
State complexity of cyclic shift

Galina Jirásková∗

Mathematical Institute,
Slovak Academy of Sciences,

Grešákova 6, 040 01 Košice, Slovakia
jiraskov@saske.sk

Alexander Okhotin†

Department of Mathematics,
University of Turku

FIN–20014 Turku, Finland
okhotin@cs.utu.fi

February 25, 2010

Abstract

The cyclic shift of a language L, defined as shift(L) = {uv | vu ∈ L}, is an
operation known to preserve both regularity and context-freeness. Its descriptional
complexity has been addressed in Maslov’s pioneering paper on the state complexity
of regular language operations (Soviet Math. Dokl., 11, 1970), where a high lower
bound for partial DFAs using a growing alphabet was given. We improve this result
by using a fixed four-letter alphabet, obtaining a lower bound (n − 1)! · 2(n−1)(n−2),

which shows that the state complexity of cyclic shift is 2n
2+n log n+Ω(n) for alphabets

with at least four letters. For a binary alphabet, we prove 2Ω(n2) state complexity. We
also establish a tight 2n2 + 1 upper bound on the nondeterministic state complexity
of this operation for any non-unary alphabet.

1 Introduction

Cyclic shift is a unary operation on formal languages defined as shift(L) = {uv | vu ∈ L}
and occasionally studied since the 1960s. As it can be naturally expected, the cyclic shift
of every regular language is regular as well, and proving that is a good exercise in finite
automata theory [5, Exercise 3.4(c)]. Another less expected property is that the context-
free languages are also closed under cyclic shift. Three independent proofs of this result
are known: the proof by Oshiba [10] is based upon the representation of a context-free
language as a homomorphic image of a Dyck language intersected with a regular set;
Maslov [9] uses pushdown automata; Hopcroft and Ullman [5, Exercise 6.4(c)] directly
transform a context-free grammar to another grammar generating its cyclic shift.

The number of states in a deterministic finite automaton (DFA) needed to recognize
the cyclic shift of an n-state DFA language has been addressed in Maslov’s pioneering
paper on the state complexity of operations on regular languages [8]. In that paper, which
appeared in 1970 and unfortunately remained unnoticed, the state complexity of quite a
few operations on DFAs with partially defined transition functions has been determined.

∗Research supported by the VEGA Grant no. 2/3164/23.
†Supported by the Academy of Finland under grant 206039.

1

In particular, Maslov obtains tight upper bounds on the state complexity of union, inter-
section, concatenation, and star for a binary alphabet, as well as asymptotical estimations
for several less common operations, among them the cyclic shift.

The systematic study of the state complexity of operations on regular languages began
only about twenty years later in the works of Birget [1] and Yu, Zhuang and K. Salomaa
[12]. Unlike Maslov, who considered DFAs with partially defined transition functions,
the contemporary research assumes complete automata; however, the results on the basic
operations differ from Maslov results by at most 1 state [9, 12]. The new study of the
state complexity got a considerable following. State complexity of numerous operations
was investigated: in particular, Câmpeanu, K. Salomaa and Yu [2] determined the state
complexity of shuffle, Domaratzki [3] studied proportional removals, while A. Salomaa,
Wood and Yu [11] investigated the reversal (mirror image) in various cases. The state
complexity of various operations with respect to nondeterministic finite automata was
researched in the works of Holzer and Kutrib [4] and Jirásková [7]. Many authors also
considered the special cases of one-letter alphabets and of finite languages. Comprehensive
surveys of the field were given by Yu [13] and by Hromkovič [6].

In the recent research, many operations on DFAs, such as concatenation [12], star [12],
shuffle [2] and reversal [11], were found to be quite hard, in the sense that their the state
complexity is an exponent of a linear function. In this context it is interesting to observe
that the earlier studied cyclic shift operation is, in fact, significantly harder. According to
Maslov [8], there exists a sequence of n-state partial DFAs over a growing alphabet of size
2n−2, such that their cyclic shift requires at least (n−2)n−2 ·2(n−2)2 states. Unfortunately,
no proof of that was included due to space constraints [8].

The current interest in different aspects of descriptional complexity of finite automata
motivates a return to this unusually hard operation and a closer investigation of its state
complexity. After giving fairly simple upper bounds, in Section 3 we achieve a lower bound
(n − 1)! · 2(n−1)(n−2) using a fixed 4-letter alphabet and DFAs with a complete transition
function. Then we extend our construction to obtain a lower bound 2n2/9+o(n2) for a
binary alphabet. We also study the nondeterministic state complexity and, in Section 4,
determine it precisely. In Section 5 we report the results of a direct computation of the
deterministic state complexity for up to five states.

