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riptional 
omplexity of operations on �nite and in�nite reg-ular languages over unary and arbitrary alphabets. The languages are represented bynondeterministi
 �nite automata (NFA). In parti
ular, we 
onsider Boolean operations,
atenation operations { 
on
atenation, iteration, �-free iteration { and the reversal. Mostof the shown bounds are tight in the exa
t number of states, i.e. the number is suÆ
ientand ne
essary in the worst 
ase. Otherwise tight bounds in the order of magnitude areshown.Keywords: state 
omplexity, language operations, nondeterministi
 �nite automata.1. Introdu
tionFinite automata are used in several appli
ations and implementations in softwareengineering, programming languages and other pra
ti
al areas in 
omputer s
ien
e.They are one of the �rst and most intensely investigated 
omputational models.Nevertheless, some 
hallenging problems of �nite automata are still open. An im-portant example is the question how many states are suÆ
ient and ne
essary to sim-ulate two-way nondeterministi
 �nite automata with two-way deterministi
 �niteautomata. The problem has been raised in [19℄ and partially solved in [22℄. A lowerbound and an interesting 
onne
tion with the open problem whether DLOGSPACEequals NLOGSPACE or not is given in [1℄.Sin
e regular languages have many representations in the world of �nite au-tomata it is natural to investigate the su

in
tness of their representation by di�er-1



ent types of automata in order to optimize the spa
e requirements. It is well knownthat nondeterministi
 �nite automata (NFA) 
an o�er exponential saving in spa
e
ompared with deterministi
 �nite automata (DFA), but the problem to 
onvert agiven DFA to an equivalent minimal NFA is PSPACE-
omplete [10℄. Sin
e mini-mization of NFAs is also PSPACE-
omplete, 
onversions from nondeterministi
 todeterministi
 variants are of parti
ular interest. Con
erning the number of statesasymptoti
ally tight bounds are O(nn) for the two-way DFA to one-way DFA 
on-version, O(2n2) for the two-way NFA to one-way DFA 
onversion, and 2n for theone-way NFA to one-way DFA 
onversion, for example. For �nite languages over ak-letter alphabet the NFA to DFA 
onversion has been solved in [20℄ with a tightbound of O(k nlog2 k+1 ). A valuable sour
e for further results and referen
es is [3℄.Related to these questions are the 
osts (in terms of states) of operations onregular languages with regard to their representing devi
es. For example, 
onvert-ing a given NFA to an equivalent DFA gives an upper bound for the NFA state
omplexity of 
omplementation. In re
ent years results for many operations havebeen obtained. DFAs state-of-the-art surveys 
an be found in [26, 27℄.When 
ertain problems are 
omputationally hard in general, a natural question
on
erns simpler versions. To this regard promising resear
h has been done forunary languages. It turned out that this parti
ular 
ase is essentially di�erent fromthe general 
ase. For example, the minimization of NFAs be
omes NP-
ompleteinstead of PSPACE-
omplete [9, 23℄. The problem of evaluating the 
osts of unaryautomata simulations has been raised in [22℄. In [7℄ it has been shown that theunary NFA to DFA 
onversion takes e�(pn�ln(n)) states, the NFA to two-way DFA
onversion has been solved with a bound of O(n2) states, and the 
osts of the unarytwo-way to one-way DFA 
onversion redu
es to e�(pn�ln(n)). Several more results
an be found in [14, 15℄.State 
omplexity results 
on
erning operations on unary regular languages rep-resented by DFAs are 
overed by the surveys [26, 27℄. Estimations of the averagestate 
omplexity are shown in [17℄.Here we investigate the 
osts of operations on �nite and in�nite regular languagesover unary and arbitrary alphabets represented by NFAs. In parti
ular, we 
onsiderBoolean operations, 
atenation operations and the reversal. Most of the bounds aretight in the exa
t number of states, i.e. the number is suÆ
ient and ne
essary inthe worst 
ase. Otherwise tight bounds in the order of magnitude are shown. Thete
hni
al depth of our results varies from immediate to more subtle extensions toprevious work. Indeed the te
hnique to prove minimality for DFAs is not dire
tlyappli
able to the 
ase of NFAs. Therefore, we mostly have to start from s
rat
h orto use 
ounting arguments to prove our results on NFA minimality with respe
t tothe number of states.In the next se
tion we de�ne the basi
 notions and present a preliminary re-sult. Se
tion 3 is devoted to the study of in�nite languages. Operations on NFAsa

epting �nite languages are 
onsidered in Se
tion 4.
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2. PreliminariesWe denote the powerset of a set S by 2S. The empty word is denoted by �,the reversal of a word w by wR, and for the length of w we write jwj. Forthe number of o

urren
es of a symbol a in w we use the notation #a(w). Byg
d(x1; : : : ; xk) we denote the greatest 
ommon divisor of the integers x1; : : : ; xk,and by l
m(x1; : : : ; xn) their least 
ommon multiple. If two numbers x and y arerelatively prime (i.e. g
d(x; y) = 1) we write x ? y.A nondeterministi
 �nite automaton is a system A = hS;A; Æ; s0; F i, where Sis the �nite set of internal states, A is the �nite set of input symbols, s0 2 S is theinitial state, F � S is the set of a

