
Regular Languages

Sheng Yu

Regular languages and finite automata are among the oldest topics in formal
language theory. The formal study of regular languages and finite automata
can be traced back to the early forties, when finite state machines were used to
model neuron nets by McCulloch and Pitts [83]. Since then, regular languages
have been extensively studied. Results of early investigations are, for example,
Kleene's theorem establishing the equivalence of regular expressions and finite
automata [69], the introduction of automata with output by Mealy [86] and
Moore [88], the introduction of nondeterministic finite automata by Rabin
and Scott [99], and the characterization ofregular languages by congruences
of finite index by Myhill [90] and Nerode [91].

Regular languages and finite automata have had a wide range of appli
cations. Their most celebrated application has been lexical analysis in pro
gramming language compilation and user-interface translations [1, 2]. Other
notable applications include circuit design [21], text editing, and pattern
matching [70]. Their application in the recent years has been further ex
tended to include parallel processing [3, 37, 50], image generation and com
pression [9, 28, 29, 33, 116]' type theory for object-oriented languages [92],
DNA computing [31, 53], etc.

Since the late seventies, many have believed that everything of inter
est about regular languages is known except for a few very hard problems,
which could be exemplified by the six open problems Brzozowski presented
at the International Symposium on Formal Language Theory in 1979 [18]. It
appeared that not much further work could be done on regular languages.
However, contrary to the widespread belief, many new and interesting results
on regular languages have kept coming out in the last fifteen years. Besides
the fact that three of the six open problems, i.e., the restricted star height
problem [52], the regularity of noncounting classes problem [36], and the op
timality of prefix codes problem [117], have been solved, there have also been
many other interesting new results [65, 82, 102, 111, 120, 124], which include
results on measuring or quantifying operations on regular languages. For ex
ample, it is shown in [65] that the the "DFA to minimal NFA" problem is
PSPACE-complete.

There is a huge amount of established research on regular languages over
the span of a half century. One can find a long list of excellent books that
include chapters dedicated to regular languages, e.g., [54, 106,84,41,57, 107,

G. Rosenberg et al. (eds.), Handbook of Formal Languages

© Springer-Verlag Berlin Heidelberg 1997

42 Sheng Yu

123, 98]. Many results, including many recent results, on regular languages
are considered to be highly important and very interesting. However, only
a few of them can be included in this chapter. In choosing the material for
the chapter, besides the very basic results, we tend to select those relatively
recent results that are of general interest and have not been included in the
standard texts. We choose, for instance, some basic results on alternating
finite automata and complexities of operations on regular languages.

This chapter contains the following five sections: 1. Preliminaries, 2. Finite
Automata, 3. Regular Expressions, 4. Properties of Regular Languages, and
5. Complexity Issues.

In the first section, we give basic notations and definitions.
In Section 2, we describe three basic types of finite automata: determinis

tic finite automata, nondeterministic finite automata, and alternating finite
automata. We show that the above three models accept exactly the same
family of languages. Alternating finite automata are a natural and succinct
representation of regular languages. A particularly nice feature of alternat
ing finite automata is that they are backwards deterministic and, thus, can
be used practically [50]. We also describe briefly several models of finite au
tomata with output, which include Moore machines, Mealy machines, and
finite transducers. Finite transducers are used later in Section 4 for proving
various closure properties of regular languages.

In Section 3, we define regular expressions and describe the transformation
between regular expressions and finite automata. We present the well-known
star height problem and the extended star height problem. At the end of the
section, we give a characterization of regular languages having a polynomial
density using regular expressions of a special form.

In Section 4, we describe four pumping lemmas for regular languages.
The first two give necessary conditions for regularity; and the other two give
both sufficient and necessary conditions for regularity. All the four lemmas
are stated in a simple and understandable form. We give example languages
that satisfy the first two pumping conditions but are nonregular. We show
that there are uncountably many such languages. In this section, we also dis
cuss various closure properties of regular languages. We describe the Myhill
Nerode Theorem and discuss minimization of DFA as well as AFA. We also
give a lower bound on the number of states of an NFA accepting a given
language.

In the final section, we discuss two kinds of complexity issues. The first
kind considers the number of states of a minimal DFA for a language re
sulting from some operation, as a function of the numbers of states for the
operand languages. This function is called the state complexity of the opera
tion. We describe the state complexity for several basic operations on regular
languages. The state complexity gives a clear and objective measurement for
each operation. It also gives a lower bound on the time required for the oper
ation. The second kind of complexity issue that we consider is the time and

Regular Languages 43

space complexity of various problems for finite automata and regular expres
sions. We list a number of problems, mostly decision problems, together with
their time or space complexity to conclude the section as well as the chapter.

1. Preliminaries

An alphabet is a finite nonempty set of symbols. A word or a string over an
alphabet E is a finite sequence of symbols taken from E. The empty word,
i.e., the word containing zero symbols, is denoted A. In this chapter, a, b, c,
0, and 1 are used to denote symbols, while u, v, W, x, y, and z are used to
denote words.

The catenation of two words is the word formed by juxtaposing the two
words together, i.e., writing the first word immediately followed by the second
word, with no space in between. Let E = {a, b} be an alphabet and x = aab
and y = ab be two words over E. Then the catenation of x and y, denoted
xy, is aabab.

Denote by E* the set of all words over the alphabet E. Note that E* is
a free monoid with catenation being the associative binary operation and A
being the identity element. So, we have

AX = XA = x

for each x E E*. The length of a word x, denoted lxi, is the number of
occurrences of symbols in x.

Let n be a nonnegative integer and x a word over an alphabet E. Then
xn is a word over E defined by

(i) xO = A,
(ii) xn = xxn- I , for n > 0.

Let x = al ... an, n :::: 0, be a word over E. The reversal of x, denoted
xR, is the word an ... al. Formally, it is defined inductively by

(i) x R = x, if x = Aj
(ii) x R = yRa, if x = ay for a E E and y E E*.

Let x and y be two words over E. We say that x is a prefix of y if there
exists z E E* such that xz = y. Similarly, x is a suffix of y if there exists
z E E* such that zx = y, and x is a subword of y if there exist u, v E E*
such that 'uxv = y,

A language Lover E is a set of words over E. The empty language is
denoted 0. The universal language over E, which is the language consisting
of all words over E, is E*, For a language L, we denote by ILl the cardinality
of L.

The catenation of two languages L I , L2 ~ E*, denoted LI L 2 , is the set

LIL2 = {WIW2 I WI ELI and W2 E L2 }.

44 Sheng Yu

For an integer n :::: 0 and a language L, the nth power of L, denoted Ln, is
defined by

(i) LO = {A},
(ii) Ln = Ln-l L, for n > o.

The star (Kleene closure) of a language L, denoted L*, is the set

00

Similarly, we define
00

Then, the notation E* is consistent with the above definition. The reversal
of a language L, denoted LR, is the set

Note that we often denote a singleton language, i.e., a language containing
exactly one word, by the word itself when no confusion will be caused. For
example, by xLy, where x,y E E* and L ~ E*, we mean {x}L{y}.

Let E and .:1 be two finite alphabets. A mapping h : E* -+ .:1* is called
a murphism if

(1) h(A) = A and
(2) h(xy) = h(:c)h(y) for all x,y E E*.

Note that condition (1) follows from condition (2), Therefore, condition (1)
can be deleted.

For a set S, let 2s denote the power set of S, i.e., the collection of all
subsets of S. A mapping rp : E* -+ 2,1' is called a substitutiun if

(1) rp(A) = {A} and
(2) rp(xy) = rp(x)rp(y).

Clearly, a morphism is a special kind of substitution where each word is as
sociated with a singleton set. Note that because of the second condition of
the definition, morphisms and substitutions are usually defined by specify
ing only the image of each letter in E under the mapping. We extend the
definitions of hand rp, respectively, to define

h(L) = {hew) I wE L}

and
rp(L) = U rp(w)

wEL

for L ~ E*.

Regular Languages 45

Example 1.1. Let E = {a,b,c} and..1 = {0,1}. We define a morphism h:
E* -+..1* by

h(a) = 01, h(b) = 1, h(c) = A.

Then, h(baca) = 10101. We define a substitution ep: E* -+ 2-d" by

ep(a) = {01,001}, ep(b) = {Ii Ii> O}, ep(c) = {A}.

Then, ep(baca) = {li0101, 1i01001, 1iOO101, 1i001001 Ii> O}. o

A morphism h : E* -+ ..1* is said to be A-free if h(a) =I A for all a E E.
A substitution ep : E* -+ 2-d" is said to be A-free if A ¢ ep(a) for all a E E.
And ep is called a finite substitution if, for each a E E, ep(a) is a finite subset
of ..1*.

Let h : E* -+ ..1* be a morphism. The inverse of the morphism h is a
mapping h-1 : ..1* -+ 217" defined by, for each y E ..1*,

h-1(y) = {x E E* I hex) = y}.

Similarly, for a substitution ep : E* -+ 2-d" , the inverse of the substitution ep
is a mapping ep-l : ..1* -+ 217" defined by, for each y E ..1*,

ep-l(y) = {x E E* lyE ep(x)}.

2. Finite automata

In formal language theory in general, there are two major types of mechanisms
for defining languages: acceptors and generators. For regular languages in
particular, the acceptors are finite automata and the generators are regular
expressions and right (left) linear grammars, etc.

In this section, we describe three types of finite automata (FA): determin
istic finite automata (DFA) , nondeterministic finite automata (NFA) , and
alternating finite automata (AFA). We show that all the three types of ab
stract machines accept exactly the same family of languages. We describe the
basic operations of union, intersection, catenation, and complementation on
the family of languages implemented using these different mechanisms.

2.1 Deterministic finite automata

A finite automaton consists of a finite set of internal states and a set of
rules that govern the change of the current state when reading a given input
symbol. If the next state is always uniquely determined by the current state
and the current input symbol, we say that the automaton is deterministic.

As an informal explanation, we consider the following example 1 . Let Ao be
an automaton that reads strings of O's and l's and recognizes those strings

1 A similar example is given in [98].

46 Sheng Yu

which, as binary numbers, are congruent to 2 (mod 3). We use V3(X) to
denote the value, modulo 3, of the binary string x. For example, v(lOO) = 1
and v3(1011) = 2. Consider an arbitrary input string w = al ... an to Ao
where each ai, 1 :'S; i :'S; n, is either 0 or 1. It is clear that for each i, 1 :'S; i :'S; n,
the string al ... ai falls into one of the three cases: (0) v3(al ... ai) = 0, (1)
v3(al ... ai) = 1 and (2) v3(al ... ai) = 2. No other cases are possible. So,
AD needs only three states which correspond to the above three cases (and
the initial state corresponds to the case (0)). We name those three states (0),
(1), and (2), respectively. The rules that govern the state changes should be
defined accordingly. Note that

v3(al ... ai+t) == 2 * v3(al'" ai) + ai+l (mod 3).

So, ifthe current state is (1) and the current input symbol is 1, then the next
state is (0) since 2 * 1 + 1 == 0 (mod 3). The states and their transition rules
are shown in Figure 1.
Clearly, each step of state transition is uniquely determined by the current
state and the current input symbol. We distinguish state (2) as the final state
and define that AD accepts an input w if AD is in state (2) after reading the
last symbol of w. AD is an example of a deterministic finite automaton.

Formally, we define a deterministic finite automaton as follows:
A deterministic finite automaton (DFA) A is a quintuple (Q, E, 8, s, F),

where
Q is the finite set of states;
E is the input alphabet;
8 : Q x E -- Q is the state transition function;
sEQ is the starting state; and
F ~ Q is the set of final states.

Note that, in general, we do not require the transition function 8 to be total,
i.e., to be defined for every pair in Q x E. If 8 is total, then we call A a
complete IJFJ1.

In the above definition, we also do not require that a DFA is connected
if we view a DFA as a directed graph where states are nodes and transitions
between states are arcs between nodes. A DFA such that every state is reach
able from the starting state and reaches a final state is called a reduced DFA.
A reduced DFA may not be a complete DFA.

Fig. 1. The states and transition rules of Ao

Regular Languages 47

Example 2.1. A DFA Al = (Q1, L\, 81 , Sl, Fd is shown in Figure 2, where
Q1 = {O, 1,2,3}, 171 = {a,b}, sl = 0, F1 = {3}, and 81 is defined as follows:

81(0,a) = 1,
81 (1,a) = 1,
81(2,a) = 1,
81 (3, a) = 3,

8l (0,b) = 0,
81 (1,b) = 2,
8l (2,b) = 3,
81(3, b) =3.

The DFA Al is reduced and complete. Note that in a state transition diagram,
we always represent final states with double circles and non-final states with
single circles. D

A configuration of A = (Q, 17,8, s, F) is a word in Q17*, i.e., a state q E Q
followed by a word x E 17* where q is the current state of A and x is the
remaining part of the input. The starting configuration of A for an input
word x E 17* is sx. Accepting configurations are defined to be elements of F
(followed by the empty word).).

A computation step of A is a transition from a configuration 0: to a con
figuration (3, denoted by 0: f- A (3, where f- A is a binary relation on the set of
configurations of A. The relation f- A is defined by: for px, qy E Q 17* , px f- A qy
if x = ay for some a E 17 and 8(p, a) = q. For example, Oabb f- Al 1bb for the
DFA AI. We use f- instead of f- A if there is no confusion. The kth power of f-,
denoted f-k, is defined by 0: f-o 0: for all configurations 0: E Q 17*; and 0: f-k (3,
for k > 0 and 0:, (3 E Q 17*, if there exists "Y E Q 17* such that 0: f-k-l "Y and
"Y f- (3. The transitive closure and the reflexive and transitive closure of f- are
denoted f-+ and f-*, respectively.

A configuration sequence of A is a sequence of configurations C l , ... , Cn,
of A, for some n :2 1, such that Ci f- A CHI for each i, 1 :::; i :::; n - 1. A
configuration sequence is said to be an accepting configuration sequence if it
starts with a starting configuration and ends with an accepting configuration.

The language accepted by a DFA A = (Q, 17, 8, s, F), denoted L(A), is
defined as follows:

L(A) = { w I sw f-* f for some f E F }.

For convenience, we define the extension of 8,8* : Qx17* -> Q, inductively
as follows. We set 8*(q,).) = q and 8*(q, xa) = 8(8*(q, x), a), for q E Q, a E 17,
and x E 17*. Then, we can also write

b a a, b

Fig. 2. A deterministic finite automaton Al

48 Sheng Yu

L(A) = {w 18*(s,w) = f for some f E F}.

The collection of all languages accepted by DFA is denoted £DFA. We
call it the family of DFA languages. We will show later that the families
of languages accepted by deterministic, nondeterministic, and alternating fi
nite automata are the same. This family is again the same as the family of
languages denoted by regular expressions. It is called the family of regular
languages.

In the remaining of this subsection, we state several basic properties of
DFA languages. More properties of DFA languages can be found in Section 4 ..

Lemma 2.1. For each L E £DFA, there is a complete DFA that accepts L.

Proof. Let L E £DFA. Then there is a DFA A = (Q, E, 8, s, F) such that
L = L(A). If A is complete, then we are done. Otherwise, we construct a
DFA A' which is the same as A except that there is one more state d and
all transitions undefined in A go to d in A'. More precisely, we define A' =
(Q', E, 8', s, F) such that Q' = Q U {d}, where d f/. Q, and 8' : Q' X E --. Q'
is defined by

8'(a) = { 8(p, a), if 8(p, a) is defined;
p, d, otherwise

for p E Q' and a E E. It is clear that the new state d and the new state
transitions do not change the acceptance of a word. Therefore, L(A) = L(A').

o

Theorem 2.1. The family of DFA languages, £DFA, is closed under union
and intersection.

Proof. Let L 1 , L2 ~ E* be two arbitrary DFA languages such that Ll =
L(At} and L2 = L(A2) for some complete DFA Al = (Ql, E, 81, SI, F1) and
A2 = (Q2, E, 82 , S2, F2).

First, we show that there exists a DFA A such that L(A) = Ll U L 2. We
construct A = (Q, E, 8, s, F) as follows:

Q = Ql X Q2,
I:j = (SI' S2),
F = (Fl x Q2) U (Ql x F2), and
8: Ql x Q2 --. Ql X Q2 is defined by 8((pl,P2),a) = (81(pl,a),82(p2,a)).

The intuitive idea of the construction is that, for each input word, A runs
Al and A2 in parallel, starting from both the starting states. Having finished
reading the input word, A accepts the word if either Al or A2 accepts it.
Therefore, L(A) = L(At} U L(A2).

For intersection, the construction is the same except that F = Fl X F2.
o

Note that, in the above proof, the condition that Al and A2 are complete
is not necessary in the case of intersection. However, if either Al or A2 is
incomplete, the resulting automaton is incomplete.

Regular Languages 49

Theorem 2.2. £DFA is closed under complementation.

Proof. Let L E £DFA. By Lemma 2.1, there is a complete DFA A =
(Q, E, 8, s, F) such that L = L(A). Then, clearly, the complement of L, de
noted L, is accepted by A = (Q, E, 8, s, Q - F). 0

2.2 Nondeterministic finite automata

Nondeterministic finite automata (NFA) are a generalization of DFA where,
for a given state and an input symbol, the number of possible transitions
can be greater than one. An NFA is shown in Figure 3, where there are two
possible transitions for state 0 and input symbol a: to state 0 or to state 1.

Formally, a nondeterministic finite automaton A is a quintuple (Q, E, 8, s,
F) where Q, E, s, and F are defined exactly the same way as for a DFA, and
8 : Q x E --+ 2Q is the transition function, where 2Q denotes the power set
of Q.

For example, the transition function for the NFA A2 of Figure 3 is the
following:

8(0,a) = {O,l},
8(1, a) = 0,
8(2, a) = 0,
8(3, a) = {3},

8(0, b) = {O},
8(1, b) = {2},
8(2, b) = {3},
8(3, b) = {3}.

A DFA can be considered an NFA, where each value of the transition function
is either a singleton or the empty set.

The computation relation f-A: QE' x QE' of an NFA A is defined by
setting px f- A qy if x = ay and q E 8(p, a) for p, q E Q, x, Y E E', and a E E.
Then the language accepted by A is

L(A) = { w I sw f-~ j, for some j E F }.

Two automata are said to be equivalent if they accept exactly the same
language. The NFA A2 which is shown in Figure 3 accepts exactly the same
language as Al of Figure 2. Thus, A2 is equivalent to A 1 .

Denote by £NFA the family oflanguages accepted by NFA. We show that
£DFA = £NFA'

Fig. 3. A nondeterministic finite automaton A2

50 Sheng Yu

Lemma 2.2. For each NFA A of n states, there exists a complete DFA A'
of at most 2n states such that L(A') = L(A).

Proof. Let A = (Q,E,8,s,F) be an NFA such that IQI = n. We construct a
DFA A' such that each state of A' is a subset of Q and the transition function
is defined accordingly. More precisely, we define A' = (Q', E, 8', s', F') where
Q' = 2Q; 8' : Q' x E --+ Q' is defined by, for Pl, P2 E Q' and a E E,
6'(Pl , a) = P2 if

P2 = {q E Q I there existsp E Pl such that q E 6(p,a)};

s' = {s}; and F' = {P E Q' I P n F =I- 0}. Note that A' has 2n states.
In order to show that L(A) = L(A'), we first prove the following claim.

