International Journal of Foundations of Computer Science
© World Scientific Publishing Company

NONDETERMINISTIC DESCRIPTIONAL COMPLEXITY
OF REGULAR LANGUAGES

MARKUS HOLZER

Institut fir Informatik, Technische Universitat Minchen
Boltzmannstrafle 3, D-85748 Garching bei Minchen, Germany
holzer@informatik.tu-muenchen.de

and

MARTIN KUTRIB

Institut fir Informatik, Universitat Giessen
Arndtstraffe 2, D-35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

We investigate the descriptional complexity of operations on finite and infinite reg-
ular languages over unary and arbitrary alphabets. The languages are represented by
nondeterministic finite automata (NFA). In particular, we consider Boolean operations,
catenation operations — concatenation, iteration, A\-free iteration — and the reversal. Most
of the shown bounds are tight in the exact number of states, i.e. the number is sufficient
and necessary in the worst case. Otherwise tight bounds in the order of magnitude are
shown.

Keywords: state complexity, language operations, nondeterministic finite automata.

1. Introduction

Finite automata are used in several applications and implementations in software
engineering, programming languages and other practical areas in computer science.
They are one of the first and most intensely investigated computational models.
Nevertheless, some challenging problems of finite automata are still open. An im-
portant example is the question how many states are sufficient and necessary to sim-
ulate two-way nondeterministic finite automata with two-way deterministic finite
automata. The problem has been raised in [19] and partially solved in [22]. A lower
bound and an interesting connection with the open problem whether DLOGSPACE
equals NLOGSPACE or not is given in [1].

Since regular languages have many representations in the world of finite au-
tomata it is natural to investigate the succinctness of their representation by differ-



ent types of automata in order to optimize the space requirements. It is well known
that nondeterministic finite automata (NFA) can offer exponential saving in space
compared with deterministic finite automata (DFA), but the problem to convert a
given DFA to an equivalent minimal NFA is PSPACE-complete [10]. Since mini-
mization of NFAs is also PSPACE-complete, conversions from nondeterministic to
deterministic variants are of particular interest. Concerning the number of states
asymptotically tight bounds are O(n™) for the two-way DFA to one-way DFA con-
version, 0(2”2) for the two-way NFA to one-way DFA conversion, and 2" for the
one-way NFA to one-way DFA conversion, for example. For finite languages over a
k-letter alphabet the NFA to DFA conversion has been solved in [20] with a tight
bound of O(k™e*¥T), A valuable source for further results and references is [3).

Related to these questions are the costs (in terms of states) of operations on
regular languages with regard to their representing devices. For example, convert-
ing a given NFA to an equivalent DFA gives an upper bound for the NFA state
complexity of complementation. In recent years results for many operations have
been obtained. DFAs state-of-the-art surveys can be found in [26, 27].

When certain problems are computationally hard in general, a natural question

concerns simpler versions. To this regard promising research has been done for
unary languages. It turned out that this particular case is essentially different from
the general case. For example, the minimization of NFAs becomes NP-complete
instead of PSPACE-complete [9, 23]. The problem of evaluating the costs of unary
automata simulations has been raised in [22]. In [7] it has been shown that the

unary NFA to DFA conversion takes ¢®(V™12(") states, the NFA to two-way DFA
conversion has been solved with a bound of O(n?) states, and the costs of the unary

two-way to one-way DFA conversion reduces to e®(V?*12(") = Several more results
can be found in [14, 15].

State complexity results concerning operations on unary regular languages rep-
resented by DFAs are covered by the surveys [26, 27]. Estimations of the average
state complexity are shown in [17].

Here we investigate the costs of operations on finite and infinite regular languages
over unary and arbitrary alphabets represented by NFAs. In particular, we consider
Boolean operations, catenation operations and the reversal. Most of the bounds are
tight in the exact number of states, i.e. the number is sufficient and necessary in
the worst case. Otherwise tight bounds in the order of magnitude are shown. The
technical depth of our results varies from immediate to more subtle extensions to
previous work. Indeed the technique to prove minimality for DFAs is not directly
applicable to the case of NFAs. Therefore, we mostly have to start from scratch or
to use counting arguments to prove our results on NFA minimality with respect to
the number of states.

In the next section we define the basic notions and present a preliminary re-
sult. Section 3 is devoted to the study of infinite languages. Operations on NFAs
accepting finite languages are considered in Section 4.



2. Preliminaries

We denote the powerset of a set S by 2°. The empty word is denoted by A,
the reversal of a word w by w®, and for the length of w we write |w|. For
the number of occurrences of a symbol a in w we use the notation #,(w). By
ged(zy,...,z) we denote the greatest common divisor of the integers zy,...,z,
and by lem(zq,...,,) their least common multiple. If two numbers x and y are
relatively prime (i.e. ged(z,y) = 1) we write z L y.

A nondeterministic finite automaton is a system A = (S, 4,9, s, F'), where S
is the finite set of internal states, A is the finite set of input symbols, sy € S is the
initial state, F C S is the set of accepting states, and 6 : S x A — 25 is the transition
function. The set of rejecting states is implicitly given by the partitioning, i.e. S\ F'.

