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NONDETERMINISTIC DESCRIPTIONAL COMPLEXITYOF REGULAR LANGUAGESMARKUS HOLZERInstitut f�ur Informatik, Tehnishe Universit�at M�unhenBoltzmannstra�e 3, D-85748 Garhing bei M�unhen, Germanyholzer�informatik.tu-muenhen.deandMARTIN KUTRIBInstitut f�ur Informatik, Universit�at GiessenArndtstra�e 2, D-35392 Giessen, Germanykutrib�informatik.uni-giessen.deReeived (reeived date)Revised (revised date)Communiated by Editor's nameABSTRACTWe investigate the desriptional omplexity of operations on �nite and in�nite reg-ular languages over unary and arbitrary alphabets. The languages are represented bynondeterministi �nite automata (NFA). In partiular, we onsider Boolean operations,atenation operations { onatenation, iteration, �-free iteration { and the reversal. Mostof the shown bounds are tight in the exat number of states, i.e. the number is suÆientand neessary in the worst ase. Otherwise tight bounds in the order of magnitude areshown.Keywords: state omplexity, language operations, nondeterministi �nite automata.1. IntrodutionFinite automata are used in several appliations and implementations in softwareengineering, programming languages and other pratial areas in omputer siene.They are one of the �rst and most intensely investigated omputational models.Nevertheless, some hallenging problems of �nite automata are still open. An im-portant example is the question how many states are suÆient and neessary to sim-ulate two-way nondeterministi �nite automata with two-way deterministi �niteautomata. The problem has been raised in [19℄ and partially solved in [22℄. A lowerbound and an interesting onnetion with the open problem whether DLOGSPACEequals NLOGSPACE or not is given in [1℄.Sine regular languages have many representations in the world of �nite au-tomata it is natural to investigate the suintness of their representation by di�er-1



ent types of automata in order to optimize the spae requirements. It is well knownthat nondeterministi �nite automata (NFA) an o�er exponential saving in spaeompared with deterministi �nite automata (DFA), but the problem to onvert agiven DFA to an equivalent minimal NFA is PSPACE-omplete [10℄. Sine mini-mization of NFAs is also PSPACE-omplete, onversions from nondeterministi todeterministi variants are of partiular interest. Conerning the number of statesasymptotially tight bounds are O(nn) for the two-way DFA to one-way DFA on-version, O(2n2) for the two-way NFA to one-way DFA onversion, and 2n for theone-way NFA to one-way DFA onversion, for example. For �nite languages over ak-letter alphabet the NFA to DFA onversion has been solved in [20℄ with a tightbound of O(k nlog2 k+1 ). A valuable soure for further results and referenes is [3℄.Related to these questions are the osts (in terms of states) of operations onregular languages with regard to their representing devies. For example, onvert-ing a given NFA to an equivalent DFA gives an upper bound for the NFA stateomplexity of omplementation. In reent years results for many operations havebeen obtained. DFAs state-of-the-art surveys an be found in [26, 27℄.When ertain problems are omputationally hard in general, a natural questiononerns simpler versions. To this regard promising researh has been done forunary languages. It turned out that this partiular ase is essentially di�erent fromthe general ase. For example, the minimization of NFAs beomes NP-ompleteinstead of PSPACE-omplete [9, 23℄. The problem of evaluating the osts of unaryautomata simulations has been raised in [22℄. In [7℄ it has been shown that theunary NFA to DFA onversion takes e�(pn�ln(n)) states, the NFA to two-way DFAonversion has been solved with a bound of O(n2) states, and the osts of the unarytwo-way to one-way DFA onversion redues to e�(pn�ln(n)). Several more resultsan be found in [14, 15℄.State omplexity results onerning operations on unary regular languages rep-resented by DFAs are overed by the surveys [26, 27℄. Estimations of the averagestate omplexity are shown in [17℄.Here we investigate the osts of operations on �nite and in�nite regular languagesover unary and arbitrary alphabets represented by NFAs. In partiular, we onsiderBoolean operations, atenation operations and the reversal. Most of the bounds aretight in the exat number of states, i.e. the number is suÆient and neessary inthe worst ase. Otherwise tight bounds in the order of magnitude are shown. Thetehnial depth of our results varies from immediate to more subtle extensions toprevious work. Indeed the tehnique to prove minimality for DFAs is not diretlyappliable to the ase of NFAs. Therefore, we mostly have to start from srath orto use ounting arguments to prove our results on NFA minimality with respet tothe number of states.In the next setion we de�ne the basi notions and present a preliminary re-sult. Setion 3 is devoted to the study of in�nite languages. Operations on NFAsaepting �nite languages are onsidered in Setion 4.
