Available online at www.sciencedirect.com

scuENCE@DIREcT@ Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 330 (2005) 287-298

www.elsevier.com/locate/tcs

State complexity of some operations on binary
regular languages

Galina Jiraskova

Mathematical Institute, Slovak Academy of Sciences, Gre§akova 6, 040 01 KoSice, Slovakia

Received 17 November 2003; received in revised form 8 April 2004; accepted 21 April 2004

Abstract

We investigate the state complexity of some operations on binary regular languages. In particular, we
consider the concatenation of languages represented by deterministic finite automata, and the reversal
and complementation of languages represented by nondeterministic finite automata. We prove that
the upper bounds on the state complexity of these operations, which were known to be tight for larger
alphabets, are tight also for binary alphabets.
© 2004 Elsevier B.V. All rights reserved.

Keywords:State complexity; Regular language operations; Binary languages

1. Introduction

Regular languages and finite automata are one of the oldest topics in computer science.
They have been extensively studied since the 1950s. Nevertheless, some important problems
concerning finite automata are still open. For instance, we recall the question how many
states are sufficient and necessary for two-way deterministic finite automata to simulate
two-way nondeterministic finite automata; the problem is closely related to the famous
open question whether or not DLOGSPACE equals NLOGSPHCHS].

Recently, there has been renewed interest in regular languages and finite automata (see
[15,31]for a discussion). Some aspects of this area are now intensively investigated. One
such aspect is the state complexity of regular languages and their operations.

E-mail addressjiraskov@saske.s{G. Jiraskova).
1Research supported by the VEGA Grant no. 2/3164/23.

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.04.011

288 G. Jirdskova / Theoretical Computer Science 330 (2005) 287 —-298

The state complexity of aregular language is the number of states of its minimal determin-
istic finite automaton (DFA). The nondeterministic state complexity of a regular language
is the number of states of a minimal nondeterministic finite automaton (NFA) accepting the
language. If we speak about the state complexity of an operation on regular languages, we
ask how many states are sufficient and necessary in the worst case to accept the language
resulting from the operation.

Some early results concerning the state complexity of regular languages can be found in
[19-21] The state complexity of some operations on regular languages was investigated
in [2,3,18] Yu et al.[27] were the first to systematically study the complexity of regular
language operations. Their paper was followed by several articles investigating the state
complexity of finite languages operations and unary languages operfgi@2s23] The
nondeterministic state complexity of regular languages operations was studied by Holzer
and Kutrib in[10-13] Further results on this topic are presentejiii] and state-of-the-art
surveys for DFAs can be found [29,30]

In this paper, we investigate the state complexity of some operations on binary regular
languages and provide answers to some problems which have been open for the binary
case. In particular, we consider the concatenation of DFA languages, and the reversal and
complementation of NFA languages.

For the concatenation of DFA languages, the worst ea®e— 2"~ was given by an
m-state DFA language and arstate DFA language over a three-letter alphabgTh. We
show that the worst case can be reached by the concatenation of two binary DFA languages.

The reversal of anp-state NFA language can be accepted byran 1)-state NFA and
this upper bound was shown to be tight for a three-letter alphabet by Holzer and Kutrib
[13]. We give a binann -state NFA language reaching the upper bound on the reversal.

To accept the complement of anystate NFA language”2states suffice since we can
simply convert a given NFA to an equivalent DFA and then exchange accepting and rejecting
states. Birgef3] claimed that the upper bound is tight for a three-letter alphabet but later
corrected this to a four-letter alphaljé}. We prove that the upper bound is also tight for a
binary alphabet by presenting a binargtate NFA language such that any NFA accepting
its complement needs at least&ates.

To prove the result for concatenation we show that a deterministic finite automaton is
minimal. We obtain the lower bound on reversal using a counting argument. To obtain the
lower bound on complementation we use a fooling-set lower-bound technique known from
communication complexity theofit4], cf. also[2,3,9]

The paper consists of six sections, including this introduction, and an appendix. The
next section contains basic definitions and notations used throughout the paper. In Section
3 we present our result for concatenation. Sectateals with the reversal operation. In
Section5 we investigate the concatenation operation. The last section contains concluding
remarks and open problems. In the appendix, we give some omitted proofs.

2. Preliminaries

In this section, we recall some basic definitions and notations. For further details, the
reader may refer tf26,28].