epting states, and Æ : S�A! 2S is the transitionfun
tion. The set of reje
ting states is impli
itly given by the partitioning, i.e. SnF .An NFA is 
alled unary if its set of input symbols is a singleton. In this 
asewe use A = fag throughout the paper. If not otherwise stated we assume thatthe NFAs are always redu
ed. This means that there are no unrea
hable statesand that from any state an a

epting state 
an be rea
hed. An NFA is said to beminimal if its number of states is minimal with respe
t to the a

epted language.Sin
e every n-state NFA with �-transitions 
an be transformed to an equivalent n-state NFA without �-transitions [8℄ for state 
omplexity issues there is no di�eren
ebetween the absen
e and presen
e of �-transitions. For 
onvenien
e, we 
onsiderNFAs without �-transitions only.As usual the transition fun
tion Æ is extended to a fun
tion � : S �A� ! 2Sre
e
ting sequen
es of inputs: �(s; �) = fsg and �(s; wa) = Ss02�(s;w) Æ(s0; a) fors 2 S, a 2 A, and w 2 A�. In the sequel we always denote the extension of a given Æby �.Let A = hS;A; Æ; s0; F i be an NFA, then a word w 2 A� is a

epted by A if�(s0; w) \ F 6= ;. The language a

epted by A is L(A) = fw 2 A� j w is a

eptedby Ag.The following preliminary result is a key tool in the following se
tions, and 
anbe proved by a simple pumping argument.Lemma 1 Let n � 1 be an arbitrary integer. Then n + 1 resp. n states are suf-�
ient and ne
essary in the worst 
ase for an NFA to a

ept the language fang+resp. fang�.3. Operations on In�nite Languages3.1. Boolean OperationsWe start our investigations with Boolean operations. In the 
ase when the �niteautomaton is deterministi
 it is well-known that in the worst 
ase the Booleanoperations union, interse
tion and 
omplementation have a state 
omplexity ofm�n,m � n and m, respe
tively. However, the state 
omplexity of NFA operations isessentially di�erent. At �rst we 
onsider the union for arbitrary alphabets.3



Theorem 1 For any integers m;n � 1 let A be an m-state and B be an n-stateNFA. Then m + n+ 1 states are suÆ
ient and ne
essary in the worst 
ase for anNFA to a

ept the language L(A) [ L(B).Proof. In order to 
onstru
t an (m + n + 1)-state NFA for the languageL(A) [ L(B) we simply use a new initial state and 
onne
t it to the states of Aand B that are rea
hed after the �rst state transition.Now we are going to show that m+n+1 states are ne
essary in the worst 
ase.Let A be an m-state NFA that a

epts the language famg� and B an n-state NFAthat a

epts fbng�.Let C be an NFA for the language L(A)[L(B). In order to reje
t the inputs ai,1 � i � m � 1, but to a

ept the input am the NFA C needs at least m � 1 non-a

epting states s1; : : : ; sm�1 from ea
h of whi
h an a

epting state is rea
hable.Similarly, C needs at least n � 1 states s01; : : : ; s0n�1 for pro
essing the inputs bi,1 � i � n� 1.Denote by Pa resp. Pb the sets of states that are rea
hable by inputs of theform aj resp. bj for j � 1. None of the a

epting states may be rea
hable from thestates in Pa \ Pb. Otherwise words of the form ajbk or bjak would be a

epted.It follows that neither the si nor the s0i may belong to the interse
tion Pa \ Pb.But, trivially, they do belong to Pa resp. to Pb. Now 
onsider all inputs famg+.There must exist an a

epting state sm 2 Pa whi
h is rea
hed for in�nitely many ofthem. If one of the states s1; : : : ; sm�1 is rea
hable from sm, then sm may not belongto Pa \ Pb be
ause otherwise inputs of the form ajbk would be a

epted. If noneof the states s1; : : : ; sm�1 is rea
hable from sm, then there must exist another statesm+1 2 Pa whi
h is di�erent from s1; : : : ; sm�1. Otherwise there must exist i0 � 1su
h that C is in some state s 2 fs1; : : : ; sm�1g after pro
essing the input ai0�m.But from state s an a

epting state is rea
hable by pro
essing input aj0 for some1 � j0 � m� 1. This implies that ai0�m+j0 would be a

epted. The same holds forstates s0n 2 Pb and s0n+1 2 Pb for the inputs fbng+. It follows either sm (s0n) doesnot belong to Pa \ Pb or there exists another state sm+1 (s0n+1). In any 
ase thereexist at least two states di�erent from s1; : : : ; sm�1; s01; : : : ; s0n�1.Finally, the initial state s0 must be an a

epting state sin
e � 2 L(A) [ L(B),but s0 
annot be part of a loop sin
e otherwise inputs of the form ajbk or bjakwould be a

epted. Altogether, Pa [Pb must 
ontain at least m+n di�erent statesthat are not equal to the initial state. 2Now we turn to the union of unary NFAs. Due to the la
k of suited toolsand methods su
h as unique minimization et
. the proof of the lower bound refersspe
i�
ally to the stru
tures of the witness automata.Theorem 2 For any integers m;n � 1 let A be a unary m-state and B be a unaryn-state NFA. Then m+n+1 states are suÆ
ient for an NFA to a

ept the languageL(A) [ L(B). If neither m is a multiple of n nor n is a multiple of m, then thereexist a unary m-state NFA A and a unary n-state NFA B (with the same inputsymbol) su
h that any NFA a

