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Abstract. Define the complexity of a regular language as the number of 
states of its minimal automaton. Let A (respectively A') be an n-state 
(resp. n'-state) deterministic and connected uneiry automaton. Our main 
results can be summarized ais follows: 

1. The probability that A is minimal tends toweird 1/2 when n tends 
toward infinity, 

2. The average complexity of L{A) is equivalent to n, 
3. The average complexity of L{A) n L(A') is equivalent to ^^nn', 

where ^ is the Riemann "zeta"-function. 
4. The average complexity of L{Ay is bounded by a constant, 
5. If n < n' < P{n), for some polynomial P, the average complexity of 

L{A)L{A') is bounded by a constant (depending on P). 
Remeirk that results 3, 4 and 5 differ perceptibly from the corresponding 
worst case complexities, which are nn' for intersection, (n — 1)^ + 1 for 
star and nn' for concatenation product. 

1 Introduction 

This paper addresses a rather natural problem: find the average state complex­
ity of the basic operations on automata. It is certainly an important question 
for both theorical and pratical reasons. It is a part of the subject founded by 
Knuth in the sixties [Knu68,Knu69,Knu73], the analysis of algorithms. A general 
presentation and a complete introduction of this kind to problems can be found 
in [SF96]. 

However, surprisingly, almost no result is available in the literature. The 
worst case complexity of most operations is known [YZS94,Yu97], but the average 
case analysis seems to be an extremely difficult problem. The main reason is 
that the number of non-isomorphic deterministic and connected automata with 
n states and say, two letters, is not even known! 

This is why we restrict ourselves to the case of one-letter automata. But, 
even in this case, non-trivial argmnents of number theory are required to analyze 
elementary looking operations. 

Define the complexity of a regular language as the number of states of its 
minimal automaton. Let A (respectively A') be an n-state (resp. n'-state) deter­
ministic and connected unary automaton. Our main results can be summarized 
as follows: 
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1. The probability that A is minimal tends toward 1/2 when n tends toward 
infinity, 

2. The average complexity of L{A) is equivalent to n, 
3. The average complexity of L{A) fl L{A') is equivalent to -^^nn', where ^ 

is the Riemann "zeta"-function. 
4. The average complexity of L{A)* is bounded by a constant, 
5. If n < n' < P{n), for some polynomial P, the average complexity of L(^ )L(^ ' ) 

is bounded by a constant (depending on P). 

Remark that results 3, 4 and 5 differ perceptibly from the corresponding worst 
case complexities, which are nn' for intersection, (n — 1)'̂  + 1 for star and nn' 
for concatenation product. 

The proofs are too long to be described in this paper. However, in Section 4, 
we present a sketch of one proof to illustrate the kind of technics used here. 

2 Notations 

If f,g are two functions from N x N into R, we say that / is equivalent to g 
(denoted by / x 5) if there exists a function e from N x N into M such that the 
two following statements hold: 

- for all n, n' in N^, f{n,n') = (l + e{n,n'))g{n,n') 
— e{n, n') -^ 0 when min{n, n'} —> 00 

If / is a function from N x N into R"*", we say that / is polynomially bounded 
by a non negative real constant C (denoted by f =4pC) if, for every polynomial 
P 6 N[X], there exists an integer Np e N such that, for each n, n' G N with 
n > Np and n <n' < P{n), f{n, n') < C. Of coiuse C depends on the choice of 
P. 

For each n, n' € N, we denote respectively by n V n' and n /\n' the 1cm and 
the gcd of n and n'. We denote by d\n the fact that the integer d divides the 
integer n. 

Given a deterministic automaton A, \A\ denotes the number of its states and 
ll^ll the number of states of its minimal automaton. By extension, if L is a regular 
language, we denote by ||L|| the number of states of its minimal automaton, 
that is, its complexity. Note that if A{L) is any automaton recognizing L, then 
\\A{L)\\ = \\L\\. 