G. Jiraskova / Theoretical Computer Science 330 (2005) 287 —-298 289

Let 2 be an alphabet anti* the set of all strings over the alphali&including the empty
stringe. The length of a string € X* is denoted byw|. The power-set of a sétis denoted
by 24.

A deterministic finite automatofDFA) is a 5-tupleM = (Q, X, 0, qo0, F), whereQ is a
finite set of statesy is a finite input alphabeti : Q x X — Q is the transition function,
qo € Q is the initial state, and” C Q is the set of accepting states. In this paper, all DFAs
are assumed to be complete, i.e., the next $t@ten) is defined for any in Q and anyain
2. The transition functiom is extended to a function from@ x X* to Q in the natural way.
A stringw in 2* is accepted by the DFM if the stated(go, w) is an accepting state &f.

A nondeterministic finite automatqiNFA) is a 5-tupleM = (Q, X, 9, qo, F), where
0, X, qo, andF are as above, antl: Q x X — 2¢ is the transition function which can be
naturally extended to the domaghx X*. A stringw in 2* is accepted by the NFM if the
setd(qo, w) contains an accepting state df.

Thelanguage accepted lgy/finite automatord/, denotedZ (M), is the set of all strings
accepted by. Two automata are said to lequivalentf they accept the same language.

Any nondeterministic finite automatad = (Q, X, 0, qo, F) can be converted to an
equivalent deterministic finite automatad’ = (Q’, X, 8, g{. F') using an algorithm
known as the “subset constructiof24] in the following way. Every state of the DFA
M’ is a subset ofD. The initial state ofM’ is {go}. A stateR C Q is an accepting state
of the DFA M’ if it contains an accepting state of the NB&. The transition function
& : Q' x X — Q'isdefined by

J(R,a) = | 6(r,a).

rer

3. Concatenation

We start our investigation with the concatenation operation. The state complexity of the
concatenation of regular languages represented by deterministic finite automata was studied
by Yu et al.[27]. They showed thau2" — 2"~ states are sufficient for a DFA to accept
the concatenation of an-state DFA language and arstate DFA language. In the case of
n = 1, the upper bounthwas shown to be tight for a unary alphabet. In the case ef 1
andn > 2, the worst case2- 2" ~1 was given by the concatenation of two binary languages.
Otherwise the upper bound2" — 2"~ was proved to be tight for a three-letter alphabet.
The next theorem shows that the upper bound can be reached by the concatenation of two
binary languages.

Theorem 1. For any integersn >2 andn > 2, there exist a binary DFA A of m-states and
a binary DFA B of n-states such that any DFA accepting the langdage L(B) needs at
leastm?2" — 2"~1 states

Proof. Let m andn be arbitrary but fixed integers such that>2 andn>2. Let
d=m—-—n+1) mod(m —1) and let> = {a, b}.

290 G. Jirdskova / Theoretical Computer Science 330 (2005) 287 —-298

Fig. 2. The deterministic finite automat@h

Define anm-state DFAA = (Q4, 2, d4, qo0, Fa), WhereQ4 = {qg0,91, ..., gm-1},
Fa = {gm-1},andforanyi € {0,1,...,m — 1},

gj,j=(@{+1) modm if X =a,
') gin if i<m —3andX = b,
0algi, X) =9 o if i =m — 2 andX = b,

gi, d=m—-n+1)ymod (m—1) ifi=m—1andX =b.

Define ann-state DFAB = (03, 2, 03,0, Fg), whereQpg = {0,1,...,n — 1}, Fp =
{n —1},andforanyi € {0,1,...,n — 1},

i+1 ifi<n—2andX =aq,
op(i, X)=3n-1 ifi=n—1andX =a,
(i+21)modn if X =0.

The DFAA andB are shown in Figsl and2, respectively.

We first describe an NFA accepting the languagg) L (B), then we construct an equiv-
alent DFA and show that it has at leas?” — 2”1 states no two of which are equivalent.
LetC =(Q, 2,0, qo, F), whereQ = Q4 U Qp, F = {n — 1}, and for anyy € Q and

anyX € 2,

{5A(Qa X)} if q € QA - {Clm—lh
0(g, X) =1 {0a(q. X), 1} if g =qm-1,
{0B(q. X)} ifg € O,

see Fig3. Clearly, the NFAC accepts the languadg A)L(B).
Let C' = (Q', X, 9, {qo}, F") be the DFA obtained from the NF& by the subset

construction. LeR be the following system of sets:

R={{gi}US10<i<m—2andS € Qp}U {{gn-1}US|S < 0p—{0}},

G. Jiraskova / Theoretical Computer Science 330 (2005) 287 —-298 291

b

Fig. 3. The nondeterministic finite automaton

i.e., any set ik consists of exactly one state 6f4 and some states @ 3, and if a set in
R contains state,,_1, then it does not contain state 0. There a® — 21 sets inR.
To prove the theorem it is sufficient to show that (l) any seRiis a reachable state of the
DFA C’ and (Il) no two different states iR are equivalent.