epting L(A) [ L(B) needs at least m+ n+ 1 states.Proof. The upper bound follows immediately from the 
onstru
tion given inthe proof of Theorem 1. In order to prove the lower bound without loss of generality4



we may assume m > n. Sin
e m is not a multiple of n we obtain n > g
d(m;n).Let A be an m-state NFA that a

epts the language famg� and B be an n-stateNFA that a

epts fang�. Let C be an NFA with initial state s0 for the languageL(A) [L(B). In order to prove that C has at least m+ n+ 1 states assume that ithas at most m+ n states.At �rst we 
onsider the input am+n and show that it does not belong to L(C).Sin
e 2m > m + n > m the input does not belong to L(A). If it would belongto L(B), then there were a 
onstant 
 > 2 su
h that m + n = 
 � n. Therefore,m = (
�1)�n and, thus, m would be a multiple of n what 
ontradi
ts the assumptionof the theorem.The next step is to show that ea
h of the states s0 ` s1 ` � � � ` sm�1 ` smwhi
h are passed through when a

epting the input am either is not in a 
y
le oris in a 
y
le of length m. To this end assume 
ontrarily some state si is in a 
y
leof length x 6= m, i.e. si is rea
hable from si by pro
essing x input symbols. Due tothe number of states we may assume x � m+ n.By running several times through the 
y
le am+x, am+2x and am+3x are a
-
epted.We observe m+x is not a multiple of m. If it is not a multiple of n we are done.Otherwise, x 
annot be a multiple of n sin
e m is not a multiple of n. Moreover,now we observe m+2x is not a multiple of n sin
e m+x is and x is not. If m+2xis not a multiple of of m we are done.Otherwise we 
onsiderm+3x whi
h now 
annot be a multiple of m sin
e m+2xis and x is not. If m+ 3x is not a multiple of n we are done.Otherwise we summarize the situation: m + 3x and m + x are multiples of nwhi
h implies 2x is a multiple of n. Sin
e m + 2x is a multiple of m we 
on
ludethat 2x is a multiple of m, too. Moreover, x is neither a multiple of m nor of n.From x � m + n < 2m =) 2x < 4m we derive 2x 2 fm; 3mg. If 2x = m,then m is a multiple of n, a 
ontradi
tion. So let 2x = 3m. Sin
e 2x is a multipleof n there exists a 
onstant 
 2 N su
h that 3m = 
n. From x � m + n follows32m � m+ n. Therefore 12m � n whi
h together with n < m implies 
 2 f4; 5; 6g.It holds 3
m = n. On the other hand, m+x = m+ 32m = 52m is a multiple of n.Therefore 52= 3
 = 5�
6 must belong to N for 
 2 f4; 5; 6g. Thus 
 = 6, but in this 
ase12m = n =) m = 2n and m is a multiple of n what 
ontradi
ts the assumption ofthe theorem.In order to 
omplete the proof of the theorem now we 
ome ba
k to the sequen
eof states s0 ` s1 ` � � � ` sm�1 ` sm passed through when a

epting the input am.Correspondingly let s0 ` s01 ` � � � ` s0n�1 ` s0n be an a

epting sequen
e for an.Sin
e L(C) is an in�nite language C must 
ontain some 
y
le. If a si froms0; : : : ; sm is in a 
y
le, then its length is m states. State si may not be in thesequen
e s0 ` s01 ` � � � ` s0n be
ause in this 
ase am+n would be a

epted. In orderto a

ept an but to reje
t a1; : : : ; an�1 in any 
ase, the states s0; s01; : : : ; s0n must bepairwise di�erent. Altogether this results in at least n+ 1 +m states.If on the other hand a sj from s0; s01; : : : ; s0n is in a 
y
le, then it may not be ins0; s1; : : : ; sm. Otherwise the 
y
le length must be m and am+n would be a

epted.5



Con
luding as before this 
ase results in at least m+ n+ 1 states, too.Finally, if neither a state from s0; s1; : : : ; sm nor a state from s01; : : : ; s0n is in a
y
le, then obviously s0; : : : ; sm must be pairwise di�erent, but all states s0j may ormay not appear in s0; : : : ; sm. This takes at least m+ 1 states. So there remain atmost n�1 states for a 
y
le. Therefore, the 
y
le length x is at most n�1. Now we
onsider an a

epting 
omputation for the input amn. It must have run through the
y
le. Running on
e more through the 
y
le leads to a

eptan
e of amn+x whi
hdoes not belong to L(C).So in any 
ase we obtain a 
ontradi
tion to the assumption that C has at mostm+ n states. 2Next we are going to prove a tight bound for the interse
tion.Theorem 3 For any integers m;n � 1 let A be an m-state and B be an n-stateNFA. Then m � n states are suÆ
ient and ne
essary in the worst 
ase for an NFAto a

ept the language L(A) \ L(B).Proof. Clearly, the NFA de�ned by the 
ross-produ
t of A and B a

epts thelanguage L(A) \ L(B) with m � n states.As witness languages for the fa
t that the bound is rea
hed in the worst 
asede�ne the k-state language Lk = fw 2 fa; bg� j #a(w) � 0 (mod k)g for all k 2 N.Identi
ally, L0k is de�ned to be fw 2 fa; bg� j #b(w) � 0 (mod k)g. It remainsto show that an NFA C that a