An NFA is called unary if its set of input symbols is a singleton. In this case
we use A = {a} throughout the paper. If not otherwise stated we assume that
the NFAs are always reduced. This means that there are no unreachable states
and that from any state an accepting state can be reached. An NFA is said to be
manimal if its number of states is minimal with respect to the accepted language.
Since every n-state NFA with A-transitions can be transformed to an equivalent n-
state NFA without \-transitions [8] for state complexity issues there is no difference
between the absence and presence of A-transitions. For convenience, we consider
NFAs without A-transitions only.

As usual the transition function J is extended to a function A : S x A* — 25
reflecting sequences of inputs: A(s,\) = {s} and A(s,wa) = Uy (5,0 (s, a) for
s€S,a€ A, and w € A*. In the sequel we always denote the extension of a given §
by A.

Let A = (S, A,d, s, F) be an NFA, then a word w € A* is accepted by A if
A(sp,w) N F # (. The language accepted by A is L(A) = {w € A* | w is accepted
by A}.

The following preliminary result is a key tool in the following sections, and can
be proved by a simple pumping argument.

Lemma 1 Let n > 1 be an arbitrary integer. Then n + 1 resp. n states are suf-
ficient and necessary in the worst case for an NFA to accept the language {a™}*

resp. {a™}*.

3. Operations on Infinite Languages

3.1. Boolean Operations

We start our investigations with Boolean operations. In the case when the finite
automaton is deterministic it is well-known that in the worst case the Boolean
operations union, intersection and complementation have a state complexity of m-n,
m - n and m, respectively. However, the state complexity of NFA operations is
essentially different. At first we consider the union for arbitrary alphabets.



Theorem 1 For any integers m,n > 1 let A be an m-state and I3 be an n-state
NFA. Then m + n + 1 states are sufficient and necessary in the worst case for an
NFA to accept the language L(A) U L(B).

Proof. In order to construct an (m + n + 1)-state NFA for the language
L(A)U L(B) we simply use a new initial state and connect it to the states of A
and B that are reached after the first state transition.

Now we are going to show that m +n + 1 states are necessary in the worst case.
Let A be an m-state NFA that accepts the language {a™}* and B an n-state NFA
that accepts {b"}*.

Let C be an NFA for the language L(.A)UL(B). In order to reject the inputs a,
1 <i < m—1, but to accept the input a™ the NFA C needs at least m — 1 non-

accepting states si,...,S,_1 from each of which an accepting state is reachable.
Similarly, C needs at least n — 1 states s},...,s! _; for processing the inputs b’,
1<i<n-1.

Denote by P, resp. P, the sets of states that are reachable by inputs of the
form a’ resp. b7 for j > 1. None of the accepting states may be reachable from the
states in P, N P,. Otherwise words of the form a/b* or b’a* would be accepted.

It follows that neither the s; nor the s; may belong to the intersection P, N B.
But, trivially, they do belong to P, resp. to P,. Now consider all inputs {a™}T.
There must exist an accepting state s, € P, which is reached for infinitely many of
them. If one of the states sy, ..., s,,_1 is reachable from s,,, then s, may not belong
to P, N P, because otherwise inputs of the form a/b* would be accepted. If none
of the states s1,..., $,_1 is reachable from s,,, then there must exist another state
Sm+1 € Py which is different from sq,...,s,,_1. Otherwise there must exist ig > 1
such that C is in some state s € {s1,...,8,_1} after processing the input a®™.
But from state s an accepting state is reachable by processing input a’° for some
1 < jo < m — 1. This implies that a’ ™o would be accepted. The same holds for
states s}, € Py and s}, , € P, for the inputs {b"}". It follows either s,, (s],) does
not belong to P, N P, or there exists another state s, 1 (s),,,). In any case there
exist at least two states different from sy,...,S$m—1,87,...,5, 1.

Finally, the initial state sy must be an accepting state since A € L(A) U L(B),
but sy cannot be part of a loop since otherwise inputs of the form a/b*F or b/a*
would be accepted. Altogether, P, U P, must contain at least m + n different states
that are not equal to the initial state. O

Now we turn to the union of unary NFAs. Due to the lack of suited tools
and methods such as unique minimization etc. the proof of the lower bound refers
specifically to the structures of the witness automata.

Theorem 2 For any integers m,n > 1 let A be a unary m-state and B be a unary
n-state NFA. Then m+n+1 states are sufficient for an NFA to accept the language
L(A) U L(B). If neither m is a multiple of n nor n is a multiple of m, then there
exist a unary m-state NFA A and a unary n-state NFA B (with the same input
symbol) such that any NFA accepting L(A) U L(B) needs at least m +n + 1 states.

Proof. The upper bound follows immediately from the construction given in
the proof of Theorem 1. In order to prove the lower bound without loss of generality



we may assume m > n. Since m is not a multiple of n we obtain n > ged(m,n).

Let A be an m-state NFA that accepts the language {a™}* and B be an n-state
NFA that accepts {a"}*. Let C be an NFA with initial state so for the language
L(A)U L(B). In order to prove that C has at least m + n + 1 states assume that it
has at most m + n states.

At first we consider the input %" and show that it does not belong to L(C).
Since 2m > m + n > m the input does not belong to L(A). If it would belong
to L(B), then there were a constant ¢ > 2 such that m +n = c¢-n. Therefore,
m = (c—1)-n and, thus, m would be a multiple of n what contradicts the assumption
of the theorem.

