
Theoretical Computer Science 330 (2005) 287–298
www.elsevier.com/locate/tcs

State complexity of some operations on binary
regular languages

Galina Jirásková1

Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 040 01 Košice, Slovakia

Received 17 November 2003; received in revised form 8 April 2004; accepted 21 April 2004

Abstract

We investigate the state complexity of someoperationsonbinary regular languages. In particular,we
consider the concatenation of languages represented by deterministic finite automata, and the reversal
and complementation of languages represented by nondeterministic finite automata. We prove that
the upper bounds on the state complexity of these operations, which were known to be tight for larger
alphabets, are tight also for binary alphabets.
© 2004 Elsevier B.V. All rights reserved.

Keywords:State complexity; Regular language operations; Binary languages

1. Introduction

Regular languages and finite automata are one of the oldest topics in computer science.
They have been extensively studied since the 1950s.Nevertheless, some important problems
concerning finite automata are still open. For instance, we recall the question how many
states are sufficient and necessary for two-way deterministic finite automata to simulate
two-way nondeterministic finite automata; the problem is closely related to the famous
open question whether or not DLOGSPACE equals NLOGSPACE[1,25].
Recently, there has been renewed interest in regular languages and finite automata (see

[15,31] for a discussion). Some aspects of this area are now intensively investigated. One
such aspect is the state complexity of regular languages and their operations.

E-mail address:jiraskov@saske.sk(G. Jirásková).
1 Research supported by the VEGA Grant no. 2/3164/23.

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.04.011

288 G. Jirásková / Theoretical Computer Science 330 (2005) 287–298

The state complexity of a regular language is the number of states of itsminimal determin-
istic finite automaton (DFA). The nondeterministic state complexity of a regular language
is the number of states of a minimal nondeterministic finite automaton (NFA) accepting the
language. If we speak about the state complexity of an operation on regular languages, we
ask how many states are sufficient and necessary in the worst case to accept the language
resulting from the operation.
Some early results concerning the state complexity of regular languages can be found in

[19–21]. The state complexity of some operations on regular languages was investigated
in [2,3,18]. Yu et al.[27] were the first to systematically study the complexity of regular
language operations. Their paper was followed by several articles investigating the state
complexity of finite languages operations and unary languages operations[5,22,23]. The
nondeterministic state complexity of regular languages operations was studied by Holzer
and Kutrib in[10–13]. Further results on this topic are presented in[6,7] and state-of-the-art
surveys for DFAs can be found in[29,30].
In this paper, we investigate the state complexity of some operations on binary regular

languages and provide answers to some problems which have been open for the binary
case. In particular, we consider the concatenation of DFA languages, and the reversal and
complementation of NFA languages.
For the concatenation of DFA languages, the worst casem2n − 2n−1 was given by an

m-state DFA language and ann-state DFA language over a three-letter alphabet in[27].We
show that the worst case can be reached by the concatenation of two binary DFA languages.
The reversal of anyn-state NFA language can be accepted by an(n + 1)-state NFA and

this upper bound was shown to be tight for a three-letter alphabet by Holzer and Kutrib
[13]. We give a binaryn -state NFA language reaching the upper bound on the reversal.
To accept the complement of anyn-state NFA language 2n states suffice since we can

simply convert a givenNFA to an equivalentDFAand then exchangeaccepting and rejecting
states. Birget[3] claimed that the upper bound is tight for a three-letter alphabet but later
corrected this to a four-letter alphabet[4]. We prove that the upper bound is also tight for a
binary alphabet by presenting a binaryn-state NFA language such that any NFA accepting
its complement needs at least 2n states.
To prove the result for concatenation we show that a deterministic finite automaton is

minimal. We obtain the lower bound on reversal using a counting argument. To obtain the
lower bound on complementation we use a fooling-set lower-bound technique known from
communication complexity theory[14], cf. also[2,3,9].
The paper consists of six sections, including this introduction, and an appendix. The

next section contains basic definitions and notations used throughout the paper. In Section
3 we present our result for concatenation. Section4 deals with the reversal operation. In
Section5 we investigate the concatenation operation. The last section contains concluding
remarks and open problems. In the appendix, we give some omitted proofs.