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2. PreliminariesWe denote the powerset of a set S by 2S. The empty word is denoted by �,the reversal of a word w by wR, and for the length of w we write jwj. Forthe number of ourrenes of a symbol a in w we use the notation #a(w). Bygd(x1; : : : ; xk) we denote the greatest ommon divisor of the integers x1; : : : ; xk,and by lm(x1; : : : ; xn) their least ommon multiple. If two numbers x and y arerelatively prime (i.e. gd(x; y) = 1) we write x ? y.A nondeterministi �nite automaton is a system A = hS;A; Æ; s0; F i, where Sis the �nite set of internal states, A is the �nite set of input symbols, s0 2 S is theinitial state, F � S is the set of aepting states, and Æ : S�A! 2S is the transitionfuntion. The set of rejeting states is impliitly given by the partitioning, i.e. SnF .An NFA is alled unary if its set of input symbols is a singleton. In this asewe use A = fag throughout the paper. If not otherwise stated we assume thatthe NFAs are always redued. This means that there are no unreahable statesand that from any state an aepting state an be reahed. An NFA is said to beminimal if its number of states is minimal with respet to the aepted language.Sine every n-state NFA with �-transitions an be transformed to an equivalent n-state NFA without �-transitions [8℄ for state omplexity issues there is no di�erenebetween the absene and presene of �-transitions. For onveniene, we onsiderNFAs without �-transitions only.As usual the transition funtion Æ is extended to a funtion � : S �A� ! 2Sreeting sequenes of inputs: �(s; �) = fsg and �(s; wa) = Ss02�(s;w) Æ(s0; a) fors 2 S, a 2 A, and w 2 A�. In the sequel we always denote the extension of a given Æby �.Let A = hS;A; Æ; s0; F i be an NFA, then a word w 2 A� is aepted by A if�(s0; w) \ F 6= ;. The language aepted by A is L(A) = fw 2 A� j w is aeptedby Ag.The following preliminary result is a key tool in the following setions, and anbe proved by a simple pumping argument.Lemma 1 Let n � 1 be an arbitrary integer. Then n + 1 resp. n states are suf-�ient and neessary in the worst ase for an NFA to aept the language fang+resp. fang�.3. Operations on In�nite Languages3.1. Boolean OperationsWe start our investigations with Boolean operations. In the ase when the �niteautomaton is deterministi it is well-known that in the worst ase the Booleanoperations union, intersetion and omplementation have a state omplexity ofm�n,m � n and m, respetively. However, the state omplexity of NFA operations isessentially di�erent. At �rst we onsider the union for arbitrary alphabets.3



Theorem 1 For any integers m;n � 1 let A be an m-state and B be an n-stateNFA. Then m + n+ 1 states are suÆient and neessary in the worst ase for anNFA to aept the language L(A) [ L(B).Proof. In order to onstrut an (m + n + 1)-state NFA for the languageL(A) [ L(B) we simply use a new initial state and onnet it to the states of Aand B that are reahed after the �rst state transition.Now we are going to show that m+n+1 states are neessary in the worst ase.Let A be an m-state NFA that aepts the language famg� and B an n-state NFAthat aepts fbng�.Let C be an NFA for the language L(A)[L(B). In order to rejet the inputs ai,1 � i � m � 1, but to aept the input am the NFA C needs at least m � 1 non-aepting states s1; : : : ; sm�1 from eah of whih an aepting state is reahable.Similarly, C needs at least n � 1 states s01; : : : ; s0n�1 for proessing the inputs bi,1 � i � n� 1.Denote by Pa resp. Pb the sets of states that are reahable by inputs of theform aj resp. bj for j � 1. None of the aepting states may be reahable from thestates in Pa \ Pb. Otherwise words of the form ajbk or bjak would be aepted.It follows that neither the si nor the s0i may belong to the intersetion Pa \ Pb.But, trivially, they do belong to Pa resp. to Pb. Now onsider all inputs famg+.There must exist an aepting state sm 2 Pa whih is reahed for in�nitely many ofthem. If one of the states s1; : : : ; sm�1 is reahable from sm, then sm may not belongto Pa \ Pb beause otherwise inputs of the form ajbk would be aepted. If noneof the states s1; : : : ; sm�1 is reahable from sm, then there must exist another statesm+1 2 Pa whih is di�erent from s1; : : : ; sm�1. Otherwise there must exist i0 � 1suh that C is in some state s 2 fs1; : : : ; sm�1g after proessing the input ai0�m.But from state s an aepting state is reahable by proessing input aj0 for some1 � j0 � m� 1. This implies that ai0�m+j0 would be aepted. The same holds forstates s0n 2 Pb and s0n+1 2 Pb for the inputs fbng+. It follows either sm (s0n) doesnot belong to Pa \ Pb or there exists another state sm+1 (s0n+1). In any ase thereexist at least two states di�erent from s1; : : : ; sm�1; s01; : : : ; s0n�1.Finally, the initial state s0 must be an aepting state sine � 2 L(A) [ L(B),but s0 annot be part of a loop sine otherwise inputs of the form ajbk or bjakwould be aepted. Altogether, Pa [Pb must ontain at least m+n di�erent statesthat are not equal to the initial state. 