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ABSTRACT 

In this paper we give the cost, in terms of states, of some basic operations (union, in
tersection, concatenation, and Kleene star) on regular languages in the unary case (where 
the alphabet contains only one symbol). These costs are given by explicitly determining 
the number of states in the noncyclic and cyclic parts of the resulting automata. Further
more, we prove that our bounds are optimal. We also present an interesting connection 
to Jacobsthal's function from number theory. 

Keywords: Finite automata; formal languages; state complexity; number theory; unary 
languages. 

1. In t roduct ion 

Finite automata are one of the first computational models presented in the 
literature and, certainly, one of the most extensively investigated. However, some 
problems concerning these simple models are still open and the investigation of 
some aspects of the finite automata world is only at the beginning. For instance, 
many complexity results for finite automata are given under the hypothesis that the 
input alphabet contains at least two symbols. A typical example is the simulation of 
an n-state nondeterministic finite automaton (NFA) by an equivalent deterministic 
finite automaton (DFA). The upper bound of 2n states is provably optimal in the 
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146 G. Pighizzini & J. Shallit 

worst case when the input alphabet contains at least two symbols [5, 13, 14], but 
can be reduced to about e v n l ° s n

 m the unary case, i.e., where the automata have 
an input alphabet consisting of a single letter [10, 11, 12, 4]. 

In this paper we study the state complexity of some simple operations on unary 
regular languages. We recall that the state complexity of a regular language L, 
written sc(L), is the number of states in the smallest deterministic finite automaton 
(DFA) accepting L. Several papers, such as [19], address the question of obtaining 
good upper bounds on the state complexity of basic operations such as intersection, 
union, concatenation and Kleene star of languages V and L", in terms of the state 
complexities of V and L". 

The standard product construction for automata (e.g., [6, pp. 59-60]) easily 
shows that if sc(L') = n' and sc(L") = n", then sc(Z/ D L") < n'n". This upper 
bound can actually be attained for all nf,n" > 1 provided the underlying alphabet 
has at least two letters. Indeed, as Yu and Zhuang observe [18], we can let 

Lf = {xe(a + b)* : \x\a = n'} and L" = {x e (a + 6)* : \x\h = ri'}, 

where \x\c denotes the number of occurrences of the symbol c in the string x. A 
similar construction works for unary alphabets provided gcd(n',n") = 1. However, 
determining the best upper bound for unary languages when gcd(n',n") > 1 was 
stated as an open problem by Yu [17]. In Section 3 of this paper we solve this 
problem by proving tight bounds for the state complexity of the intersection and of 
the union of unary regular languages. 

In [19], Yu, Zhuang and Salomaa proved that sc(L'L") = n '2n" - T1"~x. This 
result cannot be improved if the input alphabet contains at least three symbols. 
However, in the unary case, the number of states which are sufficient to recognize 
L'L" reduces to n'n". This number is also necessary, in the worst case, when n' and 
n" are relatively prime. In Section 4 we refine this analysis, obtaining tight bounds 
even when n' and n" are not relatively prime. We also explicitly indicate the number 
of states in the cyclic and in the noncyclic parts of the resulting unary automata. We 
complete the scenario in Section 5 by presenting some considerations concerning the 
Kleene star operation. We point out that C. Nicaud [15] has recently investigated 
the average state complexity for the same operations on unary languages. 

The estimations presented in the paper are related to an interesting function 
from number theory due to Jacobsthal. Section 6 is devoted to studying this func
tion and its connections to our results. 

2. Preliminary notions and results 

In this section, we recall basic notions, notations and facts used in the paper. 
Given two integers a, b > 0, we denote by gcd(a, b) and by lcm(a, 6), their greatest 

common divisor and their least common multiple, respectively. The following result 
will be crucial in order to evaluate the number of states of unary automata: 
Lemma 1 Suppose a, b are positive integers. Then each number of the form ax+by, 
with x, y > 0, is a multiple o/gcd(a, b). Furthermore, the largest multiple o/gcd(a, b) 
that cannot be represented as ax + by, with x, y > 0, is lcm(a, b) — (a + b). 
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Unary Language Operations, State Complexity 147 

Proof. It is well-known that each number z = ax+by is a multiple of g = gcd(a, 6). 
Let a! = a/g and b' — b/g. Then gcd(a/,6/) = 1. It is also well-known that the 
largest integer that cannot be represented as a'x+b'y, with x, y > 0, is a'b' — {a* + b') 
(see, e.g., [3, 19]). Multiplying by g, we get that the largest multiple of g that cannot 
be written as ax + by, with x, y > 0, is 1cm(a, 6) — (a + 6). • 

Given an alphabet E, E* denotes the set of strings on E. Given a language 
L C E*, its complement, i.e., the set E* — L, is denoted as Lc. A language L is said 
to be unary (or ta/^y) whenever it can be built over a single letter alphabet. In this 
case, we let L C a*. 

