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Abstract. The state complexity of basic operations on regular lan-
guages has been studied in [9,10,11]. Here we focus on finite languages.
We show that the catenation of two finite languages accepted by an m-
state and an n-state DFA, respectively, with m > n is accepted by a
DFA of (m − n + 3)2n−2 − 1 states in the two-letter alphabet case, and
this bound is shown to be reachable. We also show that the tight upper-
bounds for the number of states of a DFA that accepts the star of an
n-state finite language is 2n−3 + 2n−4 in the two-letter alphabet case.
The same bound for reversal is 3 · 2p−1 − 1 when n is even and 2p − 1
when n is odd. Results for alphabets of an arbitrary size are also ob-
tained. These upper-bounds for finite languages are strictly lower than
the corresponding ones for general regular languages.

1 Introduction

Many applications of regular languages use essentially finite languages. In [9,
10,11], the state complexity of basic operations on regular languages has been
studied. It is interesting and important to know whether those state-complexity
results still hold for finite languages. For example, (2m− 1)2n−1 is the number
of states of a minimal DFA, in the worst case, that accepts the catenation of an
m-state and an n-state DFA language. Does the catenation of two DFA, each
accepting a finite language, need the same number of states in the worst case?
May it be significantly smaller?

It is known [4] that a minimal DFA that accepts the reversal of an n-state
DFA language needs 2n states in the worst case. This fact determines that Br-
zozowski’s DFA minimization algorithm [1,7], which uses two reversals, is expo-
nential in time and space in the worst case. However, this algorithm is faster
than other algorithms in many experiments. It is a natural question whether
this algorithm has a polynomial time or space complexity in the case of finite
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O. Boldt and H. Jürgensen (Eds.): WIA’99, LNCS 2214, pp. 60–70, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



State Complexity of Basic Operations on Finite Languages 61

languages. This question is very much related to the state complexity of the
reversal of finite languages.

In this paper, we focus on the above mentioned problems and on the state
complexity of basic operations on finite languages, in general. We show that for
an n-state DFA A accepting a finite language L, a minimal DFA that accepts
L∗ has 2n−3+2n−t−2 states in the worst case, where t ≥ 2 is the number of final
states in A (except the starting state). Note that for t = 1, this bound is simply
n− 1.

For the catenations of finite languages, we show that a minimal DFA that
accepts the catenation of two finite languages, which are accepted by an m-state
DFA and an n-state DFA, respectively, has at most

m−2∑
i=0

min
{
ki,

(
n− 2
≤ i

)
,

(
n− 2

≤ t− 1

)}
+min

{
km−1,

(
n− 2
≤ t

)}

states, where k is the size of the alphabet and t is the number of final states in
the first automaton. Notice that this bound depends very much on t. If t is a
constant, then this bound is O(mnt−1 + nt), which is polynomial. In particular,
when t = 1, it is m+n−2. In the case of a two-letter alphabet (with an arbitrary
t), this bound is (m−n+3)2n−2−1. We give examples to show that this bound
is reachable.

We also show that
∑t−1

i=0 k
i + 2n−1−t is an upper bound on the number of

states for a minimal DFA that accepts the reversal of a finite language accepted
by an n-state DFA, where t is the smallest integer such that 2n−1−t ≤ kt. This
bound is, in the case of a two-letter alphabet, 3 · 2p−1 − 1 if n = 2p or 2p − 1
if n = 2p − 1. We also give examples to show that the latter bounds are reach-
able. Unfortunately, these results show that Brzozowski’s DFA minimization
algorithm is still exponential in the worst case even for finite languages.

We also consider the state complexity of operations on finite languages in
the case of a one-letter alphabet.

2 Preliminaries

Let T be a finite set. Denote by #T the cardinality of T and by T ∗ the free
monoid generated by T . The empty word, i.e., the neutral element of T ∗, is
denoted by λ and T+ = T ∗ − {λ}. For w ∈ T ∗, denote by |w| the length of w.
We define

T l = {w ∈ T ∗ | |w| = l}, T≤l =
l⋃

i=0

T i, and T<l =
l−1⋃
i=0

T i.