2Now we turn to the union of unary NFAs. Due to the lak of suited toolsand methods suh as unique minimization et. the proof of the lower bound refersspei�ally to the strutures of the witness automata.Theorem 2 For any integers m;n � 1 let A be a unary m-state and B be a unaryn-state NFA. Then m+n+1 states are suÆient for an NFA to aept the languageL(A) [ L(B). If neither m is a multiple of n nor n is a multiple of m, then thereexist a unary m-state NFA A and a unary n-state NFA B (with the same inputsymbol) suh that any NFA aepting L(A) [ L(B) needs at least m+ n+ 1 states.Proof. The upper bound follows immediately from the onstrution given inthe proof of Theorem 1. In order to prove the lower bound without loss of generality4



we may assume m > n. Sine m is not a multiple of n we obtain n > gd(m;n).Let A be an m-state NFA that aepts the language famg� and B be an n-stateNFA that aepts fang�. Let C be an NFA with initial state s0 for the languageL(A) [L(B). In order to prove that C has at least m+ n+ 1 states assume that ithas at most m+ n states.At �rst we onsider the input am+n and show that it does not belong to L(C).Sine 2m > m + n > m the input does not belong to L(A). If it would belongto L(B), then there were a onstant  > 2 suh that m + n =  � n. Therefore,m = (�1)�n and, thus, m would be a multiple of n what ontradits the assumptionof the theorem.The next step is to show that eah of the states s0 ` s1 ` � � � ` sm�1 ` smwhih are passed through when aepting the input am either is not in a yle oris in a yle of length m. To this end assume ontrarily some state si is in a yleof length x 6= m, i.e. si is reahable from si by proessing x input symbols. Due tothe number of states we may assume x � m+ n.By running several times through the yle am+x, am+2x and am+3x are a-epted.We observe m+x is not a multiple of m. If it is not a multiple of n we are done.Otherwise, x annot be a multiple of n sine m is not a multiple of n. Moreover,now we observe m+2x is not a multiple of n sine m+x is and x is not. If m+2xis not a multiple of of m we are done.Otherwise we onsiderm+3x whih now annot be a multiple of m sine m+2xis and x is not. If m+ 3x is not a multiple of n we are done.Otherwise we summarize the situation: m + 3x and m + x are multiples of nwhih implies 2x is a multiple of n. Sine m + 2x is a multiple of m we onludethat 2x is a multiple of m, too. Moreover, x is neither a multiple of m nor of n.From x � m + n < 2m =) 2x < 4m we derive 2x 2 fm; 3mg. If 2x = m,then m is a multiple of n, a ontradition. So let 2x = 3m. Sine 2x is a multipleof n there exists a onstant  2 N suh that 3m = n. From x � m + n follows32m � m+ n. Therefore 12m � n whih together with n < m implies  2 f4; 5; 6g.It holds 3m = n. On the other hand, m+x = m+ 32m = 52m is a multiple of n.Therefore 52= 3 = 5�6 must belong to N for  2 f4; 5; 6g. Thus  = 6, but in this ase12m = n =) m = 2n and m is a multiple of n what ontradits the assumption ofthe theorem.In order to omplete the proof of the theorem now we ome bak to the sequeneof states s0 ` s1 ` � � � ` sm�1 ` sm passed through when aepting the input am.Correspondingly let s0 ` s01 ` � � � ` s0n�1 ` s0n be an aepting sequene for an.Sine L(C) is an in�nite language C must ontain some yle. If a si froms0; : : : ; sm is in a yle, then its length is m states. State si may not be in thesequene s0 ` s01 ` � � � ` s0n beause in this ase am+n would be aepted. In orderto aept an but to rejet a1; : : : ; an�1 in any ase, the states s0; s01; : : : ; s0n must bepairwise di�erent. Altogether this results in at least n+ 1 +m states.If on the other hand a sj from s0; s01; : : : ; s0n is in a yle, then it may not be ins0; s1; : : : ; sm. Otherwise the yle length must be m and am+n would be aepted.5