The computational models we will consider in this paper are one-way determin
istic finite automata (DFA) defined over a one-letter input alphabet E = {a}. A 
unary DFA will be denoted as a 5-tuple A = (Q, E, 5, qo, F), with the usual mean
ing (see, e.g., [6]). By the pigeonhole principle, it is not difficult to observe that 
the transition graph of a unary DFA A, with n states, has a "tail" consisting of 
H > 0 states and a "cycle" of A > 1 states. Furthermore, if the transition diagram 
is connected (as we may assume without loss of generality) then n = /JL -h A. See 
Figure 1. Following [4], we define the size of A to be the pair (A, /i). Note that 

L(A) = X U a»Y = X U Z(axY (1) 

where X — L(A) H {ax : 0 < x < fi} is the set of strings accepted by states in the 
tail, Y = {ax : ax+fl G L(A)} is the set of the strings accepted by restricting A to 
the cycle, and Z = {ax : ji < x < fj, + A}. 

A states 

Fig. 1. A unary DFA of size (A, /x) (final states not indicated). 

Throughout the paper we will use the following conventions to denote any unary 
automaton A = (Q,T>,5,qo,F) of size (A, /x): the set of states is denoted as Q — 
{<7o,<7i> •.. ,gM-i,po,Pi, • • • , P A - I } 5 where qo,qi,... ,^/x-i are the states occurring in 
the tail, and po,pi,... , P A - I &re the states of the cycle (with </o = Po when /i = 0); 
then S(qi, a) = qr i+i,fori = 0 , . . . , /x-2, % M _ i , a ) = p0, and S{pua) =P(i+i)MODA, 
for i = 0 , . . . , A—1. Observing the form of unary DFA's, it is not difficult to conclude 
that unary regular languages correspond to ultimately periodic sets of integers: 
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148 G. Pighizzini & J. Shallit 

Theorem 1 A unary language L is regular if and only if there are two integers 
fi > 0, A > 1, such that for any n> /JL, an G L if and only i / a n + A G L. 

Note that, given a unary regular language L, the pair of integers (A, /x) in The
orem 1, is the size of a DFA which accepts the regular language L. More precisely: 
Theorem 2 Given a unary regular language L and two integers A > 1, fi > 0, the 
following statements are equivalent: 

(i) L is accepted by a DFA of size (A,/i); 
(ii) for any n> \x, an G L if and only if an+A G L. 

A unary DFA is said to be cyclic if and only if its transition graph is a directed 
cycle. Languages accepted by cyclic automata are said to be cyclic languages. In 
other words, a unary language is cyclic if and only if it can be accepted by a DFA 
of size (A, 0), for some A > 1. To emphasize the periodicity of L, we say that L is 
X-cyclic. 

In order to show the optimality of our constructions, we now present a condition 
which characterizes minimal unary DFA's [15, Lemma 1]: 

Theorem 3 A unary DFA A = (Q, E, 5, qo, F) of size (A, JJL) is minimal if and only 
if both the following conditions are satisfied: 

(i) for any maximal proper divisor d of X (i.e., A = a • d, for some prime 
number a > 1) there exists an integer h, with 0 < h < X, such that pn G F if 
and only if P(h+d) MOD x $• F, i.e., a^h G L if and only if a^h+d £ L; 

(ii) gM_i G F if and only ifp\-\ £ F, i.e., a^ - 1 G L if and only z/a/x+A~1 ^ L. 

Note that condition (i) in Theorem 3 states that the cycle of A cannot be 
substituted with a shorther one, while condition (ii) states that it is impossible to 
"roll up" the last state of the tail on the cycle. 

Corollary 1 Given two integers \x > 0 and X > 1, let L = a / i + A _ 1(aA)*. Then, the 
size of the minimal DFA accepting L is (A,/x). 

Proof. The language L is accepted by a DFA A of size (A,/i), whose only final 
state is p\-\. Using Theorem 3, it is easy to prove that this is minimal. • 

3. Intersection and union 

In this section we evaluate the state complexity of the intersection of unary 
regular languages, by taking into account not only the total number of states, but 
also the sizes of the automata. Since any unary DFA accepting a language L can 
be easily transformed into a DFA of the same size accepting the complement of L, 
and V U L" = (Lfc D Z//C)c, our results can be immediately extended to the union 
operation. 

Theorem 4 Let V and L" be two languages accepted by unary automata A' and A" 
of size (X'^IJL') and (A",/x"); respectively. The intersection (the union, respectively) 
of V and L" is accepted by a DFA of size (lcm(A/, A / /),max(/i /,^ / /)). 
Proof. Write V = X'UZ'(aA')*> as in Eq. (1), and L" = X"\JZ"{ax")*. We have 
ax G V iff [x < ii' implies ax G X' and x > /J,' implies there exists ay G Z' such 
that x = y (mod A7)]. Similarly, ax G L" iff [x < / / ' implies ax G X" and x > p!1 
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Unary Language Operations, State Complexity 149 

implies there exists ay G Z" such that x = y (mod A")]. By the Chinese remainder 
theorem, there exists a set Z such that if x > max(/ / , / / ' ) , then ax G V D L" iff 
there exists u G Z such that x = u (mod lcm(A', A")). Hence we can accept V flL" 
using a cycle of lcm(A', A") states and a tail of max(//, / / ' ) states. • 

Now, we prove that the construction given in Theorem 4 is optimal: 
Theorem 5 For any fi'',//' > 0; A', A" > 1, there exist two languages V and L" 

which are accepted by DFA's of size (//, A') and (//', A"), respectively, such that the 

minimal DFA 's accepting L'nL" andL'UL" have both size (lcm(A', A"), max(//, // '))• 

Proof. LeU = lcm(A',A"). 
If / / = \J!9 = 0, then let V = (a v )* , L" = (aA")*. Then L' (respectively L") 

may be accepted by a DFA A' (respectively A") of size (A', 0), (respectively (A", 0)). 
Now V fl L" = (a1)*. It is easy to see that (a1)* may be accepted by a DFA with 
of size (Z,0), with only a final state, and by the Theorem 3 this is best possible. 

