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Abstract. We show that for all integers n ≥ 7 and α, such that 5 ≤
α ≤ 2n − 2 and satisfying some coprimality conditions, there exists a
minimum n-state nondeterministic finite automaton that is equivalent
to a minimum deterministic finite automaton with exactly 2n −α states.

1 Introduction

Finite automata theory is obviously a popular first step to theoretical compu-
ter science, through which students learn several basic notions of computation
models. Nondeterminism might be the most important one among those noti-
ons. The subset construction [1], which shows that any nondeterministic finite
automaton (NFA) can be simulated by a deterministic finite automaton (DFA),
is probably one of the oldest, non-trivial theorems in this field. This theorem is
often stated as above, i.e., “NFA’s are no stronger than DFA’s”, but we have
to be careful since the simulation is only possible “by increasing the number
of states”. Since the number of states is the principal complexity measure for
finite automata, the extent to which NFA’s are more efficient than DFA’s is an
important feature and provides the basis for the same relationship in stronger
models.

It is known [2], [3] that there is an NFA of n states which needs 2n states to
be simulated by a DFA. Thus some NFA’s are exponentially more efficient than
DFA’s in terms of the number of states. Of course, however, this is not always
true; for example, the DFA which counts the number of 1’s modulo k needs k
states and equivalent NFA’s need the same number of states. So, nondeterminism
works very well for some kind of languages and does not for others. Thus it is of
interest to ask which kinds of language belong to the first category and which
to the second.

It is hard to give a general answer to this problem. However, one simple and
concrete question regarding this problem is the following: For a positive integer
n, is there an integer Z, n < Z < 2n, such that no DFA of Z states can be
simulated by any NFA of n states? Such a number Z or the one that satisfies
the above question for all n can be regarded as a “magic number” for which
nondeterminism is especially weak. It turns out that to answer this question,
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we have only to consider 2n−1 ≤ Z < 2n. Furthermore, 2n−1 cannot be such a
magic number [4]. If there are no such magic numbers at all, which seems more
likely to us, that means that for any integer 0 ≤ α ≤ 2n−1 − 1, there is an NFA
of n states which needs 2n − α deterministic states.

This question was first considered by Iwama, Kambayashi and Takaki [5].
They show that if an integer α can be expressed as 2k or 2k +1 for some integer
0 ≤ k ≤ n/2−2, then there is an NFA of n states which needs 2n−α deterministic
states, i.e., such 2n − α cannot be a magic number in the above sense. In this
paper, we give a somewhat (but not yet completely) general answer. Namely, for
all integers n ≥ 7 and α, such that 5 ≤ α ≤ 2n − 2 and with some coprimality
condition, 2n − α cannot be a magic number. Furthermore, we show that 2n − 6
cannot be a magic number, unconditionally. Note that 2n − 6 is the largest
number which cannot be expressed as 2k or 2k + 1, and so was left open in [5].

2 Main Results

A finite automaton M is determined by the following five items: a finite set of
states; a finite set of input symbols Σ, which is always {0, 1} in this paper; an
initial state; a set of accepting states; and a state transition function δ.

Our main task in this paper is (i) to give an NFA M , (ii) to find the equivalent
DFA, (iii) to analyze the number of states in the DFA which can be reached from
its initial state, and finally (iv) to show that all such states are inequivalent. For
(ii), we use the so-called subset construction [1], i.e., each state of the DFA is
given as a subset of M ’s states and the resulting DFA is written as D(M). To
avoid confusion, a state of D(M) will be called an f-state (f stands for family).
We always use δ for the state transition function of D(M). Two f-states Q1 and
Q2 are equivalent if for all x ∈ Σ∗, δ(Q1, x) ∈ F iff δ(Q2, x) ∈ F , where F is
the set of accepting states in D(M). Suppose on the other hand that we wish to
show that two f-states Q1 and Q2 are not equivalent. Then, what we should do
is (i) to show that Q1 ∈ F and Q2 /∈ F (or vice versa), or (ii) to find a string
x ∈ Σ∗ such that δ(Q1, x) and δ(Q2, x) are already known to be inequivalent.
For an NFA M of n states, ∆(M) denotes the number of states of a minimum
DFA which is equivalent to M . It is well known [1] that a DFA is minimum
if all of its states can be reached from the initial state and no two states are
equivalent. Now we are ready to give our results.