Let 5 be a finite subset of a set T. If / is a function from T into K, we denote 
by ( / ,5) the sum J2a€S fi^)-

3 The number of minimal automata 

In this section we enumerate the minimal unary automata (see [Eil74] [HU79]) 
with n states. For this piurpose, we establish and use the characterization lemma 
which is very useful for a combinatorial analysis of minimal unary automata. 
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To avoid any isomorphism problems, we fix a rule for the labels of the states. 
For every deterministic and cormected automaton with n states, with initial state 
qo, we label each state q with the smallest integer i such that qo.a^ = q. This 
condition prevents two distinct automata from being isomorphic. 

A deterministic complete and connected unary automaton is always of the 
following form, for some A; € {0 , . . . , n — 1} (the final states axe omitted): 

Therefore, such an automaton is totally determined by the integer k and its 
set of final states. More precisely, it is equal to one of the automata A(n, k, F) 
defined as follows : given two integers k and n such that 0 < fe < n — 1 and 
a subset F of {0 , . . . ,n — 1}, A(n, k,F) is the unary automaton whose set of 
states is Q = {0 , . . . , n — 1} and transition function is given by q.a = g + 1 for 
0 < q <n — 2 and (n — l).a — k. The initial state of this automaton is 0 and its 
set of final states is F. 

The loop of ^ = A{n,k,F), denoted by loop{A), is the automaton A(n -
k, 0, F') where F ' = {i € |0, n - fe - 1 ] \i + ke F}. The automaton A is simply 
called a loop if it is equal to its loop, that is, if and only if fc = 0. 

Loops play an important role in the next lemma, which chara<;terizes minimal 
unary automata. Two states of an automaton are said to have the same finality 
if they are either both final or both non-final. 

Lemma 1. (Characterization Lemma) An automaton A{n,k,F) is minimal if 
and only if the two following conditions hold: 

1. its loop is minimal 
2. ifk^ 0, the states fe — 1 and n — 1 do not have the same finality. 

We are now ready to evaluate the average number of minimal automata. 
First, denoting by W„ the set of complete, deterministic and connected unary 
automata with n states (with the proper labels on their states), it is easy to see 
that \Un\ = n2". 

Next we enumerate the minimal n-loops (loops with n states). Fix an integer 
n. For every n-loop £ — A(n, 0, F) define 

kmin{A) = min{fe € [ l , n l I F.a* - F} 

Note that fem>n(£) exists since F.a" = F. A n-loop £ is said to be primitive if 
'^m,in\'-') ^^ ^• 

We can characterize minimal loops: 
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Lemma 2. For each n-loop C, the minimal automaton of C has kminiC) states 
and fcmi„(£) divides n. In particular a loop C is primitive if and only if it is 
minimal. 

Denoting by /i the Mobins function, we have the following result: 

Theorem 1. There are exactly I2d|„ M ( " / ^ ) 2 ' ' minimal n-loops. This number 
is equivalent to 2". Furthermore, there are no more than 2'"/^^"'"^ non-minimal 
loops with n states. 

The proof of this theorem is very classical. Using Lemma 2, we can reduce the 
problem to the well-known problem of counting the number of primitive circular 
words on a two-letter alphabet, which justifies the definition of a primitive loop. 
This number is also n times the niunber of irreductible polynomials of degree n 
over F2, the field with two elements, and a natural bijection has recently been 
found, using Galois theory arguments [Del99]. For a survey of contexts where 
the same kind of niunbers appear, see [A1199]. 

This result is very important as it says that very few loops are not minimal. 
Thus, as a first approximation, we can consider that each loop is minimal. Indeed, 
for all the average Einalysis of this paper, unary automata behave as if their loops 
were minimal. Using the characterization lemma, we can give an equivalent to 
the number of minimal unary automata. 