We prove (1) by induction on the size of sets. The singlet@gs$, {¢1}, ..., {gn-1} are
reachable sincgy;} = 6'({qo}, a’) fori = 1,2, ..., m — 1. Let 1<k <n and assume that
any set inR of sizek is a reachable state of the DEA. Using this assumption we prove
that any sefq;, j1, j2, ..., ji}, where < ji < jo < -+- < jr<n—11f0<i <m — 2, and
1<ji1 < jo<--- < jx<n—1ifi =m — 1, is areachable state of the DIEA. There are
three cases:

(i) i<m —2andj; =n — 1. We prove this case by induction én
Fori = 0 we have

{90, j1s j2s s et =1 =8 ({gm-1, 1+ 1, j2+ 1, .., jxe1 + 1), 671,

where the latter set of side is reachable by induction dn sincej; + 1> 1.
Let 0<i<m — 3 and assume that any det, j1, jo, ..., jr—1,n — 1} is reachable.
Since forj; >1 we have

{q1+15 ,]17 ,]2’ ey jk*l? n— 1}:5/({%7 .]l - 17 ,]2 - 17)]k*l - 17 n— 1}’ a)?
and for j; = 0 we have
{qi—l—ls jlv j21 ey jk—lv n— 1}25/({%7 .]2 - 17) jk—l - 1a n— 2a n— 1}1 b)a

we are ready in this case.
(i) i<m—2andjy <n—1.Lett = (i — j1 —1) mod(m — 1). Then we have

(Gis s jos s iy =0 Ua o= o= 1oy e = o= Lon = 1), b4,
where the latter set is considered in cdse (
(i) i =m —1andj;>1. Then we have
{Qm—la jlv j27 RN]k} = 5/({41171—27]l - 17 .]2 - 17 ey jk - 1}! Cl),

where the latter set is considered in case (ii).
To prove (Il) let{g;} U S and{q;} U T be two different states iR with 0<i </ <m — 1.
There are two cases:
(i) i <I.Then the string”~1~'p"~1is accepted by the DF&’ starting in statéq;} U S
but it is not accepted starting in stdtg} U T'.

292 G. Jirdskova / Theoretical Computer Science 330 (2005) 287 —-298

Fig. 4. The nondeterministic finite automaton

(i) i = . Without loss of generality, there is a stgtim O suchthati € Sandj ¢ T
(note thatj >1if i =1 = m — 1). Then the string” 1~/ is accepted by the DF&’
starting in statdg;} U S but it is not accepted starting in stdtg} U T.

Thus our proof is complete.[d

The concatenation of two languages represented by nondeterministic finite automata was
investigated by Holzer and Kutrfi3]. They showed that: + n states are sufficient for an
NFA to accept the concatenation ofmnstate NFA language and anstate NFA language,
and they proved that the upper bound is tight for a binary alphabet.

4. Reversal

In this section, we deal with the reversal operation. It is known that the reversal of any
n-state DFA language can be accepted by a DFA"o$tates and the worst case can be
reached by the reversal of a binary DFA langufildd. The upper bound on the size of an
NFA accepting the reversal of amstate NFA language is known to e+ 1 and Holzer
and Kutrib[13] proved that the upper bound is tight for a three-letter alphabet. The next
theorem shows that the upper boungt 1 can be reached by the reversal of a binasgate
NFA language. To obtain the result we use a counting argument. Since the reversal of any
1-state NFA language is the same language, we assumettat

Theorem 2. For any integem > 2, there exists a binary NFA D of n states such that any
NFA accepting the reversal of the languabéD) needs at least + 1 states

Proof. Letn be arbitrary but fixed integer such that 2. Let2 = {a, b}.
Define am-state NFAD = (Qp, 2, 0p, 1, Fp),whereQp ={1,2,...,n}, Fp = Op,
and foranyi € Qp and anyX € 2,

{i+1 ifi <nandX =a,
op(i, X) =1 {1} if i =nandX = b,
7 otherwise

The NFAD is shown in Fig4. We prove that any NFA accepting the reversal of the language
L(D) needs at least + 1 states.