The next step is to show that each of the states so F s1 F - F Sm_1 F Sm
which are passed through when accepting the input a™ either is not in a cycle or
is in a cycle of length m. To this end assume contrarily some state s; is in a cycle
of length = # m, i.e. s; is reachable from s; by processing = input symbols. Due to
the number of states we may assume z < m + n.

By running several times through the cycle a™**, a™2® and a™*3% are ac-
cepted.

We observe m + x is not a multiple of m. If it is not a multiple of n we are done.
Otherwise, & cannot be a multiple of n since m is not a multiple of n. Moreover,
now we observe m + 2x is not a multiple of n since m + z is and x is not. If m + 2x
is not a multiple of of m we are done.

Otherwise we consider m + 3z which now cannot be a multiple of m since m +2x
is and « is not. If m + 3x is not a multiple of n we are done.

Otherwise we summarize the situation: m + 3x and m + x are multiples of n
which implies 2z is a multiple of n. Since m + 2z is a multiple of m we conclude
that 2x is a multiple of m, too. Moreover, x is neither a multiple of m nor of n.

From # < m+n < 2m = 2z < 4m we derive 2z € {m,3m}. If 2z = m,
then m is a multiple of n, a contradiction. So let 2z = 3m. Since 2z is a multiple
of n there exists a constant ¢ € N such that 3m = cn. From x < m + n follows
3m < m + n. Therefore £m < n which together with n < m implies ¢ € {4,5,6}.

It holds %m =n. On the other hand, m +x =m + %m = %m is a multiple of n.

rfherefore 2/2 = 2< must belong to N for ¢ € {4,5,6}. Thus ¢ = 6, but in this case

3m =mn = m = 2n and m is a multiple of n what contradicts the assumption of
the theorem.

In order to complete the proof of the theorem now we come back to the sequence
of states sg - $1 F -+ F S;m—1 F s, passed through when accepting the input a™.
Correspondingly let s - s} F --- F s,,_; F s, be an accepting sequence for a”.

Since L(C) is an infinite language C must contain some cycle. If a s; from
S0,---,5m 1s in a cycle, then its length is m states. State s; may not be in the
sequence So b s} -+ st because in this case a™*" would be accepted. In order
to accept a™ but to reject al,...,a™ ! in any case, the states sg, s}, ..., s, must be
pairwise different. Altogether this results in at least n + 1 4+ m states.

If on the other hand a s; from so,s},...,s;, is in a cycle, then it may not be in

M

50,81, ..,58m. Otherwise the cycle length must be m and a™*" would be accepted.



Concluding as before this case results in at least m + n + 1 states, too.

Finally, if neither a state from sg, $1,. .., s, nor a state from si,...,s), is in a
cycle, then obviously sg, ..., s;, must be pairwise different, but all states s; may or
may not appear in o, ..., Sy,. This takes at least m + 1 states. So there remain at

most n — 1 states for a cycle. Therefore, the cycle length  is at most n —1. Now we
consider an accepting computation for the input ™. It must have run through the
cycle. Running once more through the cycle leads to acceptance of a™"*** which
does not belong to L(C).

So in any case we obtain a contradiction to the assumption that C has at most
m + n states. (W

Next we are going to prove a tight bound for the intersection.
Theorem 3 For any integers m,n > 1 let A be an m-state and B be an n-state
NFA. Then m - n states are sufficient and necessary in the worst case for an NFA
to accept the language L(A) N L(B).

Proof. Clearly, the NFA defined by the cross-product of A and B accepts the
language L(A) N L(B) with m - n states.

As witness languages for the fact that the bound is reached in the worst case
define the k-state language Ly = {w € {a,b}* | #4(w) =0 (mod k)} for all k € N.

Identically, L}, is defined to be {w € {a,b}* | #»(w) = 0 (mod k)}. It remains
to show that an NFA C that accepts L, N L] for m,n > 1, needs at least m - n
states.

Consider the input words a’b? and ' b/ with 0 < i,i’ <m —1 and 0 < j,j' <
n — 1, and assume C = (S, A, J, so, F') has less than m - n states. Since there are
m - n such words, for at least two of them the intersection

{s €5 |seAso,a’t) AAs,a™ ") N F # 0} N A(sg,a’ o)

is not empty. This implies a* b/ ™~ %"~J € L,, N L . Since either i # ¢ or j # j'
it follows ' +m — ¢ Z 0 (mod m) or j' +n — j Z 0 (mod n), a contradiction. O

In the unary case the lower bound requires m L n. In [18] unary languages are
studied whose deterministic state complexities are not relatively prime.

Theorem 4 For any integers m,n > 1 let A be a unary m-state and B be a unary
n-state NFA. Then m - n states are sufficient for an NFA to accept the language
L(A)NL(B). If m L n, then there exist a unary m-state NFA A and a unary n-
state NFA B (with the same input symbol) such that any NFA accepting L(A)NL(B)
needs at least m - n states.

Proof. As witness languages consider L(A) = {a™}* and L(B) = {a™}*. Since
m L n the intersection L(A)NL(B) is {a™™}*. Due to Lemma 1 any NFA accepting
the intersection needs at least m - n states. a

The complementation of NFA languages is an expensive task at any rate. It is
well known [16] that 2™ is the tight upper bound on the number of states necessary
for a deterministic finite automaton to accept an (infinite) n-state NFA language.
Since the complementation operation on deterministic finite automata neither in-
creases nor decreases the number of states (simply exchange accepting and rejecting



states) we obtain an upper bound for the state complexity of the complementation
on NFAs.