Theorem 2. The number of minimal automata with n states is equivalent to 
n 2 " - ^ 

We define the average number of states of the minimal automaton of an 
n-state automaton as T^ Y1A€U„ II-^II- "^^^ following theorem shows that the 
number of states of the minimal automaton of a deterministic connected au­
tomaton is very close to the number of states of this automaton: 

Theorem 3. The average number of states of the minimal automata of an n-
state automaton is equivalent to n. 

The proof is not diSicult, and the result claims that it is not often useful to 
spend time minimizing a imary automaton. 

4 Intersection 

In this section, we give the average and worst case complexity of the intersection 
on unary automata. Remark that the union has exactly the same behavior as 
the intersection since the minimal automaton of a regular language L has the 
same number of states as the minimal automaton of its complement. 

Fix two integers n and n' greater than 2. For every {A, A') £ Un x W„', of 
respective initial states qo and q'g, define the product automaton ^ x ^ ' , as the 
automaton whose initial state is {qo, q^), whose set of states is the set of reachable 
pairs from the initial states {qo.a*,q'Q.d'), i G N. The transition function of this 
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automaton is defined by {q,q').a = {q.a,q'.a) and a reachable pair {q,q') is final 
if and only if q (respectively 9') is a final state of A (resp. A'). 

It is well-known that this automaton recognizes the intersection of L{A) and 
L{A'). 

Our first result concerns the worst case complexity. It sUghlty improves a 
result of [YZS94] (they only consider the case when n and n' are prime together), 
and use the fact that for n large enough, there always exist a prime number 
between n — n" and n, for some real number a e]0,1[ [BH96,Dav74,Hux72]): 

Proposition 1. In the worst case, the complexity of the intersection is equiva­
lent to nn'. 

Denote by U the set of all complete, deterministic and connected imary au­
tomata. The average complexity of the intersection is exactly 

(||x||,W„xW„') 
\Un\ |W„ 

where 11 x 11 is the fimction fromUxU into N which maps {A, A') onto 11.4 x >l'11. 
Our main result is a precise evaluation of the average complexity of the 

intersection: 

Theorem 4. The average complexity of the intersection of a n-state automaton 
and a n'-state automaton is equivalent to -^^ nn' 

The proof requires a result from analytic number theory established by G. 
Tenenbaum [Ten97] along classical techniques (see, e.g., [Ten96]). The result is 
interesting on its own account and we now state it formally. 

Theorem 5. [Tenenbaum] The following result holds: 

1< t <n 
l< i '<n' 

with z = min{n, n '} . Thus 

l < t < n 
l<t '<n' 

Sketch of the proof of Theorem 4: We exhibit an upper and a lower bound to the 
average of the intersection, both equivalent to ^ ^ nn'. For the upper bound, 
we use the fact that if ^ is a n-state automaton and A' a n'-state automaton, 
||L(X) n L(^ ' ) | | < |>1 X ̂ ' | . We can compute exactly the number of states of 
A X A'. Moreover the loop oi Ax A' contains |Zoop(>t)| V \loop{A')\ states and 
thus we can prove that 

Y, E l -^^-^ ' i - E E \loop{A)\v\loop{A')\ 
A€U„ AeU„, A€U„ A€U„> 
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After some calculii, we conclude by Theorem 5 that the average of the intersec­
tion is bounded by a function equivalent to -^^ nn'. 

For the lower boiuid, we construct a set G{1,1') of pairs (£, £') where £ is 
an /-loop and C is an I'-loop. This set is such that for every {C,C') G G{l,l'), 
£ X £ ' is minimal. Hence as 

(I|X||,W„XW„,)>X:E E E E ^vr 
;=i J'=i {c,c')€G(i,i') Aeu„ A'eUr, 

loop(,A)=C loop{A')=C' 

and since for every Z-loop £ with 1 < / < n, there are exactly 2"~' n-state 
automata whose loop is £, 

(II X \\,Un X U„') > 2"+"' E E l^('''')l 2"'2"''a V /') 
1=1 i ' = i 

Hence, to prove the theorem we have to construct a large enough set G{n, n') so 
that 