epts Lm \ L0n for m;n � 1, needs at least m � nstates.Consider the input words aibj and ai0bj0 with 0 � i; i0 � m� 1 and 0 � j; j0 �n � 1, and assume C = hS;A; Æ; s0; F i has less than m � n states. Sin
e there arem � n su
h words, for at least two of them the interse
tionfs 2 S j s 2 �(s0; aibj) ^ �(s; am�ibn�j) \ F 6= ;g \�(s0; ai0bj0)is not empty. This implies ai0bj0am�ibn�j 2 Lm \ L0n. Sin
e either i 6= i0 or j 6= j0it follows i0 +m� i 6� 0 (mod m) or j0 + n� j 6� 0 (mod n), a 
ontradi
tion. 2In the unary 
ase the lower bound requires m ? n. In [18℄ unary languages arestudied whose deterministi
 state 
omplexities are not relatively prime.Theorem 4 For any integers m;n � 1 let A be a unary m-state and B be a unaryn-state NFA. Then m � n states are suÆ
ient for an NFA to a

ept the languageL(A) \ L(B). If m ? n, then there exist a unary m-state NFA A and a unary n-state NFA B (with the same input symbol) su
h that any NFA a

epting L(A)\L(B)needs at least m � n states.Proof. As witness languages 
onsider L(A) = famg� and L(B) = fang�. Sin
em ? n the interse
tion L(A)\L(B) is fam�ng�. Due to Lemma 1 any NFA a

eptingthe interse
tion needs at least m � n states. 2The 
omplementation of NFA languages is an expensive task at any rate. It iswell known [16℄ that 2n is the tight upper bound on the number of states ne
essaryfor a deterministi
 �nite automaton to a

ept an (in�nite) n-state NFA language.Sin
e the 
omplementation operation on deterministi
 �nite automata neither in-
reases nor de
reases the number of states (simply ex
hange a

epting and reje
ting6



states) we obtain an upper bound for the state 
omplexity of the 
omplementationon NFAs.Corollary 1 For any integer n � 1 the 
omplement of an n-state NFA language isa

epted by a 2n-state NFA.Unfortunately, this expensive upper bound is tight. Birget [2, 4℄ showed foran input alphabet of size four that, for any integer n � 1, there exists an n-stateNFA A su
h that any NFA that a

epts the 
omplement of L(A) needs at least 2nstates. The question whether we 
an a
hieve a tight bound over a smaller alphabetis 
urrently open. But using a two-letter alphabet we 
an prove a tight bound inthe order of magnitude.Theorem 5 For any integer n > 2 there exists an n-state NFA A su
h that anyNFA that a

epts the 
omplement of L(A) needs at least 2n�2 states.Proof. For k � 0 let Lk = fa; bg�afa; bgkbfa; bg�. It is 
lear that Lk is a

eptedby a (k+3)-state NFA. Intuitively, A has to guess the position of an input symbol awhi
h is followed by k arbitrary input symbols and a symbol b.In order to a

ept the 
omplement of Lk an NFA B = hS0; fa; bg; Æ0; s00; F 0i has toverify that the input has no substring afa; bgkb. Therefore, after reading a symbol athe NFA B must be able to remember the next k input symbols. Altogether thisneeds 2k+1 states (
f. Figure 1).More formally, we 
onsider the input words of length k+1. Observe that for ea
hof these words w the 
on
atenation ww belongs to the 
omplement of Lk. Let S(w)be fs 2 S0 j s 2 �0(s00; w) ^ �0(s; w) \ F 0 6= ;g, and v; v0 be two arbitrary di�erentwords from fa; bgk+1. Assume S(v)\ S(v0) 6= ;. It follows �0(s00; vv0)\ F 0 6= ; and�0(s00; v0v) \ F 0 6= ; and, therefore, vv0 and v0v are a

epted by B.But this is a 
ontradi
tion sin
e there exists a position 1 � p � k+1 at whi
h vhas a symbol a and v0 a symbol b or vi
e versa. Thus either vv0 or v0v is of theform x1 � � �xp�1axp+1 � � �xk+1y1 � � � yp�1byp+1 � � � yk+1 and, therefore, belongs to Lk.From the 
ontradi
tion follows S(v) \ S(v0) = ;. Sin
e there exist 2k+1 words infa; bgk+1 the state set S0 has to 
ontain at least 2k+1 states. 2abbab abab a aa aabaaa
start a b baa

a a
a

a ba
b

Fig. 1. A minimal NFA a

epting the 
omplement of L2 of Theorem 5.For 
omplementation of unary NFAs a 
ru
ial role is played by the fun
tionF (n) = maxfl
m(x1; : : : ; xk) j x1; : : : ; xk 2 N ^ x1 + � � �+ xk = ng whi
h gives the7



maximal order of the 
y
li
 subgroups of the symmetri
 group of n symbols. Forexample, the �rst seven values of F are F (1) = 1, F (2) = 2, F (3) = 3, F (4) = 4,F (5) = 6, F (6) = 6, F (7) = 12 due to the sums 1 = 1, 2 = 2, 3 = 3, 4 = 4,5 = 2 + 3, 6 = 1 + 2 + 3 (or 6 = 6) and 7 = 3 + 4.Sin
e F depends on the irregular distribution of the prime numbers we 
annotexpe
t to express F (n) expli
itly by n. The fun
tion itself has been investigated byLandau [11, 12℄ who has proved the asymptoti
 growth rate limn!1 ln(F (n))pn�ln(n) = 1. Abound immediately derived from Landau's result is: ln(F (n)) 2 �(pn � ln(n)). Forour purposes the implied rough estimation F (n) 2 e�(pn�ln(n)) suÆ
es. Shallit andEllul [21℄ pointed out that the bound F (n) 2 O(epn�ln(n)) whi
h is 
laimed in [7℄is not 
orre
t. They dedu
ed �ner bounds from a result in [24℄ where the 
urrentlybest known approximation for F has been proved. Nevertheless, in [7℄ it has beenshown that for any unary n-state NFA there exists an equivalent O(F (n))-statedeterministi
 �nite automaton.Corollary 2 For any integer n � 1 the 
omplement of a unary n-state NFA lan-guage is a