Let N = (Q, 2, 0, qo0, F) be any NFA accepting the reversal of the languag®).
Since the NFAN accepts the empty string, the initial stagigemust be an accepting state.

G. Jiraskova / Theoretical Computer Science 330 (2005) 287 —-298 293

Next, the NFAN accepts the stringa” 1. Therefore, a sequence of statgsgs, . . ., gn
must exist inQ such that

q1 € 6(qo, b), q;i € 0(gi—1,a)fori =2,3,...,n, andg, € F.

Next, the NFAN does not accept any stribg’, where 0<i <n — 2. It follows that the
statesyi, q2, . . ., gn—1 must be rejecting and pairwise distinct state@irSince the NFAN
accepts the string but does not accept the strikg”, the initial stateo must be different
from the accepting statg,. Hence the NFAN has at least two accepting and at least 1
rejecting states which proves the theoreril

5. Complementation

We now turn our attention to the complementation operation. In contrast to the previous
two operations, complementation is an efficient operation for DFAs since to accept the
complement we can simply exchange accepting and rejecting states. On the other hand,
complementation of NFAs is an expensive task. The upper bound on the size of an NFA
accepting the complement of awstate NFA language is"2and it is known to be tight.
Sakoda and Sips§25] gave an example of languages over a growing alphabet size reaching
the upper bound. Birget claimed the result for a three-letter alpljableut later corrected
this to a four-letter alphab@t]. Ellul [8] gave binaryO (n)-state witness languages. Holzer
and Kutrib[13] proved the lower bound’22 for a binaryn-state NFA language.

In this section, we show that the upper bourido? the complementation of NFA lan-
guages is tight likewise for a binary alphabet. We describe a bimatgte NFA language
such that any NFA accepting its complement needs at |¢asta®es. To obtain a lower
bound on the size of the NFA we use a fooling-set lower-bound technique known from
communication complexity theofiL4]. Although lower bounds based on fooling sets may
sometimes be exponentially smaller than the true bo(ib@d 7] for some regular lan-
guages the lower bounds are tidpt3,9]. In this section, the technique helps us to obtain
tight lower bounds.

After defining a fooling set, we give the lemma frq#j describing a fooling-set lower-
bound technique. For the sake of completeness, we repeat its proof in the Appendix.

Definition 3. A set of pairs of string$(x;, y;) | i = 1,2, ..., n} is said to be a fooling-set
for a regular languagk if for anyi andjin {1,2,...,n}, (D) x;y; € L,and (2) ifi # j
thenx;y; ¢ Lorx;y; ¢ L.

Lemma 4 (Birget[2]). Let a set of paird(x;, y;) | i = 1,2, ..., n} be afooling set for a
regular languagel.. Then any NFA accepting the language L needs at least n states

We can now prove the following result.

Theorem 5. For any positive integen, there exists a binary NFA M of n states such that
any NFA accepting the complement of the languag¥) needs at leas?” states

294 G. Jirdskova / Theoretical Computer Science 330 (2005) 287 —-298

0

Fig. 5. The nondeterministic finite automatdh

Proof. Letn be an arbitrary but fixed positive integer. Let= {0, 1}.
Define am-state NFAM = (Q, 2, 6,0, F),whereQ ={0,1,...,n—1}, F = {n — 1},
and foranyi € Q andX € X,

{i +1} ifi <n—1andX =1,
. @ fi=n—1landX =1,
ML XY=110.i +1) if i <n—1andX =0,

(1,2,....n—1) ifi=n—1andX =0,

i.e., for any staté € Q exceptn — 1, the NFAM goes fromi toi + 1 on input 1, and to
i + 1 or to the initial state on input 0, aM goes from state — 1 to any state except the
initial state on input 0. The NFAM is shown in Fig5.

Let L be the language accepted by the NFA Denote byS the sety S"1y {17}
containing the string”Land all strings over the alphabgof length at mosk — 1. Our goal
is to construct a fooling set for the languabeof size 2. We will do this in the following
way. For any stringin S, we define a string, such thatcy, € L€ and, moreover, for any
two different stringxandzin S, eitherxy, ¢ L orzy, ¢ L°.