Theorem 1. Let n and α be any integers such that 5 ≤ α ≤ n−1, 6 ≤ α ≤ n,
or 9 ≤ α ≤ 2n − 2 and such that n is relatively prime with α − 1, α − 2,
or dα/2e − 1, respectively. Then there exists a minimum n-state NFA whose
equivalent minimum DFA has 2n − α states.

Corollary 1. For all integers n ≥ 7 and α, such that 5 ≤ α ≤ 2n − 2 and
satisfying the comprimality condition in Theorem 1, there exists an n-state NFA
whose equivalent minimum DFA has 2n − α states.

Note that for α ≤ 5, it was shown in [5] that there exists an n-state NFA M
such that ∆(M) = 2n − α for n ≥ 8.
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Fig. 1. (a) M1 when k is odd (k = 11) and (b) M1 when k is even (k = 12)

The next theorem is less general, but does not need the coprimality condition.
Recall that 2n − 6 was the first unsettled number in [5].

Theorem 2. For any n ≥ 5, there exists an n-state NFA whose equivalent
minimum DFA has 2n − 6 states.

3 Proof of Theorem 1

For ease of explanation, we introduce the parameter k that represents α − 1,
α − 2, or dα/2e − 1, corresponding to the three cases in the hypothesis, and
we suppose that k and n have no common divisor. Let m denote n − k, i.e.,
n = k + m, then k and m also have no common divisor. In this section, we
first give an NFA M1 whose equivalent minimum DFA has 2n − (k + 1) states.
Then we give five lemmas which give the number of f-states in D(M1) and
claim that no two f-states are equivalent. M1 is illustrated in Fig. 1. Its state
set is the union of T = {t0, t1, · · · , tk−1} and S = {s0, s1, · · · , sm−1}. Its initial
state is t0. Note that |T ⋃

S| = k + n = m. A set in T (in S, resp.) is called
a T -state (S-state, resp.). State transitions on reading 0 (denoted by dotted
arrows in Fig. 1) are cyclic, i.e., t0

0−→ t1, t1
0−→ t2, · · · , tk−1

0−→ t0, and
s0

0−→ s1, · · · , sm−1
0−→ s0. Transitions on reading 1 are as follows: For all i,

0 ≤ i ≤ k−1 excepting i = 2, there are self-loops as ti
1−→ ti. Similarly, sj

1−→ sj

for 2 ≤ j ≤ m − 1. In addition, there are transitions of the form ti
1−→ t0 where

i = 3, 5, · · · , k − 4 when k is odd. When k is even, these transitions are defined
for i = 3, 5, · · · , 2r − 3, 2r − 1, 2r, 2r + 2, · · · , k − 4 where r = dk/4e. The
remaining four transitions are s0

1−→ s1, s1
1−→ t0, s1

1−→ t2, and t2
1−→ s0.

For any f-state P , P ∩ T is called the T-portion of P and denoted by PT .
Similarly, P ∩ S is called the S-portion of P and denoted by PS . The size of P ,
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|P |, is the number of M1’s states included in P . The transition on T (or S) that
occurs on reading 0 is called a 0-shift. The index of a state is considered to be
modulo k; namely, the 0-shift of ti is always written as ti+1.

The first lemma deals with exceptional f-states P such that |PS | = 0 and
|PT | = 0, 1, and 2. We say that an f-state Q1 is reachable from an f-state Q2 if
there is a string x ∈ Σ∗ such that Q1 = δ(Q2, x). If Q1 = δ({t0}, x), then we
simply say that Q1 is reachable. Q1 is said to be unreachable if it is not reachable.

Lemma 1. For an f-state P such that |PS | = 0 and 0 ≤ |PT | ≤ 2, the
following statements hold. (1) When |PT | = 0, there is only one f-state, φ (the
empty set), and this is unreachable. (2) When |PT | = 1, P is reachable. (3)
When |PT | = 2, P is reachable unless P consists of two neighboring states of T ,
that is, P = {ti, ti+1} (i = 0, 1, · · · , k − 1).