Conluding as before this ase results in at least m+ n+ 1 states, too.Finally, if neither a state from s0; s1; : : : ; sm nor a state from s01; : : : ; s0n is in ayle, then obviously s0; : : : ; sm must be pairwise di�erent, but all states s0j may ormay not appear in s0; : : : ; sm. This takes at least m+ 1 states. So there remain atmost n�1 states for a yle. Therefore, the yle length x is at most n�1. Now weonsider an aepting omputation for the input amn. It must have run through theyle. Running one more through the yle leads to aeptane of amn+x whihdoes not belong to L(C).So in any ase we obtain a ontradition to the assumption that C has at mostm+ n states. 2Next we are going to prove a tight bound for the intersetion.Theorem 3 For any integers m;n � 1 let A be an m-state and B be an n-stateNFA. Then m � n states are suÆient and neessary in the worst ase for an NFAto aept the language L(A) \ L(B).Proof. Clearly, the NFA de�ned by the ross-produt of A and B aepts thelanguage L(A) \ L(B) with m � n states.As witness languages for the fat that the bound is reahed in the worst asede�ne the k-state language Lk = fw 2 fa; bg� j #a(w) � 0 (mod k)g for all k 2 N.Identially, L0k is de�ned to be fw 2 fa; bg� j #b(w) � 0 (mod k)g. It remainsto show that an NFA C that aepts Lm \ L0n for m;n � 1, needs at least m � nstates.Consider the input words aibj and ai0bj0 with 0 � i; i0 � m� 1 and 0 � j; j0 �n � 1, and assume C = hS;A; Æ; s0; F i has less than m � n states. Sine there arem � n suh words, for at least two of them the intersetionfs 2 S j s 2 �(s0; aibj) ^ �(s; am�ibn�j) \ F 6= ;g \�(s0; ai0bj0)is not empty. This implies ai0bj0am�ibn�j 2 Lm \ L0n. Sine either i 6= i0 or j 6= j0it follows i0 +m� i 6� 0 (mod m) or j0 + n� j 6� 0 (mod n), a ontradition. 2In the unary ase the lower bound requires m ? n. In [18℄ unary languages arestudied whose deterministi state omplexities are not relatively prime.Theorem 4 For any integers m;n � 1 let A be a unary m-state and B be a unaryn-state NFA. Then m � n states are suÆient for an NFA to aept the languageL(A) \ L(B). If m ? n, then there exist a unary m-state NFA A and a unary n-state NFA B (with the same input symbol) suh that any NFA aepting L(A)\L(B)needs at least m � n states.Proof. As witness languages onsider L(A) = famg� and L(B) = fang�. Sinem ? n the intersetion L(A)\L(B) is fam�ng�. Due to Lemma 1 any NFA aeptingthe intersetion needs at least m � n states. 2The omplementation of NFA languages is an expensive task at any rate. It iswell known [16℄ that 2n is the tight upper bound on the number of states neessaryfor a deterministi �nite automaton to aept an (in�nite) n-state NFA language.Sine the omplementation operation on deterministi �nite automata neither in-reases nor dereases the number of states (simply exhange aepting and rejeting6



states) we obtain an upper bound for the state omplexity of the omplementationon NFAs.Corollary 1 For any integer n � 1 the omplement of an n-state NFA language isaepted by a 2n-state NFA.Unfortunately, this expensive upper bound is tight. Birget [2, 4℄ showed foran input alphabet of size four that, for any integer n � 1, there exists an n-stateNFA A suh that any NFA that aepts the omplement of L(A) needs at least 2nstates. The question whether we an ahieve a tight bound over a smaller alphabetis urrently open. But using a two-letter alphabet we an prove a tight bound inthe order of magnitude.Theorem 5 For any integer n > 2 there exists an n-state NFA A suh that anyNFA that aepts the omplement of L(A) needs at least 2n�2 states.Proof. For k � 0 let Lk = fa; bg�afa; bgkbfa; bg�. It is lear that Lk is aeptedby a (k+3)-state NFA. Intuitively, A has to guess the position of an input symbol awhih is followed by k arbitrary input symbols and a symbol b.In order to aept the omplement of Lk an NFA B = hS0; fa; bg; Æ0; s00; F 0i has toverify that the input has no substring afa; bgkb. Therefore, after reading a symbol athe NFA B must be able to remember the next k input symbols. Altogether thisneeds 2k+1 states (f. Figure 1).More formally, we onsider the input words of length k+1. Observe that for eahof these words w the onatenation ww belongs to the omplement of Lk. Let S(w)be fs 2 S0 j s 2 �0(s00; w) ^ �0(s; w) \ F 0 6= ;g, and v; v0 be two arbitrary di�erentwords from fa; bgk+1. Assume S(v)\ S(v0) 6= ;. It follows �0(s00; vv0)\ F 0 6= ; and�0(s00; v0v) \ F 0 6= ; and, therefore, vv0 and v0v are aepted by B.But this is a ontradition sine there exists a position 1 � p � k+1 at whih vhas a symbol a and v0 a symbol b or vie versa. Thus either vv0 or v0v is of theform x1 � � �xp�1axp+1 � � �xk+1y1 � � � yp�1byp+1 � � � yk+1 and, therefore, belongs to Lk.From the ontradition follows S(v) \ S(v0) = ;. Sine there exist 2k+1 words infa; bgk+1 the state set S0 has to ontain at least 2k+1 states. 2abbab abab a aa aabaaa
start a b baa
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Fig. 1. A minimal NFA aepting the omplement of L2 of Theorem 5.For omplementation of unary NFAs a ruial role is played by the funtionF (n) = maxflm(x1; : : : ; xk) j x1; : : : ; xk 2 N ^ x1 + � � �+ xk = ng whih gives the7