2. Preliminaries

In this section, we recall some basic definitions and notations. For further details, the
reader may refer to[26,28].

G. Jirásková / Theoretical Computer Science 330 (2005) 287–298 289

Let� be an alphabet and�∗ the set of all strings over the alphabet� including the empty
stringε. The length of a stringw ∈ �∗ is denoted by|w|. The power-set of a setA is denoted
by 2A.
A deterministic finite automaton(DFA) is a 5-tupleM = (Q,�, �, q0, F), whereQ is a

finite set of states,� is a finite input alphabet,� : Q × � → Q is the transition function,
q0 ∈ Q is the initial state, andF ⊆ Q is the set of accepting states. In this paper, all DFAs
are assumed to be complete, i.e., the next state�(q, a) is defined for anyq inQand anya in
�. The transition function� is extended to a function fromQ× �∗ toQ in the natural way.
A stringw in �∗ is accepted by the DFAM if the state�(q0, w) is an accepting state ofM.
A nondeterministic finite automaton(NFA) is a 5-tupleM = (Q,�, �, q0, F), where

Q,�, q0, andF are as above, and� : Q× � → 2Q is the transition function which can be
naturally extended to the domainQ×�∗. A stringw in �∗ is accepted by the NFAM if the
set�(q0, w) contains an accepting state ofM.
The language accepted bya finite automatonM, denotedL(M), is the set of all strings

accepted byM. Two automata are said to beequivalentif they accept the same language.
Any nondeterministic finite automatonM = (Q,�, �, q0, F) can be converted to an

equivalent deterministic finite automatonM ′ = (Q′,�, �′, q ′
0, F

′) using an algorithm
known as the “subset construction”[24] in the following way. Every state of the DFA
M ′ is a subset ofQ. The initial state ofM ′ is {q0}. A stateR ⊆ Q is an accepting state
of the DFAM ′ if it contains an accepting state of the NFAM. The transition function
�′ : Q′ × � → Q′ is defined by

�′(R, a) = ⋃
r∈R

�(r, a).

3. Concatenation

We start our investigation with the concatenation operation. The state complexity of the
concatenation of regular languages represented by deterministic finite automatawas studied
by Yu et al.[27]. They showed thatm2n − 2n−1 states are sufficient for a DFA to accept
the concatenation of anm-state DFA language and ann-state DFA language. In the case of
n = 1, the upper boundmwas shown to be tight for a unary alphabet. In the case ofm = 1
andn�2, the worst case 2n−2n−1 was given by the concatenation of two binary languages.
Otherwise the upper boundm2n − 2n−1 was proved to be tight for a three-letter alphabet.
The next theorem shows that the upper bound can be reached by the concatenation of two
binary languages.

Theorem 1. For any integersm�2 andn�2, there exist a binary DFA A of m-states and
a binary DFA B of n-states such that any DFA accepting the languageL(A)L(B) needs at
leastm2n − 2n−1 states.

Proof. Let m and n be arbitrary but fixed integers such thatm�2 andn�2. Let
d = (m − n + 1) mod (m − 1) and let� = {a, b}.

290 G. Jirásková / Theoretical Computer Science 330 (2005) 287–298

Fig. 1. The deterministic finite automatonA; d = (m − n + 1) mod (m − 1).

Fig. 2. The deterministic finite automatonB.

Define anm-state DFAA = (QA,�, �A, q0, FA), whereQA = {q0, q1, . . . , qm−1},
FA = {qm−1}, and for anyi ∈ {0,1, . . . , m − 1},

�A(qi, X) =




qj , j = (i + 1) mod m if X = a,

qi+1 if i�m − 3 andX = b,

q0 if i = m − 2 andX = b,

qd, d = (m − n + 1) mod (m − 1) if i = m − 1 andX = b.