Let x be a string inS. Then the seb(0, x) contains all states of the NF®M that are
reachable from the initial state O after reading the stxing

If 6(0,x) = Q, lety, = 1.

If 6(0,x) ={0,1,...,n—2}, lety, =e.

Otherwise define the string. as follows. Lety, = y1y2--- y,—1-k, Wherekis the least
number inQ such thak ¢ (0, x), and foranyj € {1,2,...,n — 1 — k},

|1 ifn—jedx),
Yi= 0o, ifn—j¢d0x),

i.e., thejth symbol ofy, equals 1 if state — j in {k +1,k+2,...,n — 1} belongs to the
setd (0, x), and equals 0 otherwise.
The following claims are proved in the Appendix.

Claim 6. For any string x in S and any state p @,
(@) if p € 0(0,x) thenn — 1 ¢ d(p, yx),
(b) if p ¢ (0, x) thenn — 1 € 6(p, yy).

G. Jiraskova / Theoretical Computer Science 330 (2005) 287 —-298 295

Claim 7. For any two different strings x and z ify the set(0, x) is different from the set
0(0, 2).

We are now going to prove that the set of pdits, y,) | x € S} is a fooling set for the
languagelL‘. We need to show that for anyandzin S, (1) xy, € L, and (2) ifx # z,
thenxy, ¢ L€ orzy, ¢ L°.

To prove (1) letx be any string inS. By Claim6(a), state: — 1 cannot be reached from
any state in the seét(0, x) after reading the string,. Since state — 1 is the only accepting
state of the NFAM, it follows that the stringry, is not accepted by/. Hencexy, € L.

To prove (2) lex andzbe two different strings i§. By Claim7, without loss of generality,
there is a statg in Q such thaty € 6(0, x) andg ¢ 4(0, z). By Claim 6(b), staten — 1
can be reached from the statafter reading the string,. It follows that the stringecy, is
accepted by the NFAZ. Hencexy, ¢ L.

We have shown that the set of paf(s, y,) | x € S} is afooling set for the languade .
By Lemmad4, any NFA for the languagé® needs at least'Xtates. [

6. Conclusions

In this paper, we have obtained several results concerning the state complexity of some
operations on binary regular languages. We proved that some upper bounds which were
known to be tight for larger alphabets are tight likewise for binary alphabets. We presented
anm-state DFAA, ann-state DFAB, ann-state NFAD, and am-state NFAM, all with a
binary input alphabet, such that:

e any DFA acceptind.(A)L(B) needs at least2" — 2"~ ! states;
e any NFA accepting the reversal b D) needs at least + 1 states;
e any NFA accepting the complementb{M) needs at least’2states.

Note however, that the upper bound on the concatenation of DFA languages is, in fact,
m2" — k21, wherek is the number of accepting states in thestate DFA[27, Theorem
2]. It would be interesting to find languages reaching this bound fokavith 1 < k < m.

Acknowledgements
I would like to thank Jozko Jirasek for his help with the computational verification of

some conjectures. | am also very grateful to an anonymous referee for his corrections and
suggestions.

Appendix

Proof of Lemma 4. Let M = (Q, X, J, qo0, F) be any NFA accepting the language
Sincex;y; € L, there must be a staje in Q such that

pi € 0(qo.x;) and o(p;, yi)) NF # 0.

296 G. Jirdskova / Theoretical Computer Science 330 (2005) 287 —-298

Assume that a fixed choice @f has been made for anyn {1, 2, ..., n}. We prove that

pi # pjfori # j. Suppose by contradiction that = p; for somei # j. Then the
NFA M accepts both strings; y; andx;y; which contradicts the assumption that the set
{(x;, yi) | 1<i<n} is a fooling set for the language. Hence the NFAM has at leash
states. [

Proof of Claim 6. Letx be any string if{0, 1} <"~1 U {1"}.
If (0, x) = Q, theny, = 1". Sinced(q, 1) = ¥ for anyqg € Q, the claim holds in this
case.
If 6(0,x) ={0,1,...,n — 2}, theny, = ¢. Sinced(q, ¢) = {g} foranyqg € Q, the
claim holds in this case as well.
Otherwisey, = y1y2---y,—1-x Wherek ¢ 6(0,x), {0,1,...,k —1} C 6(0, x), and
foranyj e {1,2,...,n—1—k},y; =1ifn—j € 6(0,x)andy; =0ifn — j ¢ 5(0, x).
To prove (a) lep be any state iQ such thatp € 4(0, x). There are two cases:
(i) p<k — 1. Then stata — 1 cannot be reached from statafter reading the string,
of length less than — k. Hencen — 1 ¢ d(p, yx).
(i) p=k+1.Theny,_, = 1, and soy, = u1v for some stringsi andv such that

ul=n—p—1and |v|]=p—1—k.