2 Constructing finite automata for the cyclic shift

The cyclic shift of a language L is defined as shift(L) = {uv | vu ∈ L}. In this section,
we recall the construction of an automaton accepting the cyclic shift of a given regular
language presented by Maslov [9]. Using this construction we get upper bounds on the
state complexity and the nondeterministic state complexity of cyclic shift.

Let A = (Q,Σ, δ, q0, F) be an n-state automaton with the set of states Q =
{q0, q1, . . . , qn−1}. For all i (0 6 i 6 n − 1), let Bi = (Q,Σ, δ, qi, F) be an automaton
with the same states, the same transitions, and the same accepting states as A, and with
the initial state qi. Let Ci = (Q,Σ, δ, q0, {qi}) be an automaton with the same states, the
same transitions, and the same initial state as A, and with the only accepting state qi.
Note that if automaton A is deterministic, then so are automata Bi and Ci.

By definition, a string w is in shift(L(A)) if and only if it can be factorized as w = uv

2

so that vu ∈ L(A). Consider the middle state in the accepting computation of A on vu,
reached after consuming v, and let us reformulate the condition as follows: there exists a
state qi ∈ Q, such that the computation of A on v ends in the state qi, while u is accepted
by A starting from qi. The former is equivalent to v ∈ L(Ci), the latter means u ∈ L(Bi).
This leads to the following representation, in which the union over all i is, in effect, a
union over all possible middle states.

Lemma 1 (Maslov [9]). Let automata Bi and Ci (0 6 i 6 n− 1) be constructed as above.
Then shift(L(A)) =

⋃n−1
i=0 L(Bi)L(Ci).

Since the state complexity of union and concatenation is known both for DFAs and
for NFAs, this representation gives an upper bound for the cyclic shift’s state complexity.

Definition 1. For every k > 1 and n > 1, let fk(n) be the least number, such that the
cyclic shift of the language recognized by any n-state DFA over a k-letter alphabet can be
recognized by a fk(n)-state DFA. Similarly, define gk(n) to be the nondeterministic state
complexity of the cyclic shift over a k-letter alphabet. Let f(n) and g(n) be the correspond-
ing numbers for an arbitrary alphabet, i.e., f(n) = maxk fk(n), g(n) = maxk gk(n).

Theorem 1. Let fk(n), gk(n), f(n), g(n) be as in the above definition, let n > 1. Then
n = f1(n) 6 f2(n) 6 . . . 6 fk(n) 6 fnn(n) = f(n) 6 (n2n − 2n−1)n, and
n = g1(n) 6 g2(n) 6 . . . 6 gk(n) 6 g

2n2 (n) = g(n) 6 2n2 + 1.

Proof. The upper bounds on the state complexity of union and concatenation of an m-
state DFA language and an n-state DFA language are known to be mn and m2n − 2n−1,
respectively [9, 12]. Using representation in Lemma 1 we get an upper bound (n2n−2n−1)n

on the state complexity of cyclic shift. Lemma 1 gives also an upper bound on the
nondeterministic state complexity of this operation, because each concatenation can be
done by 2n nondeterministic states, and hence the union of n such concatenations can done
by 2n2+1 nondeterministic states. Thus we have f(n) 6 (n2n−2n−1)n and g(n) 6 2n2+1.

The equalities f1(n) = g1(n) = n hold because the cyclic shift of any unary language
is the same language. For all k > 1, the inequalities fk(n) 6 fk+1(n) and gk(n) 6 gk+1(n)
follow by adding dummy letters.

In order to show that fnn(n) = fk(n) for all k > nn, it is sufficient to note that there
exist nn distinct possible transition tables by a symbol, and if there are more letters than
nn, some of them must have identical transitions, and any such coincident pairs coincide in
cyclic shift of the language; hence the equality of fnn(n) to f(n). In the nondeterministic
case, by a similar reasoning, the growth must stop at k = 2n2

, because the transitions
by each letter form a subgraph of the complete graph over n vertices, and therefore there
cannot be more than 2n2

distinct letters.

3 Deterministic state complexity

In order to determine the asymptotics of the DFA complexity of the cyclic shift, we
construct an infinite sequence of DFAs {An}n>3 over a fixed 4-symbol alphabet Σ =
{a, b, c, d} such that all automata recognizing shift(L(An)) must have at least (n − 1)! ·
2(n−1)(n−2) states.