Otherwise, at least one of / / , / / ' is non-zero. Without loss of generality, assume 
\J! > fiff and hence //' > 0. Define V = a»'+w~x{ax')*,L" = ar(ax")* where 
r := (// — 1) MOD A,;. It is easy to see that V (respectively, L") can be accepted by 
a DFA A' (respectively, A") of size (A',//) (respectively, (A", JU"))- (In fact, L" can 
be accepted by a DFA A!' with an empty tail.) 

We claim V n L" = a**'+1-1 (a1)*. To see this, note that ax G L' iff x = 
(/jif -h A' - 1) + A:A' for some integer k > 0. Similarly, letting fi' — 1 = q\" -f r 
with 0 < r < A", we have ax G L / ; iff x = r + jA" for some integer j > 0, i.e., iff 

x = (M' - 1 ) + (j - g)A". Thus ax G L ; 0 L" iff \jl + A; - 1 + /cA; = ( ^ - 1 ) + (j - q)\", 
which is the case iff (k + 1)A; = (j — q)\". But this equation has integer solutions 
iff (k -f 1) = b\"/g and j — q = b\f jg for some integer 6, where # = gcd(A', A"). But 
k > 0 iff 6 > 1. Recalling that I = \'\" jg, it now follows that 

L>nL» = {a^+X-VHbX'/9-VX . b > 1 } = {aM'-i+w . 6 > i } = a'4 /+ |-1(az)* 

as desired. By Corollary 1, the minimal DFA accepting V D L" has size (Z, /x'). • 

In Section 6, we will investigate the state complexity of the intersection and 
union of unary regular languages more deeply, by estimating the function: 

F « n") = max (max(n ; - Y, n" - A") + lcm(A/, \")). 
1<X' <n' 

l<\"<n" 

4. Concatenation 

In this section, we evaluate the optimal size of an automaton accepting the 
concatenation of the languages accepted by two given unary DFA's. Moreover, we 
are able to show that, for some subclasses of unary regular languages, this size can 
be further reduced. 

Let us start by observing that two unary regular languages £',£" C a*, ac
cepted by two unary automata A! and A" of size (A',//) and (A",//'), respectively, 
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150 G. Pighizzini & J. Shallit 

according to Equation (1), can be expressed in the form C — X' U aM Y' and 
C" = X" U a^'Y". Hence, the product C of £ and C" can be expressed as: 

£ = L0UL1UL2UL3, (2) 

where L0 = X'X", Lx = a^ 'X"y ' , L2 = a*4" X T " , and L3 = a^'+^Y'Y". 
In order to evaluate the size of a DFA accepting C = C'C", we first compute 

the sizes of DFA's accepting the languages Lo, Li, L2, and L3. Subsequently, using 
our result concerning union of two unary regular languages (Theorem 4), we will 
get the size of a DFA accepting C. We will also show that, in the general case, the 
size so obtained is optimal. 

We observe that the languages LQ,LI,LI2, and L3 have very particular forms: 
• Lo is the concatenation of two finite languages; 
• L\ (Z/2, respectively) is obtained by concatenating a singleton language with 

the product of a finite language and a cyclic language; 
• L3 is the concatenation of a singleton language with the product of two cyclic 

languages. 
Hence, to get the sizes of automata accepting Lo,Li,L/2, and L3, in Theorems 6 
and 8, we study the product of two languages L' and L" in the following cases: 

• one of the two languages V and L" is finite; 
• both V and L" are cyclic. 

We also prove the optimality of our results. 

4.1. One Language is Finite 

Theorem 6 Given A', A" > 1, / / , \J' > 0, let V andL" be unary languages accepted 
by two DFA's A! and A" of size (A',//') and (A",// '), respectively. If L" is finite 
then L'L" is accepted by a DFA of size (A', p! + / / ' — 1). 

Proof. If L" is finite, then any state on the cycle of A" should be nonfinal. This 
implies that the length of any string belonging to L" is less than p!''. Thus, given 
an integer n > p! + p" — 1 such that an e L'L", we can find two integers x and y 
such that n = x + y, ax e V, ay e L", y < p", and x > pf. Since L' is accepted 
by a DFA of size (A',//), this implies that ax+x' e V\ and then a n + v G L'L". 
By using similar arguments, we can also prove that, for any n > p' -f p" + A' — 1, 
an+\' e LiLn i m p l i e s t h a t an e LiLn T h u S ) i n l i g h t o f Theorem 2, we conclude 

that L'L" is accepted by an automaton of size (A', p' -f p" — 1). • 

The result presented in Theorem 6 is in fact optimal: 