Claim. For an arbitrary word x E E*, sx f-~ p, for some p E Q, if and only
if s'x f-~, P for some P E Q' (i.e., P ~ Q) such that pEP.

We prove the claim by induction on t, the number of transitions. If t = 0,
then the statement is trivially true since s' = {s}. We hypothesize that the
statement is true for t - 1, t > o. Now consider the case of t, t > o. Let
x = xoa, Xo E E* and a E E, and sxoa f-tl qa f- A P for some p, q E Q.
Then, by the induction hypothesis, s' Xo f-~--;- P' for some P' E Q' such that
q E P'. Since p E 6(q,a), we have 8'(P', a) = P for some P E Q' such that
pEP by the definition of 6'. So, we have s'x f-~--;-l P'a f-A' P and pEP.
Conversely, let s'xoa f-~l P'a f-A' P and pEP. Then 6'(P',a) = P and,
therefore, there exists p' E P' such that p E 6(p', a) by the definition of 6'.
By the induction hypothesis, we have sXo f-~-l p'. Thus, sx f-~-l p'a f- A p.
This completes the proof of the claim.

Due to the above claim, we have sw f-A f, for some f E F, if and only if
s'w f-A' P, for some P E Q', such that P n F =I- 0, i.e., P E F'. Therefore,
L(A) = L(A'). 0

The method used above is called the subset construction. In the worst case,
all the subsets of Q are necessary. Then the resulting DFA would consist of
2n states if n is the number of states of the corresponding NFA. Note that if
the resulting DFA is not required to be a complete DFA, the empty subset
of Q is not needed. So, the resulting DFA consists of 2n - 1 states in the
worst case. In Section 5., we will show that such cases exist. However, in
most cases, not all the subsets are necessary. Thus, it suffices to construct
only those subsets that are reachable from {s}. As an example, we construct
a DFA A6 which is equivalent to NFA A2 of Figure 3 as follows:

State a b
{O} {O,l} {O}
{O,l} {O,l} {0,2}
{0,2} {O,l} {0,3}
{0,3} {0,1,3} {0,3}
{O, 1, 3} {O, 1, 3} {O, 2, 3}
{O, 2, 3} {O, 1, 3} {0,3}

b a o 0
~Gi!j)

Regular Languages 51

Fig. 4. A DFA A6 equivalent to NFA A2

The state transition diagram for A6 is shown in Figure 4. Only six out of the
total sixteen subsets are used in the above example. The other ten subsets
of {O, 1,2, 3} are not reachable from {O} and, therefore, useless. Note that
the resulting DFA can be further minimized into one of only four states.
Minimization of DFA is one of the topics in Section 4.

NFA can be further generalized to have state transitions without reading
any input symbol. Such transitions are called A-transitions in the following
definition.

A nondeterministic finite automaton with A-transitions (A-NFA) A is a
quintuple (Q, E, 8, s, F) where Q, E, s, and F are the same as for an NFA;
and 8 : Q x (E U {A}) --+ 2Q is the transition function.

Figure 5 shows the transition diagram of a A-NFA, where the transition
function 8 can also be written as follows:

8(0, a) = {O},
8(1,b) = {l},
8(2, c) = {2}.

and 8(q,X) = 0 in all other cases.

8(0,).) = {I},
8(1,).) = {2},

For a).-NFA A = (Q,E,8,s,F), the binary relation f- A : QE* x QE* is
defined by that px f- A qy, for p, q E Q and x, y E E*, if x = ay and q E 8(p, a)
or if x = y and q E 8 (p,).). The language accepted by A is again defined as

L(A) = {w I sw f-A J, for some J E F}.

Fig. 5. A >..-NFA A3

52 Sheng Yu

For example, the language accepted by A3 of Figure 5 is

We will show that for each A-NFA, there exists an NFA that accepts
exactly the same language. First, we give the following definition.

Let A = (Q, E, 8, s, F) be a A-NFA. The A-closure of a state q E Q,
denoted >.-closure(q), is the set of all states that are reachable from q by zero
or more >.-transitions, i.e.,

>.-closure(q) = {p E Q I q f-A p }.

Theorem 2.3. For each >.-NFA A, there exists an NFA A' such that L(A) =
L(A').

Proof. Let A = (Q,E,8,s,F) be a >'-NFA. We construct an NFA A' =
(Q, E, 8', s, F') where for each q E Q and a E E,

8'(p, a) = 8(p, a) U u 8(q,a) ,

qE>'-closure(p)

and
F' = {q I >.-closure(q) n F =f. 0 }.

The reader can verify that L(A) = L(A'). 0
Consider >.-NFA A3 which is shown in Figure 5. We have >'-closure(O) =

{O, 1, 2}, >.-closure(l) = {I, 2}, and >.-closure(2) = {2}. An equivalent NFA is
shown in Figure 6, which is obtained by following the construction specified
in the above proof.

Let Ml = (Ql,E,81,Sl,Fd and M2 = (Q2,E,82,S2,F2) be two >.-NFA
and assume that Ql n Q2 = 0. Then it is straightforward to construct >.
NFA Ml +M2, M1M2 , and Mi such that L(MI +M2) = L(MI) u L(M2)'
L(M1M 2) = L(Ml)L(M2)' and L(Mi) = (L(MI))*, respectively. The con
structions are illustrated by the diagrams in Figure 7. Formal definitions of
the >.-NFA are listed below:

Fig. 6. An NFA A~

Regular Languages 53

<{J M]

~O
M2

(a) Union

0 A

M] A

M]~

(b) Catenation

(c) Star

0)

0)

0)

0)

M2

0)

o

M+M

0)

0)

Fig. 7. Union, Catenation, and Star operations on A-NFA

• Union Ml+M2 = (Q,E,8,s,F) such that L(M1+M2) = L(M1) UL(M2)'
where Q = Q1 U Q2 U is}, s fj. Q1 U Q2, F = F1 U F2, and

8(S,A) = {Sl,S2},
8(q,a) = 81(q,a) if q E Q1 and a E E U {A},
8(q, a) = 82(q, a) if q E Q2 and a E E U {A}.

• Catenation M1M2 = (Q, E, 8, s, F) such that L(M1M2) = L(M1)L(M2),
where Q = Q1 UQ2, S = Sl, F = F2, and

8(q,a) = 81(q,a) if q E Q1 and a E E or q E Ql - Fl and a = A,
8(q,A) = 81(q,A) U {S2} if q E F1,
8(q, a) = 82(q, a) if q E Q2 and a E E U {A}.

• Star Mi = (Q,E,8,s,F) such that L(Mi) = (L(Mt))*, where Q = Q1 U
is}, s fj. Qb F = Fl U is}, and

8(s, A) = {Sl},
8(q,A) = 8l (q,A) U {stl if q E Fl ,
8(q, a) = 81(q, a) if q E Ql and a E E or q E Ql - Fl and a = A.

54 Sheng Yu

Intersection and complementation are more convenient to do using the DFA
representation.

Another form of generalization of NFA is defined in the following.
A NFA with nondeterministic starting state (NNFA) A = (Q,E,8,S,F)

is an NFA except that there is a set of starting states S rather than exactly
one starting state. Thus, for an input word, the computation of A starts from
a nondeterministic ally chosen starting state.

Clearly, for each NNFA A, we can construct an equivalent A-NFA A' by
adding to A a new state s and a A-transition from s to each of the starting
states in S, and defining s to be the starting state of A'. Thus, NNFA accept
exactly the same family of languages as NFA (or DFA or A-NFA). Each
NNFA can also be transformed directly to an equivalent DFA using a subset
construction, which is similar to the one for transforming an NFA to a DFA
except that the starting state of the resulting DFA is the set of all the starting
states of the NNFA. So, we have the following:

Theorem 2.4. For each NNFA A of n states, we can construct an equivalent
DFA A' of at most 2n states. D

Each NNFA has a matrix representation defined as follows [107]: Let A =
(Q, E, 8, S, F) be an NNFA and assume that Q = {ql, q2,"" qn}. A mapping
h of E into the set of n x n Boolean matrices is defined by setting the (i,j)th
entry in the matrix h(a), a E E, to be 1 if qj E 8(qi' a), i.e., there is an
a- transition from qi to qj. We extend the domain of h from E to E* by

h(w) = { ~(wo)h(a) if w = A,
if w = woa,

where I is the n x n identity matrix and the juxtaposition of two matrices
denotes the multiplication of the two Boolean matrices, where 1\ and V are
the basic operations. A row vector 7r of n entries is defined by setting the ith
entry to 1 if qi E S. A column vector (of n entries is defined by setting the
ith entry to 1 if qi E F. The following theorem has been proved in [107].

Theorem 2.5. Let wE E*. Then wE L(A) if and only if7rh(w)(= 1. D

2.3 Alternating finite automata

The notion of alternation is a natural generalization of nondeterminism. It
received its first formal treatment by Chandra, Kozen, and Stockmeyer in
1976 [22, 23, 71]. Various types of alternating Turing machines (ATM) and
alternating pushdown machines and their relationship to complexity classes
have been studied [24, 37, 61, 62, 79, 72, 94, 103, 38, 55]. Such machines are
useful for a better understanding of many questions in complexity theory. For
alternating finite automata (AFA - not to be confused with abstract families
of acceptors defined in [47]), it is proved in [23] that they are precisely as

Regular Languages 55

powerful as deterministic finite automata as far as language recognition is
concerned. It is also shown in [23] that there exist k-state AFA such that any

equivalent complete DFA has at least 22k states. A more detailed treatment
of alternating finite automata and their operations can be found in [45].

The study of Boolean automata was initiated by Brzozowski and Leiss [19]
at almost the same time period as AFA were introduced. Boolean automata
are essentially AFA except that they allow multiple initial states instead of
exactly one initial state in the case of an AFA. In that seminal paper, they also
introduced a new type of system of language equations, which can be used
to give a clear and comprehensible representation of a Boolean automaton.
Boolean automata and the systems of language equations have been further
studied in [73, 75, 76, 77].

In the following, we will describe results obtained from both of the above
mentioned sources. However, we will use only the term alternating finite au
tomaton (AFA). Our basic definitions of AFA follow those in [23]. The equa
tional representation is from [19, 44], and the operations of AFA are from
[45].

2.3.1 AFA - the definition
AFA are a natural extension of NFA. In an NFA, if there are two or more
possible transitions for the current state and the current input symbol, the
outcomes of all the possible computations for the remaining input word are
logically ORed. Consider the NFA A4 shown in Figure 8 with the input abbb.
When starting at state 0 and reading a, the automaton has two possible
moves: to state 1 or to state 2. If we denote by a Boolean variable Xo whether
there is a successful computation for abbb from state 0, and by Xl and X2

whether there is a successful computation for the remaining of the input bbb
from state 1 and state 2, respectively, then the relation of the computations
can be described by the equation

Xo = Xl V X2.

Fig. 8. An NFA A4

56 Sheng Yu

This relation, represented by the equation, captures the essence of non deter
minism. The definition of AFA extends this idea and allows arbitrary Boolean
operations in place of the "v" operation. For example, we may specify that

Xo = (-,xd /\ X2·

It means that there is a successful computation for abbb from state 0 if and
only if there is no successful computation for bbb from state 1 and there is a
successful computation for bbb from state 2.

More specifically, an AFA works in the following way: When the automa
ton reads an input symbol a in a given state q, it will activate all states of
the automaton to work on the remaining part of the input in parallel. Once
the states have completed their tasks, q will compute its value by applying
a Boolean function on those results and pass on the resulting value to the
state by which it was activated. A word w is accepted if the starting state
computes the value of 1. It is rejected otherwise. We now formalize this idea.

Denote by the symbol B the two-element Boolean algebra B = ({ 0, I}, V,
/\, -', 0,1). Let Q be a set. Then BQ is the set of all mappings of Q into B.
Note that u E BQ can be considered as a vector of IQI entries, indexed by
elements of Q, with each entry being from B. For u E BQ and q E Q, we
write u q to denote the image of q under 'U. If P is a subset of Q then ulp is
the restriction of u to P.

An alternating finite automaton (AF A) is a quintuple A = (Q, E, s, F, g)
where

Q is the finite set of states;
E is the input alphabet;
sEQ is the starting state;
F ~ Q is the set of final states;
9 is a function of Q into the set of all functions of E x BQ into B.

Note that for each state q E Q, g(q) is a function from E x BQ into B, which
we will often denote by gq in the sequel. For each state q E Q and a E E, we
define gq (a) to be the Boolean function BQ -+ B such that

gq(a)(u) = gq(a, u), u E BQ.

Thus, for u E BQ, the value of gq(a)(u), also gq(a,'u), is either 1 or O.
We define the function gQ : E X BQ -+ BQ by putting together the IQI

functions gq : Ex BQ -+ B, q E Q, as follows. For a E E and u, v E BQ,
gQ(a, u) = v if and only if gq(a, u) = Vq for each q E Q. For convenience, we
will write g(a, u) instead of gq(a, u) in the following.

Example 2.2. We define an AFA A5 = (Q,E,s,F,g) where Q = {qO,ql,q2},
E = {a,b}, s = qo, F = {q2}, and 9 is given by

State a b
qo ql /\ q2 0
ql q2 ql /\ q2
q2 ql /\ q2 ql V q2

Regular Languages 57

Note that we use 7j instead of -'q for convenience. 0

We define j E BQ by the condition

jq = 1 ¢:::::} q E F,

and we call j the characteristic vector of F. The characteristic vector for F
of A5 is j = (jqO' jq" jq2) = (0,0,1).

We extend 9 to a function of Q into the set of all functions E* x BQ --+ B
as follows:

() {
Uq, if w = A,

gqW,'U = gq(a,g(w',u)), ifw=aw'withaEEandw'EE*,

where w E E* and U E BQ.
N ow we define the acceptance of a word and the acceptance of a language

by an AFA.
Let A = (Q, E, s, F, g) be an AFA. A word wE E* is accepted by A if and

only if gs(w, 1) = 1, where j is the characteristic vector of F. The language
accepted by A is the set

L(A) = {w E E* I gs(w,1) = 1}.

Let w = aba. Then w is accepted by A5 of Example 2.2 as follows:
gqo(aba, 1)
gq1 (ba, 1) /\ gq2 (ba, 1)
(gq, (a, 1) /\ gq2 (a, 1)) /\ (gq, (a, 1) V gq2 (a, 1))
(gq2 (A, 1) /\ (gq, (A, 1) /\ gq2 (A, 1))) /\ (gq2 (A, 1)V

gq, (A, 1) /\ gq2 (A, 1))
(jq2 /\ (jq, /\ jq2)) /\ (jq2 V jq, /\ jq2)
(1/\ (0/\ 1)) /\ (1 VO/\ 1)
1

If we denote each U E BQ by a vector (uqO ' U q" uq2) and write j = (0,0,1),
then we can rewrite the above:

gqo(aba, 1)
gqo(a, g(ba, 1))
gqO (a, g(b, g(a, 1)))
gqo(a,g(b,g(a, (0,0, 1))))
gqo(a,g(b, (0, 1, 1)))
gqo(a, (0, 1, 1))
1

58 Sheng Yu

2.3.2 Systems of equations - representations of AFA
Consider again the example of AFA A5 • We may use the following system of
equations instead of a table to represent the transitions of A5:

a· (Xl t\ X2) + b· 0
a . X 2 + b . (Xl t\ X 2)

a· (Xl t\ X 2) + b· (Xl V X 2) +).

where a variable Xi represents state qi, 0 ~ i ~ 2, respectively; and), ap
pearing in the third equation specifies that q2 is a final state.

(1)

In general, an AFA A = (Q, E, s, F, g) can be represented by

Xq = La. gq(a, X) + Cq , q E Q
aEE

where X is the vector of variables X q , q E Q, and

{). if q E F,
Cq = 0 otherwise,

for each q E Q. Note that all the terms of the form a· 0 or 0, a E E, can be
omitted.

For each AFA A, we call such a system of equations the equational repre
sentation of A. At this moment, we consider the system of equations solely
as an alternative form to present the definition of an AFA.

by
NFA are a special case of AFA. The NFA A2 of Figure 3 can be represented

= a· (Xo V Xd + b . Xo
b,X2

= b,X3
a . X3 + b . X3 +).

Let E be an alphabet. We define the L-interpretation as follows:

Notation Interpretation
0 0
1 E*
t\ n
V U
-, complement

a, a E E {a}
). {.x}

set catenation

+ U
language equivalence

Regular Languages 59

Under this interpretation, the systems of equations defined above become
systems of language equations. Systems of language equations of a different
form were studied by Salomaa in [106]' where the operations are restricted to
catenation, union, and star. The systems of language equations we are con
sidering can be viewed as an extension of the systems of language equations
of Salomaa.

Formally, a system of language equations over an alphabet E is a system
of equations of the following form under the L-interpretation:

(2) Xi=La·fi(a)(X)+Ci, i=O, ... ,n
aEE

for some n 2: 0, where X = (Xo, ... ,Xn); for each a E E and i E {O, ... ,n},
fi(a\X) is a Boolean function; and Ci = >. or 0.

The following result has been proved in [19].

Theorem 2.6. Any system of language equations of the form (2.3.2) has a
unique solution for each Xi, i = 0, ... ,n. Furthermore, the solution for each
Xi is regular. 0

The following results can be found in [44].

Theorem 2.7. Let A be an AFA and E the equational representation of A.
Assume that the variable Xo corresponds to the starting state of A. Then the
solution for X ° in E under the L-interpretation is exactly L(A) . 0

Theorem 2.8. For each system of language equations of the form (2.3.2),
there is an AFA A such that the solution for Xo is equal to L(A). 0

It is easy to observe that an AFA is a DFA if and only if each function
gq (a, X), q E Q and a E E, in its equational representation (2.3.2) is either
a single variable or empty. An AFA is an NFA if and only if each function in
its equational representation (2.3.2) is defined using only the V operation.

Such systems of language equations and their solutions have been further
studied in [74, 76, 77]. Naturally, one may view that each such system of
language equations corresponds directly to a set of solutions in the form of
extended regular expressions (which will be defined in Section 3.4). However,
it remains open how we can solve such a general system of language equations
by directly manipulating extended regular expressions without resorting to
transformations of the corresponding AFA.

2.3.3 Normal forms
The following results have been proved in [45].

Theorem 2.9. For any k-state AFA A, k > 0, there exists an equivalent
k-state AFA A' with at most one final state. More precisely, A' has no final
state if >. ~ L(A) and A' has one final state otherwise. In the latter case, the
starting state is the unique final state. 0

60 Sheng Yu

The proof of this theorem relies on the usage of the negation operation in
AFA.

Theorem 2.10. For each AFA A = (Q,E,s,F,g), one can construct an
equivalent AFA A' = (Q',E,s',F',g') with IQ'I ::; 21QI such that g~(a) is
defined with only the 1\ and V operations, for each q E Q' and a E E. In
other words, A' is an AFA without negations. 0

Theorem 2.11. Let A be a k-state AFA without negations. One can con
struct an equivalent (k + 1)-state AFA without negations that has one final
state if A ¢ L(A) and at most two final states otherwise. 0

In the following, we define a special type of AFA, which we call an s-AFA.
An s-AFA A = (Q,E,s,F,g) is an AFA such that the value of gq(a),

for any q E Q and a E E, does not depend on the status of s, that is, in
the equational representation of A, the variable Xs does not appear on the
righthand side of any equation.