3

3.1 Hard automata

Each n-th element of the sequence is an automaton An with the set of states Q =
{0, 1, . . . , n − 1}, of which 0 is the initial state and n − 1 is the only accepting state.
The transitions by each of the four symbols are defined as follows:

δ(i, a) =















0 if i = 0,
i + 1 if 1 6 i 6 n − 3,

1 if i = n − 2,
n − 1 if i = n − 1,

δ(i, b) =







0 if i = 0,
i + 1 if 1 6 i 6 n − 2,

1 if i = n − 1,

δ(i, c) =







1 if i = 0,
0 if i = 1,
i if i > 2,

δ(i, d) =

{

0 if i 6 n − 2,
1 if i = n − 1.

In order to argue that the minimal DFA accepting shift(L(An)) must have many states,
we consider a (2n2 + 1)-state NFA recognizing this language, and show that the subset
construction applied to this NFA yields many pairwise inequivalent subsets. This NFA is
constructed generally according to the representation given by Lemma 1.

Let Qi = {qi0, . . . , qin−1} and Pi = {pi0, . . . , pin−1} (0 6 i 6 n − 1) be 2n copies of Q.
Let there be a dedicated initial state with ε-transitions to all states qii (0 6 i 6 n − 1).
The internal transitions within each Qi and Pi are defined exactly as in the DFA An.
In addition, there is an ε-transition from each qin−1 to pi0 (0 6 i 6 n − 1). The set of
accepting states is {p00, p11, . . . , pn−1n−1}. This construction of an NFA is illustrated in
Figure 1. Note that each pair (Qi, Pi) represents a concatenation of two DFAs, Bi and Ci

in Lemma 1, and the whole automaton recognizes the union of n such concatenations.

Figure 1: Construction of an NFA for shift(L(An)).

In the following we discuss reachability and inequivalence of subsets of the set of states
of this NFA, which are exactly the states of the DFA obtained out of this NFA using the

4

subset construction. The initial subset is {q00, q11, . . . , qn−1n−1, pn−10}. Let us begin with
proving that a large set of subsets is reachable from the initial subset.

3.2 Reachable subsets

We first prove the reachability of (n − 1)! · 2(n−1)(n−2) subsets via strings over {a, b, c}.

Lemma 2 (The permutation lemma). For every permutation (k1, . . . , kn−1) of {1, . . . , n−
1}, there exists a string u ∈ {a, b}∗ such that, upon reading u, (i) q00 goes to q00; (ii) pi0

goes to pi0 (for all i); (iii) qij goes to qikj
and, possibly, also to pi0 (for all 1 6 i, j 6 n−1);

(iv) pij goes to pikj
.

Proof. First, consider the case when the given permutation swaps m − 1 ↔ m for some
m, leaving the other states as they are (formally, km−1 = m, km = m − 1, and ki = i for
all i 6= m,m − 1). This permutation is implemented by um = bn−m−1abm−1.

It is well-known that every permutation can be expressed as a composition of such
swaps, so a concatenation of several strings um defined above implements any given per-
mutation.

Lemma 3 (Setting a bit). For every state pij such that 1 6 i 6 n− 1, 1 6 j 6 n− 1 and
i 6= j, there exists a string wij such that every subset of the form

S = {q00, q11, q22, . . . , qn−1n−1} ∪ {p10, p20, . . . , pn−10} ∪ P, (1)

where P ⊆ {pkm | 1 6 k 6 n − 1, 1 6 m 6 n − 1, k 6= m}, goes to S ∪ {pij} upon reading
wij .

Proof. Let x be the string given by the permutation lemma for the permutation {i ↔ n−1,
j ↔ 1} (note that its square is the identity permutation), and define wij as xccx.

The state qii goes to {qin−1, pi0} by x, then to {qin−1, pi1, pi0} by c, to {qin−1, pi0, pi1}
by the second c and proceeds to {qii, pi0, pij} by x: this is where the bit pij is being set.
Every other state qkk (1 6 k 6 n− 1, k 6= i) proceeds to {qkℓ, pk0} by x (where ℓ 6= n− 1,
as defined by the permutation), then goes to {qkℓ′, pk1} by the first c (where ℓ′ = 0 if
ℓ = 1, and ℓ′ = ℓ otherwise), back to {qkℓ, pk0} by the second c, and to {qkk, pk0} by x
afterwards. The state q00 goes to q00 by x, then to q01 by the first c, back to q00 by the
second c, and remains in q00 upon reading x.