maximal order of the yli subgroups of the symmetri group of n symbols. Forexample, the �rst seven values of F are F (1) = 1, F (2) = 2, F (3) = 3, F (4) = 4,F (5) = 6, F (6) = 6, F (7) = 12 due to the sums 1 = 1, 2 = 2, 3 = 3, 4 = 4,5 = 2 + 3, 6 = 1 + 2 + 3 (or 6 = 6) and 7 = 3 + 4.Sine F depends on the irregular distribution of the prime numbers we annotexpet to express F (n) expliitly by n. The funtion itself has been investigated byLandau [11, 12℄ who has proved the asymptoti growth rate limn!1 ln(F (n))pn�ln(n) = 1. Abound immediately derived from Landau's result is: ln(F (n)) 2 �(pn � ln(n)). Forour purposes the implied rough estimation F (n) 2 e�(pn�ln(n)) suÆes. Shallit andEllul [21℄ pointed out that the bound F (n) 2 O(epn�ln(n)) whih is laimed in [7℄is not orret. They dedued �ner bounds from a result in [24℄ where the urrentlybest known approximation for F has been proved. Nevertheless, in [7℄ it has beenshown that for any unary n-state NFA there exists an equivalent O(F (n))-statedeterministi �nite automaton.Corollary 2 For any integer n � 1 the omplement of a unary n-state NFA lan-guage is aepted by an O(F (n))-state NFA.As for the regular ase the expensive upper bound is tight in the order of mag-nitude.Theorem 6 For any integer n > 1 there exists a unary n-state NFA A suh thatany NFA aepting the omplement of L(A) needs at least 
(F (n)) states.Proof. Let x1; : : : ; xk 2 N be integers suh that x1 + � � � + xk = n � 1 andlm(x1; : : : ; xk) = F (n � 1). Now de�ne for 1 � i � k the languages Li = faxig�and onsider the union of their omplements: L = L1 [ L2 [ � � � [ Lk.Sine Li is aeptable by a xi-state NFA Ai, the language L is aeptableby an NFA A with at most 1 + x1 + � � � + xk = n states. To this end we in-trodue a new initial state and onnet it nondeterministially to the states ofthe Ai that are reahed after their �rst state transition. The omplement of L isL = falm(x1;:::;xk)g�. Therefore, the omplement of the n-state language L needslm(x1; : : : ; xk) = F (n � 1) states. Sine F (n) is of order e�(pn�ln(n)) it followsF (n� 1) is of order 
(F (n)). 23.2. Catenation OperationsNow we turn to the atenation operations. In partiular, tight bounds for on-atenation, iteration and �-free iteration will be shown. Roughly speaking, in termsof state omplexity these are eÆient operations for NFAs. Again, this is essentiallydi�erent when deterministi �nite automata ome to play. For example, for arbi-trary alphabets in [28℄ a bound of (2m � 1) � 2n�1 states has been shown for theDFA-onatenation, and in [25℄ a bound of 2n�1 + 2n�2 states for the iteration.Theorem 7 For any integers m;n � 1 let A be an m-state NFA and B be an n-state NFA. Then m+n states are suÆient and neessary in the worst ase for anNFA to aept the language L(A)L(B). 8



Proof. The upper bound is due to the observation that in C one has simply toonnet the aepting states in A with the states in B that follow the initial state.The upper bound is reahed for the onatenation of the languages L(A) =famg� and L(B) = fbng�. The remaining proof follows the idea of the proof ofTheorem 1. 2In the unary ase the lower bound of the onatenation misses the upper boundby one state. It is urrently an open question how to lose the gap by more sophis-tiated onstrutions or witness languages.Theorem 8 For any integers m;n > 1 let A be a unary m-state NFA and B bea unary n-state NFA. Then m + n states are suÆient for an NFA to aept thelanguage L(A)L(B). Moreover, there exist a unary m-state NFA A and a unaryn-state NFA B suh that any NFA C aepting L(A)L(B) needs at least m+ n� 1states.Proof. The upper bound has been shown in the proof of Theorem 7.Let L(A) be the m-state language fak j k � m� 1 (mod m)g and L(B) be then-state language fak j k � n� 1 (mod n)g.The shortest word in L(A) respetively L(B) is am�1 respetively an�1. There-fore the shortest word in L(C) is am+n�2. Assume ontrarily to the assertion C hasat most m+ n� 2 states. Let C aept the input am+n�2 by running through thestate sequene s0 ` s1 ` � � � ` sm+n�2 where all states exept sm+n�2 are non-aepting. Due to the assumption at least one of the non-aepting states si mustappear at least twie in the sequene. This implies that there exists an aeptingomputation that does not run through the yle si ` � � � ` si. So an input whoselength is at most m+ n� 3 would be aepted, a ontradition. 