Define ann-state DFAB = (QB,�, �B,0, FB), whereQB = {0,1, . . . , n − 1}, FB =
{n − 1}, and for anyi ∈ {0,1, . . . , n − 1},

�B(i,X) =



i + 1 if i�n − 2 andX = a,

n − 1 if i = n − 1 andX = a,

(i + 1)modn if X = b.

The DFAA andB are shown in Figs.1 and2, respectively.
We first describe an NFA accepting the languageL(A)L(B), then we construct an equiv-

alent DFA and show that it has at leastm2n − 2n−1 states no two of which are equivalent.
LetC = (Q,�, �, q0, F), whereQ = QA ∪ QB , F = {n − 1}, and for anyq ∈ Q and

anyX ∈ �,

�(q,X) =



{�A(q,X)} if q ∈ QA − {qm−1},
{�A(q,X),1} if q = qm−1,

{�B(q,X)} if q ∈ QB,

see Fig.3. Clearly, the NFAC accepts the languageL(A)L(B).
Let C′ = (Q′,�, �′, {q0}, F ′) be the DFA obtained from the NFAC by the subset

construction. LetR be the following system of sets:

R = { {qi} ∪ S | 0� i�m − 2 andS ⊆ QB} ∪ { {qm−1} ∪ S | S ⊆ QB − {0} },

G. Jirásková / Theoretical Computer Science 330 (2005) 287–298 291

Fig. 3. The nondeterministic finite automatonC.

i.e., any set inR consists of exactly one state ofQA and some states ofQB , and if a set in
R contains stateqm−1, then it does not contain state 0. There arem2n − 2n−1 sets inR.
To prove the theorem it is sufficient to show that (I) any set inR is a reachable state of the
DFA C′ and (II) no two different states inR are equivalent.
We prove (I) by induction on the size of sets. The singletons{q0}, {q1}, . . . , {qm−1} are

reachable since{qi} = �′({q0}, ai) for i = 1,2, . . . , m − 1. Let 1�k�n and assume that
any set inR of sizek is a reachable state of the DFAC′. Using this assumption we prove
that any set{qi, j1, j2, . . . , jk}, where 0�j1 < j2 < · · · < jk �n− 1 if 0� i�m− 2, and
1�j1 < j2 < · · · < jk �n − 1 if i = m − 1, is a reachable state of the DFAC′. There are
three cases:
(i) i�m − 2 andjk = n − 1. We prove this case by induction oni.

For i = 0 we have

{q0, j1, j2, . . . , jk−1, n − 1} = �′({qm−1, j1 + 1, j2 + 1, . . . , jk−1 + 1}, bn−1),

where the latter set of sizek is reachable by induction onk sincej1 + 1�1.
Let 0� i�m − 3 and assume that any set{qi, j1, j2, . . . , jk−1, n − 1} is reachable.
Since forj1�1 we have

{qi+1, j1, j2, . . ., jk−1, n − 1}=�′({qi, j1 − 1, j2 − 1, . . ., jk−1 − 1, n − 1}, a),
and forj1 = 0 we have

{qi+1, j1, j2, . . ., jk−1, n − 1}=�′({qi, j2 − 1, . . ., jk−1 − 1, n − 2, n − 1}, b),
we are ready in this case.

(ii) i�m − 2 andjk < n − 1. Let t = (i − j1 − 1) mod (m − 1). Then we have

{qi, j1, j2, . . . , jk} = �′({qt , j2 − j1 − 1, . . . , jk − j1 − 1, n − 1}, bj1+1),

where the latter set is considered in case (i).
(iii) i = m − 1 andj1�1. Then we have

{qm−1, j1, j2, . . . , jk} = �′({qm−2, j1 − 1, j2 − 1, . . . , jk − 1}, a),
where the latter set is considered in case (ii).

To prove (II) let{qi} ∪ S and{ql} ∪ T be two different states inR with 0� i� l�m− 1.
There are two cases:
(i) i < l. Then the stringam−1−ibn−1 is accepted by the DFAC′ starting in state{qi} ∪ S

but it is not accepted starting in state{ql} ∪ T .