epted by an O(F (n))-state NFA.As for the regular 
ase the expensive upper bound is tight in the order of mag-nitude.Theorem 6 For any integer n > 1 there exists a unary n-state NFA A su
h thatany NFA a

epting the 
omplement of L(A) needs at least 
(F (n)) states.Proof. Let x1; : : : ; xk 2 N be integers su
h that x1 + � � � + xk = n � 1 andl
m(x1; : : : ; xk) = F (n � 1). Now de�ne for 1 � i � k the languages Li = faxig�and 
onsider the union of their 
omplements: L = L1 [ L2 [ � � � [ Lk.Sin
e Li is a

eptable by a xi-state NFA Ai, the language L is a

eptableby an NFA A with at most 1 + x1 + � � � + xk = n states. To this end we in-trodu
e a new initial state and 
onne
t it nondeterministi
ally to the states ofthe Ai that are rea
hed after their �rst state transition. The 
omplement of L isL = fal
m(x1;:::;xk)g�. Therefore, the 
omplement of the n-state language L needsl
m(x1; : : : ; xk) = F (n � 1) states. Sin
e F (n) is of order e�(pn�ln(n)) it followsF (n� 1) is of order 
(F (n)). 23.2. Catenation OperationsNow we turn to the 
atenation operations. In parti
ular, tight bounds for 
on-
atenation, iteration and �-free iteration will be shown. Roughly speaking, in termsof state 
omplexity these are eÆ
ient operations for NFAs. Again, this is essentiallydi�erent when deterministi
 �nite automata 
ome to play. For example, for arbi-trary alphabets in [28℄ a bound of (2m � 1) � 2n�1 states has been shown for theDFA-
on
atenation, and in [25℄ a bound of 2n�1 + 2n�2 states for the iteration.Theorem 7 For any integers m;n � 1 let A be an m-state NFA and B be an n-state NFA. Then m+n states are suÆ
ient and ne
essary in the worst 
ase for anNFA to a

ept the language L(A)L(B). 8



Proof. The upper bound is due to the observation that in C one has simply to
onne
t the a

epting states in A with the states in B that follow the initial state.The upper bound is rea
hed for the 
on
atenation of the languages L(A) =famg� and L(B) = fbng�. The remaining proof follows the idea of the proof ofTheorem 1. 2In the unary 
ase the lower bound of the 
on
atenation misses the upper boundby one state. It is 
urrently an open question how to 
lose the gap by more sophis-ti
ated 
onstru
tions or witness languages.Theorem 8 For any integers m;n > 1 let A be a unary m-state NFA and B bea unary n-state NFA. Then m + n states are suÆ
ient for an NFA to a

ept thelanguage L(A)L(B). Moreover, there exist a unary m-state NFA A and a unaryn-state NFA B su
h that any NFA C a

epting L(A)L(B) needs at least m+ n� 1states.Proof. The upper bound has been shown in the proof of Theorem 7.Let L(A) be the m-state language fak j k � m� 1 (mod m)g and L(B) be then-state language fak j k � n� 1 (mod n)g.The shortest word in L(A) respe
tively L(B) is am�1 respe
tively an�1. There-fore the shortest word in L(C) is am+n�2. Assume 
ontrarily to the assertion C hasat most m+ n� 2 states. Let C a

ept the input am+n�2 by running through thestate sequen
e s0 ` s1 ` � � � ` sm+n�2 where all states ex
ept sm+n�2 are non-a

epting. Due to the assumption at least one of the non-a

epting states si mustappear at least twi
e in the sequen
e. This implies that there exists an a

epting
omputation that does not run through the 
y
le si ` � � � ` si. So an input whoselength is at most m+ n� 3 would be a

epted, a 
ontradi
tion. 2The 
onstru
tions yielding the upper bounds for the iteration and �-free iterationare similar. The trivial di�eren
e between both operations 
on
erns the empty wordonly. Moreover, the di�eren
e does not appear for languages 
ontaining the emptyword. Nevertheless, in the worst 
ase the di�eren
e 
osts one state.Theorem 9 For any integer n > 2 let A be a unary or non-unary n-state NFA.Then n+1 resp. n states are suÆ
ient and ne
essary in the worst 
ase for an NFAto a

ept the language L(A)� resp. L(A)+.Proof. Let A = hSA; AA; ÆA; s0;A; FAi be an n-state NFA. Then the transitionfun
tion of an n-state NFA C = hS;A; Æ; s0; F i that a