It follows that the seb(p, u) is a subset of0, 1, ...,n — p — 2} U {n — 1}. Therefore
o(p,ul) € {1,2,...,n — p — 1}, and so state — 1 cannot be reached from the set
J(p, ul) after reading the string of length less thap. Thusn — 1 ¢ 6(0, ulv).
To prove (b) lefp be any state iQ such thatp ¢ 6(0, x). There are two cases:
(i) p = k. Then states — 1 can be reached from stdteafter reading the string, of
lengthn — 1 —k, son — 1 € d(p, yy).
(i) p=k+1.Theny,_, =0, and soy, = u0v for some strings! andv such that

ul=n—p—1and |v|]=p—1—k.

It follows thatn — 1 € é(p,u) andn —1 € 6(n +k — p, v). Sincen + k — p>1, state
n + k — p belongs to the set(n — 1, 0). Hencen — 1 € d(p, uOv) which completes
the proof. O

Proof of Claim 7. Letx andz be two different strings ifi0, 1} "~ U {1"}. Letl, = |x|
andl; = |z|. Without loss of generality, assume tlig& /.. There are three cases:
(i) 0<Il,<n—1andz = 1". Thend(0, z) = ¥ andl, € §(0, x).
(i) 0Kl <I;<n—1.Thenl; € 6(0,z) anddo(0, x) € {0, 1, ..., [}
(i) 0<Ily =1, <n — 1. Then, without loss of generality,= u0v andz = ulw for some
stringsu, v, w such that & |v| = |w|<n — 2. Setl = |v|. We show that € §(0, u0v)
and!/ ¢ (0, ulw). Since the stringi has length at most — 2 — I,

50,u) C{0,1,...,.n—2—1).

Therefore 0= 6(0, 10), and so statecan be reached from the &0, u0) after reading
the stringv of length!. Thus! € (0, uOv).

G. Jiraskova / Theoretical Computer Science 330 (2005) 287 —-298 297

Furthermoreg(0, ul) C {1, 2, ..., n— 1—1}. Since the stringw has lengtti, we have
000, ulw) € {0,1,..., I —1yU{{+1,1+2,...,n—1}. Hencel ¢ (0, ulw) and
the proof is complete. [

References

[1] P. Berman, A. Lingas, On the complexity of regular languages in terms of finite automata, Techn. Report 304,
Polish Academy of Sciences, 1977.

[2] J.C. Birget, Intersection and union of regular languages and state complexity, Inform. Process. Lett. 43 (1992)
185-190.

[3] J.C. Birget, Partial orders on words, minimal elements of regular languages, and state complexity, Theoret.
Comput. Sci. 119 (1993) 267—-291.

[4] J.C. Birget, ERRATUM: partial orders on words, minimal elements of regular languages, and state complexity,
2002. Available athttp://clam.rutgers.edu/ ~birget/papers.html

[5] C. Campeanu, K. Culik II, K. Salomaa, S. Yu, State complexity of basic operations on finite languages, in: O.
Boldt, H. Jurgensen (Eds.), Proc. Fourth Internat. Workshop on Implementing Automata (WIA99), Lecture
Notes in Computer Science, Vol. 2214, Springer, Heidelberg, 2001, pp. 60—70.

[6] C. Campeanu, K. Salomaa, S. Yu, Tight lower bound for the state complexity of shuffle of reqular languages,
J. Automat. Lang. Comb. 7 (2002) 303-310.

[7] M. Domaratzki, State complexity and proportional removals, J. Automat. Lang. Comb. 7 (2002) 455-468.

[8] K. Ellul, Descriptional complexity measures of regular languages, Master’s thesis, University of Waterloo,
2002.

[9] I. Glaister, J. Shallit, A lower bound technique for the size of nondeterministic finite automata, Inform.
Process. Lett. 59 (1996) 75-77.