2The onstrutions yielding the upper bounds for the iteration and �-free iterationare similar. The trivial di�erene between both operations onerns the empty wordonly. Moreover, the di�erene does not appear for languages ontaining the emptyword. Nevertheless, in the worst ase the di�erene osts one state.Theorem 9 For any integer n > 2 let A be a unary or non-unary n-state NFA.Then n+1 resp. n states are suÆient and neessary in the worst ase for an NFAto aept the language L(A)� resp. L(A)+.Proof. Let A = hSA; AA; ÆA; s0;A; FAi be an n-state NFA. Then the transitionfuntion of an n-state NFA C = hS;A; Æ; s0; F i that aepts the language L(A)+is for s 2 S and a 2 A de�ned as follows: Æ(s; a) = ÆA(s; a) if s =2 FA, andÆ(s; a) = ÆA(s; a)[ ÆA(s0;A; a) if s 2 FA. The other omponents remain unhanged,i.e., S = SA, s0 = s0;A, and F = FA.If the empty word belongs to L(A) then the onstrution works �ne for L(A)�also. Otherwise an additional state has to be added: Let s00 =2 SA and de�neS = SA [ fs00g, s0 = s00, F = FA [ fs00g, and for s 2 S and a 2 A: Æ(s; a) = ÆA(s; a)if s =2 FA [ fs00g, Æ(s; a) = ÆA(s; a) [ ÆA(s0;A; a) if s 2 FA, and Æ(s; a) = ÆA(s0;A; a)if s = s00.In order to prove the tightness of the bounds for any n > 2 onsider the n-statelanguage L = fak j k � n � 1 (mod n)g. At �rst we show that n + 1 states areneessary for C = hS; fag; Æ; s0; F i to aept L(A)�.9



Contrarily, assume C has at most n states. We onsider words of the form ai with0 � i. The shortest four words belonging to L(A)� are �, an�1, a2n�2, and a2n�1. Itfollows s0 2 F . Moreover, for an�1 there must exist a path s0 ` s1 ` � � � ` sn�2 ` snwhere sn 2 F and s1; : : : ; sn�2 are di�erent non-aepting states. Thus, C has atleast n� 2 non-aepting states.Assume for a moment F to be a singleton. Then s0 = sn and for 1 � i � n� 3the state s0 must not belong to Æ(si; a). Proessing the input a2n�1 the NFA annotenter s0 after 2n� 2 time steps. Sine a =2 L(A)� the state s0 must not belong toÆ(s0; a).On the other hand, C annot enter one of the states s1; : : : ; sn�3 sine there isno transition to s0. We onlude that C is either in state sn�2 or in an additionalnon-aepting state sn�1. Sine there is no transition suh that sn�2 2 Æ(sn�2; a)in both ases there exists a path of length n from s0 to s0. But an does not belongto L(A)� and we have a ontradition to the assumption jF j = 1.Due to our assumption jSj � n we now have jF j = 2 and jSj�jF j = n�2. Let usreall the aepting sequene of states for the input an�1: s0 ` s1 ` � � � ` sn�2 ` sn.Both s0 and sn must be aepting states. Assume sn 6= s0. Sine a2n�2 belongsto L(A)� there must be a possible transition s0 ` s1 or sn ` s1. Thus, a2n�2 isaepted by sn. In order to aept a2n�1 there must be a orresponding transitionfrom sn to sn or from sn to s0. In both ases the input an would be aepted.Therefore sn = s0.By the same argumentation the neessity of a transition for the input symbol afrom s0 to s0 or from s0 to sn follows. This implies that a is aepted. From theontradition follows jSj > n.As an immediate onsequene we obtain the tightness of the bound for L(A)+.In this ase s0 2 F is not required. Thus, just one aepting state is neessary.In order to prove the result for non-unary NFAs one has simply to exhange thewitness language L by fw 2 fa; bg� j #a(w) � n� 1 (mod n)g. 23.3. ReversalThe next operation under onsideration is the reversal. The bounds for unaryNFAs are trivial. For general deterministi automata one may expet that the stateomplexity is linear. But it is not. A tight bound of 2n states for the reversal hasbeen shown in [13℄. From the following eÆient bound for NFAs it follows onemore that nondeterminism is a powerful onept.Theorem 10 For any integer n > 3 let A be an n-state NFA. Then n+1 states aresuÆient and neessary in the worst ase for an NFA to aept the language L(A)R.Proof. Basially, the idea is to reverse the diretions of the transitions. Thisworks �ne for NFAs whose set of aepting states is a singleton. In general we areonerned with more than one aepting state and have to add a new initial state.So we obtain an (n+ 1)-state NFA.The language Lk = akfak+1g�(fbg� [ fg�) for k � 1, may serve as an examplefor the fat that the bound is reahed. The (k + 3)-state NFA A that aepts Lkand the (k + 4)-state NFA C that aepts LRk are depited in Figure 2.10



b0 1 � � � k cstart a a aa b c c
b k � 1 � � � 0s b kstart b b;  b 