Note that there are k + 1 unreachable f-states given in this lemma. The
remaining 2n − (k +1) f-states are all reachable, which is shown by the following
four lemmas depending on (i) whether |PS | = 0 or |PS | > 0 and (ii) whether or
not PT contains two states of distance two, i.e., ti and ti+2. Distance-two states
are important since the transition s1

1−→ {t0, t2} plays a special role in M1.
Lemma 2. For an f-state P such that |PS | = 0 and |PT | ≥ 3, if P contains

a pair of states, ti and ti+2 for some i = 0, 1, · · · , k−1 (P may include ti+1 as
well), P is reachable from some f-state Q such that (|QS |, |QT |) = (1, |PT |−2).

Lemma 3. For an f-state P such that |PS | = 0 and |PT | ≥ 3, if P does not
contain a pair of states, ti and ti+2 for any i = 0, 1, · · · , k − 1, P is reachable
from some f-state Q such that (|QS |, |QT |) = (0, |PT | − 1). Furthermore, if
|PT | = 3, QT 6= {ti, ti+1}, i.e., the two states of QT are not neighboring.

Lemma 4. For an f-state P such that |PS | ≥ 1, if P contains a pair of
states ti and ti+2 for some i = 0, 1, · · · , k−1, P is reachable from some f-state
Q such that (|QS |, |QT |) = (|PS |, |PT | − 1).

Lemma 5. For an f-state P such that |PS | ≥ 1, if P does not contain a
pair of states ti and ti+2 for any i = 0, 1, · · · , k − 1, P is reachable from
some f-state Q such that (|QS |, |QT |) = (|PS | − 1, |PT | + 1). Furthermore,
when (|PS |, |PT |) = (1, 1), QT 6= {ti, ti+1}, i.e., the two states of QT are not
neighboring.

See Table 1, which summarizes Lemmas 1 to 5 and also summarizes our
induction scheme to claim how each f-state is reachable for an odd k. The leftmost
three entries (1, 0, and k) in its first row show the numbers of unreachable f-
states described in Lemma 1. Dotted arrows show the reachability described in
Lemmas 3 and 5. Solid arrows show the reachability given in Lemmas 2 and
4. For example, the entry for (|PS |, |PT |) = (0, 4) receives a dotted arrow
from (|PS |, |PT |) = (0, 3) and a solid arrow from (|PS |, |PT |) = (1, 2). Two
dotted arrows from (|PS |, |PT |) = (0, 2) need special care since this entry
includes unreachable f-states, or we have to show that those reachabilities do
not start from such unreachable states. Also, one should notice that there are
no dotted arrows to any P such that |PT | ≥ (k + 1)/2. The reason is that if
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Table 1. Number of unreachable f-states when k is odd
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|PT | ≥ (k+1)/2, then PT must include a pair of distance-two states. Altogether,
each f-state P such that (|PS |, |PT |) = (1, 0) is reachable from Q such that
(|QS |, |QT |) = (0, 1), and such a Q is reachable from {t0} by Lemma 1. All the
other f-states are reachable by traversing solid and dotted arrows starting from
(|PS |, |PT |) = (0, 2), and the latter f-states are reachable by Lemma 1.

3.1 Proof of Lemma 1

φ is obviously unreachable since every state in M1 has non-empty transitions on
reading 0 and 1. When |PT | = 1, P can be written as {ti}, which is reachable
from {t0}, the initial f-state, by 0-shifts.

We now consider the case (|PS |, |PT |) = (0, 2), which is divided into two
cases according to whether or not P contains a neighboring pair of states in
T . The argument is a little different for odd and even k’s. In the following, we
only consider the odd case. First, suppose that P = {t0, ti}, where i 6= 1, k − 1,
namely the two states of P are not neighboring. When i = 3, 5, 7, · · · , k − 4,
we can use the following transitions:

{t0} 0i

−→ {ti} 1−→ {t0, ti}.

When i = 2 and k − 2, we can follow

{t0} 02

−→ {t2} 1−→ {s0} 1−→ {s1} 1−→ {t0, t2} 0k−2

−→ {t0, tk−2}.

When i = 4, 6, 8, · · · , k − 3, we can follow

{t0} 0k−i

−→ {tk−i} 1−→ {t0, tk−i} 0i

−→ {t0, ti}.
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Thus P = {t0, ti} is reachable unless i = 1 or i = k−1. All other non-neighboring
f-states are reachable from {t0, ti} by 0-shifts.