epts the language L(A)+is for s 2 S and a 2 A de�ned as follows: Æ(s; a) = ÆA(s; a) if s =2 FA, andÆ(s; a) = ÆA(s; a)[ ÆA(s0;A; a) if s 2 FA. The other 
omponents remain un
hanged,i.e., S = SA, s0 = s0;A, and F = FA.If the empty word belongs to L(A) then the 
onstru
tion works �ne for L(A)�also. Otherwise an additional state has to be added: Let s00 =2 SA and de�neS = SA [ fs00g, s0 = s00, F = FA [ fs00g, and for s 2 S and a 2 A: Æ(s; a) = ÆA(s; a)if s =2 FA [ fs00g, Æ(s; a) = ÆA(s; a) [ ÆA(s0;A; a) if s 2 FA, and Æ(s; a) = ÆA(s0;A; a)if s = s00.In order to prove the tightness of the bounds for any n > 2 
onsider the n-statelanguage L = fak j k � n � 1 (mod n)g. At �rst we show that n + 1 states arene
essary for C = hS; fag; Æ; s0; F i to a

ept L(A)�.9



Contrarily, assume C has at most n states. We 
onsider words of the form ai with0 � i. The shortest four words belonging to L(A)� are �, an�1, a2n�2, and a2n�1. Itfollows s0 2 F . Moreover, for an�1 there must exist a path s0 ` s1 ` � � � ` sn�2 ` snwhere sn 2 F and s1; : : : ; sn�2 are di�erent non-a

epting states. Thus, C has atleast n� 2 non-a

epting states.Assume for a moment F to be a singleton. Then s0 = sn and for 1 � i � n� 3the state s0 must not belong to Æ(si; a). Pro
essing the input a2n�1 the NFA 
annotenter s0 after 2n� 2 time steps. Sin
e a =2 L(A)� the state s0 must not belong toÆ(s0; a).On the other hand, C 
annot enter one of the states s1; : : : ; sn�3 sin
e there isno transition to s0. We 
on
lude that C is either in state sn�2 or in an additionalnon-a

epting state sn�1. Sin
e there is no transition su
h that sn�2 2 Æ(sn�2; a)in both 
ases there exists a path of length n from s0 to s0. But an does not belongto L(A)� and we have a 
ontradi
tion to the assumption jF j = 1.Due to our assumption jSj � n we now have jF j = 2 and jSj�jF j = n�2. Let usre
all the a

epting sequen
e of states for the input an�1: s0 ` s1 ` � � � ` sn�2 ` sn.Both s0 and sn must be a

epting states. Assume sn 6= s0. Sin
e a2n�2 belongsto L(A)� there must be a possible transition s0 ` s1 or sn ` s1. Thus, a2n�2 isa

epted by sn. In order to a

ept a2n�1 there must be a 
orresponding transitionfrom sn to sn or from sn to s0. In both 
ases the input an would be a

epted.Therefore sn = s0.By the same argumentation the ne
essity of a transition for the input symbol afrom s0 to s0 or from s0 to sn follows. This implies that a is a

epted. From the
ontradi
tion follows jSj > n.As an immediate 
onsequen
e we obtain the tightness of the bound for L(A)+.In this 
ase s0 2 F is not required. Thus, just one a

epting state is ne
essary.In order to prove the result for non-unary NFAs one has simply to ex
hange thewitness language L by fw 2 fa; bg� j #a(w) � n� 1 (mod n)g. 23.3. ReversalThe next operation under 
onsideration is the reversal. The bounds for unaryNFAs are trivial. For general deterministi
 automata one may expe
t that the state
omplexity is linear. But it is not. A tight bound of 2n states for the reversal hasbeen shown in [13℄. From the following eÆ
ient bound for NFAs it follows on
emore that nondeterminism is a powerful 
on
ept.Theorem 10 For any integer n > 3 let A be an n-state NFA. Then n+1 states aresuÆ
ient and ne
essary in the worst 
ase for an NFA to a

ept the language L(A)R.Proof. Basi
ally, the idea is to reverse the dire
tions of the transitions. Thisworks �ne for NFAs whose set of a

epting states is a singleton. In general we are
on
erned with more than one a

epting state and have to add a new initial state.So we obtain an (n+ 1)-state NFA.The language Lk = akfak+1g�(fbg� [ f
g�) for k � 1, may serve as an examplefor the fa
t that the bound is rea
hed. The (k + 3)-state NFA A that a

epts Lkand the (k + 4)-state NFA C that a

epts LRk are depi
ted in Figure 2.10
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b k � 1 � � � 0s b k
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aa a aab
Fig. 2. A (k + 3)-state and a (k + 4)-state NFA a

epting Lk and LRk ofTheorem 10.The ne
essity of k + 4 states 
an be seen as follows. Sin
e a

epted inputs maybegin with an arbitrary number of b's or 
's we need two states sb and s
 to pro
essthem. This 
annot be done by the initial state be
ause the loops would lead toa

eptan
e of words with pre�xes of the form b�
� or 
�b�.Obviously, a loop of k+1 states is needed in order to verify the suÆx fak+1g�ak.If one in this sequen
e would be equal to sb (s
), then it would have a loop for b's(
's) and, hen
e, inputs of the form 
�a�b�ak (b�a�
�ak) would be a