It remains to show that each state pkm in (1) goes to itself. Similarly to q00, every pk0

(1 6 k 6 n − 1) goes to pk0 by xccx. Every pkm ∈ P goes to pkℓ by x (where ℓ is defined
by the permutation), to pkℓ′ by the first c, to pkℓ by the second c and back to pkm by x.

Assembling all these states together, we obtain exactly the subset S ∪ {pij}.

Lemma 4 (Reachability). For any P ⊆ {pij | 1 6 i 6 n − 1, 1 6 j 6 n − 1, i 6= j}, the
subset (1) is reachable from the initial subset via some string in {a, b, c}∗.

Proof. Induction on the cardinality of P .
Basis P = ∅: the subset {q00, q11, q22, . . . , qn−1n−1} ∪ {p10, p20, . . . , pn−10} is reachable

from the initial subset {q00, q11, q22, . . . , qn−1n−1} ∪ {pn−10} via the string bn−1.
Induction step: consider a subset of the form (1), and let pij ∈ P . By the induction

hypothesis, the subset S \ {pij} is reachable from the initial subset via some string u ∈
{a, b, c}∗. By Lemma 3, S is reachable from S \ {pij} via wij . Therefore, S is reachable
from the initial subset via uwij .

5

Lemma 4 proves the reachability of 2(n−1)(n−2) subsets. In order to multiply this
number by a factor of (n − 1)!, we need to permute the Qi-components.

Lemma 5 (Improved reachability). Let (k1, . . . , kn−1) be any permutation of (1, . . . , n−1)
and let P is be any subset of {pij | 1 6 i 6 n − 1, 1 6 j 6 n − 1, i 6= j}. Then the subset

{q00, q1k1
, q2k2

, . . . , qn−1kn−1
} ∪ {p10, p20, . . . , pn−10} ∪ {pikj

| pij ∈ P} (2)

is reachable from the initial subset via some string in {a, b, c}∗.

Proof. First, consider the subset {q00, q11, q22, . . . , qn−1n−1} ∪ {p10, p20, . . . , pn−10} ∪ P ,
which, by Lemma 4, is reachable from the initial subset via some string u. Let v be the
string given by the permutation lemma for the permutation (k1, . . . , kn−1). The subset
(2) is reachable from the initial subset via the string uv.

3.3 Inequivalence of subsets

We now prove the inequivalence of all subsets that were shown to be reachable in Lemma 5.
To do this we first associate a distinct string with each state pij (1 6 i, j 6 n − 1) such
that this string is accepted by the NFA only from the state pij. The same will be done for
states qij (1 6 i, j 6 n−1). Then, the inequivalence of the subsets will follow immediately.

Lemma 6. For every i and j (1 6 i 6 n − 1, 1 6 j 6 n − 1), the string bn−1−jdbi−1

is accepted by the NFA from the state pij, but is not accepted from any other state in
{q00} ∪ {qij | 1 6 i 6 n − 1, 1 6 j 6 n − 1} ∪{pij | 1 6 i 6 n − 1, 0 6 j 6 n − 1}.

Proof. The state pij goes to state pin−1 by the string bn−1−j, then to state pi1 by d, and,
finally, to the accepting state pii by the string bi−1.

On the other hand, the state q00 remains in q00 upon reading the string bn−1−jdbi−1.
Any state qkl (1 6 k 6 n − 1, 1 6 l 6 n − 1) goes either to a state of Qk or to state pk0

by the string bn−1−jdbi−1. Any state pil with l 6= j goes to state pi0 by the string bn−1−jd
and then remains in pi0 upon reading bi−1. Any state pkl with k > 0 and k 6= i goes either
to state pk0 or to state pki by the string bn−1−jdbi−1.

Lemma 7. For every i and j (1 6 i 6 n − 1, 1 6 j 6 n − 1), the string
bn−1−jdbn−2ccbn−2dbi−1 is accepted by the NFA from the state qij, but is not accepted
from any other state in {q00}∪{qij |1 6 i 6 n−1, 1 6 j 6 n−1} ∪{pij |1 6 i 6 n−1, 0 6

j 6 n − 1}.

Proof. The state qij goes to state qin−1 by the string bn−1−j, then to state qi1 by d and to
state qin−1 by the string bn−2. The first c leaves the state qin−1 in itself, while the second
one moves it to state pi1. State pi1 goes to state pin−1 by the string bn−2, then to state
pi1 by d and, finally, to the accepting state pii by the string bi−1.