Example 2.3. The following is an equational representation of a 4-state s
AFA which accepts all words over {a, b} that do not contain 6 consecutive
occurrences of a. We use the convention that the operator 1\ has precedence
over V.

{
Xo = a· (Xl V X 2) + b . (Xl V X2 V X 3) + A,
Xl = a· (Xl V X2 1\ X 3) + b . (Xl 1\ X 2 1\ X 3),

X 2 = a· (Xl 1\ X2 V X2 1\ X3 V X 2 1\ X 3) + b . (Xl 1\ X2 1\ X 3),

X3 = a· (Xl 1\ X 2 V Xl 1\ X3 V X 2 1\ X 3) + b . 1 + A. 0

It is clear that for any AFA, there exists an equivalent s-AFA having at most
one additional state.

2.3.4 AFA to NFA - the construction
Let A = (Q,E,s,F,g) be an AFA and f the characteristic vector of F. We
construct an NNFA

where
Qv = EQ,
Sv = {u E EQ I Us = 1};
Fv = {f},
8v ; Qv x E -+ 2Qv is defined by 8v(u,a) = {u' I g(a,u') = u}, for each

'U E Qv and a E E.

Claim. L(Av) = L(A).

Proof. We first prove that for u E Qv (= EQ) and x E E*,

(3) ux f-~v f -¢::=} g(x,1) = u

by induction on the length of x.

Regular Languages 61

For x = >., one has u = f and g(>., f) = f. Now assume that the statement
holds for all words up to a length l, and let x = axo with a E E and Xo EEl.

Let u = g(x,f). Then we have u = g(a,g(xo,f)). Let u' = g(xo,f). By
the definition of ov, we have u' E ov(u, a). We also have u'xo I-Av f by the
induction hypothesis. Therefore,

u x = u axo I-Av U' Xo I-Av f .

For the converse, let u x I-Av f. Then

u x = u axo I-Av u' Xo I-Av of

for some 'u' E Qv. Thus, u' = g(xo, f) by the induction hypothesis and
'u = g(a, u') by the definition of ov. Therefore, u = g(a, u') = g(a, g(xo, f)) =
g(x, f). Thus, (3) holds.

By (2.3.4) and the definition of Sv, we have L(Av) = L(A). D

In the above construction of Av, the state set is Qv = BQ, i.e., each state
of the NNFA Av is a Boolean vector indexed by the states of the given AFA
A. If the number of states of A is n, then the number of states of Av is 2n.
Also notice that a computation of an AFA can be viewed as a sequence of
calculations of Boolean vectors starting with f, the characteristic vector of
F, as the initial vector and proceeding backwards with respect to the input
word. At each step of this process, an input symbol is read and a new vector
is calculated. Note that at each step, the new vector is uniquely determined.
The process terminates when the first input symbol is read. Then the input
word is accepted if and only if the resulting vector has a value 1 at the entry
that is indexed by the starting state. We have the following results.

Theorem 2.12. If L is accepted by an n-state AFA, then it is accepted by
an NNFA with at most 2n states. D

Theorem 2.13. If L is accepted by an n-state AFA, then LR is accepted by
a DFA with at most 2n states. D

2.3.5 NFA or DFA to AFA
NFA and DFA are special cases of AFA. So, the transformations are straight
forward.

Let A = (Q,E,o,s,F) be an NFA. We can construct an equivalent AFA
A' = (Q, E, s, F, g), where 9 is defined as follows: for each q E Q, a E E, and
'u E BQ,

gq(a, u) = 0 -¢=} up = 0 for all p E o(q, a) .

More intuitively, the equational representation of A' is

X q = La. V Xp+Cq, for q E Q,
aEE pE6(q,a)

where Cq = >. if q E F and Cq = 0 otherwise. A proof for L(A) = L(A') can
be found in [45].

62 Sheng Yu

Theorem 2.14. L is accepted by a complete 2k-state DFA if and only if LR
is accepted by a (k + I)-state s-AFA.

Proof. The "if"-part is implied by Theorem 2.13. In the following, we de
scribe the construction of an s-AFA for a given DFA but do not give a proof
of its correctness. For a detailed proof, the reader can refer to [73, 44]. Let
D = (QD, E, 8, SD, FD) be the given 2k-state complete DFA and L = L(D).
We construct a (k + I)-state s-AFA A = (QA,E,SA,FA,g) as follows. The
main idea of the construction is that each of the 2k states is encoded by a
k-bit Boolean vector and each of the k bits is represented by a state of the
AFA. In addition to these k states, the s-AFA has one more state, the starting
state.

Let K = {I, ... , k} and Ko = K U {O}. Then we define Ko to be the
state set of the AFA A, where ° is the starting state. We define an arbitrary
bijection 1[' between Q D and BK. The bijection 1[' can be considered as an
encoding scheme such that each state in QD is encoded by a distinct k-bit
vector. For convenience, we simply use 1['(q), i.e., the k-bit vector, to denote
q in the following. In particular, we use the vector (0, ... ,0) to denote the
starting state SD of D. Note that one can choose any of k-bit vector to encode
SD. We choose (0, ... ,0) purely for notational conveniece. Then, we define a
(k + I)-state s-AFA A as follows: A = (QA,E,SA,FA,g) where

QA = K o,
SA = 0, and
F _ {{O} if SD E FD,

A - 0 otherwise.
The function 9 is defined by setting, for a E E and u E BQ A,

(au)={ 1 if8(uIK,a)EFD'
go , ° otherwise

and v = g(a,u), for some v E BQA, if and only if 8(uIK,a) = VIK' More
precisely, we define gi(a, u), for i E K and u E BQA, in the following. Note
that (JzCx) denotes either x or x depending on the value of z, i.e., (Jz(x) = x
if z = 1 and (Jz(x) = x if z = 0. Then, for i E K,

gi(a,u)= V (8(v,a)i A (Jvt(ut)A ... A(JVk(Uk))
vEBK

and
go (a, u) = V (JVt (gl (a, u)) A ... A (JVk (gk (a, u)). D

vEFD

Corollary 2.1. Let A be an n-state DFA and L = L(A). Then LR is ac
cepted by an s-AFA with at most flognl + 1 states. D

As an example, we construct a 3-state s-AFA A which is equivalent to the
4-state DFA Al of Figure 2 as follows:

Regular Languages 63

A = (QA,E,SA,FA,g) where QA = {0,I,2}, SA = 0, FA = 0. The
encoding of the states of Al is shown in the following. Note that we denote
a 2-bit Boolean vector as a 2-bit binary number, i.e., we write X l X 2 instead
of (Xl,X2).

State of Al 0 1 2 3
Encoding X l X2 00 01 10 11

In order to explain intuitively how the function 9 is defined, we first write
gl (a, X) informally (and in unnecessary detail) as follows:

gl (a, X) = (8(00, ah /\ Xl /\ X 2) V (8(01, ah /\ Xl /\ X 2)
V(8(IO, ah /\ Xl /\ X 2) V (8(11, ah /\ Xl /\ X 2)

= «OIh /\ Xl /\ X 2) V «01h /\ Xl /\ X 2) V «OIh /\ Xl /\ X 2)
V«l1h /\Xl /\X2)

= (0/\ Xl /\ X 2) V (0/\ Xl /\ X 2) V (0/\ Xl /\ X 2) V (1/\ Xl /\ X 2)
=Xl /\X2

Then we have
gl(a,X) = X l /\ X 2,
gl(b, X) = (Xl /\ X 2) V (Xl /\ X 2) V (Xl/\ X 2) = (Xl /\ X 2) V Xl

= Xl V X 2 ,

g2(a, X) = (Xl /\ X 2) V (Xl/\ X 2) V (Xl /\ X 2) V (Xl /\ X 2) = 1,
g2(b, X) = «Xl /\ X2) V (Xl /\ X2) = Xl,
go(a, X) = gl (a, X) /\ g2(a, X) = (Xl /\ X 2) /\ 1 = Xl /\ X 2,
go(b,X) = gl(b,X) /\g2(b,X) = (Xl V X 2) /\ Xl = Xl.

So, the equational representation of A is

{
Xo = a· (Xl /\ X 2) + b· (Xt}
Xl = a· (Xl /\ X 2) + b . (Xl V X 2)
X 2 = a· 1 + b . (Xt}

and the characteristic vector of FA is f = (0,0,0).

2.3.6 Basic operations
Let

A(l) = (Q(l), E, S(l), F(l), gel»)

be an (m + I)-state s-AFA and

A(2) = (Q(2),E,s(2),F(2),g(2»)

be an (n + I)-state s-AFA. Assume that Q(l) n Q(2) = 0.
We construct an (m + n + I)-state AFA A = (Q,E,s,F,g) such that

L(A) = L(A(1») u L(A(2») as follows:

Q = (Q(1) _ {s(l)}) U (Q(2) - {s(2)}) U {s},
S ¢ Q(1) U Q(2),

64 Sheng Yu

{
F(l) U F(2) if sell f/- F(l) and s(2) f/- F(2),

F = (F(l) U F(2) U {s}) n Q otherwise.

We define 9 as follows. For a E E and u E BQ,

() (1) () (2) () g. a,u = g8(1) a,u V g.(2) a,u ,

and for q E Q - {s},

{
g~l\a,u)

gq(a,u) = (2)
gq (a,u)

if q E Q(1),
if q E Q(2).

An (rn +n + I)-state AFA A = (Q, E, s, F, g) such that L(A) = L(A(l)) n
L(A (2)) is constructed as above except the following:

g.(a, u) = g:~l) (a, u) !\ g~zl) (a, u)

and s is in F if and only if both s(1) E F(l) and s(2) E F(2).
For complementation, we construct an rn-state s-AFA

such that L(A) = L(A(1)), where the function 9 is the same as g(1) except

that gs(l)(a,u) = g~~l)(a,u); and F' = {s(1)} U F(l) if sell f/- F(l) and F' =

F(l) - {s(1)} otherwise.
Let Ll = L(A(1)) and L2 = L(A(2)). We can easily construct an AFA to

accept a language which is obtained by an arbitrary combination of Boolean
operations on Ll and L2, e.g., L = (Ll U L 2) n (Ll n L2)' The only essential
changes are the functions for s and whether s is in the final state set, which
are all determined by the respective Boolean operations.

Other AFA operations, e.g., catenation, star, and shuffle, have been de
scribed in [45, 44].

2.3.7 IInplementation and r-AFA
Although alternation is a generalization of nondeterminism, the reader may
notice that AFA are backwards deterministic. We have also shown that a
language L is accepted by a 2n-state DFA if and only if it is accepted by an
s-AFA of n + 1 states reversely (i.e., words are read from right to left). Due
to the above observation, we introduce a variation of s-AFA which we call
r-AFA. The definition of an r-AFA is exactly the same as an s-AFA except
that the input word is to be read reversely. Therefore, an r-AFA is forward
deterministic. Then, for each L that is accepted by a DFA with n states, we
can construct an equivalent r-AFA with at most flog n 1 + 1 states.

An r-AFA A = (Q, E, s, F, g) can be represented by a system of right
language equat'tons [19] of the following form:

Xq = L gq(a, X) . a + Cq, q E Q
aEE

where X is the vector of variables X q , q E Q, and

for each q E Q.

{ A if q E F, c: -
q - 0 otherwise,

Regular Languages 65

In the following, we present a scheme such that Boolean functions of an
'r-AFA can be represented by Boolean vectors, and the computation of a
Boolean function can be done with bitwise vector operations. Note that for
a DFA of n states, its corresponding r-AFA has at most flognl + 1 states.
So, for all practical problems, i.e., those using DFA of up to 231 states, each
Boolean vector ~an be stored in one word. In many cases, this can save
space tremendously in comparison to symbolic representations of AFA. Also,
each bitwise vector operation can be done with one instruction. So, AFA
computations can be done efficiently.

We represent each Boolean function gq(a), q E Q and a E E, in disjunc
tive normal form. The disjunctive normal form consists of a disjunction of
formulas ofthe type (Y1 t\ . .. t\ Ym) where each Yi is a variable Xi or the nega
tion of a variable, Xi. We call each such formula of the type (Y1 t\ ... t\ Ym)

a term. For example, let X = (Xl, ... , Xs). The following Boolean function
in disjunctive normal form

I-"(X) = (X2 t\ X 4 t\ X 7) V (Xl t\ X 2) V (X3 t\ X4 t\ X6)

has three terms. We name them t(1)(X), t(2)(X), and t(3)(X), respectively.
Each term t(i)(X) can be represented by two 8-bit Boolean vectors a(i) and
f3Ci) and the value of ti(X) can be computed with two bitwise operations.
The two Boolean vectors are defined as follows:

a~i) = 1 iff Xk or Xk appears in tCi)

and
f3ki) = 1 iff X k appears in t Ci).

For example, the two vectors for t(1)(X) are

a (1) = (0,1,0,1,0,0,1,0),

f3(1) = (0,1,0,0,0,0,1,0).
Then, for any instance U of X, t(1)(u) = 1 iff (u & a(l)) i f3 (1) = 0, where &
and i are bitwise AND and XOR, respectively, and 0 denotes the all-O vector.

The above idea is based on the observation that a term t(X) has a value
1 iff all the variables of the form Xi in t(X) have a value 1 and all those of
the form Xi in t(X) have a value o. For an instance 'U of X, t(u) is evaluated
with the above defined vectors a and f3 as follows. First, the vector a changes
each Ui such that the variable Xi does not appear in t(X) to 0 and keeps all
others unchanged. Then the vector f3 changes each Ui such that Xi (rather
than Xi) is in t(X) to Ui, i.e., 1 ifui = 0 and 0 ifui = 1. Finally, t(u) is 1 iff
'U becomes an all-O vector.

Note that each term can be evaluated in parallel and each Boolean func
tion of an r-AFA can be evaluated in parallel as well.

66 Sheng Yu

2.4 Finite automata with output

In the previous subsections, we have described three basic forms of finite
automata: DFA, NFA, and AFA. They are all considered to be language ac
ceptors. In this subsection, we consider several models of finite automata with
output, which are not only language acceptors but also language transform
ers.

A Moore machine, informally, is a DFA where each state is associated
with an output letter [88, 571. Formally, a Moore machine A is a 6-tuple
(Q,E,.!1,8,0",s) where Q, E, 8, and s are defined as in a DFA; .!1 is the
output alphabet; and 0" : Q --+ .!1 is the output function. For an input word
al ... an, if the state transition sequence is

then the output of A in response to al ... an is

A Mealy machine is a DFA where an output symbol is associated to each
transition rather than to each state [86, 571. Formally, a Mealy machine A
is a 5-tuple (Q, E,.!1, a, s) where Q, E, and s are defined as in a DFA; .!1 is
the output alphabet; and a : Q x E --+ Q x .!1 is the transition-and-output
function. For an input word x = al··· an, al, ... , an E E, if a(s, ad
(ql, b1), a(ql' a2) = (q2, b2), ... , a(qn-l, an) = (qn, bn), i.e.,

then the output of A in response to x is b1 ... bn .

For the above two models, we do not define final states. Final states can
be defined such that only those input words that are accepted, i.e., reaching
a final state, are associated to an output word. Then the models without final
states are only a special case of the corresponding models with final states in
the sense that all states are final states.

In the above definitions, we do not require that the transition functions
are total. If an input word cannot be completely read, then there is no output
word associated to this input word.

Another important model, the finite transducer model, is a generalization
of the Mealy machines. Many closure properties of regular languages can be
easily proved by using various finite transducers. See Section 4.2 for details.

A finite transducer T is a 6-tuple (Q,E,.!1,a,s,F) where

Q is the finite set of states;
E is the input alphabet;
.!1 is the output alphabet;
a is the transition-and-output function from a finite subset of Q x E* to
finite subsets of Q x .!1*;

Regular Languages 67

sEQ is the starting state;
F ~ Q is the set of final states.

An example of a finite transducer T = ({O, 1, 2}, {a, b}, {a, I}, u, 0, {2})
is shown in Figure 9. The arc from state ° to state 1 with the label b/101
specifies that (1,101) E u(O, b).

For a given word u E E*, we say that v E ..1* is an output of T for u if there
exists a state transition sequence ofT, (qI,vt) E U(S,Ul), (q2,V2) E U(ql,U2),
... , (qn,vn) E U(qn-l,Un), and qn E F, i.e.,

such that U = Ul···Un , Ul, ... ,Un E E*, and v = Vl···Vn , Vl, ... ,Vn E ..1*.
We write that v E T(u), where T(u) denotes the set of all outputs of T for
the input word u. Note that s E F implies that A E T(A).

T is said to be single-valued if for each input word u, T has at most one
distinct output in response to u, i.e., IT(u) I ::::: 1 for each U E E*.

A finite transducer T = (Q, E,..1, u, s, F) is called a generalized sequential
machine (GSM) if u is a function from Q x E to finite subsets of Q x ..1*,
i.e., T reads exactly one symbol at each transition. The GSM T is said to be
deterministic if its underlying finite automaton (i.e., T without output) is a
DFA, i.e., u is a (partial) function from Q x E to Q x ..1*. The definition of a
GSM is not standardized in the literature. Some authors define GSMs with
no final states [51].

Each finite transducer T = (Q, E,..1, u, s, F) defines a finite transduction
T: E* --42<1°. Note that for an input word wE E*, T(w), which is the set
of all output words in response to w, may be finite or infinite. T(w) = 0 if T
cannot reach a final state by reading w. Also note that we use T to denote
both the finite transducer and the finite transduction it defines since this
clearly will not cause any confusion. For a language L ~ E*, we define

T(L) = U T(w).
wEL

bl101
aalO blA aiD

~_bl_101~tj_A/_11~.~
Fig. 9. A finite transducer T

68 Sheng Yu

Example 2.4. Let us consider the transducer T of Figure 9. We have

T(aabb) = {01Oll1, 0I0llOll1},

T(bbba) = {101110,101101110,101101101110},

T(A) = 0, T(aaab) = 0,

T({b, ba}) = {lOIll, 10ll1O}.

Let L = {aiba j I i,j 2: O}. Then

T(L) = {Ok1Oll101 I k, l 2: O}. o

A finite transduction T can also be viewed as a relation Rr ~ E* x .1*
defined by

Rr = {('U,'U) I 'U E T('U)}.

Relations induced by finite transducers are also called rational relations in
the literature, e.g., [41]. The following is Nivat's Representation Theorem for
finite transductions [93].

Theorem 2.15. Let E and .1 be finite alphabets. R ~ E* x .1* is a rational
relat'ton ·tff there are a finite alphabet r, a regular language L ~ r* and
morphisms g : r* -> E* and h : r* -> .1* such that

R = ((g(w), h(w)) I w E L}. o

Two finite transducers are said to be equivalent if they define exactly the
same finite transduction. The equivalence problem for finite transducers is
undecidable [60]. This holds even for nondeterministic GSMs. However, the
equivalence problem for single-valued finite transducers is decidable [114, 32].
This implies that the equivalence problem for deterministic GSMs (DGSMs)
is also decidable.

From the above definitions, it is easy to see that morphisms can be charac
terized by one-state complete DGSMs. By a complete GSM, we mean that its
transition-and-output function is a total function. Also, finite substitutions
can be characterized by one-state (nondeterministic) GSMs. In both cases,
the sole state is both the starting state and the final state.