292 G. Jirásková / Theoretical Computer Science 330 (2005) 287–298

Fig. 4. The nondeterministic finite automatonD.

(ii) i = l. Without loss of generality, there is a statej in QB such thatj ∈ S andj /∈ T

(note thatj �1 if i = l = m − 1). Then the stringbn−1−j is accepted by the DFAC′
starting in state{qi} ∪ S but it is not accepted starting in state{ql} ∪ T .

Thus our proof is complete.�

The concatenation of two languages represented by nondeterministic finite automata was
investigated by Holzer and Kutrib[13]. They showed thatm+ n states are sufficient for an
NFA to accept the concatenation of anm-state NFA language and ann -state NFA language,
and they proved that the upper bound is tight for a binary alphabet.

4. Reversal

In this section, we deal with the reversal operation. It is known that the reversal of any
n-state DFA language can be accepted by a DFA of 2n states and the worst case can be
reached by the reversal of a binary DFA language[18]. The upper bound on the size of an
NFA accepting the reversal of ann-state NFA language is known to ben + 1 and Holzer
and Kutrib[13] proved that the upper bound is tight for a three-letter alphabet. The next
theorem shows that the upper boundn+1 can be reached by the reversal of a binaryn-state
NFA language. To obtain the result we use a counting argument. Since the reversal of any
1-state NFA language is the same language, we assume thatn�2.

Theorem 2. For any integern�2, there exists a binary NFA D of n states such that any
NFA accepting the reversal of the languageL(D) needs at leastn + 1 states.

Proof. Let n be arbitrary but fixed integer such thatn�2. Let� = {a, b}.
Define ann-state NFAD = (QD,�, �D,1, FD), whereQD = {1,2, . . . , n},FD = QD,

and for anyi ∈ QD and anyX ∈ �,

�D(i,X) =



{i + 1} if i < n andX = a,

{1} if i = n andX = b,

∅ otherwise.

TheNFAD is shown in Fig.4.We prove that anyNFAaccepting the reversal of the language
L(D) needs at leastn + 1 states.
Let N = (Q,�, �, q0, F) be any NFA accepting the reversal of the languageL(D).

Since the NFAN accepts the empty string, the initial stateq0 must be an accepting state.

G. Jirásková / Theoretical Computer Science 330 (2005) 287–298 293

Next, the NFAN accepts the stringban−1. Therefore, a sequence of statesq1, q2, . . . , qn
must exist inQ such that

q1 ∈ �(q0, b), qi ∈ �(qi−1, a) for i = 2,3, . . . , n, andqn ∈ F.

Next, the NFAN does not accept any stringbai , where 0� i�n − 2. It follows that the
statesq1, q2, . . . , qn−1 must be rejecting and pairwise distinct states inQ. Since the NFAN
accepts the stringa but does not accept the stringban, the initial stateq0 must be different
from the accepting stateqn. Hence the NFAN has at least two accepting and at leastn − 1
rejecting states which proves the theorem.�

5. Complementation

We now turn our attention to the complementation operation. In contrast to the previous
two operations, complementation is an efficient operation for DFAs since to accept the
complement we can simply exchange accepting and rejecting states. On the other hand,
complementation of NFAs is an expensive task. The upper bound on the size of an NFA
accepting the complement of ann-state NFA language is 2n and it is known to be tight.
Sakoda and Sipser[25] gave an example of languages over a growing alphabet size reaching
the upper bound. Birget claimed the result for a three-letter alphabet[3] but later corrected
this to a four-letter alphabet[4]. Ellul [8] gave binaryO(n)-state witness languages. Holzer
and Kutrib[13] proved the lower bound 2n−2 for a binaryn-state NFA language.
In this section, we show that the upper bound 2n on the complementation of NFA lan-

guages is tight likewise for a binary alphabet. We describe a binaryn-state NFA language
such that any NFA accepting its complement needs at least 2n states. To obtain a lower
bound on the size of the NFA we use a fooling-set lower-bound technique known from
communication complexity theory[14]. Although lower bounds based on fooling sets may
sometimes be exponentially smaller than the true bounds[16,17], for some regular lan-
guages the lower bounds are tight[2,3,9]. In this section, the technique helps us to obtain
tight lower bounds.
After defining a fooling set, we give the lemma from[2] describing a fooling-set lower-

bound technique. For the sake of completeness, we repeat its proof in the Appendix.