aa a aabFig. 2. A (k + 3)-state and a (k + 4)-state NFA aepting Lk and LRk ofTheorem 10.The neessity of k + 4 states an be seen as follows. Sine aepted inputs maybegin with an arbitrary number of b's or 's we need two states sb and s to proessthem. This annot be done by the initial state beause the loops would lead toaeptane of words with pre�xes of the form b�� or �b�.Obviously, a loop of k+1 states is needed in order to verify the suÆx fak+1g�ak.If one in this sequene would be equal to sb (s), then it would have a loop for b's('s) and, hene, inputs of the form �a�b�ak (b�a��ak) would be aepted. Forsimilar reasons the new initial state annot be within a loop. Altogether it followsthat C needs at least k + 4 states what proves the tightness of the bound. 2Table 1. NFA and DFA state omplexities for in�nite languages.In�nite LanguagesNFA DFAgeneral unary general unary[ m+ n + 1 m+ n + 1 mn mn� O(2n) e�(pn�ln(n)) n n\ mn mn mn mnR n + 1 n 2n n� m+ n O(m+ n) (2m� 1)2n�1 mn� n + 1 n+ 1 2n�1 + 2n�2 (n� 1)2 + 1+ n n4. Operations on Finite Languages4.1. Boolean Operations and CatenationThe situation for �nite languages is easier sine essentially the struture of theorresponding NFAs is simpler. When we are onerned with �nite languages overarbitrary alphabets we may assume without loss of generality that minimal NFAsnot aepting the empty word have only one aepting state. Sine they do notontain any yles they do ontain at least one aepting (sink) state for whih the11



transition funtion is not de�ned. Now a given minimal NFA with more than oneaepting state is modi�ed suh that a sink state beomes the only aepting state.To this end simply the transition funtion has to be extended. If the �nite languageontains the empty word, then in addition the initial state is a seond aeptingone.For upper bounds in the �nite deterministi ase see [6℄. Here the state om-plexity of the union an be redued by three states ompared with the generalase.Theorem 11 For any integers m;n � 2 let A be an m-state NFA and B be ann-state NFA. If L(A) and L(B) are �nite, then m+ n� 2 states are suÆient andneessary in the worst ase for an NFA C to aept the language L(A) [ L(B).Proof. We an adapt the proof of Theorem 1 as follows. Sine NFAs for �nitelanguages do not ontain any yles, for the onstrution of the NFA C we do notneed a new initial state (this saves one state). Moreover, we an merge both initialstates (this saves the seond one) and both aepting sink states (this saves thethird one). Now the onstrution of C is straightforward.The �nite languages famg and fbng are witnesses for the neessity of the numberof states for the union in the worst ase. An NFA that aepts the language famgneeds at leastm+1 states. By the same argumentation as in the proof of Theorem 1and merged initial and sink states we obtain at least (m + 1) + (n + 1) � 2 statesfor an NFA that aepts famg [ fbng. 2In ase of �nite language onatenations one state an be saved.Theorem 12 For any integers m;n � 1 let A be an m-state NFA and B be ann-state NFA. If L(A) and L(B) are �nite, then m+ n� 1 states are suÆient andneessary in the worst ase for an NFA to aept the language L(A)L(B).Proof. Sine for �nite languagesA and B must not ontain any yles the initialstate of B is not reahable, after the onstrution of Theorem 7 it an be deletedwhat yields an upper bound of m+ n� 1 states.As witnesses for the tightness onsider the languages fam�1g and fbn�1g. Theyare aepted bym-state resp. n-state NFAs. Clearly, any NFA for the onatenationneeds at least m+ n� 1 states. 2Now we turn to operations on �nite unary languages. In [20℄ it is stated thatevery �nite unary n-state NFA language is aeptable by some omplete determin-isti �nite automaton with at most n + 1 states. A little bit more sophistiated,one observes that the minimum NFA for a �nite unary language L has n+1 statesif the longest word in L is of length n. Otherwise the NFA would run through ayle when aepting an and, thus, L would be in�nite. Now we an always on-strut a minimum NFA A = hS; fag; Æ; s0; F i for L as follows: S = fs0; s1; : : : ; sng,Æ(si; a) = fsi+1g for 0 � i � n� 1, and F = fsi j ai 2 Lg.From the onstrution it follows onversely that a minimum (n+1)-state NFA fora non-empty �nite unary language aepts the input an. An immediate onsequeneis that we have only to onsider the longest words in the languages in order to obtainthe state omplexity of operations that preserve the �niteness.12



Theorem 13 For any integers m;n � 1 let A be a unary m-state NFA and Bbe a unary n-state NFA. If L(A) and L(B) are �nite, then max(m;n), min(m;n)respetively m + n � 1 states are suÆient and neessary in the worst ase for anNFA to aept the language L(A) [ L(B), L(A) \ L(B) respetively L(A)L(B).The situation for the omplementation of �nite languages over an `-letter alpha-bet, ` � 2, is quite di�erent from the general ase, sine the upper bound of thetransformation to a deterministi �nite automaton is di�erent. In [20℄ it has beenshown that O(` nlog2 `+1 ) states are an upper bound for deterministi �nite automataaepting a �nite n-state NFA language.Corollary 3 For any integers `; n > 1 the omplement of a �nite n-state NFAlanguage over an `-letter alphabet is aepted by an O(` nlog2 `+1 )-state NFA.Note, that for ` = 2 the upper bound is O(2n2 ). A slight modi�ation of theproof of Theorem 5 yields:Theorem 14 For any integers ` > 1 and n > 2 there exists a �nite n-state NFAlanguage L over an `-letter alphabet suh that any NFA that aepts the omplementof L needs at least 