Theorem 7 Let p! > 0, p",\',\" > 1 be integers. The languages 

L' = aS+X-W)* and L" = a^~\ 

are accepted by two DFA's of size (A',/i') and (X",p"), respectively. Moreover, the 
size of the minimal DFA accepting the concatenation of V andL" is (\', p'+p" — 1). 
Proof. It is enough to observe that L'L" = a /x '+/i"+A '~2(aA ')*', and then apply 
the result presented in Corollary 1. • 
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4-2. Both Languages are Cyclic 

Theorem 8 Given A', A" > 1, let L' and L" be unary X'-cyclic and Xn-cyclic 
languages, resp. Then L'L" is accepted by a DFA of size (gcd(A/, A//),lcm(A/, A") — 

Proof. According to Equation (1), we can write L' = Z'(aA ')*, L" = Z"(ax")*. 
In order to prove that L'L" is accepted by a DFA of size (gcd(A', A"), lcm(A', A")— 

1), by Theorem 2, it is enough to show that, for any integer z > lcm(A/,A//) — 1, 
az e L'L" holds if and only if a

z+scd(A ' 'A") e L'L". To do this, consider an integer 
w such that aw e L'L". Then w = z' + z" + X'i + A"j, where az' e Z', az" e Z", 
ij > 0. Iiw> lcm(A',A") - 1, then X'i + X"j > lcm(A,,A,/) - (A' -f A") + 1. 
Observing that X'i + X"j is a multiple of gcd(A', A"), by Lemma 1 this implies that 
X'i + X"j + gcd(A', A") can be represented as A'a: + X"y, for some x, y > 0. Thus, 
atii+gcd(A',A") e LiLn 

Now, suppose that w > lcm(A/, A") + gcd(A', A") — 1. Using an argument similar 
to that in the previous paragraph, it is easy to show that A'i -f X"j — gcd(A', A") = 
X'x -h X"y, for some x,y > 0. Given z = w — gcd(A/,A//), this means that for 
z > lcm(A/, A") - 1, a*+scd(A, 'V ') G L'L" implies az e L'L". 

This completes the proof. • 

The result presented in Theorem 8 can be easily extended, using Theorem 6, as 
follows: 

Corollary 2 Let L' = a^Y' and L" = oP"Y" be two languages such that Y', Y" C 
a* are X'-cyclic and X"-cyclic, respectively. Then L' and L" are accepted by two 
automata of size (A', / / ) and (A", ji"), respectively, while L — L'L" is accepted by an 
automaton of size (A, fx), where X = gcd(A/, A"), and \x = \J + }JL" -f lcm(A;, A") — 1. 

The optimality of the results presented in Theorem 8 and in Corollary 2 is proved 
in the following result: 

Theorem 9 Let fi'^fi" > 0, A', A" > 1 be integers. The languages 

jj = a»'+\'-l(a\'y and Ln = a»"+\"-l(a\"y^ 

are accepted by two DFA's of size (A',//) and (X",n"), respectively. Moreover, the 
size of the minimal DFA accepting L'L" is (gcd(A;, A"), \J! + fi" + lcm(A', A/;) — 1). 
Proof. First of all, we point out that, as observed in Corollary 1, the languages 
V and L" are accepted by two DFA's of size (A',//) and (X",n"), respectively. 

For the sake of simplicity, we prove the theorem in the case / / = /i" = 0. The 
extension to the general case is trivial. 

By Theorem 8, there exists an automaton A of size (gcd(A;, A"), lcm(A', A") — 1), 
which accepts L = L'L". By using Theorem 3, we now show that A is minimal. 

Given n > 0, the string an belongs to L if and only if there are two integers 
x, y > 0 such that n = X' + X" — 2 + X'x + X"y. By Lemma 1, all integers of the form 
X'x -f X"y, with x, y > 0, are multiple of gcd(A', A"). Hence, it is easy to conclude 
that condition (i) of Theorem 3 is satisfied. 

Furthermore, given k > 1, the string alcm(A'>x")-2+k scd(A >A ) belongs to L if and 
only if X'x + X"y = lcm(A;, A") + fcgcd(A;, A/;), for some x, y > 1, i.e., X'x + X"y = 
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152 G. Pighizzini & J. Shallit 

lcm(A/, A") — (A' + A") 4- A;gcd(A', A"), for some x, y > 0. By Lemma 1, this implies 
that a

l c m ( A , ' A ")- 2 i L, while aicm(Y,A")-2+gcd(Y,A") e L Renc^ condition (ii) of 
Theorem 3 is also satisfied. This permits us to conclude that A is minimal. • 

4-3. The General Case 

Using the results so far presented, we can now easily study the general case: 
Theorem 10 Given pi\p!' > 0, A',A" > 1, let £ and C" be unary languages 
accepted by two automata A' and A" of size (A',//) and (A"',//'), respectively. Then, 
the concatenation of £ and £' is accepted by a DFA of size (A, p), where A = 
lcm(A/, A") and p = p' + p!' + lcm(A/, A") - 1. 

Proof. Using the notations introduced at the beginning of this section, we get the 
sizes of some automata accepting the languages Lo, Li, L2, and L3 in Equality (2). 