epted. Forsimilar reasons the new initial state 
annot be within a loop. Altogether it followsthat C needs at least k + 4 states what proves the tightness of the bound. 2Table 1. NFA and DFA state 
omplexities for in�nite languages.In�nite LanguagesNFA DFAgeneral unary general unary[ m+ n + 1 m+ n + 1 mn mn� O(2n) e�(pn�ln(n)) n n\ mn mn mn mnR n + 1 n 2n n� m+ n O(m+ n) (2m� 1)2n�1 mn� n + 1 n+ 1 2n�1 + 2n�2 (n� 1)2 + 1+ n n4. Operations on Finite Languages4.1. Boolean Operations and CatenationThe situation for �nite languages is easier sin
e essentially the stru
ture of the
orresponding NFAs is simpler. When we are 
on
erned with �nite languages overarbitrary alphabets we may assume without loss of generality that minimal NFAsnot a

epting the empty word have only one a

epting state. Sin
e they do not
ontain any 
y
les they do 
ontain at least one a

epting (sink) state for whi
h the11



transition fun
tion is not de�ned. Now a given minimal NFA with more than onea

epting state is modi�ed su
h that a sink state be
omes the only a

epting state.To this end simply the transition fun
tion has to be extended. If the �nite language
ontains the empty word, then in addition the initial state is a se
ond a

eptingone.For upper bounds in the �nite deterministi
 
ase see [6℄. Here the state 
om-plexity of the union 
an be redu
ed by three states 
ompared with the general
ase.Theorem 11 For any integers m;n � 2 let A be an m-state NFA and B be ann-state NFA. If L(A) and L(B) are �nite, then m+ n� 2 states are suÆ
ient andne
essary in the worst 
ase for an NFA C to a

ept the language L(A) [ L(B).Proof. We 
an adapt the proof of Theorem 1 as follows. Sin
e NFAs for �nitelanguages do not 
ontain any 
y
les, for the 
onstru
tion of the NFA C we do notneed a new initial state (this saves one state). Moreover, we 
an merge both initialstates (this saves the se
ond one) and both a

epting sink states (this saves thethird one). Now the 
onstru
tion of C is straightforward.The �nite languages famg and fbng are witnesses for the ne
essity of the numberof states for the union in the worst 
ase. An NFA that a

epts the language famgneeds at leastm+1 states. By the same argumentation as in the proof of Theorem 1and merged initial and sink states we obtain at least (m + 1) + (n + 1) � 2 statesfor an NFA that a

epts famg [ fbng. 2In 
ase of �nite language 
on
atenations one state 
an be saved.Theorem 12 For any integers m;n � 1 let A be an m-state NFA and B be ann-state NFA. If L(A) and L(B) are �nite, then m+ n� 1 states are suÆ
ient andne
essary in the worst 
ase for an NFA to a

ept the language L(A)L(B).Proof. Sin
e for �nite languagesA and B must not 
ontain any 
y
les the initialstate of B is not rea
hable, after the 
onstru
tion of Theorem 7 it 
an be deletedwhat yields an upper bound of m+ n� 1 states.As witnesses for the tightness 
onsider the languages fam�1g and fbn�1g. Theyare a

epted bym-state resp. n-state NFAs. Clearly, any NFA for the 
on
atenationneeds at least m+ n� 1 states. 2Now we turn to operations on �nite unary languages. In [20℄ it is stated thatevery �nite unary n-state NFA language is a

eptable by some 
omplete determin-isti
 �nite automaton with at most n + 1 states. A little bit more sophisti
ated,one observes that the minimum NFA for a �nite unary language L has n+1 statesif the longest word in L is of length n. Otherwise the NFA would run through a
y
le when a

epting an and, thus, L would be in�nite. Now we 
an always 
on-stru
t a minimum NFA A = hS; fag; Æ; s0; F i for L as follows: S = fs0; s1; : : : ; sng,Æ(si; a) = fsi+1g for 0 � i � n� 1, and F = fsi j ai 2 Lg.From the 
onstru
tion it follows 
onversely that a minimum (n+1)-state NFA fora non-empty �nite unary language a

epts the input an. An immediate 
onsequen
eis that we have only to 
onsider the longest words in the languages in order to obtainthe state 
omplexity of operations that preserve the �niteness.12



Theorem 13 For any integers m;n � 1 let A be a unary m-state NFA and Bbe a unary n-state NFA. If L(A) and L(B) are �nite, then max(m;n), min(m;n)respe
tively m + n � 1 states are suÆ
ient and ne
essary in the worst 
ase for anNFA to a

ept the language L(A) [ L(B), L(A) \ L(B) respe
tively L(A)L(B).The situation for the 
omplementation of �nite languages over an `-letter alpha-bet, ` � 2, is quite di�erent from the general 
ase, sin
e the upper bound of thetransformation to a deterministi
 �nite automaton is di�erent. In [20℄ it has beenshown that O(` nlog2 `+1 ) states are an upper bound for deterministi
 �nite automataa

epting a �nite n-state NFA language.Corollary 3 For any integers `; n > 1 the 
omplement of a �nite n-state NFAlanguage over an `-letter alphabet is a

epted by an O(` nlog2 `+1 )-state NFA.Note, that for ` = 2 the upper bound is O(2n2 ). A slight modi�
ation of theproof of Theorem 5 yields:Theorem 14 For any integers ` > 1 and n > 2 there exists a �nite n-state NFAlanguage L over an `-letter alphabet su
h that any NFA that a

epts the 
omplementof L needs at least 
(` n2�log2 ` ) states.Proof. For ` > 1 let A = fa1; : : : ; a`g be an alphabet. Let k � 0 be an integer.A �nite language Lk is de�ned by Aja1Aky, where 0 � j � k and y 2 A n fa1g.The NFA depi
ted in Figure 3 a