Corollary 1 For any integer n > 1 the complement of an n-state NFA language is
accepted by a 2"™-state NFA.

Unfortunately, this expensive upper bound is tight. Birget [2, 4] showed for
an input alphabet of size four that, for any integer n > 1, there exists an n-state
NFA A such that any NFA that accepts the complement of L(A) needs at least 2"
states. The question whether we can achieve a tight bound over a smaller alphabet
is currently open. But using a two-letter alphabet we can prove a tight bound in
the order of magnitude.

Theorem 5 For any integer n > 2 there exists an n-state NFA A such that any
NFA that accepts the complement of L(A) needs at least 2" 2 states.

Proof. For k > 0let Ly = {a,b}*a{a,b}*b{a,b}*. It is clear that Ly is accepted
by a (k+3)-state NFA. Intuitively, A has to guess the position of an input symbol a
which is followed by k arbitrary input symbols and a symbol b.

In order to accept the complement of Ly, an NFA B = (S', {a,b},d’, 53, F') has to
verify that the input has no substring a{a, b}*b. Therefore, after reading a symbol a
the NFA B must be able to remember the next k input symbols. Altogether this
needs 2%+1 states (cf. Figure 1).

More formally, we consider the input words of length k+1. Observe that for each
of these words w the concatenation ww belongs to the complement of Lj. Let S(w)
be {s € 5| s € A(s(,w) A A'(s,w) N F' # (0}, and v,v" be two arbitrary different
words from {a,b}*+1. Assume S(v) N S(v') # 0. It follows A’(sh,vv') N F' # () and
A'(sf,v"v) N F' # () and, therefore, vv’ and v'v are accepted by B.

But this is a contradiction since there exists a position 1 < p < k+ 1 at which v
has a symbol a and v’ a symbol b or vice versa. Thus either vv’ or v'v is of the
formx; - @p_1aTp1  Tht1Y1 - Yp—10Yp+1 - - Y41 and, therefore, belongs to Ly,.
From the contradiction follows S(v) N S(v') = (). Since there exist 2¥*! words in
{a,b}**! the state set S’ has to contain at least 28! states. O

Fig. 1. A minimal NFA accepting the complement of L of Theorem 5.

For complementation of unary NFAs a crucial role is played by the function
F(n) =max{lem(z1,...,2%) | 21,..., 25 € NA 21 + --- + 2, = n} which gives the



maximal order of the cyclic subgroups of the symmetric group of n symbols. For
example, the first seven values of F' are F'(1) =1, F(2) =2, F(3) = 3, F(4) = 4,
F(5) =6, F(6) =6, F(7) = 12 due to the sums 1 = 1,2 = 2,3 = 3,4 =4,
5=2+3,6=14+2+3 (or6=6) and 7 =3+ 4.

Since F' depends on the irregular distribution of the prime numbers we cannot

expect to express F'(n) explicitly by n. The function itself has been investigated by
In(F(n) 7 A
v/ n-ln(n)

bound immediately derived from Landau’s result is: In(F'(n)) € ©(y/n -1n(n)). For
our purposes the implied rough estimation F'(n) € eOWnIn(m) guffices. Shallit and
Ellul [21] pointed out that the bound F(n) € O(eV ™™™ which is claimed in [7]
is not correct. They deduced finer bounds from a result in [24] where the currently
best known approximation for F' has been proved. Nevertheless, in [7] it has been
shown that for any unary n-state NFA there exists an equivalent O(F'(n))-state
deterministic finite automaton.

Landau [11, 12] who has proved the asymptotic growth rate lim,,_

Corollary 2 For any integer n > 1 the complement of a unary n-state NFA lan-
guage is accepted by an O(F(n))-state NFA.

As for the regular case the expensive upper bound is tight in the order of mag-
nitude.
Theorem 6 For any integer n > 1 there exists a unary n-state NFA A such that
any NFA accepting the complement of L(A) needs at least Q(F(n)) states.

Proof. Let x1,...,2; € N be integers such that z; +---+ 2, = n — 1 and
lem(zy,...,2;) = F(n —1). Now define for 1 < i < k the languages L; = {a* }*
and consider the union of their complements: L = L; ULy U -+ U Ly,.

Since L; is acceptable by a x;-state NFA A;, the language L is acceptable
by an NFA A with at most 1 + 21 + --- + 2, = n states. To this end we in-
troduce a new initial state and connect it nondeterministically to the states of
the A; that are reached after their first state transition. The complement of L is
L = {d'*™@1-»2:) 1 Therefore, the complement of the n-state language L needs
lem(zy,...,xx) = F(n — 1) states. Since F(n) is of order e®(V™2(0) it follows
F(n —1) is of order Q(F(n)). o

3.2. Catenation Operations

Now we turn to the catenation operations. In particular, tight bounds for con-
catenation, iteration and A-free iteration will be shown. Roughly speaking, in terms
of state complexity these are efficient operations for NFAs. Again, this is essentially
different when deterministic finite automata come to play. For example, for arbi-
trary alphabets in [28] a bound of (2m — 1) - 2"~! states has been shown for the
DFA-concatenation, and in [25] a bound of 2”1 + 2772 states for the iteration.
Theorem 7 For any integers m,n > 1 let A be an m-state NFA and B be an n-

state NFA. Then m + n states are sufficient and necessary in the worst case for an
NFA to accept the language L(A)L(B).