Definition 3. A set of pairs of strings{(xi, yi) | i = 1,2, . . . , n} is said to be a fooling-set
for a regular languageL if for any i andj in {1,2, . . . , n}, (1) xiyi ∈ L, and (2) ifi �= j

thenxiyj /∈ L or xjyi /∈ L.

Lemma 4 (Birget [2]). Let a set of pairs{(xi, yi) | i = 1,2, . . . , n} be a fooling set for a
regular languageL. Then any NFA accepting the language L needs at least n states.

We can now prove the following result.

Theorem 5. For any positive integern, there exists a binary NFA M of n states such that
any NFA accepting the complement of the languageL(M) needs at least2n states.

294 G. Jirásková / Theoretical Computer Science 330 (2005) 287–298

Fig. 5. The nondeterministic finite automatonM.

Proof. Let n be an arbitrary but fixed positive integer. Let� = {0,1}.
Define ann-state NFAM = (Q,�, �,0, F), whereQ = {0,1, . . . , n−1},F = {n−1},

and for anyi ∈ Q andX ∈ �,

�{i, X} =




{i + 1} if i < n − 1 andX = 1,
∅ if i = n − 1 andX = 1,
{0, i + 1} if i < n − 1 andX = 0,
{1,2, . . . , n − 1} if i = n − 1 andX = 0,

i.e., for any statei ∈ Q exceptn − 1, the NFAM goes fromi to i + 1 on input 1, and to
i + 1 or to the initial state on input 0, andM goes from staten − 1 to any state except the
initial state on input 0. The NFAM is shown in Fig.5.
Let L be the language accepted by the NFAM. Denote byS, the set��n−1 ∪ {1n}

containing the string 1n and all strings over the alphabet� of length at mostn−1. Our goal
is to construct a fooling set for the languageLc of size 2n. We will do this in the following
way. For any stringx in S, we define a stringyx such thatxyx ∈ Lc and, moreover, for any
two different stringsx andz in S, eitherxyz /∈ Lc or zyx /∈ Lc.
Let x be a string inS. Then the set�(0, x) contains all states of the NFAM that are

reachable from the initial state 0 after reading the stringx.
If �(0, x) = Q, let yx = 1n.
If �(0, x) = {0,1, . . . , n − 2}, let yx = ε.
Otherwise define the stringyx as follows. Letyx = y1y2 · · · yn−1−k, wherek is the least

number inQ such thatk /∈ �(0, x), and for anyj ∈ {1,2, . . . , n − 1− k},

yj =
{
1, if n − j ∈ �(0, x),
0, if n − j /∈ �(0, x),

i.e., thej th symbol ofyx equals 1 if staten− j in {k + 1, k + 2, . . . , n− 1} belongs to the
set�(0, x), and equals 0 otherwise.
The following claims are proved in the Appendix.

Claim 6. For any string x in S and any state p inQ,
(a) if p ∈ �(0, x) thenn − 1 /∈ �(p, yx),
(b) if p /∈ �(0, x) thenn − 1 ∈ �(p, yx).

G. Jirásková / Theoretical Computer Science 330 (2005) 287–298 295

Claim 7. For any two different strings x and z inS, the set�(0, x) is different from the set
�(0, z).