If T = {t1, . . . , tk} is an ordered set, k > 0, the lexicographical order on T ∗,
denoted 	l, is defined by: x 	l y iff x = y or |x| < |y| or |x| = |y| and x = ztiv,
y = ztju, i < j, for some z, u, v ∈ T ∗ and 1 ≤ i, j ≤ k. We say that x is a prefix
of y, denoted x 	p y if y = xz for some z ∈ T ∗. The relation 	p is a partial
order on T ∗.
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A deterministic finite automaton (DFA) is a quintuple A = (Q,Σ, δ, q0, F ),
where Q is the finite nonempty set of states; Σ is the finite nonempty alphabet;
q0 ∈ Q is the starting state; F ⊆ Q is the set of final states; and δ : Q×Σ −→ Q
is the transition function. We extend δ from Q × Σ to Q × Σ∗ by δ(q, aw) =
δ(δ(q, a), w) and δ(q, λ) = q for q ∈ Q, a ∈ Σ, and w ∈ Σ∗. We usually denote δ
by δ if there is no confusion.

The language recognized by the automaton A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∈
F}. Two automata are equivalent if they recognize the same language.

For simplicity, in what follows, we assume that Q = {0, 1, . . . ,#Q − 1} and
q0 = 0. We also assume that δ is a total function, i.e., that the automaton is
complete.

Let A = (Q,Σ, δ, q0, F ) be a DFA. Then
a) a state s is said to be accessible if there exists w ∈ Σ∗ such that δ(0, w) = s;
b) a state s is said to be useful if there exists w ∈ Σ∗ such that δ(s, w) ∈ F .
It is clear that for every DFA A there exists an automaton A′ such that

L(A′) = L(A) and every state of A′ is accessible and at most one state is useless
(the sink state). The DFA A′ is called a reduced DFA. We will use only reduced
DFA in the following.

A DFA A = (Σ,Q, q0, δ, F ) is said to be minimal if for every other automaton
A′ = (Σ,Q′, q′

0, δ
′, F ′) such that L(A) = L(A′), we have #Q ≤ #Q′.

A minimal DFA has at most one useless state.
Let L ⊆ Σ∗ and x, y ∈ Σ∗. Then x ≡L y if for all z ∈ Σ∗, xz ∈ L iff yz ∈ L.

Clearly, ≡L is an equivalence relation on Σ∗. The number of states in a minimal
DFA that accepts L is exactly the number of equivalence classes of ≡L [3]. If
L = L(A) and p, q are states of the DFA A = (Σ,Q, q0, δ, F ) we denote also
p ≡L q (or simply p ≡ q) if for all z ∈ Σ∗, δ(p, z) ∈ F iff δ(q, z) ∈ F .

For basic definitions and results in automata theory, the reader may refer to
[5,3,11].

3 Star Operation on Finite Languages

In [9] (also in [11]), it was shown that for any n-state (complete) DFA A, there
exists a minimal DFA of at most 2n−1+2n−2 states that accepts L(A)∗. Examples
were also given to show that this bound is reachable. In this section, we show
that in the case that A accepts a finite language rather than an infinite regular
language, the corresponding bound is exactly 2n−3+2n−4. The latter is exactly
one-fourth of the former.

Let A be an n-state DFA accepting a finite language. If A has only one final
state, it is clear that a minimal DFA accepting L(A)∗ needs at most n−1 states.
Note that this is not true in general for an n-state DFA accepting an infinite
regular language. It has been shown that the upper bound 2n−1 + 2n−2 can be
reached even for n-state DFA with only one final state.

In the following, we consider DFA with at least two final states.
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Theorem 1. Let A = (Q,Σ, 0, δ, F ) be a DFA accepting a finite language L,
where 0 �∈ F , #F = t ≥ 2, #Q = n ≥ 4. Then there exists a DFA of at most
2n−3 + 2n−t−2 states that accepts L∗.

Proof. We first construct an NFA A′ from A by adding a λ-transition from each
final state f ∈ F to 0. Formally, A′ = (Q,Σ, δ′, 0, F ) where δ′ : Q×Σ → 2Q is
defined for each p ∈ Q and a ∈ Σ as follows:

δ′(p, a) =
{{q} if q = δ(p, a) and q �∈ F ,

{q, 0} if q = δ(p, a) and q ∈ F .
Clearly, A′ accepts L(A)+.