As for a neighboring pair of states such as {ti, ti+1}, this is shown to be
unreachable as follows. First of all, one can see that if we do not use the transition
from t2 to s0, we can never reach {ti, ti+1}, for the following reasons. We start
from {t0}. Then, if we use only transitions between T -states, which we call T -
transitions, then the size |P | of the current f-state P monotonically increases.
Hence, consider the moment when |P | changes from one to two. The transition
used at this moment must be ti

1−→ ti and ti
1−→ t0. It then follows that P

cannot be neighboring since we have no such transitions from t1 or tk−1. It is
easy to see that such a P cannot later change to a pair of neighboring states
while |P | = 2. Thus there must be an f-state which includes some S-state on the
way from {t0} to {ti, ti+1} (if any). Let K be the last f-state including S-states.
Then, symbol 1 must be read on state K, since otherwise δ(K, 0) still contains
both S- and T -states. Furthermore, K never contains s1, since otherwise δ(K, 1)
includes {t0, t2}, which cannot change to a pair of neighboring states by using
T -transitions. Hence, K must only contain some S-state other than s1, but this
contradicts our assumption for K. ut

3.2 Proof of Lemma 2

Suppose that {ti, ti+2} ⊂ P . Obviously, P is reachable from some P ′ such
that {t0, t2} ⊂ P ′. Now we can see that Q = (P ′\{t0, t2})

⋃ {s1} 1−→ P ′,
where P ′\{t0, t2} means that {t0, t2} is removed from P ′. Thus Q satisfies the
condition of the lemma, i.e., (|QS |, |QT |) = (1, |PT | − 2). ut

3.3 Proof of Lemma 3

Now P does not include any {ti, ti+2}. Without loss of generality, we can assume
that P contains t0 (otherwise, P is reachable from such an f-state by 0-shifts).
Hence, let P = {t0, tp1 , tp2 , · · · , tpr−1}, where |P | ≥ 3 and p1 = 1 or p1 ≥ 3
since there is no pair of distance-two states. The proof differs slightly according
to whether k is odd or even (recall that our machine M1 is different for odd and
even k’s). We first prove the lemma for an odd k and the difference in the even
case will be briefly given. There are several cases to be considered.

(Case 1) p1 = 1, namely, P = {t0, t1, tp2 , · · · , tpr−1}. This case is further
divided into two subcases according to whether p2 is odd or even.

(Case 1-1) p2 is odd. By the assumption of Lemma 3, 4 ≤ p2 ≤ k − 3, and
since p2 was assumed to be odd, 5 ≤ p2 ≤ k − 4. Therefore, we can use the
transition tp2

1−→ {t0, tp2}, namely:

Q = P\{t0} = {t1, tp2 , · · · , tpr−1} 1−→ {t0, t1, tp2 , · · · , tpr−1} = P.

Note that Q satisfies the condition of the lemma, i.e., (|QS |, |QT |) = (0, |PT |−1).
It should be noted that for r = 3, Q = {t1, tp2} is known to be reachable by
Lemma 1 because t1 and tp2 are not neighboring.
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(Case 1-2) p2 is even. Since 4 ≤ p2 ≤ k−3 and p2−1 is odd, 3 ≤ p2−1 ≤ k−4.
Therefore, there is a transition tp2−1

1−→ {t0, tp2−1}. Let P ′ = δ(P, 0k−1) =
{tk−1, t0, tp2−1, tp3−1, · · · , tpr−1−1}. Then, we can use the following sequence
of transitions:

Q = P ′\{t0} 1−→ P ′ 0−→ P.

For r = 3, Q = {tk−1, tp2−1} is not neighboring again.
(Case 2) p1 ≥ 3. We can assume that tp1 and tp2 are not neighboring, since

otherwise we can apply the argument of Case 1. Also note that p1 ≤ k − 3
(otherwise P , |P | ≥ 3, clearly includes a pair of distance-two states).

(Case 2-1) p1 is odd. We have the following direct transition to P using the
transitions tp1

1−→ {t0, tp1} in M1:

P\{t0} = {tp1 , tp2 , · · · , tpr−1} 0−→ P.