We are now going to prove that the set of pairs{(x, yx) | x ∈ S} is a fooling set for the
languageLc. We need to show that for anyx andz in S, (1) xyx ∈ Lc, and (2) ifx �= z,
thenxyz /∈ Lc or zyx /∈ Lc.
To prove (1) letx be any string inS. By Claim6(a), staten − 1 cannot be reached from

any state in the set�(0, x) after reading the stringyx . Since staten−1 is the only accepting
state of the NFAM, it follows that the stringxyx is not accepted byM. Hencexyx ∈ Lc.
To prove (2) letxandzbe twodifferent strings inS. ByClaim7,without loss of generality,

there is a stateq in Q such thatq ∈ �(0, x) andq /∈ �(0, z). By Claim6(b), staten − 1
can be reached from the stateq after reading the stringyz. It follows that the stringxyz is
accepted by the NFAM. Hencexyz /∈ Lc.
We have shown that the set of pairs{(x, yx) | x ∈ S} is a fooling set for the languageLc.

By Lemma4, any NFA for the languageLc needs at least 2n states. �

6. Conclusions

In this paper, we have obtained several results concerning the state complexity of some
operations on binary regular languages. We proved that some upper bounds which were
known to be tight for larger alphabets are tight likewise for binary alphabets. We presented
anm-state DFAA, ann-state DFAB, ann-state NFAD, and ann-state NFAM, all with a
binary input alphabet, such that:
• any DFA acceptingL(A)L(B) needs at leastm2n − 2n−1 states;
• any NFA accepting the reversal ofL(D) needs at leastn + 1 states;
• any NFA accepting the complement ofL(M) needs at least 2n states.
Note however, that the upper bound on the concatenation of DFA languages is, in fact,

m2n − k2n−1, wherek is the number of accepting states in them-state DFA[27, Theorem
2]. It would be interesting to find languages reaching this bound for anykwith 1< k < m.

Acknowledgements

I would like to thank Jožko Jirásek for his help with the computational verification of
some conjectures. I am also very grateful to an anonymous referee for his corrections and
suggestions.

Appendix

Proof of Lemma 4. Let M = (Q,�, �, q0, F) be any NFA accepting the languageL.
Sincexiyi ∈ L, there must be a statepi in Q such that

pi ∈ �(q0, xi) and �(pi, yi) ∩ F �= ∅.

296 G. Jirásková / Theoretical Computer Science 330 (2005) 287–298

Assume that a fixed choice ofpi has been made for anyi in {1,2, . . . , n}. We prove that
pi �= pj for i �= j . Suppose by contradiction thatpi = pj for somei �= j . Then the
NFA M accepts both stringsxiyj andxjyi which contradicts the assumption that the set
{(xi, yi) | 1� i�n} is a fooling set for the languageL. Hence the NFAM has at leastn
states. �

Proof of Claim 6. Let x be any string in{0,1}�n−1 ∪ {1n}.
If �(0, x) = Q, thenyx = 1n. Since�(q,1n) = ∅ for anyq ∈ Q, the claim holds in this

case.
If �(0, x) = {0,1, . . . , n − 2}, thenyx = ε. Since�(q, ε) = {q} for any q ∈ Q, the

claim holds in this case as well.
Otherwiseyx = y1y2 · · · yn−1−k wherek /∈ �(0, x), {0,1, . . . , k − 1} ⊆ �(0, x), and

for anyj ∈ {1,2, . . . , n−1− k}, yj = 1 if n− j ∈ �(0, x) andyj = 0 if n− j /∈ �(0, x).
To prove (a) letp be any state inQ such thatp ∈ �(0, x). There are two cases:

(i) p�k − 1. Then staten − 1 cannot be reached from statep after reading the stringyx
of length less thann − k. Hencen − 1 /∈ �(p, yx).

(ii) p�k + 1. Thenyn−p = 1, and soyx = u1v for some stringsu andv such that

|u| = n − p − 1 and |v| = p − 1− k.

It follows that the set�(p, u) is a subset of{0,1, . . . , n− p − 2} ∪ {n− 1}. Therefore
�(p, u1) ⊆ {1,2, . . . , n − p − 1}, and so staten − 1 cannot be reached from the set
�(p, u1) after reading the stringv of length less thanp. Thusn − 1 /∈ �(0, u1v).