Next we construct a DFA B = (QB , Σ, δB , 0B , FB) from A′ using the stan-
dard subset-construction method [3,8] and, furthermore, make the starting state
of B a final state which guarantees that L(B) = L(A)∗. Then we have QB ⊆ 2Q,
0B = {0}, FB = {P ∈ QB | P ∩ F �= ∅} ∪ {0B}, and δB(P, a) = ∪p∈P δ

′(p, a).
In the following, we assume that, in A, (n− 1) is the sink state and (n− 2)

is the final state that has transitions only to (n− 1). Without loss of generality,
we also assume that B is a reduced DFA.

Let P ∈ QB . Then the following three propositions can be easily proved:

(1) If P ∩ F �= ∅, then 0 ∈ P .
(2) If (n− 1) ∈ P , then P ≡L∗ P − {n− 1}.
(3) If (n− 2) ∈ P and P ∩ (F − {n− 2}) �= ∅, then P ≡L∗ P − {n− 2}.
Using the above propositions, we can simplify the DFA B by merging all equiv-
alent states. Let the resulting DFA be B′ = (Q′

B , Σ, δ
′
B , 0B , F

′
B). So, Q′

B has at
most the following states:

(i) the starting state 0B = {0} and the sink state {n− 1},
(ii) all P such that P ⊆ (Q− F − {0, n− 1}) and P �= ∅,
(iii) all P = {0}∪P ′∪P ′′ such that P ′ ⊆ (Q−F−{0, n−1}) and P ′′ ⊆ F−{n−2}

and P ′′ �= ∅,
(iv) all P = P ′ ∪ {0, n− 2} where P ′ ⊆ (Q− F − {0, n− 1}) and P ′ �= ∅.
Note that in (iv) P ′ �= ∅ because {0, n − 2} is equivalent to {0} ({0} ∈ F ′

B),
which is included in (i).

Now we calculate the number of states in each of the items above: (i) 2, (ii)
2n−t−2 − 1, (iii) 2n−t−2(2t−1 − 1), and (iv) 2n−t−2 − 1.

Hence we have #Q′
B ≤ 2n−3 + 2n−t−2. ��

As we have mentioned before, when t = 1, we can construct a DFA of at most
n − 1 states to accept L∗. So, when t = 2 we obtain the maximum number of
states for the above formula, i.e., 2n−3 + 2n−4.

Note that if 0 ∈ F , then for each P ∈ QB such that {0, n − 2} ⊆ P we
have P ≡L∗ (P − {n− 2}). Thus, all states of (iv) are included in (iii). Then we
have (i) 2, (ii) 2n−t−1, and (iii) 2n−t−12t−2. The total number is 2n−t−1+2n−3.
However, if t ≤ 2, then we can construct a DFA of at most n−1 states to accept
L∗. So, this formula reaches its maximum when t = 3, i.e., 2n−3 + 2n−4, which
is the same as the one in the case 0 �∈ F .
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Corollary 1. Let A = (Q,Σ, δ, 0, F ) be a DFA accepting a finite language L,
where #Q = n > 4. Then there exists a DFA of at most 2n−3+2n−4 states that
accepts L∗.

Theorem 2. There exists a DFA A = (Σ,Q, δ, 0, F ) with #Q = n ≥ 4 such
that any DFA recognizing L(A)∗ has at least 2n−3 + 2n−4 states.

Proof. For an arbitrary integer n ≥ 4, we define a DFA A = (Q,Σ, δ, 0, F ),
where Q = {0, 1, . . . , n− 1}, Σ = {a, b, c}, F = {n− 3, n− 2}, and δ:
δ(i, a) = i+ 1, for 0 ≤ i ≤ n− 2,
δ(i, b) = i+ 1, for 1 ≤ i ≤ n− 2, and δ(0, b) = n− 2,
δ(i, c) = i+ 1, for 0 ≤ i ≤ n− 2 and n− i is odd,
δ(i, c) = n− 1, for 0 ≤ i ≤ n− 2 and n− i is even,
δ(n− 1, a) = n− 1, δ(n− 1, b) = n− 1, δ(n− 1, c) = n− 1.
The DFA A is shown in the figure below in two cases: (a) n is odd and (b) n

is even.