For a function T : E* -> 2.:1* (relation Rr ~ E* x .1*), we define T- 1 :

L* -> 217 * by T-1(y) = {x lyE T(x)} (R:rl ~ .1* x E* by R:r 1 = {(y,x) I
(x, y) ERr}). Then, clearly, T (Rr) is a finite transduction (rational relation)
iff T- 1 (R:rl) is a finite transduction (rational relation). This can be shown
by simply interchanging the input and the output of the finite transducer.
Then, we have the following:

Theorem 2.16. LetT: E* -> 2.:1* be a finite tmnsd'uction. Then the inverse
of T, i. e., T- 1 : .1* -> 217*, is also a finite transduction. 0

Regular Languages 69

We define the following standard form for finite transducers.
A finite transducer T = (Q, E, .,1, CT, s, F) is said to be in the standard

form if CT is a function from Q X (E U {A}) to 2Qx(~U{>'}). Intuitively, the
standard form restricts the input and output of each transition to be only a
single letter or A.

Theorem 2.17. Each finite transducer can be transformed into an equiva
lent finite transducer in the standard form. D

The transformation of an arbitrary finite transducer to an equivalent one
in the standard form consists of two steps: First, each transition that reads
more than one letter is transformed into several transitions reading exactly
one letter. Second, each transition that has a string of more than one letter
as output is transformed into several transitions such that each of them has
exactly one letter as output.

More specifically, in the first step, we replace each transition of the form

where p, q E Q, all"" aj E E, j 2: 2, and /3 E .,1*, by the following

a 1 I 13 "Q _a_2_I--;~~ _~~ __ I_I_f...-; ... ~ 6;)

where 1'1, ... , rj-1 are new states.
For the second step, each of the transitions of the following form

where p, q E Q, a E E U {A}, and b1 , •.. , bk E .,1, k 2: 2, is replaced by

Q __ a_l_b_I __ QI __ f..._I_b_2 ~" ...

where 1'1, ... , rk-1 are new states. It is clear that the two-step transformation
results in an equivalent finite transducer in the standard form.

In many cases, the use of the standard form of finite transducers can result
in much simpler proofs than the use of the general form. In Section 4.2, we

70 Sheng Yu

will use the standard form in proving that the family of regular languages is
closed under finite transduction.

3. Regular expressions

In the previous section, we have defined languages that are recognized by
finite automata. Finite automata in various forms are easy to implement
by computer programs. For example, a DFA can be implemented by a case
or switch statement; an NFA can be expressed as a matrix and manipu
lated by corresponding matrix operations; and an AFA can be represented
as Boolean vectors and computed by bitwise Boolean operations. However,
finite automata in any of the above mentioned forms are not convenient to be
specified sequentially by users. For instance, when we specify a string pattern
to be matched or define a token for certain identifiers, it is quite cumbersome
to write a finite automaton definition for the purpose. In this case, a succinct
and comprehensible expression in sequential form would be better suited than
a finite automaton definition. For example, the language accepted by the fi
nite automaton A2 of Figure 3 can be expressed as (a + b)* abb(a + b)*. Such
expressions are called regular expressions and they were originally introduced
by Kleene [69]. In practice, regular expressions are often used as user inter
faces for specifying regular languages. In contrast, finite automata are better
suited as computer internal representations for storing regular languages.

3.1 Regular expressions - the definition

We define, inductively, a regular expression e over an alphabet E and the
language L(e) it denotes as follows:

(1) e = 0 is a regular expression denoting the language L(e) = 0.
(2) e = >.. is a regular expression denoting the language L(e) = {>..}.
(3) e = a, for a E E, is a regular expression denoting the languge L(e) = {a}.

Let el and e2 be regular expressions and L(el) and L(e2) the languages
they denote, respectively. Then

(4) e = (el +e2) is a regular expression denoting the language L(e) = L(ed U
L(e2)'

(5) e = (el . e2) is a regular expression denoting the language L(e) =

L(edL(e2)'
(6) e = ei is a regular expression denoting the language (L(ed)*.

We assume that * has higher precedence than· and +, and· has higher
precedence than +. A pair of parentheses may be omitted whenever the
omission would not cause any confusion. Also, we usually omit the symbol·
in regular expressions.

Regular Languages 71

Example 3.1. Let E = {a, b, c} and L ~ E* be the set of all words that
contain abcc as a subword. Then L can be denoted by the regular expression
(a+b+c)*abcc(a+b+c)*. 0

Example 3.2. Let L ~ {O, 1}* be the set of all words that do not contain two
consecutive l's. Then L is denoted by (10 + 0)*(1 + A). 0

Example 3.3. Let E = {a,b} and L = {w E E* Ilwlb is odd}. Then L can
be denoted by (a*ba*b)*a*ba*. 0

Two regular expressions el and e2 over E are said to be equivalent, de
noted el = e2, if L(ed = L(e2)' The languages that are denoted by regular
expressions are called regular languages. The family of regular languages is
denoted CREG.

In [69], Kleene has shown that the family of regular languages and the
family of DFA languages are exactly the same, i.e., regular expressions are
equivalent to finite automata in terms of the languages they define. There
are various algorithms for transforming a regular expression to an equivalent
finite automaton and vice versa. In the following, we will describe two ap
proaches for the transformation from a regular expression to an equivalent
finite automaton and one from a finite automaton to an equivalent regular
expression.

3.2 Regular expressions to finite automata

There are three major approaches for transforming regular expressions into
finite automata. The first approach, due to Thompson [121], is to transform
a regular expression into a A-NFA. This approach is simple and intuitive,
but may generate many A-transitions. Thus, the resulting A-NFA can be
unnecessarily large and the further transformation of it into a DFA can be
rather time and space consuming. The second approach transforms a regular
expression into an NFA without A-transitions. This approach is due to Berry
and Sethi [7], whose algorithm is based on Brzozowski's theory of derivatives
[16J and McNaughton and Yamada's marked expression algorithm. Berry and
Sethi's algorithm has been further improved by Briiggemann-Klein [13J and
Chang and Paige [25J. The third approach is to transform a regular expression
directly into an equivalent DFA [16, 2J. This approach is very involved and
can be replaced by two separate steps: (1) regular expressions to NFA using
one of the above approaches and (2) NFA to DFA.

In the following, we give a very brief description of the first approach and
give an intuitive idea of the marked expression algorithm [7J that forms the
basis of the second approach. Here we will not discuss the above mentioned
third approach.

72 Sheng Yu

3.2.1 Regular expressions to A-NFA
The following construction can be found in many introductory books on
automata and formal language theory, e.g., [57, 68, 78, 123]. Our approach
is different from that of Thompson's [121, 2, 57] in that the number of final
states is not restricted to one.

Let e be a regular expression over the alphabet E. Then a A-NFA Me is
constructed recursively as follows:

(i) If e = 0, then Me = ({s}, E, 8, s, 0) where 8(s, a) = 0 for any a E Eu{A}.
(ii) If e = A, then Me = ({s},E,8,s,{s}) where 8 is the same as in i).
(iii)Ife = a, for some a E E, then Me = ({s,J},E,8,s,{f}) where 8(s,a) =

{J} is the only defined transition.
(iv) If e = el + e2 where el and e2 are regular expressions and Mel and Me2

are A-NFA constructed for e1 and e2, respectively, i.e., L(MeJ = L(et)
and L(Me2) = L(e2)' then Me = Me, +Me2 , where Mel +Me2 is defined
in Subsection 2.2.
Similarly, if e = el e2, then Me = Me, M e2 ; and if e = ei, then Me = M:"
where Me, Me2 and M:, are defined in Subsection 2.2.

Example 3.4. Following the above approach, the regular expression a(a +
b)a*b would be transformed into the A-NFA shown in Figure 10. D

3.2.2 Regular expressions to NFA without A-transitions
The following presentation is a modification of the one given in [14]. An
informal description is presented in Figure II.

Let e be a regular expression over E. We define an NFA Me inductively
as follows:

(0) M0 = ({s},E,8,s,0) where 8(s,a) = 0 for all a E E.
(1) MA = ({ s}, E, 8, s, {s}) where 8(s, a) = 0 for all a E E.
(2) For a E E, Ma = ({s,J},E,8,s,{J}) where 8(s,a) = {f} is the only

transition.
(3) Assume that Me, = (Q},E,81,S1,Ft), Me2 = (Q2,E,82,S2,F2), and

Ql n Q2 = 0.

(3.1) M e,+e2 = (Q,E,8,S1,F) where
Q = Ql U (Q2 - {S2}) (merging S1 and S2 into st),

Fig. 10. A A-NFA constructed for a(a + b)a*b

----?-O
(0) M<j>

----?-C Mel

~9 Me2

----?-C Mel

----?-©
(1) MA,

©
:

©

:1
©

©

(3.1) Mel +~

(3.3) Me*

Regular Languages

----?-~©
(2) Ma

Mej+~ ©
Mej ©

M~ ©
©

Fig. 11. Regular expression to an NFA without A-transitions

73

74 Sheng Yu

ifs2 ¢F2,
otherwise;

ifq=sl,
if q E Ql,
if q E Q2;

if q E Ql - Fl ,
if q E Fl.

Such NFA are called Glushkov automata in [14] and were first defined by
Glushkov in [48]. Note that Glushkov automata have the property that the
starting state has no incoming transitions. One may observe that the au
tomaton constructed in step (0), (1), or (2) has no incoming transitions, and
each operation in step (3) preserves the property.

A detailed proof of the following result can be found in [7].

Theorem 3.1. Let e be an arbitrary regular expression over E. Then L(e) =
L(Me). 0

A regular expression e is said to be determinist'ic [14] if Me is a DFA.

3.3 Finite automata to regular expressions

Here, we show that for a given finite automaton A, we can construct a regular
expression e such that e denotes the language accepted by A. The construc
tion uses extended finite automata where a transition between a pair of states
is labeled by a regular expression. The technique we will describe in the
following is called the state elimination technique [123]. For a given finite
automaton, the state elimination technique deletes a state at each step and
changes the transitions accordingly. This process continues until the FA con
tains only the starting state, a final state, and the transition between them.
The regular expression labeling the transition specifies exactly the language
accepted by A.

Regular Languages 75

Let RE denote the set of all regular expressions over the alphabet E. An
extended finite automaton (EFA) is formally defined as follows:

Definition 3.1. An EFA A is a quintuple (Q,E,6,s,F) where
Q is the finite set of states;
E is the input alphabet;
6 : Q x Q --+ RE is the labeling function of the state transitions;
SEQ is the starting state;
F ~ Q is the set of final states.

Note that we assume 6(p, q) = 0 if the transition from p to q is not
explicitly defined.

A word W E E* is said to be accepted by A if W = Wl··· Wn , for
Wl, ... , Wn E E*, and there is a state sequence qo, ql,··., qn, qo = sand
qn E F, such that Wl E L(6(qo, q!)), ... , Wn E L(6(qn-l' qn)). The language
accepted by A is defined accordingly.

First we describe the pivotal step of the algorithm, i.e., the elimination
of one non-starting and non-final state. Then we give the complete state
elimination algorithm which repeatedly applies the above step and eventually
transforms the given EFA to an equivalent regular expression.

Let A = (Q,E,6,s,F) be an EFA. Denote by epq the regular expression
6(p, q), i.e., the label ofthe transition from state p to state q. Let q be a state
in Q such that q i:- sand q fj. F. Then an equivalent EFA A' = (Q', E, 6', s, F)
such that Q' = Q - {q}, i.e., q is eliminated, is defined as follows: For each
pair of states p and r in Q' = Q - {q},

We illustrate this step by the diagram in Figure 12, where state 1 is eliminated
from the given EFA.

Now, we describe the complete algorithm.
Let A = (Q, E, 6, s, F) be an EFA.

(1) (a) If the starting state is a final state or it has an incoming transition,
i.e., s E For 6(q, s) i:- 0 for some q E Q, then add a new state s' to
the state set and define 6(s', s) = A. Also define s' to be the starting
state.

(b) If there are more than one final states, i.e., IFI > 1, then add a
new state!, and new transitions 6(q,!,) = A for each q in F. Then,
redefine the final state set to be {!'}.

Let A' = (Q', E, 6', s', F') denote the EFA after the above steps.

(2) If Q' consists only of s' and!" then the resulting regular expression is
es'f,ej,f" where es'f' = 6'(s',!') and ef'f' = 6'U',!'), and the algorithm
terminates. Otherwise, continue to (3).

76 Sheng Yu

ab

a

b

(a) Given EFA

b

(b) Working sheet for deleting State 1

G ab+ab,a~

~ b;Y3 2

bb'bg b

(c) Resulting EFA after deleting State 1

Fig. 12. Deletion of a state from an EFA

Regular Languages 77

(3) Choose q E Q' such that q 1= 8' and q 1= 1'. Eliminate q from A' following
the above description. Then the new state set will be Q' - {q} and 8' is
changed accordingly. Continue to (2).

Note that every DFA, NFA, or A-NFA is an EFA. So, the above algorithm
applies to all of them.

3.4 Star height and extended regular expressions

Among the three operators of regular expressions, the star operator is per
haps the most essential one. Regular expressions without the star operator
define only finite languages. One natural measurement of the complexity of
a regular expression is the number of nested stars in the expression, which
is called the star height of the expression. Questions concerning star height
were considered among the most fascinating problems in formal language the
ory. Some unsolved problems are still attracting researchers. In the following,
we first give the basic definitions and then describe several of the most well
known problems and results concerning star height. The interested reader
may refer to [98J or [107J for details on the topic.

The star height of a regular expression e over the alphabet E, denoted
H(e), is a nonnegative integer defined recursively as follows:

(1) H(e) = 0, if e = 0, A, or a for a E E.
(2) H(e) = max(H(el),H(e2)), if e = (el + e2) or e = (ele2), where el and

e2 are regular expressions over E.
(3) H(e) = H(ed + 1, if e = ei and el is a regular expression over E.

The star height of a regular language R, denoted H(R), is the least integer
h such that H (e) = h for some regular expression e denoting R.

Example 3.5. Let el = (ab(cbc)*(ca* + c)*)* + b(ca* + c)*. Then H(el) = 3.
Let e2 = a(aaa*)* and L = L(e2)' Then H(e2) = 2 but H(L) = 1 because L
is denoted also by a + aaaa* and L is of at least star height one since it is
infini te. 0

Concerning the star height of regular languages, one of the central ques
tions is whether there exist languages of arbitrary star height. This question
was answered by Eggan in 1963 [39J. He showed that for each integer h ~ °
there exists a regular language Rh such that H(Rh) = h. However, in his
proof the size of the alphabet for Rh grows with h. Solutions with a two
letter alphabet were given by McNaughton (unpublished notes mentioned in
[18]) and later by Dejean and Schiitzenberger [35J in 1966.

Theorem 3.2. For each integer i ~ 0, there exists a regular language Ri
ave". a two-letter alphabet such that H (Ri) = i. 0

78 Sheng Yu

The language R;, for each i ;::: 0, is given by a regular expression e; defined
recursively as follows:

eo ,x,

Thus, for example,

el = (ab)*,
e2 = (a 2(ab)*b 2(ab)*)*,
e3 = (a4(a2(ab)*b2(ab)*)*b4(a2(ab)*b2(ab)*)*)*.

Clearly, H(e;) = i. This implies that H(R;) :::; i. The proof showing that
H(R;) is at least i is quite involed. Detailed proofs can be found, e.g., in
[106, 107].

Since there exist regular languages of arbitrary star height, one may natu
rally ask the following question: Does there exist an algorithm for determining
the star height of a given regular language? This problem, often refered to as
"the star height problem", was among the most well-known open problems
on regular languages [18]. It had been open for more than two decades until
it was solved by Hashiguchi [52] in 1988. The proof of the result is more than
40 pages long. The result by Hashiguchi can be stated as follows.

Theorem 3.3 (The Star Height). There exists an algorithm which, for
any given regular expression e, determines the star height of the language
denoted bye.

Generally speaking, almost all natural important properties are decidable
for regular languages. The star height is an example of a property such that,
although it is decidable, the proof of decidability is highly nontrivial.

In the following, we discuss the extended regular expressions as well as
the extended star height problem.

An extended regular expression is one which allows the intersection n
and the complement -, operators in addition to the union, catenation, and
star operators of a normal regular expression. We specify that the languages
denoted by the expressions (el n e2) and -,el, respectively, are L(el n e2) =
L(ed n L(e2) and L(-,ed = L(ed. We assume that n has higher precedence
than + but lower precedence than· and *; and -, has the lowest precedence.
For convenience, we use e to denote -,e in the following. A pair of parentheses
may be omitted whenever the omission would not cause any confusion.

For instance, 0, X, and a(a+ b)* n (a + b)*bb(a + b)* are all valid extended
regular expressions over E = {a, b} denoting, respectively, E*, E+, and the
set of all words that start with an a and contain no consecutive b's. Clearly,
extended regular expressions denote exactly the family of regular languages.

The definition for the star height of an extended regular expression has
the following two additions to the definition for a standard regular expression:

(4) H(e) = max(H(ed, H(e2)), if e = (el n e2);
(5) H(e) = H(el), if e = eli

Regular Languages 79

where el and e2 are extended regular expressions over E. Similarly, the ex
tended star height of a regular language R, denoted H(R), is the least integer
h such that H (e) = h for some extended regular expression e denoting R.

The star-free languages, i.e., languages of extended star height zero, form
the lowest level of the extended star height language hierarchy. It has been
shown that there exist regular languages of extended star height one. How
ever, the following problem which was raised in the sixties and formulated
by Brzozowski [18] in 1979 remains open.

Open Problem Does there exist a regular language of extended star height
two or higher?

Special attention has been paid to the family of star-free languages. The
study of star-free languages was initiated by McNaughton [84, 85]. An in
teresting characterization theorem for star-free languages using noncounting
(aperiodic) sets was proved by Schiitzenberger [113]. A set S ~ E* is said to
be noncounting (aperiodic) if there exists an integer n > 0 such that for all
x, y, z E E*, xynz E S iff xyn+1 z E S. We state the characterization theorem
below. The reader may refer to [113] or [98] for a detailed proof.

Theorem 3.4. A regular language is star-free iff it is noncounting (aperi
odic). 0

It appears that extended regular expressions correspond to AFA directly.
It can be shown that the family of star-free languages can also be character
ized by the family of languages accepted by a special subclass of AFA, which
we call loop-free AFA. An AFA is said to be loop-free if there is a total order
< on the states of the AFA such that any state j does not depend on any
state i such that i < j or state j itself. The following result can be found in
[110].

Theorem 3.5. A regular language is star-free iff it is accepted by a loop-free
A~. 0

A special sublass of star-free languages which has attracted much atten
tion is the locally testable languages [20, 41, 84]. Informally, for a locally
testable language L, one can decide whether a word w is in L by looking at
all subwords of w of a previously given length k.

For k ~ 0 and x E E* such that Ixl ~ k, denote by prek(x) and sufk(x),
respectively, the prefix and the suffix of length k of x, and by intk(x) (interior
words) the set of all subwords of length k of x that occur in x in a position
other than the prefix or the suffix. A language L ~ E* is said to be k-testable
iff, for any words x,y E E*, the conditions prek(x) = prek(y), su/k(x) =
sufk(y), and intk(x) = intk(Y) imply that x E L iff y E L. A language is said
to be locally testable if it is k-testable for some integer k ~ 1.