On the other hand, the state q00 goes to itself by the string bn−1−jdbn−2ccbn−2dbi−1.
Any state qiℓ with ℓ 6= j may go to qi0 or to pi0 by the string bn−1−jd (pi0 is possible when
ℓ > j), and each of these two states goes to itself by the remaining string bn−2ccbn−2dbi−1.
Any state qkℓ with k > 0 and k 6= i may go to a state in {qk0, qk1, pk0, pk1} after reading
the second d, and then to a state in {qk0, qki, pk0, pki} by the string bi−1. Any state pkℓ

(1 6 k 6 n − 1, 0 6 ℓ 6 n − 1) may go either to pk0 or to pk1 after reading the first d.

6

In the first case, state pk0 goes to itself by the string bn−2ccbn−2dbi−1 In the second case,
state pk1 goes to state pkn−1 by the string bn−2cc, then to pkn−2 by the string bn−2, and
then to pk0 by the string dbi−1.

Corollary 1. All subsets shown to be reachable in Lemma 5 are pairwise inequivalent.

Proof. Consider two different subsets shown to be reachable in Lemma 5. These two
subsets must differ either in a state pij with i > 0 and j > 0, or in a state qij with
i > 0 and j > 0. In the first case, the string bn−1−jdbi−1 distinguishes the two states by
Lemma 6. In the second case, the string bn−1−jdbn−2ccbn−2dbi−1 distinguishes them by
Lemma 7.

Hence we have shown the following result.

Theorem 2. For all n > 3, there exists a DFA A of n states defined over a four-letter
alphabet such that any DFA for the cyclic shift of the language L(A) needs at least (n −
1)! · 2(n−1)(n−2) states.

Using Stirling’s approximation, it is not hard to show that (n − 1)! · 2(n−1)(n−2) =
2n2+n log2 n−(3+log2 e)n+o(n). Recalling the upper bound (n2n−2n−1)n and its 2n2+n log n+o(1)

asymptotics, we arrive at the following estimation of the state complexity of the cyclic shift:

Corollary 2. For all k > 4, fk(n) = 2n2+n log n+O(n).

3.4 The case of a binary alphabet

The lower bound argument above uses four symbols, and reducing the number of symbols
in the proof even to three seems to be a challenging task.

Let us use the lower bound for an alphabet of four letters to establish quite a high
lower bound for a binary alphabet. The proof is based upon the following method of
computing the cyclic shift of any language over any alphabet: the strings in the language
are homomorphically encoded using a binary alphabet, the cyclic shift is applied to the
encoding, and then the shifted codewords are decoded back to the original alphabet. For
a suitable code, the result equals the cyclic shift of the original language.

Lemma 8. Let Σm = {c1, . . . , cm} and let h : Σ∗
m → {a, b}∗ be a homomorphism defined

by h(ci) = ai−1b (for all 1 6 i 6 m − 1) and h(cm) = am−1. Then, for every language L
over Σm, h−1(shift(h(L))) = shift(L).

Proof. If w ∈ shift(L), then there exists a factorization w = uv, such that vu ∈ L. Then
h(vu) ∈ h(L) and hence h(uv) ∈ shift(h(L)). By the definition of inverse homomorphism,
uv ∈ h−1(shift(h(L))).

Conversely, let ci1 . . . ciℓ ∈ h−1(shift(h(L))), and assume that at least one of cij is
not cm (the case of cij = cm for all j is trivial, since h(cℓ

m) ∈ a∗). Then h(ci1 . . . ciℓ) ∈
shift(h(L)), and there exists a factorization h(ci1 . . . ciℓ) = xy (where x, y ∈ {a, b}∗), such
that yx ∈ h(L).

Suppose the factorization xy splits the codeword on the boundary between two sym-
bols: x = h(ci1 . . . cik), y = (cik+1

. . . ciℓ). Then h(cik+1
. . . ciℓci1 . . . cik) ∈ h(L), and hence,

since h is a code, cik+1
. . . ciℓci1 . . . cik ∈ L. Therefore, ci1 . . . cikcik+1

. . . ciℓ ∈ shift(L).

7

Now suppose the factorization splits some k-th symbol in two, i.e., x = h(ci1 . . . cik−1
)z′,

y = z′′(cik+1
. . . ciℓ), where h(cik) = z′z′′ (z′, z′′ ∈ {a, b}+). Note that z′ = ak (1 6 k <

m − 1), since all proper prefixes of the images of symbols under h are of this form. So
we have z′′h(cik+1

. . . ciℓci1 . . . cik)ak ∈ h(L), and the string is assumed to contain at least
one b. Consider the rightmost b in it, which must be either the last symbol in z′′ or the
last symbol in some h(cij). In both cases, the string continues with zero or more images
of cm and then with ak. Since no string in h(Σ∗

m) can be of this form, this supposedly
problematic case is in fact impossible.