3210 n-1n-2n-3

b

c c c

a, c a, b a, b, c a, b a, b, c a, b, c

a, b, c

a, b

(a) n is odd

3210 n-1n-2n-3

c c c

a a, b, c a, b a, b, c a, b a, b, c a, b, c

a, b, c

b

(b) n is even

Fig. 1. DFA A of n states such that L(A)∗ needs 2n−3 + 2n−4 states

We construct a DFA A′ = (Q′, Σ, δ′, 0′, F ′) that accepts L(A)∗ following the
two steps described in Theorem 1: (i) construct an NFA by adding a λ-transition
from each final state to the starting state; (ii) construct a DFA from the resulting
NFA of the previous step using the standard subset-construction algorithm.

In the following it suffices to show that every state specified in Theorem 1 is
(1) reachable from the starting state {0} and (2) in a distinct equivalence class
with respect to L(A)∗.

We first prove that every state in the proof of Theorem 1 is reachable. For
convenience, we denote the four disjoint subsets of Q′ described in (i), (ii), (iii),
and (iv) of Theorem 1 by Q′

(i), Q
′
(ii), Q

′
(iii), Q

′
(iv), respectively. In particular, we

have
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Q′
(i) = {{0}, {n− 1}},

Q′
(ii) = {P | P ⊆ {1, . . . n− 4} and P �= ∅},

Q′
(iii) = {P ∪ {0, n− 3} | P ⊆ {1, . . . n− 4}},

Q′
(iv) = {P ∪ {0, n− 2} | P ⊆ {1, . . . n− 4} and P �= ∅}.

For Q′
(i), obviously, the starting state {0} and the sink state {n − 1} are both

reachable. Now we prove the following claim:

Claim. Every state q′ ∈ Q′
(iii) is reachable (from the starting state {0}).

Let q′ ∈ Q′
(iii). Then q

′ = P ∪ {0, n− 3} for some P ⊆ {1, . . . , n− 4}. We prove
the claim by induction on the size of P . If #P = 0, then q′ = {0, n−3}. It is clear
that q′ = δ′({0}, an−3). Suppose that every state q′ is reachable for #P = k, 0 ≤
k < n− 4. Consider the case when #P = k+1. Let q′ = {0, i0, i1, . . . , ik, n− 3}.
We know that q′′ = {0, i2 − i1, . . . , ik − i1, n− 3 − i1, n− 3} is reachable by the
induction hypothesis. Then it is clear that

δ′(q′′, abi1−i0−1ai0)
= δ′({0, 1, i2 − i1 + 1, . . . , ik − i1 + 1, n− 3 − i1 + 1, n− 2}, bi1−i0−1ai0)
= δ′({0, i1 − i0, i2 − i0, . . . , ik − i0, n− 3 − i0, n− 2}, ai0)
= {0, i0, i1, i2, . . . , ik, n− 3} = q′.

Note that if q′ = {0, i0, i1, n − 3}, let q′′ = {0, n − 3 − i1, n − 3}. Then again
q′ = δ′(q′′, abi1−i0−1ai0). If q′ = {0, i0, n − 3} (k = 0), let q′′ = {0, n − 3} and
q′ = δ′(q′′, abn−3−i0−1ai0). Therefore, we have proved the claim.
Note that the claim directly implies that any state P2 ∈ Q′

(iv) is reachable since
for any P2 = {0, i1, . . . , ik, n − 2}, where 0 < i1 < . . . < ik < n − 3, we have
P ′
2 = {0, i1 − 1, . . . , ik − 1, n− 3} ∈ Q′

(iii) such that δ′(P ′
2, b) = P2. Note that it

is possible that i1 − 1 = 0.
It is also clear that every state P ∈ Q′

(ii) is reachable since for any such
state P = {i1, . . . , ik}, where 0 < i1 < . . . < ik < n − 3, we have P ′ = {0, i2 −
i1, . . . , ik − i1, n − 2} such that δ′(P ′, ai1) = P . So, we have proved that every
state specified in Theorem 1 is reachable from {0}.

Now, we prove that every state above is in a distinct equivalence class of
≡L∗ .