80 Sheng Yu

Many useful locally testable languages belong to a smaller class of lan
guages, which are called locally testable languages in the strict sense [84].
A language L ~ E* is k-testable in the strict sense if there are finite sets
P, S, I c E* such that, for all x E E* of length at least k, x E L iff
prek(x) E P, sufk(x) E S, and intk(x) ~ I. A language is said to be lo
cally testable in the strict sense if it is k-testable in the strict sense for some
integer k > o. There are languages that are locally testable but not locally
testable in the strict sense. For example, let L be the set of all words over
{O, I} that contain either 000 or 111 as an interior word but not both. Then
L is locally testable but not locally testable in the strict sense. The class of
locally testable languages is closed under Boolean operations. This is not true
for the class of languages that are locally testable in the strict sense.

More properties of locally testable languages can be found in [20, 41, 84,
98, 125].

3.5 Regular expressions for regular languages of polynomial
density

Given a regular language, it is often useful to know how many words of a
certain length are in the language, i.e., the density of the language. The
study of densities of regular languages has a long history, see, e.g., [112, 41,
109, 10, 120]. Here, we consider the relationship between the densities of
regular languages and the forms of the regular expressions denoting those
languages. In particular, we consider the forms of regular expressions that
denote regular languages of polynomial density.

For each language L ~ E*, we define the density function of L

where lSI denotes the cardinality of the set S. In other words, pLCn) counts
the number of words of length n in L. If pLCn) = 0(1), we say that L has a
constant density; and if pLCn) = O(nk) for some integer k ~ 0, we say that
L has a polynomial density. Languages of constant density are called slender
languages [34, 115]. Languages that have at most one word for each length
are called thin languages [34].

The first theorem below characterizes regular languages of polynomial
density with regular expressions of a specific form. A detailed proof can be
found in [120]. Similar results can be found in [112, 41, 109, 10].

Theorem 3.6. A regular language Rover E has a density in O(nk), k ~ 0,
iff R can be denoted by a finite union of regular expressions of the following
form:

(4)

o

Regular Languages 81

The following result ([120]) shows that the number of states of a finite
automaton A may restrict the order of the density function of L(A).

Theorem 3.7. Let R be a regular language accepted by a DFA of k states.
If R has a polynomial density, then the function pR(n) is O(nk- 1). 0

Theorem 3.6 is a powerful tool in proving various properties of regular
languages of polynomial density. As an application of Theorem 3.6, we show
the following closure properties:

Theorem 3.8. Let L1 and L2 be regular languages over E with PL, (n) =
8(nk) and PL2(n) = 8(nl). Then the following statements hold:

(a) If L = prejix(Ld = {x I xy E L1 for some y E E*}, then pLCn) = 8(nk).

(b) If L = injix(Lt) = {y I xyz E L1 for some x, z E E*}, then pLCn) =
8(n k).

(c) If L = suffix(L1) = {z I xz E L1 for some x E E*}, then pLCn) = 8(nk).
(d) If L = L1 U L 2, then pLCn) = 8(nmax(k,l)).

(e) If L = L1 n L 2, then pLCn) = O(nmin(k,l)).
(1) If L = L 1L 2, then pLCn) = O(nHl).

(g) If L = heLd where h is an arbitrary morphism[30J, then pLCn) = O(nk).
(h) If L = ~ (L1) = {Xl I xl ... Xm E L 1, for Xl, ... , Xm E 17*, and

IX11 = ... = Ixml}, then pLCn) = 8(n k).

Proof. We only prove (a) as an example. The rest can be similarly proved.
Since PL , (n) = 8(nk), by Theorem 3.6, L1 can be specified as a finite

union of regular expressions of the form:

(5)

where X,Y1,Zl, ... ,Yk+1,Zk+1 E 17*. Then clearly, L, where L = prejix(L1),
can be specified as a finite union of regular expressions of the following forms:

X' ,
xyt z 1' ··yiY~,
xyt Zl ... yi z~,

X' is a prefix of x,
y~ is a prefix of Yi, 1 :=:; i :=:; k + 1,
z~ is a prefix of Zi, 1 :=:; i :=:; k + 1.

Then, by Theorem 3.6, the density function pL(n) is in O(nk). Since L is a
superset of L 1, we have pL(n) ;::: PL1(n), i.e., pL(n) = D(nk). Thus, pLCn) =
8(nk). 0

It is clear that all regular languages with polynomial densities are of star
height one. But, not all star-height one languages are of polynomial density.
For example, the language (ab + b) * (a + E) is of exponential density. However,
there is a relation between these two subclasses of regular languages, which
is stated in the following theorem.

82 Sheng Yu

Theorem 3.9. A regular language is of star height one if and only if it is the
image of a regular language of polynomial density under a finite substitution.

Proof. The if part is obvious. For the only if part, let E be a regular ex
pression of star height one over an alphabet E. Denote by X the set of all
regular expressions e (over E) such that e* is a subexpression of E. Choose
.1 = E U X, where X = {e leE X}. Let E be the regular expression over
.1 that is obtained from E by replacing each subexpression of the form e*,
e EX, by e*. By Theorem 3.6, L(E) is a regular language of polynomial den
sity. We define a finite substitution 1f : .1* --+ 217' as follows. For each a E E,
1f(a) --+ {a} and for each e E X, 1f(e) = L(e). Then clearly 1f(L(E)) = L(E).

o
It is clear that P0(n) = 0 and PE,(n) = IEln. For each L ~ E*, we

have P0(n) ::; pdn) ::; PE' (n) for all n ~ O. It turns out that there exist
functions between P0 (n) and P 17* (n) which are not the density function of
any regular language. The following two theorems [120] show that, for the
densities of regular languages, there is a gap between 8(nk) and 8(nk+1),
for each integer k ~ 0; and there is a gap between polynomial functions and
exponential functions of the order 2B(n). For example, there is no regular
language that has a density of the order y'n, nlogn, or 2.;n.

Theorem 3.10. For any integer k ~ 0, there does not exist a regular lan
guage R such that pR(n) is neither O(nk) nor D(nk+1). 0

Theorem 3.11. There does not exist a regular language R such that PR(n)
is not O(nk), for any integer k ~ 0, and not of the order 2!1(n). 0

It is not difficult to show that, for each nonnegative integer k, we can
construct a regular language R such that P R (n) is exactly n k. Therefore,
for each polynomial function f(n), there exists a regular language R such
that PR(n) is 8(j(n)); and for each regular language R, either there exists
a polynomial function f(n) such that pR(n) = 8(j(n)), or PR(n) is of the
order 2B(n).

4. Properties of regular languages

4.1 Four pumping lemmas

There are many ways to show that a language is regular; for example, this
can be done by demonstrating that the language is accepted by a finite au
tomaton, specified by a regular expression, or generated by a right-linear
grammar. To prove that a language is not regular, the most commonly used
tools are the pumping properties of regular languages, which are usually stated
as "pumping lemmas". The term "pumping" intuitively describes the prop
erty that any sufficiently long word of the language has a nonempty subword

Regular Languages 83

that can be "pumped". This means that if the subword is replaced by an
arbitrary number of copies of the same subword, the resulting word is still in
the language.

There are many versions of pumping lemmas for regular languages. The
"standard" version, which has appeared in many introductory books on the
theory of computation, is a necessary but not sufficient condition for regu
larity, i.e., every regular language satisfies these conditions, but those con
ditions do not necessarily imply regularity. The first necessary and sufficient
pumping lemma for regular languages was introduced by Jaffe [63J. Another
necessary and sufficient pumping lemma, which is called "block pumping",
was established by Ehrenfeucht, Parikh, and Rozenberg [40J. In contrast, for
context-freeness of languages, only some necessary pumping conditions are
known, but no conditions are known to be also sufficient.

In the following, we describe four pumping lemmas for regular languages:
two necessary pumping lemmas and two necessary and sufficient pumping
lemmas. We will give a proof for the first and the third, but omit the proofs
for the second and the fourth. Examples will also be given to show how these
lemmas can be used to prove the nonregularity of certain languages.

The first pumping lemma below was originally formulated in [5J and has
appeared in many introductory books, see, e.g., [57, 108, 123, 27, 58J.

Lemma 4.1. Let R be a regular language over E. Then there is a constant k,
depending on R, such that for each w E R with Iw I ~ k there exist x, y, z E E*
s'uch that w = xyz and

(1) IxYI ::; k,
(2) IYI ~ 1,
(3) xytz E R for all t ~ o.

Proof. Let R be accepted by a DFA A = (Q, E, 8, s, F) and k be the number
of states of A, i.e., k = IQI. For a word w = al ... an E R, all ... , an E E, we
denote the computation of A on w by the following sequence of transitions:

where qQ, ... , qn E Q, qQ = S, qn E F, and 8(qi' aiH) = qiH for all i,
o ::; i < n.

If n ~ k, the above sequence has states qi and qj, 0 ::; i < j ::; k, such
that qi = qi. Then for each t ~ 0, we have the following transition sequence:

where {a}t denotes that a is being repeated t times. Let x = al ... ai, Y =
aiH ... aj, and z = ajH ... an. Then xytz E R for all t ~ 0, where Ixyl ::; k
and Iyl ~ 1. 0

The lemma states that every regular language possesses the above pump
ing property. Therefore, any language that does not possess the property is

84 Sheng Yu

not a regular language. For example, one can easily show that the language
L = {a i bi I i ~ o} is not regular using the above lemma. The arguments
are as follows: Assume that L is regular and let k be the constant for the
lemma. Choose 'W = akbk in L. Clearly, I'WI ~ k. By the pumping lemma,
'W = xyz for some x, y, z E 2)* such that (1) IxYI ::; k, (2) Iyl ~ 1, and (3)
xyt z E R for all t ~ o. By (1) and (2), we have y = am, 1 ::; m ::; k. But
xyoz = xz = ak-rnbk is not in L. Thus, (3) does not hold. Therefore, L does
not satisfy the pumping property of Lemma 4.1.

The pumping lemma has been used to show the nonregularity of many
languages, e.g., the set of all binary numbers whose value is a prime [57], the
set of all palindromes over a finite alphabet [58], and the set of all words of
length i 2 for i ~ 0 [123].

However, not only regular languages but also some nonregular languages
satisfy the pumping property of Lemma 4.1. Consider the following example.

Example 4.1. Let L ~ 2)* be an arbitrary nonr-egular- language and

L# = (# + L) U 2)*

where # .;. 2). Then L# satisfies the conditions of Lemma 4.1 with the
constant k being 1. For any word 'W E #+ L, we can choose x = A and y = #,
and for any word 'W E 2)*, we choose x = A and y to be the first letter of
'W. However, L# is not regular, which can be shown as follows. Let h be a
morphism defined by h(a) = a for each a E 2) and h(#) = A. Then

L = h(L# n #+ 2)*).

Clearly, #+ 2)* is regular. Assume that L# is regular. Then L is regular since
regular languages are closed under intersection and morphism (which will
be shown in Section 4.2). This contradicts the assumption. Thus, L# is not
regular. 0

Note that L# is at the same level of the Chomsky hierarchy as L. So, there
are languages at all levels of the Chomsky hierarchy, even non-recursively
enumerable languages, that satisfy Lemma 4.1.

Note also that, for each language L ~ 2)*, we can construct a distinct
language L# ~ (2) U { #})* that satisfies Lemma 4.1. Consequently, there are
uncountably many nonregular languages that satisfy the pumping lemma.

Below, we give two more examples of nonregular languages that satisfy
the pumping condition of Lemma 4.1. They are quite simple and interesting.

Example 4.2. Let L ~ b* be an arbitrary nonregular language. Then the
following languages are nonregular, but satisfy the pumping condition of
Lemma 4.1:

(1) a+LUb*,
(2) b* UaLUaa+{a,b}*.

Note that the first example above is just a simplified version of the language
given in Example 4.1, with the alphabet 2) being a singleton. 0

Regular Languages 85

Lemma 4.2. Let R be a regular language over E. Then there is a constant
k, depending on R, such that for all u, v, wE E*, if Iwl ~ k then there exist
x, y, z E E*, y i= A such that w = xyz and for all t ~ 0

[uxyt ZV E L iff uwv E L. o

Any language that satisfies the pumping condition of Lemma 4.2 satisfies
also the pumping condition of Lemma 4.1. This follows by setting u = A
and Iwl = k in the condition of Lemma 4.2. However, the converse is not
true. We can show that there exist languages that satisfy the pumping con
dition of Lemma 4.1, but do not satisfy that of Lemma 4.2. For example,
let L = {aibi I i ~ O} and consider the language L# = #+L U {a,b}* as
in Example 4.1. Clearly, L# satisfies the pumping condition of Lemma 4.1.
However, if we choose u = #, v = A, and w = akbk for Lemma 4.2 where k is
the constant (corresponding to L#), it is clear that there do not exist x, y, z
as required by the lemma. Therefore, the set of languages that satisfy the
pumping condition of Lemma 4.2 is a proper subset of the set of languages
that satisfy the condition of Lemma 4.1. In other words, Lemma 4.2 can rule
out more nonregular languages. In this sense, we say that Lemma 4.2 is a
stronger pumping lemma for regular languages than Lemma 4.1.

Nevertheless, Lemma 4.2 still does not give a sufficient condition for reg
ularity. We show in the following that there exist nonregular languages that
satisfy the pumping condition of Lemma 4.2. In fact, the number of such
languages is uncountable. A different proof was given in [40].

Example 4.3. Let L be an arbitrary nonregular language over E and $ rf. E.
Define

L$ = {$+ul$+a2$+ ... $+am$+lala2 ... u=EL, al,a2, ... ,amEE,m~0}

U{$+Xl$+X2$+ ... $+xn $+ I Xl,X2,··· ,Xn E E*, n ~ 0, IXil i= 1

for some i, 1:::; i:::; n}.

We can easily prove that L$ is nonregular. Let E$ denote E U {$}. We now
show that L$ satisfies the pumping condition of Lemma 4.2. Let k = 3 be
the constant for the pumping lemma. To establish the nontrivial implication
of the statement of the lemma, it suffices to show that for any u, w, VEE;
with uwv ELand Iwl ~ 3, there exist x, y, Z E E; with w = xyz and y i= A
such that uxyizv E L$ for all i ~ o. We can choose y = $ if w contains a $
and y = a for some a E E if w does not contain any symbol $. 0

The next pumping lemma, introduced by Jaffe [63], gives a necessary and
sufficient condition for regularity. A detailed proof of the following lemma
can be found also in [108].

86 Sheng Yu

Lemma 4.3. A language L E E* is regular iff there is a constant k > 0 such
that for all wE E*, if Iwl 2: k then there exist x, y, z E E* such that w = xyz
and y =I A, and for all i 2: 0 and all v E E*, wv E L iffxyizv E L.

Proof. The only if part is relatively straightforward. Let A be a complete
DFA which accepts Land k the number of states of A. For any word w of
length 1 2: k, i.e., w = ala2 ... ai, let the state transition sequence of A on w
be the following:

al a2 at qo --7 ql --7 • • • --7 ql,

where qo is the starting state. Since there are at most k distinct states among
qo, ql, ... , ql and k < 1 + 1, it follows that qi = qj for some i,j, 0 :::; i < j :::; l.
This implies that the transition from qi to qj is a loop back to the same state.
Let x = al ... ai, Y = ai+l'" aj, and z = aj+1 ... al (x = A if i = 1 and z = A
if j = l). Then, for all i 2: 0,

8*(qo,xyiz) = ql,

i.e., A is in the same state ql after reading each word xyiz, i 2: O. Therefore,
for all i 2: 0 and for all v E E*, xyizv E L iff wv E L.

For the if part, let L be a language which satisfies the pumping con
dition of the lemma and k be the constant. We prove that L is regular by
constructing a DFA AL using the pumping property of L and then proving
that L(AL) = L.

The DFA AL = (Q, E, 8, s, F) is defined as follows. Each state in Q cor
responds to a string w, in E*, of length less than k, i.e.,

Q = {qw I w E E* and Iwl :::; k - I},

s = q), and F = {qw E Q I w E L}. The transition function 8 is defined as
follows:

(1) If Iwl < k - 1, then for each a E E,

8(qw, a) = qwa'

(2) If Iwl = k - 1, then by the pumping property of L, for each a E E, wa
can be decomposed into xyz, y =I A, such that for all v E E*, xyzv E L
iff xzv E L. There may be a number of such decompositions. We choose
the one such that xy is the shortest (and y is the shortest if there is a
tie). Then define

8(qw, a) = qxz'

Now we show that the language accepted by AL is exactly L. We prove
this by induction on the length of a word w E E*. It is clear that for all
words w such that Iwl < k, w E L(Ad iff w E L by the definition of A L. We
hypothesize that for all words shorter than n, n 2: k, w E L(Ad iff w E L.
Consider a word w with Iwl = n. Let w = WoV where Iwol = k. By the
construction of A L , we have 8*(s, wo) = 8*(s, xz) = qxz for some x, z E E*

Regular Languages 87

where Wo = xyz, Y E E+, and for any v' E E*, wov' E L iff xzv' E L. We
replace the arbitrary v' by v, then we have that W E L iff xzv E L. Since
xz and Wo reach the same state in A L, xzv and W = WoV will reach the
same state, i.e., W E L(AL) iff XZV E L(Ad. Notice that Ixzvl < n. By the
hypothesis, xzv E L(AL) iff XZV E L. So, we conclude that W E L(AL) iff
wE L. D

Example 4.4. Let L = {aib i I i ~ O} and L# = (#+L) U {a,b}*. We have
shown that L# satisfies the pumping condition of Lemma 4.1. Now we demon
strate that L# does not satisfy the pumping condition of Lemma 4.3. Assume
the contrary. Let k > 0 be the constant of Lemma 4.3 for L#. Consider the
word W = #akbk and any decomposition W = xyz such that y -I- A. If y does
not contain the symbol #, i.e., y E a+, y E b+, or y E a+b+, then let v = A
and, clearly, wv E L# but xy2zv (j. L#. If y contains the symbol #, then let
'U = a and we have wv = xyzv (j. L# but xzv E L#. So, L# does not satisfy
the pumping condition of Lemma 4.3. D

Notice that Lemma 4.3 requires a decomposition W xyz that works
for all WV, v E E*. Another necessary and sufficient pumping lemma for
regularity, which does not require this type of global condition, was given
by Ehrenfeucht, Parikh, and Rozenberg [40J. The latter is called the block
pumping lemma, which is very similar to Lemma 4.2 except that the decom
position of w into xyz has to be along the given division of w into subwords
(blocks) Wl, ... , Wk, i.e., each of x, y, and z has to be a catenation of those
subwords.

Lemma 4.4. (Block pumping) L ~ E* is regular iff there is a constant k > 0
s'uch that for all u, v, W E E*, if W = Wl ... Wk, Wl, ... ,Wk E E*, then theT'e
exist m, n, 1 ::; m < n ::; k, such that W = xyz with y = Wm+1'" Wn ,
x,Z E E*, and for all i ~ 0,

uwv E L iff uxyi ZV E L. D

Example 4.5. Let L = {aibi I i ~ O} and let L$ be defined as in Example 4.3.
We have shown in Example 4.3 that L$ satisfies the pumping property of
Lemma 4.2. Here we show that L$ does not satisfy the pumping property of
Lemma 4.4. Assume the contrary. Let k be the constant in the lemma and
choose u = A, Wl = $a, W2 = $a, ... , Wk = $a, v = ($b)k$, and W = Wl ... Wk.
Then 'uwv E L$. But, clearly, there do not exist m, n, 1 ::; m < n ::; k, such
that y = Wm+l .. 'Wn, W = xyz, and uxzv = UWl' "WmWn+l' "WkV
($a)k-n+m($b)k$ E L$. D

In Lemma 4.4, the pumping condition is sufficient for the regularity of
L even if we change the statement "for all i ~ 0" to "for i = 0". Then the
pumping property becomes a cancellation property. It has been shown that
the pumping and cancellation properties are equivalent [40J. A similar result
can also be obtained for Lemma 4.3.