Proof. The upper bound is due to the observation that in C one has simply to
connect the accepting states in A with the states in B that follow the initial state.

The upper bound is reached for the concatenation of the languages L(A) =
{a™}* and L(B) = {b"}*. The remaining proof follows the idea of the proof of
Theorem 1. a

In the unary case the lower bound of the concatenation misses the upper bound
by one state. It is currently an open question how to close the gap by more sophis-
ticated constructions or witness languages.

Theorem 8 For any integers m,n > 1 let A be a unary m-state NFA and B be
a unary n-state NFA. Then m + n states are sufficient for an NFA to accept the
language L(A)L(B). Moreover, there exist a unary m-state NFA A and a unary
n-state NFA B such that any NFA C accepting L(A)L(B) needs at least m +n — 1
states.

Proof. The upper bound has been shown in the proof of Theorem 7.

Let L(A) be the m-state language {a* | k = m — 1 (mod m)} and L(B) be the
n-state language {a* | k =n — 1 (mod n)}.

The shortest word in L(A) respectively L(B) is a™~! respectively a®~!. There-
fore the shortest word in L(C) is ™" 2. Assume contrarily to the assertion C has
at most m + n — 2 states. Let C accept the input ™" 2 by running through the
state sequence so - S1 F --- F Spu4n—2 where all states except $,,4,—2 are non-
accepting. Due to the assumption at least one of the non-accepting states s; must
appear at least twice in the sequence. This implies that there exists an accepting
computation that does not run through the cycle s;  --- I s;. So an input whose
length is at most m + n — 3 would be accepted, a contradiction. a

The constructions yielding the upper bounds for the iteration and A-free iteration
are similar. The trivial difference between both operations concerns the empty word
only. Moreover, the difference does not appear for languages containing the empty
word. Nevertheless, in the worst case the difference costs one state.

Theorem 9 For any integer n > 2 let A be a unary or non-unary n-state NFA.
Then n+1 resp. n states are sufficient and necessary in the worst case for an NFA
to accept the language L(A)* resp. L(A)*.

Proof. Let A= (Sa,A4,04,50,4,F4) be an n-state NFA. Then the transition
function of an n-state NFA C = (S, A, 4, sg, F') that accepts the language L(A)"
is for s € S and a € A defined as follows: 0(s,a) = da(s,a) if s ¢ Fa, and
d(s,a) = 04(s,a)Uda(50,4,a)if s € Fa. The other components remain unchanged,
i.e., S = SA, S0 = 50,4, and F' = Fjy.

If the empty word belongs to L(.A) then the construction works fine for L(A)*
also. Otherwise an additional state has to be added: Let s ¢ Sa and define
S =SaU{sp}, so =sb, F=FaU{s\}, and for s € S and a € A: §(s,a) = da(s,a)
if s¢ FaU{s{}, 6(s,a) =da(s,a) Uda(s0,a,a) if s € Fa, and d(s,a) = d4(s0,4,a)
if s = 5.

In order to prove the tightness of the bounds for any n > 2 consider the n-state
language L = {a* | k =n —1 (mod n)}. At first we show that n + 1 states are
necessary for C = (S, {a},d, so, F') to accept L(A)*.



Contrarily, assume C has at most n states. We consider words of the form a’ with
0 < i. The shortest four words belonging to L(A)* are A, a" !, a?" 2, and a®" L. It
follows sg € F'. Moreover, for a” ! there must exist a path sg - s1 F -+ - F Sp_2 - Sn
where s, € F and s1,...,s, o are different non-accepting states. Thus, C has at
least n — 2 non-accepting states.

Assume for a moment F' to be a singleton. Then sg = s, and for 1 <i<n —3
the state sop must not belong to 6(s;, a). Processing the input a?*~! the NFA cannot
enter so after 2n — 2 time steps. Since a ¢ L(A)* the state sp must not belong to
d(s0,a).

On the other hand, C cannot enter one of the states sy, ..., s, 3 since there is
no transition to sqg. We conclude that C is either in state s,,_» or in an additional
non-accepting state s,_j. Since there is no transition such that s,,_o € 0(s,—2,a)
in both cases there exists a path of length n from s¢ to sg. But a™ does not belong
to L(A)* and we have a contradiction to the assumption |F| = 1.

Due to our assumption |S| < n we now have |F'| = 2 and |S|—|F| = n—2. Let us
recall the accepting sequence of states for the input a" N osobSsiF ok Sp_a F Sn.
Both s¢ and s, must be accepting states. Assume s, # sg. Since a?”~2 belongs
to L(A)* there must be a possible transition sg - s; or s, F s;. Thus, a®"~2 is
accepted by s,. In order to accept a>®~! there must be a corresponding transition
from s, to s, or from s, to sg. In both cases the input a™ would be accepted.
Therefore s, = sg.

By the same argumentation the necessity of a transition for the input symbol a
from sg to so or from sg to s, follows. This implies that a is accepted. From the
contradiction follows |S| > n.

As an immediate consequence we obtain the tightness of the bound for L(A)*.
In this case sg € F' is not required. Thus, just one accepting state is necessary.