We note that the languages X', X", Yf, Y", aM , and a^ can be accepted by 
DFA's of size (1,/ /) , (1,/x"), (A',0), (A",0), ( 1 , / / + 1) and (1,JU" + 1) , respectively. 
Thus: 

• Lo is accepted by a DFA of size (1, p' + p" — 1) (Theorem 6); 
• L\ and L2 are accepted by DFA's of size (A', p! + p" -f A' — 1) and (A", p! -h 

JJL" + A" — 1), respectively (Theorem 6); 
• L3 is accepted by a DFA of size (gcd(A', A"), /x/+/x//+lcm(A/, A")- l ) (Corollary 

2). 
According to Theorem 4, from these four automata we can get a DFA accepting L 
of size (A, p), where A = lcm(A;, A") and p = p' + p" + lcm(A', A") - 1. • 

We now study the optimality of the result stated in Theorem 10. First, we show 
that this result is optimal when gcd(A/,A//) > 1. Subsequently, we will consider 
relatively prime A' and A", and we will see that in this case the number of states in 
the cyclic part can be further reduced. 

Let us start by proving the following result: 
Theorem 11 For any p',p" > 2, A', A" > 2, such that gcd(A', A") > 1, there exist 
two unary languages C and C" which are accepted by two DFA's A' and A" of size 
(A',//) and (A"\p"), respectively, such that the size of the minimal DFA accepting 
their concatenation is (A, p), with A = lcm(A', A") and p — /z/-f/Li,/ + lcm(A/, A") — 1. 
Proof. If A;/ divides A' (A' divides A", respectively), then the languages in the 
proof of Theorem 7 provide the desired examples. 

Now, suppose that A' does not divide A,;, and A" does not divide A'. Consider 
the languages: 

C! = a ^ ' - V ' ) * Lla"'-2 and C" = a»"+x" ~\ax" )* U a»" ~2. 

It is not difficult to describe two automata A' and A" of size (A',//) and (A",p") 
accepting £ and £'', respectively. From these automata, according to Theorem 10, 
an automaton A of size (A, p) accepting C can be obtained. We observe that a state 
px on the cycle of A, with 0 < x < A, is final if and only if there is an integer k > 1 
such that either x = kg — 1, or x = k\' — 2, or x = k\" — 2, where g = gcd(A;, A"). 
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In order to show that A is minimal, we prove that both conditions (i) and (ii) 
of Theorem 3 are satisfied. 

Consider a maximal proper divisor d of A. Then, either A' divides d, or A" 
divides d. Suppose that A' divides d, i.e., d — (3\f, for some (3 > 1, and consider 
h = A" - 2. Then h + d = A" - 2 + /?A'. So, p ( f c + d ) MOD A € F if and only if 
there exists an integer k > 1 such that either (a) A" — 2 + /?A' = A;# — 1, or (b) 
A" - 2 + /?A' = fcA' - 2, or (ty A" - 2 + /?A' = fcA" - 2. 

Since # is greater than 1 and divides both A' and A", the equality (a), which 
reduces to A" + f3\f = kg + 1 cannot hold, for any integer fc. Also equality (b) 
cannot hold since it implies that A' divides A". Finally, equality (c) reduces to 
(3\f = (fc — 1)A"; thus, it implies that /?A', namely d, is a multiple of both A' and 
A", i.e., a multiple of A. This is a contradiction. Thus, we are able to conclude that 
P{h+d) MOD A ^ F, while ph G F. The case of A" which divides A' can be managed 
in a similar way. This permits us to conclude that condition (i) of Theorem 3 
holds. Using Lemma 1, it is possible to verify that aA

t,+At',+lcm(A,^,,)-2 ^ £? while 

aM'+/*"+icm(A',A")+A-2 G £ Hence, condition (ii) of Theorem 3 also holds. This 
implies that A is minimal. • 

Theorem 11 shows the optimality of the result stated in Theorem 10, for all 
/ / , / / ' , A', A" such that gcd(A', A") > 1, with few exceptions for small / / , p". 

We now consider the case of relatively prime A' and A". The number of states in 
the cyclic part of the minimal DFA accepting the product of £ and C" is less than 
lcm(A', A"). In particular, if both languages are infinite, then this number reduces 
to gcd(A', A") = 1, while if C" is finite it reduces to A;: 

Theorem 12 Let £ and C" be unary languages accepted by two automata A' and 
A" of size (A',//), (A",// '), respectively, with pf,p" > 0, A',A" > 1, such that 
g c d ^ A " ) ^ . 

/ / both CI and C" are infinite, then their concatenation is accepted by an au
tomaton A of size (1, p! + //" + A;A/; — 1); if C" is finite, then the concatenation of 
C! and L" is accepted by an automaton of size (A7, //' + p" — 1). 

These results are optimal, with the only exception being the trivial case C" = 0. 
Proof. Suppose that both £ and £f are infinite. The concatenation C of £ 
and £' can be expressed as in Equality (2). Since gcd(A,,A//) = 1, any string ax 

with x > pi + p" + lcm(A/, A") - 1 belongs to a^'^'VY" and then to £. Hence, 
it is possible to conclude that a cycle of length 1 is sufficient. The optimality 
is a consequence of Theorem 9. When £' is finite, the result is an immediate 
consequence of Theorem 6 and of Theorem 7. • 

4-4- Particular Cases 

The construction of an automaton A accepting the concatenation of the lan
guages £ and £' accepted by two given unary DFA's Al and A" (Theorem 10) is 
based on Equality (2). When one or both noncyclic parts of £ and £' are empty, 
some of the languages on the right side are empty. Thus, evaluating in this cases 
the size of the resulting automata, one can easily get the following result: 

In
t. 