88 Sheng Yu

4.2 Closure properties

The following theorem has been established in Section 2. and 3 ..

Theorem 4.1. The family of regular languages is closed under the following
operations: (1) union, (2) intersection, (3) complementation, (4) catenation,
(5) star, and (6) reversal. D

The next theorem is a remarkably powerful tool for proving other prop
erties of regular languages.

Theorem 4.2. The family of regular languages is closed under finite trans
d'uct'ion.

Proof. Let L be an arbitrary regular language accepted by a DFA A =
(QA,E,D,s,F) and T = (QT,E,11,aT,sT,FT) a finite transducer in the
standard form. We show that T(L) is regular.

Construct a A-NFA R = (QR,11,DR,sR,FR) where
QR = QA x QT;
SR = (SA, ST);
FR = FAX FT ;
DR is defined by, for (p, g) E QR and b E .1 u {A},

DR((p, g), b) = ((p',g') I there exists a E E such that

DA(P, a) = p' & (g', b) E aT(g, a), or (g', b) E aT(g, A) & p = p'}.

Now we show that L(R) = T(L).
Let w be accepted by R. Then there is a state transition sequence of R

(SA,ST) ~ (Pl,gd ~ ~ (Pn,gn)

where w = b1 ··· bn , b1 , ... , bn E 11 U {A}, and Pn E FA, gn E FT' By the
definition of R, there exist aI, ... ,an E E u {A} such that

Let ai" ... , ai~ be the non-A subsequence of al, ... , an, i.e., ai" ... , ai~ E E
and u = ai, ... ai~ = al ... an. Note that if ak = A, then Pk-l = Pk (assuming
Po = SA)' Thus, we have

So, u is accepted by A and w E T(u). Therefore, w E T(L).
Let 'U E L(A) and T(u) = w. We prove that w E L(R). Since T(u) = w,

there is a state transition sequence of T

Regular Languages 89

for u = a1 ... an, al. ... , an E E U {A}, w = b1 ... bn , bl. ... , bn E L1 U {A},
and qn E FT. Let ail"'" ai", be the non-A subsequence of al.' .. ,an, i.e.,
ail'" ai", = a1 ... an = u. Since u E L(A), we have

where Pm E FA. Then, by the construction of R, there exists a state transition
sequence of R

where ro = SR = (pO,qo) and for each j, 1:::; j:::; n, rj = (Pk,qj) if aj =1= A
and j = i k; rj = (Pk-1, qj) if aj = A and i k- 1 < j < i k , 1 :::; k :::; m. Thus,
wE L(R). 0

Many operations can be implemented by finite transducers. Thus, the fact
that regular languages are closed under those operations follows immediately
by the above theorem. We list some of the operations in the next theorem.

Theorem 4.3. The family of regular languages is closed under the following
operations (assuming that L ~ E*):

(1) prefix(L) = {x I xy E L, x,y E E*},
(2) suffix(L) = {y I xy E L, x, Y E E*},
(3) infix(L) = {y I xyz E L, X,y,z E E*},
(4) morphism,
(5) finite substitution,
(6) inverse morphism,
(7) inverse finite substitution.

Proof. (4) and (5) are obvious since they are only special cases of finite
transductions: morphisms can be represented as one-state deterministic finite
transducers (DGSMs) and finite substitutions can be represented as one
state (nondeterministic) finite transducers without A-transitions. Note that,
in both cases, the sole state is both the starting state and the final state.

(6) and (7) are immediate since, by Theorem 2.16, an inverse finite trans
duction is again a finite transduction.

Each of the operations (1)-(3) can be realized by a finite transducer given
below. We omit the proof showing, in each case, the equality of the trans
duction and the operation in question. Figure 13 gives the transducers in the
case where E = {a,b}.

(1) Tpre = (Q1, E, E, 0"1, Sl, F1) where Q1 = {I, 2}, Sl = 1, F1 = Ql. and 0"1:
0"1 (1, a) = {(I, a), (2, An, for each a E E;
0"1(2,a) = {(2,An, for each a E E.

(2) TsuJ = (Q2,E,E,0"2,S2,F2) where Q2 = {0,1}, S2 = 0, F2 = Q2, and
0"2:
0"2(0, a) = {(O, A), (1, an, for each a E E;
0"2(1, a) = {(I, an, for each a E E.

90 Sheng Yu

a/ a a/ A al A ala
bib bl A bl A bib

~cal----:~ ~-----+-((;J, ~~
(a) Prefix (b) Suffix

alA ala al A
bl A bib bl A

-Qr-----:~:--g-:~~-((;J
(c) Subword

Fig. 13. Finite transducers realizing the prefix, suffix, and infix operations

(3) Tin! = (Q3,E,E,(J3,S3,F3) where Q3 = {0,1,2}, S3 = 0, F3 = Q3, and
(J3:
(J3(0, a) = {(O, A), (1, an, for each a E E;
(J3(1, a) = {(l, a), (2, An; for each a E E;
(J3(2, a) = {(2, An, for each a E E. o

A substitution cp : E* -+ 2,d* is called a regular substitution if, for each
a E E, cp(a) is a regular language. The reader can verify that each regular
substitution can be specified by a finite transduction. Thus, we have the
following:

Theorem 4.4. The family of regular languages is closed under regular sub
stitution and inverse regular substitution. 0

Let L be an arbitrary language over E. For each x E E*, the left-quotient
of L by x is the set

x\L = {y E E* I xy E L},

and for a language Lo ~ E*, the left-quotient of L by Lo is the set

Lo \L = U x\L = {y I xy E L, x E Lo}.
xELo

Similarly, the right-quotient of L by a word x E E* is the set

L/x = {y E E* I yx E L},

and the right-quotient of L by a language Lo ~ E* is

Regular Languages 91

L/ Lo = U L/x = {y I yx E L, x E Lo}.
xELo

It is clear by the above definition that

(L1 \L) U (L2\L) = (L1 U L2)\L

for any L1,L2 ~ E*. This implies that {x,y}\L = x\LUy\L. Similar equal
ities hold for right-quotient of languages.

For L ~ E*, we define the following operations:

• mine L) = {w ELI there does not exist x E L such that x is a propel' prefix
of w} .

• max(L) = {w ELI there does not exist x E L such that w is a propper
prefix of x}.

Theorem 4.5. The family of regular languages is closed under (1) left
quotient by an arbitrary language, (2) right quotient by an arbitrary language,
(3) min, and (4) max.

Proof. Let L ~ E* be a regular language accepted by a DFA A =
(Q,E,5,s,F). We define, for each q E Q, DFA Aq = (Q,L',5,s,{q}) and
A(q) = (Q,E,5,q,F). For each of the four operations, we prove that the re
sulting language is regular by constructing a finite automaton to accept it.
We leave the verifications of the constructions to the reader.

For (1), let Lo ~ E* be an arbitrary language. Then Lo \L is accepted by
the NNFA A1 = (Q, E, 5, 8 1 , F) where Q, 5, and F are the same as in A; and

is the set of starting states of the NNFA.
For (2), we construct a DFA A2 = (Q, E, 5, s, F2) where Q, 5, and s are

the same as in A; and F2 = {q E Q I L(A(q)) n Lo i= 0}.
For (3), we define A3 = (Q, E, 53, s, F) where 53 is the same as 5 except

that all transitions from each final state are deleted.
For (4), we define A4 = (Q,E,5,s,F4) where F4 = {f E F I 5*(j,x) (j.

F for all x E E+}. 0

Let m and n be two natural numbers such that m < n. Then, for a
language L ~ E*, ~ (L) is defined to be the language

meL) {W1" .wm I w1" 'Wm Wm +1" .wn E
n

L,W1, ... ,Wn E E*,lw11 = ... = Iwnl}·

Note that the above definition requires that the division of a word into n
parts has to be exact. Then, the operations ~ and ~7: are not equivalent
for an integer c > 1. For example, let L = p., a, ba, aab, bbab}; then ~(L) =
p, b, bb}, but ~(L) = p, bb}. We show that the family of regular languages
is closed under the ~ operation.

92 Sheng Yu

Theorem 4.6. Let L ~ E* be a regular language and m, n be two natural
numbers such that m < n. Then ~(L) is regular.

Proof. Let L be accepted by a DFA A = (Q,E,8,s,F). For each q E Q, we
construct a variant of an NFA A(q) which reads m symbols at each transition.
Such a variant can clearly be transformed into an equivalent standard NFA.
More specifically, A(q) = (Q', E, 8', Sq, Fq) where Q' = Q x Q; 8 : Q' X Em --+

2Q' is defined, for ai,"" am E E,

8'((pl, P2), ai ... am) = {(p~ ,p~) I 8*(pi' ai ... am) = p~ and

there exists x E E n - m such that 8* (p2, x) = p~};

Sq = (s, q); and Fq = {(q, f) I f E F}.
Intuitively, A(q) operates on two tracks, starting with the states sand

q, respectively. A word u with lui = em, for some nonnegative integer c, is
accepted by A(q) if A(q), working on the first track, can reach q by reading
'U and, simultaneously working on the second track, can reach a final state of
A from the state q by reading a "phantom" input of length c(n - m).

It is easy to see that ~(L) = UqEQL(A(q)). We omit the details of the
~~ 0

4.3 Derivatives and the Myhill-Nerode theorem

The notion of derivatives was introduced in [99, 100, 43] (under different
names) and was first applied to regular expressions by Brzozowski in [16].

We define derivatives using the left-quotient operation. Let L ~ E* and
x E E*. The derivative of L with respect to x, denoted DxL, is

DxL = x\L = {y I xy E L}.

For L ~ E*, we define a relation =L~ E* x E* by

for each pair x, y E E*. Clearly, =L is an equivalence relation. It partitions
E* into equivalence classes. The number of equivalence classes of =L is called
the index of =L. We denote the equivalence class that contains x by [X]=:L'
i.e.,

[X]=:L = {y E E* I y =L x}.

Clearly, x =L y iff [X]L = [yl£. We simply write [x] instead of [X]=:L if there
is no confusion.

A relation R ~ E* x E* is said to be right-invariant with respect to
catenation if x R y implies xz R yz, for any z E E*. It is clear that the
relation =L is right-invariant.

Regular Languages 93

Lemma 4.5. Let A = (Q, E, 8, s, F) be a DFA and L = L(A). For each q E
Q, let Aq = (Q, E, 8, s, {q}). Then, for all x, y E E* and q E Q, x, Y E L(Aq)
implies x =L y.

Proof. Let x, y E L(Aq). Define A(q) = (Q, E, 8, q, F). Then, clearly, DxL =
L(A(q») ",; DyL. Thus, x =L y by the definition of =L. 0

The following is a variant ofthe theorem which is called the Myhill-Nerode
Theorem in [57]. The result was originally given by Myhill [90] and Nerode
[91]. A similar result on regular expressions was obtained by Brzozowski [16].

Theorem 4.7. A language L ~ E* is regular iff =L has a finite index.

Proof. Only if: Let L be accepted by a complete DFA A = (Q, E, 8, s, F).
As in Lemma 4.5, we define Aq = (Q,E,8,s,{q}) for each q E Q. Since A is
a complete DFA, we have

U L(Aq) = E*.
qEQ

Thus, 7rA = {L(Aq) I q E Q} is a partition of E*. By Lemma 4.5, for each
q E Q, X,y E L(Aq) implies x =L y, i.e., L(Aq) ~ [x] for some x E E*.
This means that 7rA refines the partition induced by =L. Since 7rA is a finite
partition, the number of the equivalence classes of =L is finite.

If We construct a DFA A' = (Q',E,8',s',F') where the elements of Q' are
the equivalence classes of =L, i.e., Q' = {[x] I x E E*}; 8' is defined by
8'([x], a) = [xa], for all [x] E Q and a E E; s' = [A]; and F' = {[x] I x E L}.
Note that 8' is well-defined because =L is right-invariant. It is easy to verify
that 8'(s', x) = [x] for each x E E* (by induction on the length of x). Then
x E L iff 8'(s',x) = [x] E F'. Therefore, L(A') = L. 0

Theorem 4.8. Let L be a regular language. The minimal number of states
of a complete DFA that accepts L is equal to the index of =L'

Proof. Let the index of =L be k. In the proof of Theorem 4.7, it is shown
that there is a k-state complete DFA that accepts L. We now prove that k is
minimum. Suppose that L is accepted by a complete DFA A = (Q, E, 8, s, F)
of k' states where k' < k. Then, for some q E Q, L(Aq) contains words from
two distinct equivalence classes of =L, i.e., x "¥:-L y for some x, y E L(Aq).
This contradicts Lemma 4.5. 0

Corollary 4.1. Let A = (Q, E, 8, s, F) be a complete DFA and L = L(A). A
is a minimum-state complete DFA accepting L iff, for each q E Q, L(Aq) =
[x] for some x E E*.

Proof. The if part follows immediately from Theorem 4.8. For the con
verse implication, assume that A is a minimum-state complete DFA. By
Lemma 4.5, the partition of E* into the languages L(Aq), q E Q, is a re
finement of =L. By Theorem 4.8, IQI equals to the index of =L. Hence, each
language L(Aq), q E Q, has to coincide with some class of the relation =L. 0

94 Sheng Yu

From the above arguments, one can observe that for minimizing a given
DFA A that accepts L, we need just to merge into one state all the states
q such that the corresponding languages L(Aq) are in the same equivalence
class of =L. Transitions from states to states are also merged accordingly.
This can be done because of the right-invariant property of =L.

More formally, for a DFA A = (Q, E, 8, s, F), we define an equivalence
relation ~ A on Q as follows:

for p, q E Q. Note that ~A is right-invariant in the sense that if p ~ q then
8*(p,x) ~A 8*(q,x), for any given x E E*. It is clear that each equivalence
class of ~A corresponds exactly to an equivalence class of =L(A). Then we
can present the following DFA minimization scheme:

(1) Partition Q into equivalence classes of ~A:

il = {[q]1 q E Q}.

(2) Construct A' = (Q',E,8',s',F') where Q' = il, s' = [s'], F' = {[i]1 f E
F}, and 8'([p],a) = [q] if 8(p, a) = q, for allp,q E Q and a E E.

Note that the right-invariant property of ~A guarantees that 8' is well defined.
The major part ofthe scheme is at the step (1), i.e., finding the partition of

Q. A straightforward algorithm for step (1) is that we check whether p ~A q
by simply testing whether L(A(p)) = L(A(q)). However, the complexity of
this algorithm is too high (£?(n4) where n is the number of states of A).

Many partition algorithms have been developed, see, e.g., [56,49, 57, 11,
12]. The algorithm by Hopcroft [56], which was redescribed later by Gries
[49] in a more understandable way, is so far the most efficient algorithm. A
rather complete list of DFA minimization algorithms can be found in [122].

An interesting observation is that, for a given DFA, if we construct an
NFA that is the reversal of the given DFA and then transform it to a DFA by
the standard subset construction technique (constructing only those states
that are reachable from the new starting state), then the resulting DFA is
a minimum-state DFA [15, 67, 81, 12]. We state this more formally in the
following. First, we define two operations 'Y and -r on automata. For a DFA
A = (Q,E,8,s,F), 'Y(A) is the NNFA AR = (Q,E,8R,F,{s}) where 8R :
Q -+ 2Q is defined by 8R(p,a) = {q I 8(q, a) = p}; and for an NNFA M =
(Q, E,'T/, S,F), -reM) is the DFA M' = (Q', E,'T/', s',F') where s' = S; 'T/' and
F' are defined by the standard subset construction technique; and Q' ~ 2Q
consists of only those subsets of Q that are reachable from s'.

Theorem 4.9. Let A = (Q, E, 8, s, F) be a DFA with the property that all
states in Q are reachable from s. Then L(-r(-y(A))) = LR and -r(-y(A)) is a
rninimum-state DFA.

Regular Languages 95

Proof. Let l'(A) be the NNFA AR = (Q,E,8R,F,{s}) and T(AR) be the
DFA A' = (Q', 17, 8', s', F') as defined above. Obviously, L(A') = LR. To
prove that A' is minimum, it suffices to show that, for any p', q' E Q', p' ~ A' q'
implies p' = q'. Notice that p' and q' are both subsets of Q. If p' ~A' q', then
L(A,(p'l) = L(A,(q'l). Let l' E p'. Since 8*(s,x) = l' for some x E 17*, we
have s E (8R)*Cr,x) and, thus, x E L(A(p'l). This implies that x E L(A(q'l)
and, thus, there exist t E q' such that 8* (s, x) = t. Since 8 is a deterministic
transition function, l' = t, i.e., l' E q'. So, p' ~ q'. Similarly, we can prove
that q' ~ p'. Therefore, p' = q'. 0

From the above idea, a conceptually simple algorithm for DFA mini
mi,mtion can be obtained as follows. Given a DFA A, we compute A' =
T(1'(T(1'(A)))). Then A' is a minimum-state DFA which is equivalent to A.
The algorithm is descriptively very simple. However, the time and space com
plexities of the algorithm are very high; they are both of the order of 2n in
the worst case, where n is the number of states of A. This algorithm was
originally given by Brzozowski in [15J. Descriptions of the algorithm can also
be found in [81, 67, 12, 118, 122J. Watson wrote an interesting paragraph on
the origin of the algorithm in [122J (on pages 195-196).

Theorem 4.8 gives a tight lower bound on the number of states of a DFA.
Can we get similar results for AFA and NFA? The following result for AFA
follows immediately from Theorem 2.14 and Theorem 4.8.

TheoreIll 4.10. Let L be a regular language and k > 1 be the minimum
number of states of a DFA that accepts L R, i. e., the reversal of L. Then the
minimum number of states of an s-AFA accepting L is flog k 1 + 1. 0

Note that there can be many different minimum-state AFA accepting a given
language and they are not necessarily identical or equivalent under a renam
ing of the states.

NFA are a special case of AFA. Any lower bound on the number of states
of an AFA would also be a lower bound on the number of states of an NFA.

Corollary 4.2. Let L be a regular language and k > 1 be the minimum
number- of states of a DFA that accepts LR. Then the minimum number of
states of an NFA accepting L is greater than or equal to flog k 1 + 1.

The above lower bound is reached for some languages, e.g., the languages
accepted by the automata shown in Figure 18.

Also by Lemma 2.2, we have the following:

TheoreIll 4.11. Let L be a regular language. Let k and k' be the num
bers of states of the minimal DFA accepting Land L R, respectively. Then
the nmnber of states of any NFA accepting L is greater than or equal to
max(flog k 1, flog k'l). 0

Observe that minimum-state NNFA that accept Land L R , respectively,
have exactly the same number of states. A minimum-state NFA requires at

96 Sheng Yu

most one more state than a minimum-state NNFA equivalent to it. So, this
gives another proof for the above lower bound.