In order to prove the result for non-unary NFAs one has simply to exchange the
witness language L by {w € {a,b}* | #4(w) =n — 1 (mod n)}. O

3.3. Reversal

The next operation under consideration is the reversal. The bounds for unary
NFAs are trivial. For general deterministic automata one may expect that the state
complexity is linear. But it is not. A tight bound of 2" states for the reversal has
been shown in [13]. From the following efficient bound for NFAs it follows once
more that nondeterminism is a powerful concept.

Theorem 10 For any integer n > 3 let A be an n-state NFA. Then n+1 states are
sufficient and necessary in the worst case for an NFA to accept the language L(A)%.

Proof. Basically, the idea is to reverse the directions of the transitions. This
works fine for NFAs whose set of accepting states is a singleton. In general we are
concerned with more than one accepting state and have to add a new initial state.
So we obtain an (n + 1)-state NFA.

The language Ly, = a®*{a**1}*({b}* U {c}*) for k > 1, may serve as an example
for the fact that the bound is reached. The (k + 3)-state NFA A that accepts Ly,
and the (k + 4)-state NFA C that accepts LI are depicted in Figure 2.

10



Fig. 2. A (k + 3)-state and a (k + 4)-state NFA accepting Ly and L of
Theorem 10.

The necessity of k + 4 states can be seen as follows. Since accepted inputs may
begin with an arbitrary number of b’s or ¢’s we need two states s, and s, to process
them. This cannot be done by the initial state because the loops would lead to
acceptance of words with prefixes of the form b*c* or c¢*b*.

Obviously, a loop of k+1 states is needed in order to verify the suffix {a**1}*aF.
If one in this sequence would be equal to s, (s.), then it would have a loop for b’s
(¢’s) and, hence, inputs of the form c*a*b*a* (b*a*c*a*) would be accepted. For
similar reasons the new initial state cannot be within a loop. Altogether it follows

that C needs at least k + 4 states what proves the tightness of the bound. a

Table 1. NFA and DFA state complexities for infinite languages.

Infinite Languages
NFA DFA

general | unary general unary
Uil m+n+1 m+n+1 mn mn
~ o2") eV in(n) n n
N mn mn mn mn
R n+1 n 2" n

m+n O(m+n) (2m —1)2"~t mn
* n+1 n+1 2ntponm2 | (n—1)2 +1
+ n n

4. Operations on Finite Languages

4.1. Boolean Operations and Catenation

The situation for finite languages is easier since essentially the structure of the
corresponding NFAs is simpler. When we are concerned with finite languages over
arbitrary alphabets we may assume without loss of generality that minimal NFAs
not accepting the empty word have only one accepting state. Since they do not
contain any cycles they do contain at least one accepting (sink) state for which the

11



transition function is not defined. Now a given minimal NFA with more than one
accepting state is modified such that a sink state becomes the only accepting state.
To this end simply the transition function has to be extended. If the finite language
contains the empty word, then in addition the initial state is a second accepting
one.

For upper bounds in the finite deterministic case see [6]. Here the state com-
plexity of the union can be reduced by three states compared with the general
case.

Theorem 11 For any integers m,n > 2 let A be an m-state NFA and B be an
n-state NFA. If L(A) and L(B) are finite, then m + n — 2 states are sufficient and
necessary in the worst case for an NFA C to accept the language L(A) U L(B).

Proof. We can adapt the proof of Theorem 1 as follows. Since NFAs for finite
languages do not contain any cycles, for the construction of the NFA C we do not
need a new initial state (this saves one state). Moreover, we can merge both initial
states (this saves the second one) and both accepting sink states (this saves the
third one). Now the construction of C is straightforward.

The finite languages {a™} and {b™} are witnesses for the necessity of the number
of states for the union in the worst case. An NFA that accepts the language {a™}
needs at least m+1 states. By the same argumentation as in the proof of Theorem 1
and merged initial and sink states we obtain at least (m + 1) + (n + 1) — 2 states
for an NFA that accepts {a™} U {0"}. i

In case of finite language concatenations one state can be saved.

Theorem 12 For any integers m,n > 1 let A be an m-state NFA and B be an
n-state NFA. If L(A) and L(B) are finite, then m + n — 1 states are sufficient and
necessary in the worst case for an NFA to accept the language L(A)L(B).

Proof. Since for finite languages .4 and B must not contain any cycles the initial
state of B is not reachable, after the construction of Theorem 7 it can be deleted
what yields an upper bound of m + n — 1 states.

As witnesses for the tightness consider the languages {a™~'} and {b"~'}. They
are accepted by m-state resp. n-state NFAs. Clearly, any NFA for the concatenation
needs at least m + n — 1 states. m|

Now we turn to operations on finite unary languages. In [20] it is stated that
every finite unary n-state NFA language is acceptable by some complete determin-
istic finite automaton with at most n + 1 states. A little bit more sophisticated,
one observes that the minimum NFA for a finite unary language L has n + 1 states
if the longest word in L is of length n. Otherwise the NFA would run through a
cycle when accepting a™ and, thus, L would be infinite. Now we can always con-
struct a minimum NFA A = (S, {a}, 0, so, F') for L as follows: S = {so,s1,...,8n},
§(siya) = {siy1} for 0<i<n—1,and F = {s; | a’ € L}.