Lemma 9. For every n-state DFA A over an m-letter alphabet there exists an f2(mn−n)-
state DFA for the language shift(L(A)).

Proof. Define a homomorphism h : {c1, . . . , cm}∗ → {a, b}∗ as in Lemma 8. It is easy to
construct an (m − 1)n-state DFA B over {a, b} that recognizes h(L(A)).

Consider the language shift(L(B)) ⊆ {a, b}∗. By the definition of f2, there exists a
DFA C = (Q, {a, b}, δ, q0 , F) that recognizes this language and has at most f2(mn − n)
states. Construct a new DFA D = (Q,Σm, δ′, q0, F) with the same set of states and the
same accepting states, in which the transition function is δ′(q, ci) = δ(q, h(ci)). Then
L(D) = h−1(L(C)) = h−1(shift(h(L(A)))), which equals shift(L(A)) by Lemma 8.

Corollary 3. For all m > 3 and n > 1, f2(mn − n) > fm(n).

This implies that if fm(n) = 2n2+o(n2), then 2n2/(m−1)2+o(n2) is a lower bound for f2(n).
Since such a lower bound has been established for m = 4 (see Theorem 2), a lower bound
2n2/9+o(n2) for f2 follows, and we obtain the following asymptotics:

Proposition 1. The state complexity of the cyclic shift for binary and ternary alphabets
is 2Ω(n2).

4 Nondeterministic state complexity

We now turn our attention to the nondeterministic state complexity of the cyclic shift of
regular languages. The upper bound 2n2 + 1 follows from Theorem 1. The next lemma
shows that this upper bound is tight for any integer n with n > 2. In the case of n = 1,
the nondeterministic state complexity of the cyclic shift of a 1-state NFA language is 1
because the cyclic shift of any 1-state NFA language is the same language.

Lemma 10. For any integer n such that n > 2, there exists a binary NFA M of n states
such that any NFA for the cyclic shift of the language L(M) needs at least 2n2 + 1 states.

The proof utilizes a variant of the argument due to Birget [1, Lemma 1], which is
sometimes referred as the fooling set method. However, a fairly general lemma given by
Birget is in our case insufficient to distinguish all 2n2 + 1 states from each other, so we
have to construct a more detailed argument that is ultimately based upon the same idea.

Proof. Let n be an arbitrary but fixed integer such that n > 2 and let Σ = {a, b}. Define
an n-state NFA M = ({0, 1, . . . , n− 1},Σ, δM , 0, {n− 1}), where for any p ∈ {0, . . . , n− 1}

δM (p, a) =

{

{p + 1}, if p < n − 1,
∅, if p = n − 1.

δM (p, b) =

{

∅, if p = 0,
{p − 1}, if p > 0.

8

Figure 2: A worst-case NFA that requires 2n2 + 1 states for its cyclic shift.

The NFA M is shown in Figure 2. Let L be the language accepted by the NFA M.
Let N = (Q,Σ, δ, q0, F) be any NFA for the language shift(L). We first show that there
exist 2n2 pairs of strings (xi, yi), i = 1, 2, . . . , 2n2, such that:

(1) for any i, the string xiyi is in the language shift(L), and
(2) if i 6= j, then at least one of the strings xiyj and xjyi is not in shift(L).

Then, we can associate a state qi with each pair (xi, yi) such that qi ∈ δ(q0, xi) and
δ(qi, yi) ∩ F 6= ∅. All states qi must be pairwise distinct states of the NFA N because
otherwise the NFA N would accept both strings xiyj and xjyi for some i 6= j. Finally, we
show that the initial state q0 of the NFA N must be different from any of these 2n2 states.

For any k = 0, 1, . . . , n − 1, and any i = 0, 1, . . . , 2n − 1, define the pair (xki, yki) as
follows:

(xki, yki) =















(an−1bn−1ai, a2n−2−ibn−1), if k = 0 and i /∈ {n − 1, 2n − 1},
(bkai, a2n−2−ibn−1−k), if k > 0 and i /∈ {n − 1, 2n − 1},
(bkan−1, bn−1a2n−2bn−1−k), if i = n − 1,
(bka2n−2bn−1, an−1bn−1−k), if i = 2n − 1.

We have defined 2n2 pairs of strings. Now, we will prove that they satisfy the conditions
(1) and (2).