(Case 2-2) p1 is even. Since 4 ≤ p1 ≤ k − 3 and k − p1 is odd, 3 ≤ k −
p1 ≤ k − 4. This time we use tk−p1

1−→ {t0, tk−p1}. Let P ′ = δ(P, 0k−p1) =
{tk−p1 , t0, tp2−p1 , · · · , tpr−1−p1}. Then, we obtain the following sequence of
transitions:

P ′\{t0} 1−→ P ′ 0p1−→ P.

Thus, P is reachable from Q = P ′\{t0}. Again for r = 3, Q = {tk−p1 , tp2−p1} is
not neighboring and is known to be reachable by Lemma 1. Consequently, it has
been shown that in all cases, there is a transition of the form Q −→ P, where Q
satisfies (|QS |, |QT |) = (0, |PT | − 1). ut

For an even k, it is divided into three cases: p1 = 1, 3 ≤ p1 ≤ k/2 − 1,
and p1 ≥ k/2. In each case, the reachability of the f-states are shown in the
similar way to the odd case, where the transitions of type ti

1−→ {t0, ti} play
the essential role again.

3.4 Proof of Lemma 4

Recall that {ti, ti+2} ⊂ P and |PS | ≥ 1. We consider two cases, one for |PS | ≤
m − 1 and the other for |PS | = m.

(Case 1) |PS | ≤ m−1. Since k and n have no common divisor and since PS 6=
S, there is an f-state P ′ such that (i) P is reachable from P ′, (ii) {t0, t2} ⊂ P ′,
and (iii) s0 ∈ P ′ and s1 /∈ P ′. Let P ′

1 = P ′
T \{t0, t2} and P ′

2 = P ′
S\{s0}. Then,

one can use the following transition:

Q = (P ′
1

⋃
{t2})

⋃
(P ′

2

⋃
{s1}) 1−→ (P ′

1

⋃
{s0})

⋃
(P ′

2

⋃
{t0, t2}) = P ′,

since P ′
1 and P ′

2 do not change on reading 1, {t2} 1−→ {s0}, and {s1} 1−→ {t0, t2}.
Note that (|QS |, |QT |) = (|PS |, |PT | − 1) and the lemma follows.

(Case 2) |PS | = m. Namely, PS = S. Similarly to Case 1, there is an f-state
P ′ such that (i) P is reachable from P ′, (ii) {t0, t2} ⊂ P ′, and (iii) P ′

S = PS = S.
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Let P ′
1 = P ′

T \{t0, t2} and P ′
2 = PS\{s0, s1}. Then one can use the following

transition:

Q = (P ′
1

⋃
{t2})

⋃
(P ′

2

⋃
{s0, s1}) 1−→ (P ′

1

⋃
{s0})

⋃
(P ′

2

⋃
{s1, t0, t2}) = P ′,

where (|QS |, |QT |) = (|PS |, |PT | − 1). ut

3.5 Proof of Lemma 5

Suppose that P does not include any {ti, ti+2}. We consider two cases similarly
to Section 3.4.

(Case 1) |PS | ≤ m − 1. As before, there is an f-state P ′ such that (i) P is
reachable from P ′, (ii) t0 ∈ P ′ and t2 /∈ P ′, and (iii) s0 ∈ P ′ and s1 /∈ P ′. Let
P ′

1 = P ′
T \{t0} and P ′

2 = P ′
S\{s0}. Then, one can use the following transition:

Q = (P ′
1

⋃
{t0, t2})

⋃
P ′

2
1−→ (P ′

1

⋃
{t0, s0})

⋃
P ′

2 = P ′,

where (|QS |, |QT |) = (|PS | − 1, |PT | + 1).
(Case 2) |PS | = m. In this case, there is an f-state P ′ such that (i) P is

reachable from P ′, (ii) t0 ∈ P ′ and t2 /∈ P ′, and (iii) P ′
S = PS = S. Let

P ′
1 = PT \{t0} and P ′

2 = PS\{s0, s1}. Then, one can use the following transition:

(P ′
1

⋃
{t0, t2})

⋃
(P ′

2

⋃
{s0}) 1−→ (P ′

1

⋃
{t0, s0})

⋃
(P ′

2

⋃
{s1}) = P ′,

where (|QS |, |QT |) = (|PS | − 1, |PT | + 1). ut
We note that the proofs of Lemmas 4 and 5 do not depend on whether k is

odd or even.