[10] M. Holzer, M. Kutrib, Nondeterministic descriptional complexity of regular languages, Internat. J. Found.
Comput. Sci. (to appear). Preprint: IFIG Research Report 0205, University of Giessen, 2002. Available at:
http://www.informatik.uni-giessen.de/reports/Report0205.ps.gz

[11] M. Holzer, M. Kutrib, Unary language operations and their nondeterministic state compIeX|ty, in: M. Ito, M.
Toyama (Eds.) Developments in Language Theory (DLT 2002), Lecture Notes in Computer Science, Vol.
2450, Springer, Heidelberg, 2003, pp. 162-172.

[12] M. Holzer, M. Kutrib, State complexity of basic operations on nondeterministic finite automata, in: J.M.
Champarnaud, D. Maurel (Eds.), Implementation and Application of Automata (CIAA 2002), Lecture Notes
in Computer Science, Vol. 2608, Springer, Heidelberg, 2003, pp. 148-157.

[13] M. Holzer, K. Salomaa, S. Yu, On the state complexity-@fntry deterministic finite automata, J. Automat.
Lang. Comb. 6 (2001) 453—466.

[14] J. HromkovE, Communication Complexity and Parallel Computing, Springer, Berlin, Heidelberg, 1997.

[15] J. Hromkovt, Descriptional complexity of finite automata: concepts and open problems, J. Automat. Lang.
Comb. 7 (2002) 519-531.

[16] J. HromkovE, S. Seibert, J. Karhumaki, H. Klauck, G. Schnitger, Communication complexity method for
measuring nondeterminism in finite automata, Inform. and Comput. 172 (2002) 202-217.

[17] G.Jiraskové, Note on minimal automata and uniform communication protocols, in: C. Martin-Vide, V. Mitrana
(Eds.), Grammars and Automata for String Processing: From Mathematics and Computer Science to Biology,
and Back, Taylor and Francis, London, 2003, pp. 163—-170.

[18] E. Leiss, Succinct representation of regular languages by boolean automata, Theoret. Comput. Sci. 13 (1981)
323-330.

[19] O.B. Lupanov, A comparison of two types of finite automata, Problemy Kibernetiki (9) (1963) 321-326 (in
Russian).

[20] A.R. Meyer, M.J. Fischer, Economy of description by automata, grammars and formal systems, in: Proc. 12th
Annual Symposium on Switching and Automata Theory, 1971, pp. 188—191.

[21] F.R. Moore, On the bounds for state-set size in the proofs of equivalence between deterministic,
nondeterministic, and two-way finite automata, IEEE Trans. Comput. 20 (1971) 1211-1214.

298 G. Jirdskova / Theoretical Computer Science 330 (2005) 287 —-298

[22] G. Pighizzini, Unary language concatenation and its state complexity, in: S.Yu, A. Pun (Eds.), Implementation
and Application of Automata: Fifth Internat. Conference, CIAA 2000, Lecture Notes in Computer Science,
Vol. 2088, Springer, Heidelberg, 2001, pp. 252-262.

[23] G. Pighizzini, J. Shallit, Unary language operations, state complexity and Jacobsthal’s function, Internat. J.
Found. Comput. Sci. 13 (2002) 145-159.

[24] M. Rabin, D. Scott, Finite automata and their decision problems, IBM Res. Develop. 3 (1959) 114-129.

[25] W.J. Sakoda, M. Sipser, Nondeterminism and the size of two-way finite automata, in: Proc. 10th Ann. ACM
Symp. on Theory of Computing, 1978, pp. 275-286.

[26] M. Sipser, Introduction to the Theory of Computation, PWS Publishing Company, Boston, 1997.

[27] S. Yu, Regular languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 1,
Springer, Berlin, New York, pp. 41-110 (Chapter 2).

[28] S.Yu, Q. Zhuang, K. Salomaa, The state complexity of some basic operations on regular languages, Theoret.
Comput. Sci. 125 (1994) 315-328.

[29] S. Yu, State complexity of regular languages, J. Automat. Lang. Comb. 6 (2001) 221-234.

[30] S. Yu, A renaissance of automata theory, Bull. Eur. Assoc. Theoret. Comput. Sci. EATCS 72 (2000)
270-272.

[31] S. Yu, State complexity of finite and infinite regular languages, Bull. Eur. Assoc. Theoret. Comput. Sci.
EATCS 76 (2000) 270-272.