To prove (b) letp be any state inQ such thatp /∈ �(0, x). There are two cases:
(i) p = k. Then staten − 1 can be reached from statek after reading the stringyx of

lengthn − 1− k, son − 1 ∈ �(p, yx).
(ii) p�k + 1. Thenyn−p = 0, and soyx = u0v for some stringsu andv such that

|u| = n − p − 1 and |v| = p − 1− k.

It follows thatn− 1 ∈ �(p, u) andn− 1 ∈ �(n+ k −p, v). Sincen+ k −p�1, state
n + k − p belongs to the set�(n − 1,0). Hencen − 1 ∈ �(p, u0v) which completes
the proof. �

Proof of Claim 7. Let x andzbe two different strings in{0,1}�n−1 ∪ {1n}. Let lx = |x|
andlz = |z|. Without loss of generality, assume thatlx � lz. There are three cases:
(i) 0� lx �n − 1 andz = 1n. Then�(0, z) = ∅ andlx ∈ �(0, x).
(ii) 0� lx < lz�n − 1. Thenlz ∈ �(0, z) and�(0, x) ⊆ {0,1, . . . , lx}.
(iii) 0 � lx = lz�n − 1. Then, without loss of generality,x = u0v andz = u1w for some

stringsu, v,w such that 0� |v| = |w|�n−2. Setl = |v|. We show thatl ∈ �(0, u0v)
andl /∈ �(0, u1w). Since the stringu has length at mostn − 2− l,

�(0, u) ⊆ {0,1, . . . , n − 2− l}.
Therefore 0∈ �(0, u0), and so statel can be reached from the set�(0, u0) after reading
the stringv of lengthl. Thusl ∈ �(0, u0v).

G. Jirásková / Theoretical Computer Science 330 (2005) 287–298 297

Furthermore,�(0, u1) ⊆ {1,2, . . . , n−1− l}. Since the stringw has lengthl, we have
�(0, u1w) ⊆ {0,1, . . . , l − 1} ∪ {l + 1, l + 2, . . . , n − 1}. Hencel /∈ �(0, u1w) and
the proof is complete. �

References

[1] P. Berman,A. Lingas, On the complexity of regular languages in terms of finite automata, Techn. Report 304,
Polish Academy of Sciences, 1977.

[2] J.C. Birget, Intersection and union of regular languages and state complexity, Inform. Process. Lett. 43 (1992)
185–190.

[3] J.C. Birget, Partial orders on words, minimal elements of regular languages, and state complexity, Theoret.
Comput. Sci. 119 (1993) 267–291.

[4] J.C.Birget, ERRATUM:partial orders onwords,minimal elementsof regular languages, andstate complexity,
2002. Available at:http://clam.rutgers.edu/ ∼birget/papers.html .

[5] C. Câmpeanu, K. Culik II, K. Salomaa, S.Yu, State complexity of basic operations on finite languages, in: O.
Boldt, H. Jürgensen (Eds.), Proc. Fourth Internat. Workshop on Implementing Automata (WIA’99), Lecture
Notes in Computer Science, Vol. 2214, Springer, Heidelberg, 2001, pp. 60–70.

[6] C. Câmpeanu, K. Salomaa, S.Yu, Tight lower bound for the state complexity of shuffle of regular languages,
J. Automat. Lang. Comb. 7 (2002) 303–310.

[7] M. Domaratzki, State complexity and proportional removals, J. Automat. Lang. Comb. 7 (2002) 455–468.
[8] K. Ellul, Descriptional complexity measures of regular languages, Master’s thesis, University of Waterloo,

2002.
[9] I. Glaister, J. Shallit, A lower bound technique for the size of nondeterministic finite automata, Inform.

Process. Lett. 59 (1996) 75–77.
[10] M. Holzer, M. Kutrib, Nondeterministic descriptional complexity of regular languages, Internat. J. Found.

Comput. Sci. (to appear). Preprint: IFIG Research Report 0205, University of Giessen, 2002. Available at:
http://www.informatik.uni-giessen.de/reports/Report0205.ps.gz .