3.6 Inequivalence of Reachable f-States

We have so far shown that the number of reachable f-states in D(M1) is 2k+m −
(k+1) = 2n−(k+1). Now we prove that those f-states are pair-wise inequivalent.

Lemma 6. Any two reachable f-states of D(M1) are not equivalent.
Proof. Let X and Y be two f-states such that X 6= Y . If XT 6= YT , there

must be an integer j such that t0 ∈ δ(XT , 0j) and t0 /∈ δ(YT , 0j). Thus X and Y
are not equivalent. Next, suppose that XT = YT and XS 6= YS . Then, there is an
integer j such that s1 ∈ δ(XS , 0j) (= X ′) and s1 /∈ δ(YS , 0j) (= Y ′). We then
read a 1, and t0 ∈ δ(X ′, 1) while t0 /∈ δ(Y ′, 1). Therefore, δ(X ′, 1) and δ(Y ′, 1)
have different T -portions and so are not equivalent, as shown previously. Hence,
X and Y are not equivalent. ut
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Table 2.  Numbers of unreachable f-states

3.7 Theorem 1 for k = α − 2 and dα/2e − 1

We consider several modifications of M1 to construct NFA’s that realize other
numbers of unreachable f-states. The modifications we consider are (i) to elimi-
nate or add some transitions at M1, and (ii) to modify slightly some transitions
of the type ti

1−→ t0 to increase the number of unreachable states. Using the
first type of modification, we obtain the following lemma.

Lemma 7. Let M2 be the NFA such that s0
1−→ t0 is added to M1 and such

that m is relatively prime with k = α − 2. Then, the f-state S (i.e.,|PT | = 0 and
|PS | = m) is unreachable, while the reachability of the other f-states is the same
as for M1.

We omit the detailed proof but the intuition is as follows. Since |PT | = 0 and
|PS | = m, we have to “remove” all T -states and “fill” all the S-states on reading
the final 1. Previously, i.e., when there was no transition from s0 to t0, we could
do this by using {s0, t2} 1−→ {s0, s1}. This is now impossible, since we have
the transition s0

1−→ t0. ut
Using the second type of modification, we construct the NFA M3. M3 has the

transitions of the type ti
1−→ t0 as follows. When k is odd, transitions ti

1−→ t0
are defined for i = 3 and i = 4, 6, 8, · · · , k − 5. When k mod 4 = 0, they are
defined for i = 3, 4, 6, 7, · · · , k−6, k−5. When k mod 4 = 2, they are defined
for i = 3, 4, 6, 7, · · · , k − 8, k − 7, k − 5. Suppose that m is relatively prime
with k = dα/2e − 1. Then with regard to unreachable f-states of M3, we obtain
the following lemma.

Lemma 8. In addition to the unreachable f-states for M1, M3 has new
unreachable f-states of the type {ti, ti+3, ti+4} (0 ≤ i ≤ k − 1).

The numbers of unreachable states for the Mi’s are summarized in Table 2.
Remark. Our assumption that k and m have no common divisor is necessary.

For example, consider a simple case where k = m or |T | = |S|. Then, {t1, t2, s0},
which was formerly reachable, turns out to be unreachable.
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4 NFA for Theorem 2

For the NFA M5 given in Fig. 2, there are six unreachable f-states, i.e., φ, S =
{s0, s1, · · · , sm−1}, {t0, t1}, {t1, t2}, {t2, t0}, and {t0, t1, t2}. Furthermore,
all the reachable f-states are inequivalent; thus, ∆(M5) = 2m+3 − 6 = 2n − 6.
The proof for the reachability of f-states is similar to Theorem 1 except for the
divisible case, i.e., n mod 3 = 0. In this case, we explicitly construct transitions
for each f-state instead of using the coprimality condition and the 0-shifts.

5 Concluding Remarks

In this paper, we presented families of NFAs with n states, whose equivalent
minimum DFAs have 2n − α states, subject to coprimality conditions on n and
α. These NFAs are minimum since the equivalent DFAs have more than 2n−1

states. Finally, we conjecture that for all n there exists an n-state NFA M such
that ∆(M) = 2n − α for any 0 ≤ α < 2n−1. To reach this range of α (without
“holes” as in [5]) will need some new ideas.
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