J.
 F

ou
nd

. C
om

pu
t. 

Sc
i. 

20
02

.1
3:

14
5-

15
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
47

.2
13

.2
07

.2
26

 o
n 

03
/0

2/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



154 G. Pighizzini & J. Shallit 

Theorem 13 Let £ and £' be unary languages accepted by two automata A' and 
A" of size (A',//) and (A",// '), respectively. The concatenation of £ and £' is 
accepted by a DFA of size (A, ji), where \i = p! + p" -f lcm(A/, A") — 1 and: 

(i) if the initial path of A! does not contain any final state, then A can be taken 
equal to A'; 

(ii) if the initial path of A" does not contain any final state, then A can be 
taken equal to A"; 

(Hi) if both the initial paths do not contain any final state, then A can be taken 
equal to gcd(A', A"). 

We point out that the results stated in Theorem 13 are optimal when gcd(A', A") > 
1. For statement (iii), this is a consequence of Theorem 9. This also implies the 
optimality of (ii) when A" = gcd(A',A") = 2. On the other hand, for A" > 2, the 
optimality of (ii) is given in the following result: 

Theorem 14 Given /z', A' > 2, A" > 2, \J!' > 0 such that gcd(A/,A//) > 1, consider 
the languages 

£ = </+*'" V ' )* UaM'-2 £" = aM"+V'-l(aA")*B 

The languages £ and £' can be accepted by two automata A! and A" of size (A', p!) 
and (A",// '), respectively. Furthermore, the minimal DFA accepting the concatena
tion C = ££' has size (A",tf + / / ' + lcm(A', A") - 1). 

Proof, (outline) An automaton A of size (A", p! + /z" -f lcm(A', A") — 1), accepting 
£, can be obtained, from A' and A", according to Theorem 10. 

To show that A is minimal, we observe that a state px on the cycle of A is final 
if and only if there is an integer k > 1, such that either x = k\" — 2 or x — kg — 1, 
where g = gcd(A', A"). 

Let d be a proper divisor of A". If d is a multiple of g, then we consider 
h — A" — 2. We observe that ph e F , while P(h+d) MOD A" € F if and only if 
there exists an integer k > 1 such that either (a) A" — 2 + d — k\" — 2 or (b) 
A" — 2 + d = kg — 1. (a) implies that d is a multiple of A", while (b) implies that 
g > 1 divides 1. Thus, P(h+d) MOD A" ^ F. On the other hand, if d is not a multiple 
of g, then we consider h = A" — 1. Also in this case ph G F, while P(h+d) MOD A" € F 
if and only if there exists an integer k > 1 such that either (a) \" — \ + d — k\" — 2 or 
^ A;/ — 1 + d = kg — 1. Using the hypothesis that A" > 2, it is possible to show that 
condition (a), which reduces to (k — 1)A" = d + 1, cannot hold. Since g divides A" 
and kg, but does not divides d, condition (b), which reduces to \" -\-d = kg, cannot 
hold. Thus, we conclude that P(h+d) MOD A" ^ F. Hence, condition (i) of Theorem 
3 holds. Now, observe that p\»-\ G F , while, using Lemma 1, it is possible to verify 
that aM

,+M,,+icm(A,,A")-2 ^ £? j > e ^ g / i /+/ i / /+lcm(A/jA//)_2 ^ F . Hence, condition ^ 
holds also. This permits us to conclude that the automaton A is minimal. • 

Finally, we point out that the optimality of Theorem 13(%), for gcd(A', A") > 1, 
can be done in a similar way. 

We conclude this section by summarizing, in Table 1 and in Table 2, the results 
we have proved concerning the state complexity of the concatenation of two Ian-
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guages £ and C" accepted by two automata A' and A" of size (A', / / ) and (A", / / ' ) , 
respectively. 

Table 1. State complexity of the concatenation, when gcd(A/,A//) > 1. X' 
and X" denote the languages accepted by the initial paths of A' and A", 
respectively, i.e, X' = {ax e C : x< / / } and X" = {ax € C" : x< / / ' } . 

X' ^ 0 

X' = 0 

L x"..#0 
( l cm(A' ,A") , / /+M" + lcm(A^ A") - 1) 

upper bound: Th. 10 
1 lower bound: Th. 11 

( ^ / i ' H V ' + l c m ( A ' , A " ) - l ) 
upper bound: Th. 13 

1 lower bound: Th. 9 and Th. 14 

X" = 0 | 

( A ^ / i ' + / / ' + l c m ( A ' , A " ) - l ) 
upper bound: Th. 13 

lower bound: Th. 9 and Th. 14 
(gcd(A', A''), /x' + M" + lcm(A', A") - 1) 

upper bound: Th. 13 
lower bound: Th. 9 

Table 2. State complexity of the concatenation, when gcd(A/, A") = 1. 

# L " = co 

# L " < o o 

I #L' = oo 

1 (l,n'+n" + \'\"-l) 
Th. 12 

( A ' l M ' + M " - l ) 
upper bound: Th. 6 

| lower bound: Th. 7 

# L ' < oo | 

(A",/x '+/x" - 1 ) 
upper bound: Th. 6 
lower bound: Th. 7 

( 1 , M ' + * • " - ! ) 
upper bound: Th. 6 
lower bound: trivial 

5. Kleene Star 

In this section, we present some short considerations concerning the state com
plexity of the Kleene star operation in the unary case. 