5. Complexity issues

In the previous sections, we studied various representations, operations, and
properties of regular languages. When we were considering the operations
on regular languages, we were generally satisfied with knowing what can be
done and what cannot be done, but did not measure the complexity of the
operations. In this section, we consider two kinds of measurements: (1) state
complexity and (2) time and space complexity. One possibility would have
been to discuss these complexity issues together with the various operations
in the previous sections. Since this topic has usually not been at all included
in earlier surveys, we feel that devoting a separate section for the complexity
issues is justified.

5.1 State complexity issues

By the state complexity of a regular language, we mean the minimal number
of states of a DFA representing the language. By the state complexity of an
operation on regular languages we mean a function that associates the sizes of
the DFA representing the operands of the operation to the minimal number
of states of the DFA representing the resulting language. Note that in this
section, by a DFA we always mean a complete DFA.

State complexity is a natural measurement of operations on regular lan
guages. It also gives a lower bound for the time and space complexity of those
operations. State complexity is of central importance especially for applica
tions using implementations of finite automata. However, questions of state
complexity have rarely been the object of a systematic investigation. Exam
ples of early studies concentrated on this topic are [104, 105] by Salomaa and
[89] by Moore. Some recent results can be found in [6, 102, 101, 124, 111].
Most of the results presented in this section are from [111].

By an n-state DFA language, we mean a regular language that is accepted
by an n-state DFA. Here, we consider only the worst-case state complexity.
For example, for an arbitrary m-state DFA language and an arbitrary n-state
DFA language, the state complexity of the catenation of the two languages
is m2" - 2,,-1. This means that

(1) there exist an m-state DFA language and an n-state DFA language such
that any DFA accepting the catenation of the two languages needs at
least m2n - 2n- 1 states; and

(2) the catenation of an m-state DFA language and an n-state DFA language
can always be accepted by a DFA using m2n - 2n- 1 states or less.

Regular Languages 97

So, it is a tight lower bound and upper bound. In the following, we first
summarize the state complexity of various operations on regular languages.
Then we give some details for certain operations. For each operation we
consider, we give an exact function rather than the order of the function.

Let E be an alphabet, L1 and L2 be an m-state DFA language and an
n-state DFA language over E, respectively. A list of operations on L1 and L2
and their state complexity are the following:

• L1L2 : m2n - 2n- 1;
• (L2)* : 2n- 1 + 2n- 2;
• L1 nL2 : mn;
• L1 UL2 : mn;
• L\L2 : 2n - 1, where L is an arbitrary language;
• L 2/ L : n, where L is an arbitrary language;
• L¥ : 2n.

The state complexity of some of the above operations is much lower if we
consider only the case when lEI = 1. For unary alphabets, we have

• (L2)* : (n - 1)2 + 1;
• L1L2 : mn (if (m, n) = 1).

5.1.1 Catenation
We first show that for any m ;::: 1 and n > 1 there exist an m-state DFA
A and an n-state DFA B such that any DFA accepting L(A)L(B) needs at
least m2n - 2n- 1 states. Then we show that for any pair of m-state DFA A
and n-state DFA B defined on the same alphabet E, there exists a DFA with
at most m2n - 2n- 1 states that accepts L(A)L(B).

Theorem 5.1. For any integers m ;::: 1 and n ;::: 2, there exist a DFA A of
m states and a DFA B of n states such that any DFA accepting L(A)L(B)
needs at least m2n - 2n - 1 states.

Proof. We first consider the cases when m = 1 and n ;::: 2. Let E =
{ a, b}. Since m = 1, A is a one-state DFA accepting E*. Choose B =
(P, E, {jB,PO, FB) (Figure 14) where P = {po, ... ,Pn-d, FB = {Pn-I },
and {jB(PO, a) = Po, {jB(PO, b) = PI, {jB(Pi, a) = PHI, 1 :::; i :::; n - 2,
{jB(Pn-1' a) = Pb {jB(Pi, b) = Pi, 1 :::; i :::; n - 1.

It is easy to see that

L(A)L(B) = {w E E* I w = ubv, Ivl a == n - 2 mod (n - I)}.

Let (iI, ... ,in-I) E {O, 1 }n-1 and denote

w(ib ... ,in- 1) = bi1 abi2 ... abin- 1.

Then, for every j E {O, ... ,n - 2}, W(ib" . ,in_dai E L(A)L(B) iff ii+1 = 1.
Thus a DFA accepting L(A)L(B) needs at least 2n - 1 states.

