(x, l)(g, l)(h, r)(y, r) (2)

where x, y ∈ [n], g and h are partial functions from [n] to [n], and h(y) is
undefined. We call these strings nice inputs. Intuitively, given a nice input as (2),
we think of the graph of Fig. 5b, where the columns are two copies of [n], the
arrows between them are determined by g (left-to-right) and h (right-to-left),
and the two special nodes by x (entry point) and y (exit). In this graph, a path
from x to y may or may not exist; if it does, we say the nice input ‘has a path’.

Letting Πyes (respectively, Πno) be the set of nice inputs that (do not) have
a path, we can easily see that the promise problem8 Π = (Πyes, Πno) can be
solved by a single-pass 2dfa with state set [n]. This is our witness, N .

Intuition. Consider an arbitrary frontier F = (L, R) of N and list the elements
of L, R ⊆ [n] in increasing order, L = {x1, . . . , xm} and R = {y1, . . . , ym+1}, for

8 By a (promise) problem over Σ we mean a pair Π = (Πyes, Πno) of disjoint subsets
of Σ∗. An automaton solves Π iff it accepts every w ∈ Πyes but no w ∈ Πno, while
arbitrary behavior is allowed on strings outside Πyes + Πno.
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Fig. 6. (a) The input wF when n = 6 and F = ({1, 4, 5}, {2, 3, 4, 5}), and how to derive

it from the list 2, 2, 1, 3, 4, 4, 5, 5. (b) A new input wF ′ , for F ′ = ({1, 5, 6}, {2, 4, 5, 6}).
(c,d) Inputs wF,F ′ and wF ′,F . (e) Proving that at most one of them has a path.

the appropriate 0 ≤ m < n. Since m < n, we know L �= [n] and we can name an
element outside L, say x0 = min L. Then the combined list

x0 y1 x1 y2 x2 · · · ym xm ym+1 (3)

gives rise to the nice input wF = (xF , l)(gF , l)(hF , r)(yF , r) (see Fig. 6a), where
xF = x0, function gF maps every x in the list (3) to the following y, function
hF maps every y �= ym+1 to the following x, and yF = ym+1:

xF =min L, yF = maxR,
gF = {(xi, yi+1) | 0 ≤ i ≤ m}, hF = {(yi, xi) | 1 ≤ i ≤ m}. (4)

It is easy to verify that, for any frontier F of N , the computation of N on wF is
accepting and its frontier under the middle boundary is exactly F . This implies
that, if N ′ is the 1nfa constructed for N as in Sect. 3, then every state of N ′ is
used in some accepting computation. Which suggests N ′ is minimal.

The Proof. Every two frontiers F , F ′ of N give rise to the nice input (Fig. 6c)

wF,F ′ = (xF , l)(gF , l)(hF ′ , r)(yF ′ , r),

where xF , gF , hF ′ , yF ′ are defined by (4). Crucially, in the
(

2n
n+1

) × (
2n

n+1

)
ma-

trix W = [wF,F ′ ]F,F ′ containing all such inputs, two distinct strings at cells
symmetric with respect to the main diagonal cannot both have a path.

Claim. For F , F ′ two frontiers of N : wF,F ′ , wF ′,F ∈ Πyes ⇐⇒ F = F ′.

Proof. [⇐] Trivial. [⇒] Suppose F = (L, R) and F ′ = (L′, R′). We assume that
F �= F ′ and prove that at least one of wF,F ′ , wF ′,F lacks a path.

Let m = |L|, m′ = |L′| and consider the lists defined by F and F ′, as in (3):

x0 y1 x1 y2 x2 · · · ym xm ym+1 and x′
0 y′

1 x′
1 y′

2 x′
2 · · · y′

m′ x′
m′ y′

m′+1.

If these were identical after their first elements, they would agree in their lengths,
their x’s (except possibly x0, x′

0), and their y’s, forcing F = F ′, a contradiction.
So, there must be positions of disagreement after 0. Consider the earliest one.
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If this position is occupied by y’s, say yi and y′
i, then either yi < y′

i (Case 1)
or yi > y′

i (Case 2). If it is occupied by x’s, say xi and x′
i, then either xi < x′

i or
x′

i is not present at all9 (Case 3) or xi > x′
i or xi is not present at all (Case 4).

We present the argument for Case 1 —the rest are similar. So, suppose the
first disagreement is yi < y′

i. Then all previous positions after 0 contain identical
elements (Fig. 6e). Also, yi is not in R′: if it were, then it would be in the sublist
y′
1, . . . , y

′
i−1 (since yi < y′

i), and hence in y1, . . . , yi−1 (the two sublists coincide),
a contradiction (since y1, . . . , yi−1 < yi). So yi /∈ R′. Therefore yi �= yF ′ and
hF ′(yi) is undefined. But then, searching for a path in wF,F ′ , we travel

x0
gF→ (y1 = y′

1)
hF ′→ (x′

1 = x1)
gF→ (y2 = y′

2)
hF ′→ · · · hF ′→ (x′

i−1 = xi−1)
gF→ yi

reaching a node which is neither the exit yF ′ nor the start of an hF ′ -arrow. ��

Now suppose a 1nfa A solves Π with fewer than
(

2n
n+1

)
states. For each

frontier F of N , we know wF = wF,F is in Πyes, so A accepts it. Pick an accepting
cF ∈ compA(wF ) and let qF be the state right after the middle boundary is
crossed. By the small size of A, we know qF = qF ′ for some F �= F ′. But then,
a standard cut-and-paste argument on cF , cF ′ shows A also accepts wF,F ′ and
wF ′,F . Since both are nice inputs, we have wF,F ′ , wF ′,F ∈ Πyes, contradicting
the last claim.

5 Conclusion

We have shown the exact trade-off in the conversion from 2nfas to 1nfas. Our
argument complemented that of Birget [12] by carefully removing some redun-
dancies in its constructions. Crucially, the simulation performed by our optimal
1nfa is as ‘meaningful’ as the simulation given in [2] for the removal of nonde-
terminism from 1nfas: each state corresponds to a (realizable and irreplaceable,
as an instantaneous description) set-theoretic object that naturally ‘lives’ in the
computations of the simulated2nfa. Frontiers also allowed a set-theoretic char-
acterization of 2nfa acceptance (already present in [12], essentially) that com-
plements the set-theoretic characterization of 2nfa rejection given by Vardi [19].
Finally, by applying the concept of promise problems even to regular languages,
we nicely confirmed its reputation for always leading us straight to the combi-
natorial core of the hardness of a computational task.

We do not know if the large alphabet size of problem Π is neccessary for
the exactness of this trade-off. Also, it would be interesting to have the exact
trade-offs in the conversions towards and from other types of automata (e.g., al-
ternating, probabilistic) or more powerful machines (e.g., pushdown automata).

Many thanks to J.C. Birget for his help with some references; also, for raising our
understanding of the subject to a level from which exact solutions could be seen.

9 This happens if the list for F ′ stops at y′
i.
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