[11] M. Holzer, M. Kutrib, Unary language operations and their nondeterministic state complexity, in: M. Ito, M.
Toyama (Eds.) Developments in Language Theory (DLT 2002), Lecture Notes in Computer Science, Vol.
2450, Springer, Heidelberg, 2003, pp. 162–172.

[12] M. Holzer, M. Kutrib, State complexity of basic operations on nondeterministic finite automata, in: J.M.
Champarnaud, D. Maurel (Eds.), Implementation andApplication of Automata (CIAA 2002), Lecture Notes
in Computer Science, Vol. 2608, Springer, Heidelberg, 2003, pp. 148–157.

[13] M. Holzer, K. Salomaa, S. Yu, On the state complexity ofk-entry deterministic finite automata, J. Automat.
Lang. Comb. 6 (2001) 453–466.

[14] J. Hromkovič, Communication Complexity and Parallel Computing, Springer, Berlin, Heidelberg, 1997.
[15] J. Hromkovič, Descriptional complexity of finite automata: concepts and open problems, J. Automat. Lang.

Comb. 7 (2002) 519–531.
[16] J. Hromkovič, S. Seibert, J. Karhumäki, H. Klauck, G. Schnitger, Communication complexity method for

measuring nondeterminism in finite automata, Inform. and Comput. 172 (2002) 202–217.
[17] G. Jirásková,Noteonminimal automataanduniformcommunicationprotocols, in:C.Martin-Vide,V.Mitrana

(Eds.), Grammars andAutomata for String Processing: FromMathematics andComputer Science to Biology,
and Back, Taylor and Francis, London, 2003, pp. 163–170.

[18] E. Leiss, Succinct representation of regular languages by boolean automata, Theoret. Comput. Sci. 13 (1981)
323–330.

[19] O.B. Lupanov, A comparison of two types of finite automata, Problemy Kibernetiki (9) (1963) 321–326 (in
Russian).

[20] A.R. Meyer, M.J. Fischer, Economy of description by automata, grammars and formal systems, in: Proc. 12th
Annual Symposium on Switching and Automata Theory, 1971, pp. 188–191.

[21] F.R. Moore, On the bounds for state-set size in the proofs of equivalence between deterministic,
nondeterministic, and two-way finite automata, IEEE Trans. Comput. 20 (1971) 1211–1214.

298 G. Jirásková / Theoretical Computer Science 330 (2005) 287–298

[22] G. Pighizzini, Unary language concatenation and its state complexity, in: S.Yu,A. Pun (Eds.), Implementation
and Application of Automata: Fifth Internat. Conference, CIAA 2000, Lecture Notes in Computer Science,
Vol. 2088, Springer, Heidelberg, 2001, pp. 252–262.

[23] G. Pighizzini, J. Shallit, Unary language operations, state complexity and Jacobsthal’s function, Internat. J.
Found. Comput. Sci. 13 (2002) 145–159.

[24] M. Rabin, D. Scott, Finite automata and their decision problems, IBM Res. Develop. 3 (1959) 114–129.
[25] W.J. Sakoda, M. Sipser, Nondeterminism and the size of two-way finite automata, in: Proc. 10th Ann. ACM

Symp. on Theory of Computing, 1978, pp. 275–286.
[26] M. Sipser, Introduction to the Theory of Computation, PWS Publishing Company, Boston, 1997.
[27] S. Yu, Regular languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 1,

Springer, Berlin, NewYork, pp. 41–110 (Chapter 2).
[28] S.Yu, Q. Zhuang, K. Salomaa, The state complexity of some basic operations on regular languages, Theoret.

Comput. Sci. 125 (1994) 315–328.
[29] S.Yu, State complexity of regular languages, J. Automat. Lang. Comb. 6 (2001) 221–234.
[30] S. Yu, A renaissance of automata theory, Bull. Eur. Assoc. Theoret. Comput. Sci. EATCS 72 (2000)

270–272.
[31] S. Yu, State complexity of finite and infinite regular languages, Bull. Eur. Assoc. Theoret. Comput. Sci.

EATCS 76 (2000) 270–272.