98 Sheng Yu

b

Oa
ob6~

~'W-~0 "
~~~' 

b 

Fig. 14. DFA B 

Now we consider the cases when m;::: 2 and n;::: 2. 
Let E = {a, b, c}. Define A = (Q, E,OA,qo, FA) where Q = {qo, ... , qm-d; 

FA = {qm-l }; for each i, 0 ~ i ~ m - 1, 

{ 
qj, j = (i + 1) mod m, ~f X = a, 

OA(qi,X) = qo, If X = b, 
qi, if X = c. 

Define B = (P,E,oB,Po,FB) where P = {PO, ... ,Pn-d; FB = {Pn-I}; 
and for each i, 0 ~ i ~ n - 1, 

{ 
Pj, j = (i + 1) mod n, ~f X = b, 

OB(Pi,X)= Pi, IfX=a, 
PI, if X = c. 

The DFA A and B are shown in Figure 15 and Figure 16, respectively. 
The reader can verify that 

L(A) = {xy I x E (E*{b})*, Y E {a,c}* & IYla = m -1 mod m}, 

and 
L(B) n {a,b}* = {x E {a,b}* Ilxlb = n-l mod n}. 

Now we consider the catenation of L(A) and L(B), i.e., L(A)L(B). 

Fact 5.1. For m > 1, L(A) n E*{b} = 0. o 

For each x E {a, b}*, we define 

S(x) = { i I x = uv such that U E L(A), and i = Ivlb mod n }. 

Consider X,Y E {a,b}* such that S(x) =I- S(y). Let k E S(x) - S(y) 
(or S(y) - S(x)). Then it is clear that xbn- 1- k E L(A)L(B) but ybn- 1- k f/. 
L(A)L(B). So, x and yare in different equivalence classes of =L(A)L(B) where 
=L is defined in Section 4.3. 



Regular Languages 99 

c c 

a 
b,c 

qo 
b 

~Oa-~ ............... / ... i 
U 
c 

Fig. 15. DFA A 

a 

Po C 

~s"<---""---- ..... 
U b 
a 

Fig. 16. DFA B 

For each x E {a, b}*, define T(x) = max{lzll x = yz & z E a*}. Consider 
u,v E {a,b}* such that S(u) = S(v) and T(u) > T(v) mod m. Let i = 
T( u) mod m and w = cam-l-ibn-l. Then clearly uw E L(A)L(B) but vw ¢ 
L(A)L(B). Notice that there does not exist a word wE E* such that 0 ¢ S(w) 
and T(w) = m-I, since the fact that T(w) = m-I guarantees that 0 E S(w). 

For each subset s = {i1, ... ,itl of {O, ... ,n -I}, where i1 > ... > it, 
and each integer j E {O, ... ,m - I} except the case when both 0 ¢ sand 
j = m - I are true, there exists a word 

such that S(x) = sand T(x) = j. Thus, the relation =L(A)L(B) has at least 
m2n - 2n- 1 distinct equivalence classes. 0 

The next theorem gives an upper bound which coincides exactly with the 
above lower bound result. Therefore, the bound is tight. 



100 Sheng Yu 

Theorem 5.2. Let A and B be two complete DFA defined on the same al
phabet, where A has m states and B has n states, and let A have k final 
states, 0 < k < m. Then there exists a (m2n - k2n- 1 )-state DFA which 
accepts L(A)L(B). 

Proof. Let A = (Q, E, tiA, qo, FA) and B = (P, E, tiB,po, FB ). Construct 
C = (R, E, tic, ro, Fe) such that 

R = Q x 2P - FAX 2P -{po} where 2x denotes the power set of X; 
ro =< qo,0 > if qo rf. FA, ro =< qo, {Po} > otherwise; 
Fe = {< q,T >E R I TnFB =f. 0}; 
tie« q,T >,a) =< q',T' >, for a E E, where q' = tiA(q,a) and T' 
tiB(T, a) U {po} if q' E FA, T' = tiB(T, a) otherwise. 

Intuitively, R is a set of pairs such that the first component of each pair 
is a state in Q and the second component is a subset of P. R does not 
contain those pairs whose first component is a final state of A and whose 
second component does not contain the initial state of B. Clearly, C has 
m2n - k2n- 1 states. The reader can easily verify that L(C) = L(A)L(B). 0 

We still need to consider the cases when m ~ 1 and n = 1. We have the 
following result. 

Theorem 5.3. The number of states that is sufficient and necessary in the 
worst case for a DFA to accept the catenation of an m-state DFA language 
and a i-state DFA language is m. 

Proof. Let E be an alphabet and a E E. Clearly, for any integer m > 0, the 
language L = {w E E* I Iwl a == m - 1 mod m} is accepted by an m-state 
DFA. Note that E* is accepted by a one-state DFA. It is easy to see that any 
DFA accepting L E* = {w E E* I #a(W) ~ m - I} needs at least m states. 
So, we have proved the necessary condition. 

Let A and B be an m-state DFA and a I-state DFA, respectively. Since 
B is a complete DFA, L(B) is either 0 or E*. We need to consider only the 
case L(B) = E*. Let A = (Q, E, tiA, qo, FA)' Define C = (Q, E, tic, qo, FA) 
where, for any X E E and q E Q, 

tie(q, X) = { tiA(q, X), ~f q rf. FA, 
q, 1f q E FA. 

The automaton C is exactly as A except that final states are made to be 
sink-states: when the computation has reached some final state q, it remains 
there. Now it is clear that L(C) = L(A)E*. 0 

5.1.2 Star operation (Kleene closure) 
Here we prove that the state complexity of the star operation of an n-state 
DFA language is 2n- 1 + 2n-2. 

Theorem 5.4. For any n-state DFA A = (Q,E,ti,qo,F) such that IF
{qo}1 = k ~ 1 and n > 1, there exists a DFA of at most 2n- 1 +2n- k - 1 states 
that accepts (L(A))*. 



Regular Languages 101 

Proof. Let A = (Q, E, 8, qo, F) and L = L(A). Denote F - {qo} by Fo. Then 
lFol = k ~ 1. We construct a DFA A' = (Q', E,8', qb,F') where 

qb f/. Q is a new start state; 
Q' = {qb}U{PIP ~ (Q-Fo)&P =f 0}U{RIR ~ Q&qo E R&RnFo =f 0}; 
8'(qb, a) = {8(qo, an, for any a E E, and 
8'(R a) _ { 8(R, a) if8(R, a) n Fo = 0, 

, - 8(R, a) U {qo} otherwise, 
for R ~ Q and a E Ej 
F' = {qb} U {R I R ~ Q & R n F =f 0}. 

The reader can verify that L(A') = L *. Now we consider the number 
of states in Q'. Notice that in the second term of the union for Q', there 
are 2n - k - 1 states. In the third term, there are (2k - 1)2n - k- 1 states. SO, 
IQ'I = 2n - 1 + 2n - k - 1• 0 

Note that if qo is the only final state of A, i.e., k = 0, then (L(A))* = L(A). 
So, the worst-case state complexity of the star operation occurs when k = 1. 

Corollary 5.1. For any n-state DFA A, n> 1, there exists a DFA A' of at 
most 2n - 1 + 2n - 2 states such that L(A') = (L(A))*. 0 

Theorem 5.5. For any integern ~ 2, there exists a DFA A ofn states such 
that any DFA accepting (L(A))* needs at least 2n - 1 + 2n - 2 states. 

Proof. For n = 2, it is clear that L = {w E {a, b}* Ilwla is odd} is accepted 
by a two-state DFA, and L* = {c} U {w E {a, b}* I Iwla ~ I} cannot be 
accepted by a DFA with less than 3 states. 

For n > 2, we give the following construction: An = (Qn, E, 8n , 0, {n-1}) 
where Qn = {O, ... ,n - I}; E = {a, b}; 8(i, a) = (i + 1) mod n for each 
OS; i < n, 8(i, b) = (i + 1) mod n for each 1 S; i < nand 8(0, b) = 0. An is 
shown in Figure 17. 

We construct the DFA A~ = (Q~,E,8~,qb,F~) from An exactly as de
scribed in the proof of the previous theorem. We need to show that (I) every 
state is reachable from the start state and (II) each state defines a distinct 
equivalence class of =L(An )*. 

Fig. 17. An n-state DFA An: The language (L(An))* requires 2n - 1 + 2n- 2 states 



102 Sheng Yu 

We prove (I) by induction on the size of the state set. (Note that each 
state is a subset of Qn except qb.) 

Consider all q such that q E Q' and Iql = 1. We have {O} = 8~(qo, b) and 
{ i} = 8~ (i - 1, a) for each 0 < i < n - 1. 

Assume that all q such that Iql < k are reachable. Consider q where 
Iql = k. Let q = {i1,i2,oo.,ik} such that O::S: iI < i 2 °o' < i k < n -1 if 
n - 1 rf. q, il = n - 1 and 0 = 'i 2 < ... ik < n - 1 otherwise. There are four 
cases: 

(i) il = n -1 and i2 = O. Then q = 8~({n - 2,i3 -1, ... ,ik - 1},a) where 
the latter state contains k - 1 states. 

(ii) il = 0 and i2 = 1. Then q = 8~(q',a) where q' = {n-l,O,i 3 -1, ... i k -l} 
which is considered in case (i). 

(iii) il = 0 and i2 = 1 + t for t > O. Then q = 8~(q'Y) where q' = {O, l,i3-
t, ... , ik - t}. The latter state is considered in case (ii). 

(iv) il = t > O. Then q = 8~(q',at) where q' {O,i2 - t, ... ,ik - t} is 
considered in either case (ii) or case (iii). 

To prove (II), let i E P - q for some p, q E Q~ and p =f. q. Then 
8~(p, an-I-i) E F~ but 8~(q, an-I-i) rf. F~. 0 

Note that a DFA accepting the star of a I-state DFA language may need 
up to two states. For example, 0 is accepted by a I-state DFA and any 
complete DFA accepting 0* = {E} has at least two states. 

It is clear that any DFA accepting the reversal of an n-state DFA language 
does not need more than 2n states. But can this upper bound be reached? 
A result on alternating finite automata ([23]' Theorem 5.3) gives a positive 
answer to the above question if n is of the form 2k for some integer k ~ O. Leiss 
has solved this problem in [73] for all n > O. A modification of Leiss's solution 
is shown in Figure 18. If we reverse all the transitions of this automaton, we 
will get a good example for showing that, in the worst case, a DFA equivalent 
to an n-state NFA may need exactly 2n states. 

5.1.3 An open problem 
For the state complexity of catenation, we have proved the general result 
(m2n - 2n- 1 ) using automata with a three-letter input alphabet. We have 
also given the complexity for the one-letter alphabet case. We do not know 
whether the result obtained for the three-letter alphabet still holds if the size 
of the alphabet is two. 

5.2 Time and space complexity issues 

Almost all problems of interest are decidable for regular languages, i.e., there 
exist algorithms to solve them. However, for the purpose of implementation, 
it is necessary to know how hard these problems are and what the time and 
space complexities of the algorithms are. In the following, we list some basic 
problems, mostly decision problems, for regular languages together with their 



Regular Languages 103 

b,c 

Fig. 18. An n-state DFA such that L(A)R requires 2n states 

complexity. We give a brief explanation and references for each problem. The 
reader may refer to [46, 57, 4] for terminology in complexity theory. 

One may observe that many of the following problems are NP-complete 
or even PSPACE-complete, which are categorized as computationally in
tractable in complexity theory. However, finite automata and regular expres
sions used in many applications are fairly small in size. In such cases, even 
exponential algorithms can be practically feasible. 

(1) DFA Membership Problem: 
Given an arbitrary DFA A with the input alphabet E and an arbitrary 
word x E E*, is x E L(A)? 
Complexity: DLOGSPACE-complete [64]. 

(2) NFA Membership Problem: 
Given an arbitrary NFA A with the input alphabet E and an arbitrary 
word x E E*, is x E L(A)? 
Complexity: NLOGSPACE-complete [66]. 

(3) AFA Membership Problem: 
Given an arbitrary AFA A with the input alphabet E and a word x E E*, 
is x E L(A)? 
Complexity: P-complete [64]. 

(4) Regular Expression Membership Problem: 
Given a regular expression e over E and a word x E E*, is x E L( e)? 
Complexity: NLOGSPACE-complete [64]. 

(5) DFA Emptiness Problem: 
Given an arbitrary DFA A, is L(A) = 0? 
Complexity: NLOGSPACE-complete [66]. 

(6) NFA Emptiness Problem: 
Given an arbitrary NFA A, is L(A) = 0? 
Complexity: NLOGSPACE-complete [66]. 



104 Sheng Yu 

(7) AFA Emptiness Problem: 
Given an arbitrary AFA A, is L(A) = 0? 
Complexity: PSPACE-complete [64]. 

(8) DFA Equivalence Problem: 
Given two arbitrary DFA Al and A 2, is L(At) = L(A2)? 
Complexity: NLOGSPACE-complete [26]. 

(9) NFA Equivalence Problem: 
Given two arbitrary NFA Al and A 2, is L(At) = L(A2)? 
Complexity: PSPACE-complete [46]. 

(10) AFA Equivalence Problem: 
Given two arbitrary AFA Al and A 2, is L(At) = L(A2)? 
Complexity: PSPACE-complete [64]. 

(11) Regular Expression Equivalence Problem: 
Given two regular expressions el and e2, is L(et) = L(e2)? 
Complexity: PSPACE-complete [59]. (Note that if one of the regular 
expressions denotes a language of polynomial density, then the complex
ity is NP-complete.) 

The following problems can also be converted into decision problems. 
However, we prefer to keep them in their natural form: 

(i) DFA Minimization Problem: 
Given a DFA with n states, convert it to an equivalent minimum-state 
DFA. 
Complexity: O(nlogn) [56]. 

"') NFA Minimization Problem: 
Given an NFA, convert it to an equivalent minimum-state NFA. 
Complexity: PSPACE-complete [59,119]. 

(iii) DFA to Minimal NFA Problem: 
Given a DFA, convert it to an equivalent minimum-state NFA. 
Complexity: PSPACE-complete [65]. 

The following problems remain open: 

(a) Is membership for regular expressions over a one-letter alphabet 
NLOGSPACE-hard1 

(b) Is membership for extended regular expressions P-hard1 

Acknowledgements I wish to express my deep gratitute to Kai Salomaa for 
his significant contributions to this chapter. He has read the chapter many 
times and made numerous suggestions. I consider him truly the second author 
of the chapter. However, he has been insisting not to put his name as a co
author. I wish to thank J. Brzozowski for his great help in tracking the status 
of the six open problems he raised in 1979. Special thanks due K. Culik II, A. 
Salomaa, J. Shallit, A. Szilard, and R. Webber for their careful reading and 
valuable suggestions. I wish to express my gratitute to G. Rozenberg and A. 



Regular Languages 105 

Salomaa for their great idea and efforts in organizing the handbook. Finally, 
I wish to thank the Natural Sciences and Engineering Research Council of 
Canada for their support. 

References 

1. A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation, and Com
piling, Vol. 1, Prentice-Hall, Englewood Cliffs, N.J., (1972). 

2. A. V. Aho, R. Sethi, and J. D. Ullman, Compilers - Principles, Techniques, 
and Tools, Addison-Wesley, Reading, (1986). 

3. J. C. M. Baeten and W. P. Weijland, Process Algebra, Cambridge University 
Press, Cambridge, (1990). 

4. J. L. Balcazar, J. Diaz, and J. Gabarr6, Structured Complexity I, II, EATCS 
Monagraphs on Theoretical Computer Science, vol. 11 and 22, Springer-Verlag, 
Berlin 1988 and 1990. 

5. Y. Bar-Hillel, M. Perles, and E. Shamir, "On formal properties of simple 
phrase structure grammars", Z. Phonetik. Sprachwiss. Kommunikationsforsch. 
14 (1961) 143-172. 

6. J.-C. Birget, "State-Complexity of Finite-State Devices, State Compressibility 
and Incompressibility", Mathematical Systems Theory 26 (1993) 237-269. 

7. G. Berry and R. Sethi, "From Regular Expressions to Deterministic Au
tomata", Theoretical Computer Science 48 (1986) 117-126. 

8. J. Berstel, Transductions and Context-Free Languages, Teubner, Stuttgart, 
(1979). 

9. J. Berstel and M. Morcrette, "Compact representation of patterns by finite 
automata", Pixim 89: L'Image Numerique a Paris, Andre Gagalowicz, ed., 
Hermes, Paris, (1989), pp.387-395. 

10. J. Berstel and C. Reutenauer, Rational Series and Their Languages, EATCS 
Monographs on Theoretical Computer Science, Springer-Verlag, Berlin (1988). 

11. W. Brauer, Automatentheorie, Teubner, Stuttgart, (1984). 
12. W. Brauer, "On Minimizing Finite Automata", BATCS Bulletin 35 (1988) 

113-116. 
13. A. Briiggemann-Klein, "Regular expressions into finite automata", Theoretical 

Computer Science 120 (1993) 197-213. 
14. A. Briiggemann-Klein and D. Wood, "Deterministic Regular Languages", Pro

ceedings of STACS'92, Lecture Notes in Computer Science 577, A. Finkel and 
M. Jantzen (eds.), Springer-Verlag, Berlin (1992) 173-184. 

15. J. A. Brzozowski, "Canonical regular expressions and minimal state graphs for 
definite events", Mathematical Theory of Automata, vol. 12 of MRI Symposia 
Series, Polytechnic Press, NY, (1962), 529-561. 

16. J. A. Brzozowski, "Derivatives of Regular Expressions", Journal of the ACM 
11:4 (1964) 481-494. 

17. J. A. Brzozowski, "Developments in the' theory of regular languages" , Informa
tion Processing 80, S. H. Lavington edited, Proceedings of IFIP Congress 80, 
North-Holland, Amsterdam (1980) 29-40. 

18. J. A. Brzozowski, "Open problems about regular languages", Formal Language 
Theory - Perspectives and open problems, R. V. Book (ed.), Academic Press, 
New York, (1980), pp.23-47. 



106 Sheng Yu 

19. J. A. Brzozowski and E. Leiss, "On Equations for Regular Languages, Finite 
Automata, and Sequential Networks", Theoretical Computer Science 10 (1980) 
19~35. 

20. J. A. Brzozowski and I. Simon, "Characterization of locally testable events", 
Discrete Mathematics 4 (1973) 243~271. 

21. J. A. Brzozowski and M. Yoeli, Digital Networks, Prentice-Hall, Englewood 
Cliffs, N. J., (1976). 

22. A.K. Chandra and L.J. Stockmeyer, "Alternation", FOCS 17 (1976) 98~108. 
23. A. K. Chandra, D. C. Kozen, L. J. Stockmeyer, "Alternation", Journal of the 

ACM 28 (1981) 114~133. 
24. J. H. Chang, O. H. Ibarra and 13. Ravikumar, "Some observations concern

ing alternating Turing machines using small space", Inform. Process. Lett. 25 
(1987) 1~9. 

25. C.-H. Chang and R. Paige, "From Regular Expressions to DFA's Using Com
pressed NFA's", Proceedings of the Third Symposium on Combinatorial Pattern 
Matching (1992) 90~110. 

26. S. Cho and D. Huynh, "The parallel complexity of finite state automata prob
lems", Technical Report UTDCS-22~88, University of Texas at Dallas, (1988). 

27. D. I. A. Cohen, Introduction to Computer Theory, Wiley, New York, (1991). 
28. K. Culik II and S. Dube, "Rational and Affine Expressions for Image Descrip

tion", Discrete Applied Mathematics 41 (1993) 85~120. 
29. K. Culik II and S. Dube, "Affine Automata and Related Techniques for Gener

ation of Complex Images", Theoretical Computer Science 116 (1993) 373~398. 
30. K. Culik II, F. E. Fich and A. Salomaa, "A Homomorphic Characterization of 

Regular Languages", Discrete Applied Mathematics 4 (1982)149~152. 
31. K. Culik II and T. Harju, "Splicing semi groups of dominoes and DNA", Dis

crete Applied Mathematics 31 (1991) 261~277. 
32. K. Culik II and J. Karhumiiki, "The equivalence problem for single-valued 

two-way transducers (on NPDTOL languages) is decidable", SIAM Journal 
on Computing, vol. 16, no. 2 (1987) 221 ~230. 

33. K. Culik II and J. Kari, "Image Compression Using Weighted Finite Au
tomata", Computer and Graphics, vol. 17, 3, (1993) 305~313. 

34. J. Dassow, G. Paun, A. Salomaa, "On Thinness and Slenderness of L Lan
guages", EATCS Bulletin 49 (1993) 152~158. 

35. F. Dejean and M. P. Schiitzenberger, "On a question of Eggan", Information 
and Control 9 (1966) 23~25. 

36. A. de Luca and S. Varricchio, "On noncounting regular classes", Theoretical 
Computer Science 100 (1992) 67~ 104. 

37. V. Diekert and G. Rozenberg (cd.), The Book of Traces, World Scientific, Sin
gapore, (1995). 

38. D. Drusinsky and D. Harel, "On the power of bounded concurrency I: Finite 
automata", Jo'urnai of the ACM 41 (1994) 517~539. 

39. L. C. Eggan, "Transition graphs and the star height of regular events", Michi
gan Math. J. 10 (1963) 385~397. 

40. A. Ehrenfeucht, R. Parikh, and G. Rozenberg, "Pumping Lemmas for Regular 
Sets", SIAM Journal on Computing vol. 10, no. 3 (1981) 536~541. 

41. S. Eilenberg, Automata, Languages, and Machines, Vol. A, Academic Press, 
New York, (1974). 

42. S. Eilenberg, Automata, Languages, and Machines, Vol. B, Academic Press, 
New York, (1974) 

43. C. C. Elgot and J. D. Rutledge, "Operations on finite automata", Proc. AlEE 
Second Ann. Symp. on Switching Theory and Logical Design, Detroit, (1961). 



Regular Languages 107 

44. A. Fellah, Alternating Finite Automata and Related Problems, PhD Disserta
tion, Dept. of Math. and Computer Sci., Kent State University, (1991). 

45. A. Fellah, H. Jurgensen, S. Yu, "Constructions for alternating finite automata", 
Intern. J. Computer Math. 35 (1990) 117-132. 

46. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the 
Theory of NP-Completeness, Freeman, San Francisco, (1979.) 

47. S. Ginsburg, Algebraic and automata-theoretic properties of formal languages, 
North-Holland, Amsterdam, (1975). 

48. V. M. Glushkov, "The abstract theory of automata", Russian Mathematics 
Surveys 16 (1961) 1-53. 

49. D. Gries, "Describing an Algorithm by Hopcroft", Acta Informatica 2 (1973) 
97-109. 

50. L. Guo, K. Salomaa, and S. Yu, "Synchronization Expressions and Languages", 
Proceedings of the Sixth IEEE Symposium on Parallel and Distributed Process
ing (1994) 257-264. 

51. M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, 
Reading, (1978). 

52. K. Hashiguchi, "Algorithms for Determining Relative Star Height and Star 
Height", Information and Computation 78 (1988) 124-169. 

53. T. Head, "Formal language theory and DNA: An analysis of the generative 
capacity of specific recombinant behaviors", Bull. Math. Bioi. 49 (1987) 737-
759. 

54. F. C. Hennie, Finite-State Models for Logical Machines, Wiley, New York, 
(1968). 

55. T. Hirst and D. Harel, "On the power of bounded concurrency II: Pushdown 
automata", Journal of the ACM 41 (1994), 540-554. 

56. J. E. Hopcroft, "An n log n algorithm for minimizing states in a finite automa
ton", in Theory of Machines and Computations, Z. Kohavi (ed.), Academic 
Press, New York, (1971). 

57. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, 
and Computation, Addison-Wesley, Reading, (1979), 189-196. 

58. J. M. Howie, Automata and Languages, Oxford University Press, Oxford, 
(1991). 

59. H. B. Hunt, D. J. Rosenkrantz, and T. G. Szymanski, "On the Equivalence, 
Containment, and Covering Problems for the Regular and Context-Free Lan
guages", Journal of Computer and System Sciences 12 (1976) 222-268. 

60. O. Ibarra, "The unsolvability of the equivalence problem for epsilon-free 
NGSM's with unary input (output) alphabet and applications", SIAM Journal 
on Computing 4 (1978) 524-532. 

61. K. Inoue, I. Takanami, and H. Tanaguchi, "Two-Dimensional alternating Tur
ing machines", Proc. 14th Ann. ACM Symp. On Theory of Computing (1982) 
37-46. 

62. K. Inoue, I. Takanami, and H. Tanaguchi, " A note on alternating on-line 
Turing machines", Information Processing Letters 15:4 (1982) 164-168. 

63. J. Jaffe, "A necessary and sufficient pumping lemma for regular languages", 
SIGACT News (1978) 48-49. 

64. T. Jiang and B. Ravikumar, "A note on the space complexity of some decision 
problems for finite automata", Information Processing Letters 40 (1991) 25-31. 

65. T. Jiang and B. Ravikumar, "Minimal NFA Problems are Hard", SIAM Jour
nal on Computing 22 (1993), 1117-1141. Proceedings of 18th ICALP, Lecture 
Notes in Computer Science 510, Springer-Verlag, Berlin (1991) 629-640. 

66. N. Jones, "Space-bounded reducibility among combinatorial problems", Jour
nal of Computer and System Sciences 11 (1975) 68-85. 



108 Sheng Yu 

67. T. Kameda and P. Weiner, "On the state minimization of nondeterministic 
finite automata", IEEE Trans. on Computers C-19 (1970) 617-627. 

68. D. Kelley, Automata and Formal Languages - An Introduction, Prentice-Hall, 
Englewood Cliffs, N. J., (1995). 

69. S. C. Kleene, "Representation of events in nerve nets and finite automata", 
Automata Studies, Princeton Univ. Press, Princeton, N. J., (1996), pp.2-42. 

70. D. E. Knuth, J. H. Morris, and V. R. Pratt, "Fast pattern matching in strings", 
SIAM Journal on Computing, vol. 6, no.2 (1977) 323-350. 

71. D. Kozen, "On parallelism in Turing machines", Proceedings of 17th FOCS 
(1976) 89-97. 

72. R. E. Ladner, R. J. Lipton and L. J. Stockmeyer, "Alternating pushdown au
tomata", Proc. 19th IEEE Symp. on Foundations of Computer Science, Ann 
Arbor, MI, (1978) 92-106. 

73. E. Leiss, "Succinct representation of regular languages by boolean automata" , 
Theoretical Computer Science 13 (1981) 323-330. 

74. E. Leiss, "On generalized language equations", Theoretical Computer Science 
14 (1981) 63-77. 

75. E. Leiss, "Succinct representation of regular languages by boolean automata 
II", Theoretical Computer Science 38 (1985) 133-136. 

76. E. Leiss, "Language equations over a one-letter alphabet with union, concate
nation and star: a complete solution", Theoretical Computer Science 131 (1994) 
311-330. 

77. E. Leiss, "Unrestricted complementation in language equations over a one
letter alphabet", Theoretical Computer Science 132 (1994) 71-84. 

78. H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation, 
Prentice-Hall, Englewood Cliffs, N. J., (1981). 

79. P. A. Lindsay, "Alternation and w-type Turing acceptors", Theoretical Com
puter Science 43 (1986) 107-115. 

80. P. Linz, An Introduction to Formal Languages and Automata, D. C. Heath and 
Company, Lexington, (1990). 

81. O. B. Lupanow, "Uber den Vergleich zweier Typen endlicher Quellen", Prob
leme der Kybernetik 6 (1966) 328-335, and Problemy Kibernetiki 6 (1962) (Rus
sian original). 

82. A. Mateescu, "Scattered deletion and commutativity", Theoretical Computer 
Science 125 (1994) 361-371. 

83. W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in 
nervous activity", Bull. Math. Biophysics 5 (1943) 115-133. 

84. R. McNaughton, Counter-Free Automata, MIT Press, Cambridge, (1971). 
85. R. McNaughton and H. Yamada, "Regular Expressions and State Graphs for 

Automata", Trans. IRS EC-9 (1960) 39-47. Also in Sequential Machines -
Selected Papers, E. F. Moore ed., Addison-Wesley, Reading, (1964), 157-174. 

86. G. H. Mealy, "A method for synthesizing sequential circuits", Bell System Tech
nical J. 34: 5 (1955), 1045-1079. 

87. A. R. Meyer and M. J. Fischer. "Economy of description by automata, gram
mars, and formal systems", FOCS 12 (1971) 188-191. 

88. E. F. Moore, "Gedanken experiments on sequential machines", Automata Stud
ies, Princeton Univ. Press, Princeton, N.J., (1966), pp.129-153. 

89. F. R. Moore, "On the Bounds for State-Set Size in the Proofs of Equivalence 
Between Deterministic, Nondeterministic, and Two-Way Finite Automata", 
IEEE Trans. Computers 20 (1971), 1211-1214. 

90. J. Myhill, "Finite automata and the representation of events", WADD TR-57-
624, Wright Patterson AFB, Ohio, (1957), 112-137. 



Regular Languages 109 

91. A. Nerode, "Linear automata transformation", Proceedings of AMS 9 (1958) 
541-544. 

92. O. Nierstrasz, "Regular Types for Active Objects", OOPSLA '93, 1-15. 
93. M. Nivat, "Transductions des langages de Chomsky", Ann. Inst. Fourier, 

Grenoble 18 (1968) 339-456. 
94. W. J. Paul, E. J. Prauss and R. Reischuck, "On Alternation", Acta Inform. 14 

(1980) 243-255. 
95. G. Paun and A. Salomaa, "Decision problems concerning the thinness of DOL 

languages", EATCS Bulletin 46 (1992) 171-18I. 
96. G. Paun and A. Salomaa, "Closure properties of slender languages", Theoret

ical Computer Science 120 (1993) 293-301. 
97. G. Paun and A. Salomaa, "Thin and slender languages", Discrete Applied 

Mathematics 61 (1995) 257-270. 
98. D. Perrin, (Chapter 1) Finite Automata, Handbook of Theoretical Computer 

Science, Vol. B, J. van Leeuwen (ed.), MIT Press, (1990). 
99. M. O. Rabin and D. Scott, "Finite automata and their decision problems", 

IBM J. Res. 3: 2 (1959) 115-125. 
100. G. N. Raney, "Sequential functions", Journal of the ACM 5 (1958) 177. 
101. B. Ravikumar, "Some applications of a technique of Sakoda and Sipser", 

SIGACT News, 21:4 (1990) 73-77. 
102. B. Ravikumar and O. H. Ibarra, "Relating the type of ambiguity of finite 

automata to the succinctness of their representation", SIAM Journal on Com
puting vol. 18, no. 6 (1989), 1263-1282. 

103. W. L. Ruzzo, "Tree-size bounded alternation", Journal of Computer and Sys
tem Sciences 21 (1980) 218-235. 

104. A. Salomaa, On the Reducibility of Events Represented in Automata, Annales 
Academiae Scientiarum Fennicae, Series A, I. Mathematica 353, (1964). 

105. A. Salomaa, Theorems on the Representation of events in Moore-Automata, 
Turun Yliopiston Julkaisuja Annales Universitatis Turkuensis, Series A, 69, 
(1964). 

106. A. Salomaa, Theory of Automata, Pergamon Press, Oxford, (1969). 
107. A. Salomaa, Jewels of Formal Language Theory, Computer Science Press, 

Rockville, Maryland, (1981). 
108. A. Salomaa, Computation and Automata, Cambridge University Press, Cam

bridge, (1985). 
109. A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power 

Series, Springer-Verlag, New York, (1978). 
110. K. Salomaa and S. Yu, "Loop-Free Alternating Finite Automata", Techni

cal Report 482, Department of Computer Science, Univ. of Western Ontatio, 
(1996). 

11l. K. Salomaa, S. Yu, Q. Zhuang, "The state complexities of some basic opera
tions on regular languages", Theoretical Computer Science 125 (1994) 315-328. 

112. M. P. Schiitzenberger, "Finite Counting Automata", Information and Control 
5 (1962) 91-107. 

113. M. P. Schiitzenberger, "On finite monoids having only trivial subgroups", In
format'lon and Control & (1965) 190-194. 

114. M. P. Schiitzenberger, "Sur les relations rationelles", in Proc. 2nd GI Con
ference, Automata Theory and Formal languages, H. Braklage (ed.), Lecture 
Notes in Computer Science 33, Springer-Verlag, Berlin (1975) 209-213. 

115. J. Shallit, "Numeration systems, linear recurrences, and regular sets", Infor
mation and Computation 113 (1994) 331-347. 

116. J. Shallit and J. Stolfi, "Two methods for generating fractals", Computers f:i 
Graphics 13 (1989) 185-191. 



110 Sheng Yu 

117. P. W. Shor, "A Counterexample to the triangle conjecture", J. Combinatorial 
Theory, Series A (1985) 110-112. 

118. J. L. A. van de Snepscheut, What Computing Is All About, Springer-Verlag, 
New York, (1993). 

119. L. Stockmeyer and A. Meyer, "Word problems requiring exponential time 
(preliminary report)", Proceedings of the 5th A CM Symposium on Theory of 
Computing, (1973) 1-9. 

120. A. Szilard, S. Yu, K. Zhang, and J. Shallit, "Characterizing Regular Languages 
with Polynomial Densities", Proceedings of the 17th International Symposium 
on Mathematical Foundations of Computer Science, Lecture Notes in Computer 
Science 629 Springer-Verlag, Berlin (1992) 494-503. 

121. K. Thompson, "Regular Expression Search Algorithm", Communications of 
the ACM 11:6 (1968) 410-422. 

122. B. W. Watson, Taxonomies and Toolkits of Regular Language Algorithms, PhD 
Dissertation, Department of Mathematics and Computing Science, Eindhoven 
University of Technology, (1995). 

123. D. Wood, Theory of Computation, Wiley, New York, (1987). 
124. S. Yu and Q. Zhuang, "On the State Complexity of Intersection of Regular 

Languages", ACM SIGACT News, vol. 22, no. 3, (1991) 52-54. 
125. Y. Zalcstein, "Locally testable languages", Journal of Computer and System 

Sciences 6 (1972) 151-167. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