To prove (1) we will consider all four cases in the above definition:

(i) k = 0 and i /∈ {n − 1, 2n − 1}. Then x0iy0i = an−1bn−1a2n−2bn−1, and this string
is in the language shift(L) because its cyclic shift an−1bn−1an−1bn−1an−1 is in the
language L.

(ii) k > 0 and i /∈ {n− 1, 2n− 1}. Then xkiyki = bka2n−2bn−1−k, and this string is in the
language shift(L) because its cyclic shift an−1bn−1−kbkan−1 is in the language L.

(iii) i = n−1. Then xkiyki = bkan−1bn−1a2n−2bn−1−k, which is in the language shift(L).

(iv) i = 2n − 1. Then xkiyki = bka2n−2bn−1an−1bn−1−k, which is again in shift(L).

To prove (2) we have five cases to consider:

(i) 0 6 k < l 6 n − 1. Then for any pairs (xki, yki) and (xlj , ylj), we have xljyki =
bluvbn−1−k for some strings u and v. This string is not in the language shift(L)
because any its cyclic shift not ending with b contains the string bn−1+l−k, where
n − 1 + l − k > n − 1, as a substring, and so is not in the language L.

(ii) i, j /∈ {n − 1, 2n − 1} and i < j. Then we have x0jy0i = an−1bn−1a2n−2+j−ibn−1 and
for any k > 0, xkjyki = bka2n−2+j−ibn−1−k, where 2n − 2 + j − i > 2n − 2, and so
these strings are not in the language shift(L).

9

(iii) i /∈ {n− 1, 2n− 1}, and j = n− 1. Then we have x0iy0j = an−1bn−1aibn−1a2n−2bn−1

and for any k > 0, xkiykj = bkaibn−1a2n−2bn−1−k, and these strings are not in the
language shift(L) for i 6= n − 1.

(iv) i /∈ {n − 1, 2n − 1}, and j = 2n − 1. Then for any k, we have xkjyki =
bka2n−2bn−1a2n−2−ibn−1−k, which is not in the language shift(L) for i 6= n −
1 (the only possible shift of this string that could be in the language L is
an−1bn−1a2n−2−ibn−1−kbkan−1, which is in L only if i = n − 1).

(v) i = n − 1 and j = 2n − 1. Then for any k, we have xkjyki =
bka2n−2bn−1bn−1a2n−2bn−1−k. This string is not in the language shift(L).

We have shown that these 2n2 pairs of strings satisfy the conditions (1) and (2). If we had
to prove only a 2n2 lower bound, it would immediately follow out of this by the lemma of
Birget [1]. In order to separate the initial state from the states corresponding to the given
pairs, we need to consider these states directly.

Let us associate a state qki with each pair (xki, yki), such that qki ∈ δ(q0, xki) and
δ(qki, yki) ∩ F 6= ∅. As mentioned above, these states are pairwise distinct. To prove the
lemma it is sufficient to show that the initial state q0 is different from any state qki.

We first show that the initial state q0 is different from any state qki with k > 0. To do
this note that the string a2n−2bn−1 is in the language shift(L), and so must be accepted
by the NFA N. Suppose the contrary, that q0 = qki for some k > 0 and some i. Then the
NFA N also accepts the string xkia

2n−2bn−1. But xki = bku for a string u, and the string
bkua2n−2bn−1 is not in the language shift(L) if k > 0. So, we obtain a contradiction.

It remains to prove that the initial state q0 is different from any state q0i. To do this
note that the string ba2n−2bn−2 is in the language shift(L), and so must be accepted by
the NFA N. Suppose that q0 = q0i for some i. Then the NFA N also accepts the string
x0iba

2n−2bn−2. But x0i = an−1v for a string v and the string an−1vba2n−2bn−2 is not in
the language shift(L). So, we again have a contradiction and the lemma follows.

Hence we have shown the following result.

Theorem 3. Let n > 2,m > 2. Then 2n2 + 1 states are sufficient and necessary in the
worst case for an NFA to recognize the cyclic shift of any n-state NFA language over an
m-letter alphabet.

5 Computations

We have determined the nondeterministic state complexity of cyclic shift exactly, and the
worst-case automaton constructed in Lemma 10 has a visible structure. On the other
hand, our results for the DFAs are only asymptotic: the automaton constructed for the
lower bound argument is not the hardest, and the proof does not give any idea of what
the hardest DFAs with respect to the cyclic shift are like.

These hardest DFAs can be found using an exhaustive search over all automata over
a given alphabet with a given number of states. For every DFA, an NFA for its cyclic
shift has to be constructed and determinized, and the result has to be minimized. Let us
report the results of our computations for small values of n.