E E iG(u')i 2-'2-''a V 0 X E E i V r 
1=1 i'=i 1=1 i'=i 

and we conclude using Theorem 5. 
To construct G{1,1'), we remove some subsets from B{1,1'), the set of all pairs 

of loops (£, £') such that £ is a Moop and £ ' is a Z'-loop. We first remove all 
the pairs of loops (£, £') such that L{C) or L{C') is either finite or cofinite. It 
is not difficult to see that there axe no more than 2' -|- 2' such pairs in B{l,l'). 
Define H{1,1') the subset of B{1,1') obtained after removing such pairs of loops. 

Define the property V{l,l') that is true if and only HI Al' > SisfMl. por 
technical reasons we want that G{l,l') = 0 if V{l,l') is satisfied. This is not 
restrictive since they are not a lot of {I, I') that satisfy V. 

We first work in the case when V is not satisfied by I and I': we want to 
remove from H{1,1') the pairs (£, £') such that £ x £ ' is not minimal. Define 
B = £x C. We distinguish two kinds of pairs, according to whether IA I' divides 
||B|| or not. 

— lilAl' divides ||B||: we exhibit a condition sufficient to ensure that a pair of 
loops is such that its product is not minimal. The following lemma charac­
terizes non-minimal loops in the particular case / A Z' = 1 : 

Lemma 3. Let 1,1' > 1 be two integers such that I Al' = 1. If C is a l-loop 
and £ ' a I'-loop then C x C is minimal if and only if both £ and £ ' are 
minimal. 

We wajit to use this lemma even iilAl' ^ 1. We have to introduce some new 
notations. For every i e {0, • • • , d - 1}, define the loop £ '̂̂  = A{l/d, 0, F^''>) 
where 

F(*) = {j e {0, • • • , (l/d) -l}\dj-\-iisa final state of £ } 



Average state complexity of operations on unary automata 237 

The construction of C^J is motivated by the following property, which holds 
for every d dividing I and I' and every i £ {0, • • • , d — 1}: 

Fix d = I Al'. The integer d divides \\B\\ by hypothesis. If B is not minimal 
then, by Lenuna 2, ||B|| strictly divides \B\. Hence for every z e {0, • • • , d—1}, 
{C X C')J is not minimal. Thus Cj x C J is not minimal and as l/dAl'/d = 
1, Cj or C'^J' is not minimal, by Lemma 3. 

Therefore, if there exists i G {0, • • • , d - 1} such that both C^ and £'^ are 
minimal then £ x £ ' is minimal. Using the fact that we are working on I, I' 
which does not satisfy V, we can bound the nmnber of pairs of loops such 
that B is not minimal and Z A T divides ||S|| by 2^'/i°2'', for I < I'. 

— li d = I Al' does not divides ||B||: the characterization of minimal products 
of loops is completely different in this case. We introduce an equivalence 
relation = on {0, • • • , n — 1} defined by 

i = j O there exists k, {i — j + k\\B\\) mod d 

We first prove that every equivalence class contains the same number m 
of elements and that each class contains at least two elements. Moreover if 
i = j then (£ X £ ' ) f ^^ {^ x ^')T 

recognize the same language. Hence, 
since they have the same number of states, [C x £')^ = (£ x C')J . With 
this considerations we can prove that there are at most 2'/ '"2' /"* < 2'/'^2' ^'^ 
pairs of loops such that their product is not minimal and such that d — lAl' 
does not divides | | ^ x ^ ' | | . 

Hence we construct G(Z, V) by removing these pairs of loops. Putting all results 
together we can prove that if I and V do not satisfy V then, for I < I', \G{1, l')\ > 
2'+'' - 2"'2'' for some real a e]0,1[. But 

^ J ] 2° '2 ' '2- '2- ' ' ( /V 0 < <:^n'' 
1=1 i'=i 

for some constant C. Hence by bounding the number of /, I' satisfying V we can 
prove Theorem 4. 