First of all, we recall the following result [19, Th. 5.3]: 
Theorem 15 If L is a unary regular language accepted by an n-state DFA, then 
L* is accepted by a DFA with (n — l ) 2 -f 1 states. Furthermore, for any n > 1 this 
result cannot be improved. 

We observe that if L is accepted by an automaton of size (A, /x), then the cycle 
in the minimal DFA accepting L* cannot have more than A states, i.e., the size 
(A*,//*) of the minimal automaton accepting L* verifies A* < A. 

We now analyze some limit situations. 
First, we suppose that ft = 0, i.e., L is A-cyclic. If L = (aA)*, then L — L* and 

(A*,//*) = (A,0). Otherwise, let k be an integer such that ak G L and 0 < k < A. 
Any string which has length of the form kx + Ay, with x > 1 and y > 0, or 
x — y — 0, belongs to L*. Hence, the length of the loop is A* < gcd(A, k) < k. In 
particular, when L — afc(aA)*, by using Lemma 1, it is not difficult to conclude that 
A* = gcd(A, k) and /x* = lcm(fc, A) - A + 1 . For k = A - 1 this reduces to A* = 1 and 
/i* = (A — l ) 2 , which exactly matches the number of states given in Theorem 15. 

Now, we suppose that \i > 0 and A = 1. If po € F then all strings of length 
greater than \x — 1 belong to L. Thus L* is accepted by an automaton of size (1, /x*), 
with fj,* < ii. On the other hand, if po £ F then L is finite. This case was analyzed 
in [17], where it was proved that L* is accepted by an automaton with at most 
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n2 — ln+ 13 states, where n = fx + \ = /j, + l (this result, which is optimal, holds 
for n > 3). We can suppose that a^~l G L, otherwise the size of the DFA accepting 
L can be reduced. If L = {a M - 1 }, then L* is accepted by an automaton of size 
{ji — 1,0). If L = {as,a^-1}, with 0 < s < /J, — 1, then, using Lemma 1, it can be 
shown that L* is accepted by an automaton of size (A*, /i*), with A* = gcd(/i — 1, s) 
and ji* = \cm(fj, — 1, s) — \x — s + 2. In particular, when s = \i — 2, we get A* = 1 
and /i* = ji2 — 5/i + 6 (note that for n = A + ^, A* 4- //* is exactly n2 — In + 13). 

As pointed out in [17], the reader can verify that the size obtained in the last 
case is an upper limit for the case of L containing three or more words. 

6. Jacobsthal's function 

As observed in Section 3, to understand the state complexity of the intersection 
of regular languages, we need to estimate the function 

F(n\ n") = max f (max(n7 - A;, n" - A") + lcm(A7, A")). 
l<\"<n" 

This in turn suggests studying the somewhat simpler and more natural function 

G(ri,n")= max lcm(A',A"), 
l < A ' < n ' 

\<\"<n" 

which is also related to the state complexity of the concatenation. 
To the best of our knowledge, neither F nor G has been studied previously, 

although both functions are closely related to the Jacobsthal function g(n), which 
is defined to be the least integer r such that every set of r consecutive integers 
contains at least one integer relatively prime to n [8], 

Below we show an interesting connection between this problem and state com
plexity for intersection of unary languages. First, however, we state two known 
upper bounds on this function. The first is an explicit bound due to Kanold [9]: 
Theorem 16 Let uj(n) denote the number of distinct prime factors of the positive 
integer n. Then g{n) < 2w(n) for all integers n > 1. 

The second bound is due to Iwaniec [7]: 
Theorem 17 There exists a constant c\ such that g(n) < ci(logn)2 for all integers 
n> 1. 

First we obtain a lower bound on G (and hence F): 

Theorem 18 Let n' < n". Then there exists a constant C\ such that F(n / ,n / /) > 
G(n',n") > n'n" - c^logn'fn'. 

Proof. By Iwaniec's theorem, there exists k with 0 < k < ci(logn')2 such that 
gcd(n',n" - k) = 1. Hence G(ri,n") > n'{n" - k) > n'{n" - c^logr^)2). • 

Carl Pomerance has kindly pointed out (personal communication) that the lower 
bound of Theorem 18 can be improved in the case where nf and n" do not differ 
much in size, as follows. We use a result of Adhikari and Balasubramanian [1]: 
Theorem 19 If x,y are positive integers < N, then there exist integers a, b with 
a = O(logloglogAT) andb = 0((log AT)/(loglog AT)) such that gcd(x — a, y — b) = 1. 
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Using this theorem, we obtain the following: 

Theorem 20 

(a) Ifnf < n" < nog iog ̂ ) nc îog log n/) > ^ien there exists a constant c2 such that 

F(n',n») > G(n\nff) > n'n" - c2x^^n'. 

(h) V (logiogn^KgiognO < »" < i S J then there exists a constant c3 

such that F{n',n") > G{n,
1n

,f) > n'n" - c3(logloglogn')n"-

Next, we find a upper bound on F. First we prove the following lemma. 