It is clear that if two states p and q are from different sets of Q′
(i), Q

′
(ii),

Q′
(iii), and Q

′
(iv), then p �≡ q (with respect to L∗). It suffices in the remaining to

prove that if there exists i ∈ {1, . . . , n−4} such that i ∈ p−q, then p �≡ q. If n−i
is odd, then both δ′(p, can−i−4) and δ′(p, can−i−3) are final, but δ′(q, can−i−4)
and δ′(q, can−i−3) cannot be final at the same time. If n−i is even and i < n−4,
then both δ′(p, acan−i−5) and δ′(p, acan−i−4) are final, but δ′(q, acan−i−5) and
δ′(q, acan−i−5) cannot be both final. If i = n−4, then δ′(p, a) ∈ F ′ but δ′(q, a) �∈
F ′. Therefore, p �≡ q. ��

We do not yet have an example for the two-letter alphabet case. It is still
open whether there exists a lower upper bound for the two-letter alphabet case.
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4 Catenation of Finite Languages

We now consider the state complexity of the catenation of two finite languages.
Without loss of generality, we assume that all the DFA we are considering

are reduced and ordered. A DFA A = (Q,Σ, δ, 0, F ) with Q = {0, 1, . . . , n} is
called an ordered DFA if, for any p, q ∈ Q, the condition δ(p, a) = q implies that
p ≤ q.

For convenience, we introduce the following notation:

(
n

≤ i

)
=

i∑
j=0

(
n
j

)
.

Theorem 3. Let Ai = (Qi, Σ, δi, 0, Fi), i = 1, 2, be two DFA accepting finite
languages Li, i = 1, 2, respectively, and #Q1 = m, #Q2 = n, #Σ = k, and
#F1 = t. There exists a DFA A = (Q,Σ, δ, s, F ) such that L(A) = L(A1)L(A2)
and

#Q ≤
m−2∑
i=0

min
{
ki,

(
n− 2
≤ i

)
,

(
n− 2

≤ t− 1

)}
+min

{
km−1,

(
n− 2
≤ t

)}
. (∗)

Proof. The DFA A is constructed in two steps. First, an NFA A′ is constructed
from A1 and A2 by adding a λ-transition from each final state in F1 to the
starting state 0 of A2. Then, we construct a DFA A from the NFA A′ by the
standard subset construction. Again, we assume that A is reduced and ordered.

It is clear that we can view each q ∈ Q as a pair (q1, P2), where q1 ∈ Q1
and P2 ⊆ Q2. The starting state of A is s = (0, ∅) if 0 �∈ F1 and s = (0, {0}) if
0 ∈ F1. Let us consider all states q ∈ Q such that q = (i, P ) for a particular state
i ∈ Q1 − {m − 1} and some set P ⊆ Q2. Since A1 is ordered and acyclic, the
number of such states in Q is restricted by the following three bounds: (1) ki,

(2)
(
n− 2
≤ i

)
, and (3)

(
n− 2

≤ t− 1

)
. We explain these bounds below informally.

We have (1) as a bound since all states of the form q = (i, P ) are at a level
≤ i, which have at most ki−1 predecessors. By saying that a state p is at level i
we mean that the length of the longest path from the starting state to q is i.

We now consider (2). Notice that if q, q′ ∈ Q such that δ(q, a) = q′, q =
(q1, P2) and q′ = (q′

1, P
′
2), then δ1(q1, a) = q′

1 and P ′
2 = {δ2(p, a) | p ∈ P2} if

q′
1 �∈ F1 and P ′

2 = {0} ∪ {δ2(p, a) | p ∈ P2} if q′
1 ∈ F1. So, #P ′

2 > #P2 is possible
only when q′

1 ∈ F1. Therefore, for q = (i, P ), #P ≤ i if i �∈ F1 and #P ≤ i+ 1

if i ∈ F1. In both cases, the maximum number of distinct sets P is
(
n− 2
≤ i

)
.

The number n− 2 comes from the exclusion of the sink state n− 1 and starting
state 0 of A2. Note that, for a fixed i, either 0 ∈ P for all (i, P ) ∈ Q or 0 is not
in any set P such that (i, P ) ∈ Q.

(3) is a bound since for each state i ∈ Q1 − {m− 1}, there are at most t− 1
final states on the path from the starting state to i (not including i).