From the construction it follows conversely that a minimum (n+1)-state NFA for
a non-empty finite unary language accepts the input a”. An immediate consequence
is that we have only to consider the longest words in the languages in order to obtain
the state complexity of operations that preserve the finiteness.

12



Theorem 13 For any integers m,n > 1 let A be a unary m-state NFA and B
be a unary n-state NFA. If L(A) and L(B) are finite, then max(m,n), min(m,n)
respectively m + n — 1 states are sufficient and necessary in the worst case for an
NFA to accept the language L(A) U L(B), L(A) N L(B) respectively L(A)L(B).
The situation for the complementation of finite languages over an (-letter alpha-
bet, ¢ > 2, is quite different from the general case, since the upper bound of the
transformation to a deterministic finite automaton is different. In [20] it has been

shown that O(¢™=27+T) states are an upper bound for deterministic finite automata
accepting a finite n-state NFA language.

Corollary 3 For any integers {,n > 1 the complement of a finite n-state NFA
language over an (-letter alphabet is accepted by an O(K“’w%“)—state NFA.

Note, that for ¢ = 2 the upper bound is O(2%). A slight modification of the
proof of Theorem 5 yields:
Theorem 14 For any integers { > 1 and n > 2 there exists a finite n-state NFA
language L over an (-letter alphabet such that any NFA that accepts the complement
of L needs at least Q((T™e7) states.

Proof. For ¢ > 11let A= {ai,...,a;} be an alphabet. Let k > 0 be an integer.
A finite language Ly, is defined by A/a; A%y, where 0 < j < k and y € A\ {a1}.
The NFA depicted in Figure 3 accepts Ly with 2k + 3 states.

ot (N 4 )4

A\ {ai}
@)

Fig. 3. A (2k + 3)-state NFA accepting Ly, of Theorem 14.

An NFA B for the complement works similar to the corresponding NFA in the
proof of Theorem 5. It need not remember k+ 1 input symbols exactly, but whether
a symbol has been a; or not. Since previously we argued with words of finite lengths
it follows immediately that B needs at least 28! states. Additionally the length of
the prefix A7 has to be tracked. For this purpose the state set has to be doubled
such that we have a lower bound of 2¥*2 states. Transforming 2 = ¢1°8¢2 = (Towat
for n = 2k +4 > 2k + 3 we obtain the lower bound (™27 € Q) (¢(Tw&7), O

The complementation applied to finite languages yield infinite languages. So in
general for the lower bounds we cannot argue with the simple chain structure as
before.

Theorem 15 For any integer n > 1 let A be an n-state NFA. If L(A) is finite,
then n + 1 states are sufficient and necessary in the worst case for an NFA C to
accept the complement of L(A).

Proof. Without loss of generality we may assume that 4 has the simple chain
structure with states from sy to s,—; as mentioned before. By interchanging ac-
cepting and non-accepting states we obtain an NFA that processes all inputs up

13



to a length n — 1 as required. But all longer words a¥, & > n, are belonging to
the complement of L(A). So it suffices to add a new accepting state s, and two
transitions from s, _; to s, and from s, to s,, in order to complete the construction
of C.

The tightness of the bound can be seen for the n-state NFA language L = {a
0 <k <n—1}. Since a” is the shortest word belonging to the complement of L it
follows that C has at least n + 1 states. a

‘]

4.2. Kleene Operations and Reversal

The state complexity for the iterations in the finite language case is as for infinite
languages if the iteration is A-free. If not the costs are reduced by two states. The
following result is for both unary and arbitrary languages.

Theorem 16 For any integer n > 1 let A be a unary or non-unary n-state NFA.
If L(A) is finite, then n — 1 resp. n states are sufficient and necessary in the worst
case for an NFA to accept the language L(A)* resp. L(A)™T.

Proof. For the upper bounds we can adapt the construction of Theorem 9. The
accepting states are connected to the states following the initial state. That is all
for A-free iterations.

For iterations we have to provide acceptance of the empty word. The following
two observations let us save two states compared with infinite languages. First, the
initial state is never reached again after initial time. Second, since the underlying
language is finite and the accepting automaton is reduced there must exist an ac-
cepting state sy for which the state transition is not defined. We can take sy as new
initial state and delete the old initial state what altogether leads to an (n — 1)-state
NFA for the iteration.

The bound for the A-free iteration is reached for the language L = {a"~'}
which requires n states. For the acceptance of LT = {a"~1}T at least n states are
necessary.

The bound for the iteration is reached for the language L = {a™} that requires
n + 1 states. Clearly, in order to accept {a"}* at least n states are necessary. O

A proof of a tight bound for the reversal of finite languages can be found in [5]. It
is of order O(2%) for a two-letter alphabet. From the following efficient bounds for
NFAs it follows once more that nondeterminism is a powerful concept. Moreover,
the fact that NFAs for finite languages do not have any cycle leads again to the
possibility of saving one state compared with the infinite case.

Theorem 17 For any integer n > 1 let A be an n-state NFA. If L(A) is finite,
then n states are sufficient and necessary in the worst case for an NFA to accept
the language L(A)®.

Proof. Assume without loss of generality that .4 has only one accepting sink
state. By the construction of the proof of Theorem 10 we obtain an (n + 1)-state
NFA that has an unreachable state. It is the unique former accepting sink state.
The bound follows if the state is deleted.