Lemma 2 Let n',n" be fixed positive integers. The quantity 

Q(A', A") := max(n' - A', n" - A") + lcm(A', A") 

is maximized (1 < A' < n', 1 < A" < n") only i/gcd(A/, A'') = 1. 

Proof. Assume not. Then Q(A',A") is maximized for some A', A" with 
gcd(A', A") = g > 1. Assume without loss of generality that m! > n". For nf < 11 
the theorem can be verified by a simple computer program. Hence assume nf > 11. 

We have max(n ' - A', n" -A") < n' and lcm(A', A,;) = ^f- < *£, so Q(A', A") < 

n' + 2^-. By Theorem 16 we know there exists a fc, 1 < k < 2^n ) such that 
gcd(n', n' — k) = 1. Since Q(A', A") is a maximum, we have Q(A', A") > n'{p! — k) + 
k > n'(n' — 2w(n )). Putting the inequalities for Q together, we get 

n , ( n , - 2 ^ , ) ) < n , - f ^ , 

and so n' - 2"^ < 1 + \ . Thus n' < 2(2w(n'> + 1). 
However, we claim that nf > 2(2w(n'> + 1) for nf > 11. For 11 < n' < 141 this 

follows by an explicit calculation. Otherwise n' > 142. We now use a theorem of 
Robin [16] which states u)(n) < t(n) where 

t{n) : = J2i!L. + i.45743- b g n 

log log n ' (log log n ) 2 ' 

Since n' > 142, we have log log n' > 1.6 and so 

*(»') < T ^ - + 1 . 4 5 7 4 3 - ^ - < .831og2n'. 
1.61og2e 2.561og2e 

We thus obtain 2(2u;(n')+1) < 2(2*^') +1) < 2(n'-83 +1) and it is easily verified that 
2(n / '83 + i) < n ' for n ' > 70. This contradiction completes the proof. • 

Remark . Ming-wei Wang points out (personal communication) that a slightly 
weaker result is much easier to prove: namely, that Q achieves its maximum at 
some (A', A") with gcd(A', A") = 1 (as opposed to "only if"). For if gcd(A', A") > 
1, then write A7 = 2ei3e2--pe

k
k and A" = 2^3 / 2---p{ f c where p{ is the fc'th 

prime and pk is the largest prime dividing either A' or A". Let d! = Y[i<i<k p^1 

and d" = Y\i<i<k p{*. Then lcm(\'/d',\"/d") = lcm(A',A"), and hence we have 

Q{X'/d',X"/d")> Q(X',X"). However gcd(\'/d', X"/d") = 1. 
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Remark. Note that F(ri ,n") = max i<x'<n> max(n' — \' ,n" — A") + lcm(A/, A") 
l < A " < n " 

does not necessarily achieve its maximum at the same pair (A7, A") which maximizes 
G{n',n") = max !<*/<„/ lcm(A',A"). For example, F(148,30) = 4295, which is 

l<\"<n" 

uniquely achieved at (A', A") = (143,30), while G(148,30) = 4292, which is uniquely 
achieved at (A', A") = (148,29). 

We can now prove our upper bound. 

Theorem 21 There exist a constant c^ and infinitely many distinct pairs n',n,f 

with n" < ri such that G(ri>") < F(ri,n") < rin" - c±Jx^£n, ri. 
Proof. Let d > 1 be a fixed integer. Let Sd = {(i,j) ' i,j > 0 and i -f j < d}. 

For each pair (i, j) 6 Sd, choose a distinct prime qij from the set {pi,P2? • • • 5Pv}> 
where pi denotes the i'th prime and v = d(d -f l ) /2 . By the Chinese remainder 
theorem, we can find n',n" such that qij \ nf — i and qij \ n" — j for all pairs 
(i, j) G Sd- Furthermore, we may choose n' and n" such that K < n" < 2K, 
2K <n'< 3K, where K := Yli<i<vPi> By the prime number theorem (e.g., [2]), we 

have K = e(i+°(i))«iog v# Hence there exists a constant c5 such that d > c^J^^n'-

It follows that gcd(n' — i,n" — j) > 1 for all pairs (i, j) e Sd- By Lemma 2, we 
know that F cannot achieve its maximum when (A', A") G Sd> 

It follows that F(n',n") < maxb+A/=d ({n' - b){n" - X') + d). But 

max ((n' - 6)(n" - A') + d) < rin" - dn" + d2/4 + d. 
b-\-\'=d 

Hence F(n' , n") < n"(ri - d) + d2/4 -f d. Since ri' > ri/3, the result follows. • 

Remark. This result suggests defining a function S(n) to be the least positive 
integer r such that there exists an integer ra, 0 < m < r, with gcd(r — i,m — j) > 1 
for 0 < i, j < n. By an argument similar to that given above, we know that 
S(n) < e ( l+° ( l ) )2n 2 l ogn T h e f o l l o w i n g t a b l e g i v e g t h e firgt few y a l u e s Qf 5 ( n ) . 

Table 3. First few values of S(n). 

n 
1 
2 
3 

S(n) 
2 

21 
1310 

m 
0 

15 
1276 

It is possible to prove through brute force calculation that 450000 < 5(4) < 
172379781. The upper bound follows from the fact that if 

(x,y) = (172379781,153132345), 

then we have gcd(x — z, y — j) > 1 for 0 < z, j < 4. 
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