Using the same kind of methods we can also prove that the result of Theo­
rem 4 still holds if we consider the average on minimal automata only: 

Theorem 6. The following result holds: 

|A<»„|U„,|<ll-ll'^""'<-^"->"^""' 
Thus for the intersection the average and worst cases only differ by a mul­

tiplicative constant. The theorem also shows that the naive algorithm which 
constructs the product automaton cannot be substantially improved. 
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5 Stai operation 

The purpose of this section is to prove that the average state complexity of 
the star operation is bounded. S. Yu, Q. Zhuang and K. Salomaa have akeady 
proved that in the worst case it is quadratic in the number of states [YZS94]: 

Theorem 7. For every regular language L of complexity n, the complexity of 
L* is bounded by (n—1)^ + 1. Furthermore, this upper bound is reached for every 
n > 1. 

We estabhsh the following result, where || *|| is the function from W„ into N 
such that the image of an n-state automaton A is | |L(^)*||. 

Theorem 8. There exists a constant C» € R"*" such that for every n>2, 

In the proof of the theorem we encode automata by words on the alphabet 
{0,1}. Removing a negligible subset oiUn containg all the automata such that 
not to consecutive states are both final, we reduce the problem to a problem of 
combinatorics on words, which is sufficient to prove the theorem. Remark that 
the bound found in the proof is approximatively 50, whereas an experimental 
computation gives a bound lower than 6. 

This result shows that the average behavior of the star operation is very 
different from its worst case behavior, since the first one is bounded whereas 
the second one has a quadratic growth. Moreover we can use this result to 
obtain an algorithm that constructs the minimal automaton of the star of a given 
regular language that has an average complexity in 0(1) whereas the classical 
construction is in 0{n^). 

6 Concatenation product 

The purpose of this section is to prove that the concatenation product is poly-
nomialy bounded. 

S. Yu, Q. Zhuang and K. Salomaa gave the following result: 

Theorem 9. [YZS94] For every regular languages L and L' such that \\L\\ = n 
and IIL'II = n', \\LL'\\ <nn'. 

They also proved that the bound is reached ii n A n' — 1. 
With this result we cam obtain a equivalent to the worst case complex­

ity of the product of two languages (once more we use number theory results 
[BH96,Dav74,Hux72]): 

Proposition 2. The complexity in the worst case of the concatenation product 
of two unary automata with respectively n and n' states is equivalent to nn'. 
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Now we axe now going to show that in the average case, the asymptotic 
complexity of the concatenation product is bounded, provided the growth of n' 
is bounded by a polynomial in n. The image of {A, >!') E.Un'x Un' by ||. || is the 
integer \\L{A)L{A')\\. 

Theorem 10. There exist C 6 K"*" such that 

\Un y-Un'\ P 

Once again we establish the proof by removing negligible subsets of W„ x 
Un' • We also encode automata with words and use combinatorics on words. We 
precede in three steps, for n <n' < P{n) for some polynomial P: 

— We first remark that almost all pairs of automata {A, A!) are such that 
L{A)L{A') recognizes every word of length between [n/2] and [3n/2]. This 
step is quite technical and uses basic combinatorial tools. 

— Almost all pairs satisfying the first condition are such that L{A)L{A!) is 
cofinite. To prove this we consider two cases; namely the loop of A contains 
more than ^/n states or not. 

— Finaly we precisely compute the size of the minimal automaton oi L{A)L{A!) 
for pairs of automata satisfying the two previous conditions 

Remark that the condition n < n' < P{n) is certainly necessary to obtain a 
bounded average complexity, but is not very restrictive in practice. 

7 Conclusion 

Putting all things together we can summarize our results as follows: 

Operation 

Minimization 
Star operation 
Concatenation product 
Intersection 

Worst case 

anything in {!,••• , n} 
(n - 1 ) ^ + 1 

X nn' 

X nn' 

Average case 

~ n 

<a ^pC 
x ^ n n ' 
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