10

The greatest number of states in the minimal DFAs recognizing the cyclic shift of n-
state automata is given in Table 1. The columns f2, f3, f4, f5 correspond to alphabets of
different size, while the column f(n) gives the hardest result over all alphabets. Our lower
bound and upper bound are included in the two rightmost columns for comparison.

n f2(n) f3(n) f4(n) f5(n) f(n) (n − 1)! · 2(n−1)(n−2) (n2n − 2n−1)n

1 1 1 1 1 1 − 1
2 5 5 5 5 5 1 36
3 108 511 702 845 8 8000
4 20237 550283 1349340 384 9834496
5 56817428 98304 61917364224

Table 1: DFA state complexity of the cyclic shift.

Figure 3: The worst-case DFAs, and how many states their cyclic shift requires.

The actual hardest automata responsible for the values in the table are provided in
Figure 3. It is difficult to understand what makes these automata the hardest. It is no
easier to explain the numbers in the sequences: why 108? why 20237? For the standard
language-theoretic operations, such as the Boolean operations, concatenation, star, etc.,
the exact values of their state complexity were found to have fairly simple analytical
representations [1, 2, 7, 8, 11, 13], and the hardest automata have been constructed. It
would be very interesting to obtain similar results for the cyclic shift.

6 Conclusion

With its 2n2+n log2 n+O(n) state complexity, the cyclic shift is the hardest known elementary
language operation on DFAs. From the point of view of practical computability, the

11

difference between the cyclic shift and the earlier studied hard operations on DFAs, such
as Kleene star, is evident: the star of a 5-state language over {a, b} requires at most 24
states, while the cyclic shift, in the worst case, requires 56 million!

In contrast to the hard deterministic case, the NFA state complexity of the cyclic shift
has been found to be as low as 2n2+1, and an easily understandable worst-case automaton
over a binary alphabet has been constructed. Concerning the deterministic state complex-
ity of the cyclic shift, though its order of magnitude has been determined, nothing else is
known about this integer sequence, and about the hardest automata corresponding to its
elements. Understanding their form is left as a challenging problem to investigate.

References

[1] J.-C. Birget, “Intersection and union of regular languages and state complexity”,
Information Processing Letters, 43:4 (1992), 185–190.

[2] C. Câmpeanu, K. Salomaa, S. Yu, “Tight lower bound for the state complexity of
shuffle of regular languages”, J. of Automata, Languages and Combinatorics, 7 (2002),
303–310.

[3] M. Domaratzki, “State complexity and proportional removals”, J. of Automata, Lan-
guages and Combinatorics, 7 (2002), 455–468.

[4] M. Holzer, M. Kutrib, “Nondeterministic descriptional complexity of regular lan-
guages”, International J. of Foundations of Computer Science, 14 (2003), 1087–1102.

[5] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages and Com-
putation, Addison-Wesley, 1979.

[6] J. Hromkovič, “Descriptional complexity of finite automata: concepts and open prob-
lems”, J. of Automata, Languages and Combinatorics, 7 (2002), 519–531.

[7] G. Jirásková, “State complexity of some operations on binary regular languages”,
Theoretical Computer Science, 330 (2005), 287–298.

[8] A. N. Maslov, “Estimates of the number of states of finite automata”, Soviet Mathe-
matics Doklady, 11 (1970), 1373–1375.

[9] A. N. Maslov, “Cyclic shift operation for languages”, Problems of Information Trans-
mission, 9:4 (1973), 333–338.

[10] T. Oshiba, “Closure property of the family of context-free languages under the cyclic
shift operation”, Transactions of IECE, 55D:4 (1972), 119–122.

[11] A. Salomaa, D. Wood, S. Yu, “On the state complexity of reversals of regular languages”,
Theoretical Computer Science, 320 (2004), 315–329.

[12] S. Yu, Q. Zhuang, and K. Salomaa, “The state complexity of some basic operations on regular languages”,
Theoretical Computer Science, 125 (1994), 315–328.

[13] S. Yu, “State complexity of regular languages”, J. of Automata, Languages and Com-
binatorics, 6 (2001), 221–234.

12

http://dx.doi.org/10.1016/j.tcs.2004.04.011
http://dx.doi.org/10.1016/j.tcs.2004.02.032
http://dx.doi.org/10.1016/0304-3975(92)00011-F

	Introduction
	Constructing finite automata for the cyclic shift
	Deterministic state complexity
	Hard automata
	Reachable subsets
	Inequivalence of subsets
	The case of a binary alphabet

	Nondeterministic state complexity
	Computations
	Conclusion