For the second term of (∗), it suffices to explain that for each (m − 1, P ),
P ⊆ Q2, #P is bounded by the total number of final states in F1. ��



State Complexity of Basic Operations on Finite Languages 67

Corollary 2. Let Ai = (Qi, Σ, δi, 0, Fi), i = 1, 2, be two DFA accepting finite
languages Li, i = 1, 2, respectively, and #Q1 = m, #Q2 = n, and #F1 =
t, where t > 0 is a constant. Then there exists a DFA A = (Q,Σ, δ, s, F ) of
O(mnt−1 + nt) states such that L(A) = L(A1)L(A2).

We can simplify the formula in Theorem 3 for the case when k = 2, m+1 ≥
n > 2.
Corollary 3. For k = 2 and m+1 ≥ n > 2, the upper bound given in Theorem 3
is

(m− n+ 3)2n−2 − 1.
We omit the details of the mathematical calculation.
Theorem 4. The upperbound given in Corollary 3 is reachable.
Proof. Let A1 = (Q1, Σ, δ1, 0, F1) and A2 = (Q2, Σ, δ2, 0, F2), with Σ = {a, b},
Q1 = {0, 1, . . . ,m − 1}, Q2 = {0, 1, . . . , n − 1}, and m + 1 ≥ n > 2. A1 and A2
are shown below.

a, b

a, b

b

a

a, b a, b a, b

a, b

a, ba, b a, b

0 1 m-2 m-1

0 1 n-1n-2

A

A

1

2

Let L = L(A1)L(A2). We show that there are at least (m − n + 3)2n−2 − 1
equivalence classes of the relation ≡L over Σ∗.

Consider all words w ∈ Σ∗ such that |w| ≤ m− 2.
If w1, w2 ∈ Σ∗, |w1|, |w2| ≤ m − 2, and |w1| < |w2|, then w1 �≡Lw2 since

w1b
n+m−4−|w1| ∈ L(A) but w2bn+m−4−|w1| /∈ L(A).
Let |w1| = |w2| but w1 �= w2 and w1 and w2 differ at the ith position from

the right, i ≤ n − 2. We assume that w1 contains an a and w2 contains a b at
that position. Then w1 �≡Lw2 since w1an−2−i �∈ L but w2an−2−i ∈ L.

So, for each k, 0 ≤ k ≤ n − 2, words of length k belong to 2k distinct
equivalence classes of ≡L. For each k, n − 2 < k ≤ m − 2, words of length k
belong to at least 2n−2 distinct equivalence classes.

Therefore there are at least

1 + 2 + . . .+ 2i + . . .+ 2n−2 + 2n−2 + . . .+ 2n−2︸ ︷︷ ︸
m− 2 − (n− 2) + 1 terms

= 2n−1 − 1 + (m− n+ 1)2n−2

= (m− n+ 3)2n−2 − 1
equivalence classes of ≡L. ��
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5 Reversal of Finite Languages

Next we develop a tight upper bound for the state complexity of the reversal of
a finite language.

Theorem 5. Let A = (Q,Σ, δ, 0, F ) be a DFA accepting a finite language L,
where #Q = n ≥ 3 and #Σ = k ≥ 2. Let t be the smallest integer such that
2n−1−t ≤ kt. Then there exists a DFA B = (QB , Σ, δB , 0, FB), with #QB ≤∑t−1

i=0 k
i + 2n−1−t, that accepts LR, i.e., the reversal of L.

Proof. B is constructed by first reversing all the transitions of A and then de-
terminizing the resulting NFA by the standard subset construction. Then each
state in QB is a subset of Q. Recall that the level of a state in a finite automa-
ton is the length of the shortest path from the starting state to this state. It
is clear that the number of states at each level i of B is bounded by ki. It is
also not difficult to see that this number is bounded also by 2n−1−i since they
are subsets of at most n − 1 − i states of A. Let l be the length of the longest
word(s) in L (or LR). The latter bound holds because for each i, 0 ≤ i ≤ l, there
exists at least one state of A that can be in a state of B of level i but not in
any state of a higher level. Then the number of states at each level i is bounded
by min{ki, 2n−1−i}. Since t is the smallest integer such that 2n−1−t ≤ kt, we
have #QB ≤ ∑t−1

i=0 k
i+2n−1−t. Note that 2n−1−t is the number of all remaining

subsets of Q after the first t− 1 levels. ��
Corollary 4. Let |Σ| = 2 and A be a DFA of n ≥ 3 states, accepting a finite
language L ⊆ Σ∗. Then there exists a DFA B that accepts LR such that B has
at most 3 · 2p−1 − 1 states if n = 2p or 2p − 1 states if n = 2p− 1.