(` n2�log2 ` ) states.Proof. For ` > 1 let A = fa1; : : : ; a`g be an alphabet. Let k � 0 be an integer.A �nite language Lk is de�ned by Aja1Aky, where 0 � j � k and y 2 A n fa1g.The NFA depited in Figure 3 aepts Lk with 2k + 3 states.0 1 2 � � � k 2k + 2
k + 1 k + 2 � � � 2k 2k + 1

start A A A Aa1 a1 a1 a1A A A A A n fa1gFig. 3. A (2k + 3)-state NFA aepting Lk of Theorem 14.An NFA B for the omplement works similar to the orresponding NFA in theproof of Theorem 5. It need not remember k+1 input symbols exatly, but whethera symbol has been a1 or not. Sine previously we argued with words of �nite lengthsit follows immediately that B needs at least 2k+1 states. Additionally the length ofthe pre�x Aj has to be traked. For this purpose the state set has to be doubledsuh that we have a lower bound of 2k+2 states. Transforming 2 = `log` 2 = ` 1log2 ` ,for n = 2k + 4 > 2k + 3 we obtain the lower bound ` k+2log2 ` 2 
(` n2�log2 ` ). 2The omplementation applied to �nite languages yield in�nite languages. So ingeneral for the lower bounds we annot argue with the simple hain struture asbefore.Theorem 15 For any integer n � 1 let A be an n-state NFA. If L(A) is �nite,then n + 1 states are suÆient and neessary in the worst ase for an NFA C toaept the omplement of L(A).Proof. Without loss of generality we may assume that A has the simple hainstruture with states from s0 to sn�1 as mentioned before. By interhanging a-epting and non-aepting states we obtain an NFA that proesses all inputs up13



to a length n � 1 as required. But all longer words ak, k � n, are belonging tothe omplement of L(A). So it suÆes to add a new aepting state sn and twotransitions from sn�1 to sn and from sn to sn, in order to omplete the onstrutionof C.The tightness of the bound an be seen for the n-state NFA language L = fak j0 � k � n� 1g. Sine an is the shortest word belonging to the omplement of L itfollows that C has at least n+ 1 states. 24.2. Kleene Operations and ReversalThe state omplexity for the iterations in the �nite language ase is as for in�nitelanguages if the iteration is �-free. If not the osts are redued by two states. Thefollowing result is for both unary and arbitrary languages.Theorem 16 For any integer n > 1 let A be a unary or non-unary n-state NFA.If L(A) is �nite, then n� 1 resp. n states are suÆient and neessary in the worstase for an NFA to aept the language L(A)� resp. L(A)+.Proof. For the upper bounds we an adapt the onstrution of Theorem 9. Theaepting states are onneted to the states following the initial state. That is allfor �-free iterations.For iterations we have to provide aeptane of the empty word. The followingtwo observations let us save two states ompared with in�nite languages. First, theinitial state is never reahed again after initial time. Seond, sine the underlyinglanguage is �nite and the aepting automaton is redued there must exist an a-epting state sf for whih the state transition is not de�ned. We an take sf as newinitial state and delete the old initial state what altogether leads to an (n�1)-stateNFA for the iteration.The bound for the �-free iteration is reahed for the language L = fan�1gwhih requires n states. For the aeptane of L+ = fan�1g+ at least n states areneessary.The bound for the iteration is reahed for the language L = fang that requiresn+ 1 states. Clearly, in order to aept fang� at least n states are neessary. 2A proof of a tight bound for the reversal of �nite languages an be found in [5℄. Itis of order O(2n2 ) for a two-letter alphabet. From the following eÆient bounds forNFAs it follows one more that nondeterminism is a powerful onept. Moreover,the fat that NFAs for �nite languages do not have any yle leads again to thepossibility of saving one state ompared with the in�nite ase.Theorem 17 For any integer n � 1 let A be an n-state NFA. If L(A) is �nite,then n states are suÆient and neessary in the worst ase for an NFA to aeptthe language L(A)R.Proof. Assume without loss of generality that A has only one aepting sinkstate. By the onstrution of the proof of Theorem 10 we obtain an (n + 1)-stateNFA that has an unreahable state. It is the unique former aepting sink state.The bound follows if the state is deleted.Let for n � 1 the language Ln de�ned to be fa; bgn�1. Trivially, Ln is aeptedby an n-state NFA. Sine Ln = LRn the assertion follows. 214
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