Let for n > 1 the language L,, defined to be {a,b}"!. Trivially, L,, is accepted
by an n-state NFA. Since L,, = L the assertion follows. |

14



The bound for the reversal of finite NFA languages is in some sense strong. It
is sufficient and reached for all finite languages.

Table 2. NFA and DFA state complexities for finite languages (¢ is the size of
the input alphabet, ¢ is the number of accepting states of the ‘left’ automaton).

Finite Languages
NFA DFA
general | unary general | unary

U m+n—2 | max{m,n} O(mn) max{m, n}
~ O(E“’S#“) n+1 n n
N O(mn) min{m, n} O(mn) min{m,n}
R n n 0(2%) n

m+n—1 | m+n—1 | Omn'~! +nt) m+n—2
x n—1 n—1 " 42nt |0 —Tn+13
+ n n

Acknowledgements

We thank Jean-Camille Birget, Keith Ellul, and Jeffrey O. Shallit for fruitful
discussions on the subject.

References

1.

10.

11.

P. Berman, and A. Lingas, “On the complexity of regular languages in terms of
finite automata,” Technical Report 304, Polish Academy of Sciences, 1977.

. J.-C. Birget, “Partial orders on words, minimal elements of regular languages and

state complexity,” Theoret. Comput. Sci. 119 (1993) 267-291.

J.-C. Birget, “State-complexity of finite-state devices, state compressibility and in-
compressibility,” Math. Systems Theory 26 (1993) 237—-269.

J.-C. Birget, Personal communication, October 2002.

. C. Campeanu, K. Culik, K. Salomaa and S. Yu, “State complexity of basic operations

on finite languages,” Proc. 4th International Workshop on Implementing Automata
(WIA ’99), LNCS 2214, 2001, pp. 60-70.

C. Campeanu, N. Santean and S. Yu, “Minimal cover-automata for finite languages,”
Theoret. Comput. Sci. 267 (2001) 3-16.

M. Chrobak, “Finite automata and unary languages,” Theoret. Comput. Sci. 47
(1986) 149-158.

J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Language, and
Computation (Addison-Wesley, Reading, Massachusetts, 1979).

H. B. Hunt, D. J. Rosenkrantz and T. G. Szymanski, “On the equivalence, contain-
ment, and covering problems for the regular and context-free languages,” J. Comput.
System Sci. 12 (1976) 222-268.

T. Jiang and B. Ravikumar, “Minimal NFA problems are hard,” SIAM J. Comput.
22 (1993) 1117-1141.

E. Landau, “Uber die Maximalordnung der Permutationen gegebenen Grades,”
Archiv der Math. und Phys. 3 (1903) 92-103.

15



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen. (Teubner,
Leipzig, 1909).

E. Leiss, “Succinct representation of regular languages by Boolean automata,” The-
oret. Comput. Sci. 13 (1981) 323-330.

C. Mereghetti and G. Pighizzini, “Two-way automata simulations and unary lan-
guages,” J. Aut. Lang. and Comb. 5 (2000) 287-300.

C. Mereghetti and G. Pighizzini, “Optimal simulations between unary automata,”
SIAM J. Comput. 30 (2001) 1976-1992.

A. R. Meyer and M. J. Fischer, “Economy of description by automata, grammars,
and formal systems,” Proc. 12th Annual IEEE Symposium on Switching and Au-
tomata Theory, 1971, pp. 188-191.

C. Nicaud, “Average state complexity of operations on unary automata,” Proc.
Mathematical Foundations of Computer Science (MFCS ’99), LNCS 1672, 1999,
pp. 231-240.

G. Pighizzini and J. O. Shallit, “Unary language operations, state complexity and
Jacobsthal’s function,” Int. J. Found. Comput. Sci. 13 (2002) 145-159.

W. J. Sakoda and M. Sipser, “Nondeterminism and the size of two way finite au-
tomata,” Proc. 10th Annual ACM Symposium on Theory of Computing (STOC "78),
1978, pp. 275-286.

K. Salomaa and S. Yu, “NFA to DFA transformation for finite languages over arbi-
trary alphabets,” J. Aut., Lang. and Comb. 2 (1997) 177-186.

J. O. Shallit and K. Ellul, Personal communication, October 2002.

S. Sipser, “Lower bounds on the size of sweeping automata,” J. Comput. System
Sci. 21 (1980) 195-202.

L. J. Stockmeyer and A. R. Meyer, “Word problems requiring exponential time,”
Proc. 5th Annual ACM Symposium on Theory of Computing (STOC ’73), 1973,
pp- 1-9.

M. Szalay, “On the maximal order in S, and S};,” Acta Arithm. 37 (1980) 321-331.
S. Yu, “Regular languages,” in Handbook of Formal Languages 1, eds. G. Rozenberg
and A. Salomaa (Springer, Berlin, 1997) chapter 2, pp. 41-110.

S. Yu, “State complexity of regular languages,” J. Aut. Lang. and Comb. 6 (2001)
221-234.

S. Yu, “State complexity of finite and infinite regular languages,” Bull. EATCS 76
(2002) 142-152.

S. Yu, Q. Zhuang and K. Salomaa, “The state complexities of some basic operations
on regular languages,” Theoret. Comput. Sci. 125 (1994) 315-328.

16