Proof. Since k = 2, we have 2n−1−t ≤ 2t, i.e. n − 1 ≤ 2t. If n = 2p then t = p
and n− 1 − t = 2p− 1 − p = p− 1. We have

t−1∑
i=0

2i + 2n−1−t = 2t − 1 + 2p−1 = 3 · 2p−1 − 1.

If n = 2p− 1 then t = p− 1 and n− 1− t = 2p− 1− 1− p+1 = p− 1. We have

t−1∑
i=0

2i + 2n−1−t = 2p−1 − 1 + 2p−1 = 2p − 1.

��
Theorem 6. The bounds given by Corollary 4 are reachable.

Proof. If n = 2p for some integer p > 1, consider the DFA A = (Q,Σ, δ, 0, F ) in
the above figure.

Clearly, the reversal of A is equivalent to the catenation of A1 and A2 given
in Theorem 4, with m = n = p+1. Then any DFA accepting L(A)R has at least
2p−1 + 2p − 1 = 3 · 2p−1 − 1 states.

If n = 2p − 1 for some integer p > 1, then look at the DFA A′ =
(Q′, Σ, δ′, 0, F ′) below:
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a, b

a, b a, b a, b a, b a, b a, b
0 1 p-2 p-1 2p-2 2p-1

b

a

A:    n = 2p

a, b

a, b a, b a, b a, b a, b a, b
0 1 2p-22p-3p-1p-2

b

a

A’:   n = 2p-1

The reversal of A′ is equivalent to the catenation of A1 and A2 given in
Theorem 4 with m = p and n = p + 1. Thus, the number of states is at least
2p − 1. ��

6 Operations on Finite Languages over a One-Letter
Alphabet

We consider the case when #Σ = 1. Without loss of generality, we assume that
Σ = {a}.

Notice that if A = (Q, {a}, 0, δ, F ) is a minimal DFA that accepts words of
length at most l, then #Q = l + 1.

Theorem 7. Let Ai = (Qi, {a}, 0, δi, Fi), i = 1, 2 be two minimal DFA, with
#L(Ai) < ∞, #Q1 = m, and #Q2 = n. Let A = (Q, {a}, 0, δ, F ), #Q = k, be a
minimal DFA. Then we have the following:
a) If L(A) = L(A1) ∪ L(A2), then k = max{m,n},
b) If L(A) = L(A1) ∩ L(A2), then k ≤ min{m,n},
c) If L(A) = L(A1) − L(A2), then k ≤ m,
d) If L(A) = L(A1)∆L(A2), then k ≤ max{m,n},
e) If L(A) = {a}∗ − L(A1), then k = m,
f) If L(A) = L(A1)L(A2), then k = m+ n− 1.
g) If L(A) = L(A1)∗, then k ≤ m2 − 7m + 13 for m > 4 and m = 3, k ≤ 2
otherwise.
h) If L(A) = a \ L(A1), then k = m− 1.
i) If L(A) = (L(A1)R, then k = m.

Proof. For a)–f) and h) the proof is obvious. For g), we give an informal proof
in the following. It is clear that the length of the longest word accepted by A1 is
m − 2. We consider the following three cases (1) A1 has one final state; (2) A1
has two final states; or (3) A1 has three or more final states. If (1), then A has
m − 1 states. For (2), we need a lemma (Lemma 5.1 (iii)) from [9] which says
that for two positive integers i and j, (i, j) = 1, the largest integer that cannot
be presented as ci+ dj for any integers c, d ≥ 0 is i ∗ j − (i+ j). Let i = m− 2
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and j = m − 3, i.e., F1 = {m − 2,m − 3}. Then the length of the longest word
that is not in L(A) is

(m− 2)(m− 3) − (2m− 5) = m2 − 7m+ 11.

Then A has exactly m2 − 7m+ 13 states. If (3), it is easy to see that A cannot
have more than m2 − 7m+ 13 states. ��
Remark 1. All the above bounds are the lowest upper bounds in the worst case.
If the initial DFA A1 and A2 are not minimal, all the above equalities become
inequalities.
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