epts Lk with 2k + 3 states.0 1 2 � � � k 2k + 2
k + 1 k + 2 � � � 2k 2k + 1

start A A A Aa1 a1 a1 a1A A A A A n fa1gFig. 3. A (2k + 3)-state NFA a

epting Lk of Theorem 14.An NFA B for the 
omplement works similar to the 
orresponding NFA in theproof of Theorem 5. It need not remember k+1 input symbols exa
tly, but whethera symbol has been a1 or not. Sin
e previously we argued with words of �nite lengthsit follows immediately that B needs at least 2k+1 states. Additionally the length ofthe pre�x Aj has to be tra
ked. For this purpose the state set has to be doubledsu
h that we have a lower bound of 2k+2 states. Transforming 2 = `log` 2 = ` 1log2 ` ,for n = 2k + 4 > 2k + 3 we obtain the lower bound ` k+2log2 ` 2 
(` n2�log2 ` ). 2The 
omplementation applied to �nite languages yield in�nite languages. So ingeneral for the lower bounds we 
annot argue with the simple 
hain stru
ture asbefore.Theorem 15 For any integer n � 1 let A be an n-state NFA. If L(A) is �nite,then n + 1 states are suÆ
ient and ne
essary in the worst 
ase for an NFA C toa

ept the 
omplement of L(A).Proof. Without loss of generality we may assume that A has the simple 
hainstru
ture with states from s0 to sn�1 as mentioned before. By inter
hanging a
-
epting and non-a

epting states we obtain an NFA that pro
esses all inputs up13



to a length n � 1 as required. But all longer words ak, k � n, are belonging tothe 
omplement of L(A). So it suÆ
es to add a new a

epting state sn and twotransitions from sn�1 to sn and from sn to sn, in order to 
omplete the 
onstru
tionof C.The tightness of the bound 
an be seen for the n-state NFA language L = fak j0 � k � n� 1g. Sin
e an is the shortest word belonging to the 
omplement of L itfollows that C has at least n+ 1 states. 24.2. Kleene Operations and ReversalThe state 
omplexity for the iterations in the �nite language 
ase is as for in�nitelanguages if the iteration is �-free. If not the 
osts are redu
ed by two states. Thefollowing result is for both unary and arbitrary languages.Theorem 16 For any integer n > 1 let A be a unary or non-unary n-state NFA.If L(A) is �nite, then n� 1 resp. n states are suÆ
ient and ne
essary in the worst
ase for an NFA to a

ept the language L(A)� resp. L(A)+.Proof. For the upper bounds we 
an adapt the 
onstru
tion of Theorem 9. Thea

epting states are 
onne
ted to the states following the initial state. That is allfor �-free iterations.For iterations we have to provide a

eptan
e of the empty word. The followingtwo observations let us save two states 
ompared with in�nite languages. First, theinitial state is never rea
hed again after initial time. Se
ond, sin
e the underlyinglanguage is �nite and the a

epting automaton is redu
ed there must exist an a
-
epting state sf for whi
h the state transition is not de�ned. We 
an take sf as newinitial state and delete the old initial state what altogether leads to an (n�1)-stateNFA for the iteration.The bound for the �-free iteration is rea
hed for the language L = fan�1gwhi
h requires n states. For the a

eptan
e of L+ = fan�1g+ at least n states arene
essary.The bound for the iteration is rea
hed for the language L = fang that requiresn+ 1 states. Clearly, in order to a

ept fang� at least n states are ne
essary. 2A proof of a tight bound for the reversal of �nite languages 
an be found in [5℄. Itis of order O(2n2 ) for a two-letter alphabet. From the following eÆ
ient bounds forNFAs it follows on
e more that nondeterminism is a powerful 
on
ept. Moreover,the fa
t that NFAs for �nite languages do not have any 
y
le leads again to thepossibility of saving one state 
ompared with the in�nite 
ase.Theorem 17 For any integer n � 1 let A be an n-state NFA. If L(A) is �nite,then n states are suÆ
ient and ne
essary in the worst 
ase for an NFA to a

eptthe language L(A)R.Proof. Assume without loss of generality that A has only one a

epting sinkstate. By the 
onstru
tion of the proof of Theorem 10 we obtain an (n + 1)-stateNFA that has an unrea
hable state. It is the unique former a

epting sink state.The bound follows if the state is deleted.Let for n � 1 the language Ln de�ned to be fa; bgn�1. Trivially, Ln is a

eptedby an n-state NFA. Sin
e Ln = LRn the assertion follows. 214



The bound for the reversal of �nite NFA languages is in some sense strong. Itis suÆ
ient and rea
hed for all �nite languages.Table 2. NFA and DFA state 
omplexities for �nite languages (` is the size ofthe input alphabet, t is the number of a

epting states of the `left' automaton).Finite LanguagesNFA DFAgeneral unary general unary[ m+ n� 2 maxfm;ng O(mn) maxfm; ng� O(` nlog2 `+1 ) n+ 1 n n\ O(mn) minfm; ng O(mn) minfm;ngR n n O(2n2 ) n� m+ n� 1 m+ n � 1 O(mnt�1 + nt) m+ n� 2� n� 1 n� 1 2n�3 + 2n�4 n2 � 7n + 13+ n nA
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