
Regular Languages 

Sheng Yu 

Regular languages and finite automata are among the oldest topics in formal 
language theory. The formal study of regular languages and finite automata 
can be traced back to the early forties, when finite state machines were used to 
model neuron nets by McCulloch and Pitts [83]. Since then, regular languages 
have been extensively studied. Results of early investigations are, for example, 
Kleene's theorem establishing the equivalence of regular expressions and finite 
automata [69], the introduction of automata with output by Mealy [86] and 
Moore [88], the introduction of nondeterministic finite automata by Rabin 
and Scott [99], and the characterization ofregular languages by congruences 
of finite index by Myhill [90] and Nerode [91]. 

Regular languages and finite automata have had a wide range of appli
cations. Their most celebrated application has been lexical analysis in pro
gramming language compilation and user-interface translations [1, 2]. Other 
notable applications include circuit design [21], text editing, and pattern 
matching [70]. Their application in the recent years has been further ex
tended to include parallel processing [3, 37, 50], image generation and com
pression [9, 28, 29, 33, 116]' type theory for object-oriented languages [92], 
DNA computing [31, 53], etc. 

Since the late seventies, many have believed that everything of inter
est about regular languages is known except for a few very hard problems, 
which could be exemplified by the six open problems Brzozowski presented 
at the International Symposium on Formal Language Theory in 1979 [18]. It 
appeared that not much further work could be done on regular languages. 
However, contrary to the widespread belief, many new and interesting results 
on regular languages have kept coming out in the last fifteen years. Besides 
the fact that three of the six open problems, i.e., the restricted star height 
problem [52], the regularity of noncounting classes problem [36], and the op
timality of prefix codes problem [117], have been solved, there have also been 
many other interesting new results [65, 82, 102, 111, 120, 124], which include 
results on measuring or quantifying operations on regular languages. For ex
ample, it is shown in [65] that the the "DFA to minimal NFA" problem is 
PSPACE-complete. 

There is a huge amount of established research on regular languages over 
the span of a half century. One can find a long list of excellent books that 
include chapters dedicated to regular languages, e.g., [54, 106,84,41,57, 107, 
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123, 98]. Many results, including many recent results, on regular languages 
are considered to be highly important and very interesting. However, only 
a few of them can be included in this chapter. In choosing the material for 
the chapter, besides the very basic results, we tend to select those relatively 
recent results that are of general interest and have not been included in the 
standard texts. We choose, for instance, some basic results on alternating 
finite automata and complexities of operations on regular languages. 

This chapter contains the following five sections: 1. Preliminaries, 2. Finite 
Automata, 3. Regular Expressions, 4. Properties of Regular Languages, and 
5. Complexity Issues. 

In the first section, we give basic notations and definitions. 
In Section 2, we describe three basic types of finite automata: determinis

tic finite automata, nondeterministic finite automata, and alternating finite 
automata. We show that the above three models accept exactly the same 
family of languages. Alternating finite automata are a natural and succinct 
representation of regular languages. A particularly nice feature of alternat
ing finite automata is that they are backwards deterministic and, thus, can 
be used practically [50]. We also describe briefly several models of finite au
tomata with output, which include Moore machines, Mealy machines, and 
finite transducers. Finite transducers are used later in Section 4 for proving 
various closure properties of regular languages. 

In Section 3, we define regular expressions and describe the transformation 
between regular expressions and finite automata. We present the well-known 
star height problem and the extended star height problem. At the end of the 
section, we give a characterization of regular languages having a polynomial 
density using regular expressions of a special form. 

In Section 4, we describe four pumping lemmas for regular languages. 
The first two give necessary conditions for regularity; and the other two give 
both sufficient and necessary conditions for regularity. All the four lemmas 
are stated in a simple and understandable form. We give example languages 
that satisfy the first two pumping conditions but are nonregular. We show 
that there are uncountably many such languages. In this section, we also dis
cuss various closure properties of regular languages. We describe the Myhill
Nerode Theorem and discuss minimization of DFA as well as AFA. We also 
give a lower bound on the number of states of an NFA accepting a given 
language. 

In the final section, we discuss two kinds of complexity issues. The first 
kind considers the number of states of a minimal DFA for a language re
sulting from some operation, as a function of the numbers of states for the 
operand languages. This function is called the state complexity of the opera
tion. We describe the state complexity for several basic operations on regular 
languages. The state complexity gives a clear and objective measurement for 
each operation. It also gives a lower bound on the time required for the oper
ation. The second kind of complexity issue that we consider is the time and 
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space complexity of various problems for finite automata and regular expres
sions. We list a number of problems, mostly decision problems, together with 
their time or space complexity to conclude the section as well as the chapter. 

1. Preliminaries 

An alphabet is a finite nonempty set of symbols. A word or a string over an 
alphabet E is a finite sequence of symbols taken from E. The empty word, 
i.e., the word containing zero symbols, is denoted A. In this chapter, a, b, c, 
0, and 1 are used to denote symbols, while u, v, W, x, y, and z are used to 
denote words. 

The catenation of two words is the word formed by juxtaposing the two 
words together, i.e., writing the first word immediately followed by the second 
word, with no space in between. Let E = {a, b} be an alphabet and x = aab 
and y = ab be two words over E. Then the catenation of x and y, denoted 
xy, is aabab. 

Denote by E* the set of all words over the alphabet E. Note that E* is 
a free monoid with catenation being the associative binary operation and A 
being the identity element. So, we have 

AX = XA = x 

for each x E E*. The length of a word x, denoted lxi, is the number of 
occurrences of symbols in x. 

Let n be a nonnegative integer and x a word over an alphabet E. Then 
xn is a word over E defined by 

(i) xO = A, 
(ii) xn = xxn- I , for n > 0. 

Let x = al ... an, n :::: 0, be a word over E. The reversal of x, denoted 
xR, is the word an ... al. Formally, it is defined inductively by 

(i) x R = x, if x = Aj 
(ii) x R = yRa, if x = ay for a E E and y E E*. 

Let x and y be two words over E. We say that x is a prefix of y if there 
exists z E E* such that xz = y. Similarly, x is a suffix of y if there exists 
z E E* such that zx = y, and x is a subword of y if there exist u, v E E* 
such that 'uxv = y, 

A language Lover E is a set of words over E. The empty language is 
denoted 0. The universal language over E, which is the language consisting 
of all words over E, is E*, For a language L, we denote by ILl the cardinality 
of L. 

The catenation of two languages L I , L2 ~ E*, denoted LI L 2 , is the set 

LIL2 = {WIW2 I WI ELI and W2 E L2 }. 
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For an integer n :::: 0 and a language L, the nth power of L, denoted Ln, is 
defined by 

(i) LO = {A}, 
(ii) Ln = Ln-l L, for n > o. 

The star (Kleene closure) of a language L, denoted L*, is the set 

00 

Similarly, we define 
00 

Then, the notation E* is consistent with the above definition. The reversal 
of a language L, denoted LR, is the set 

Note that we often denote a singleton language, i.e., a language containing 
exactly one word, by the word itself when no confusion will be caused. For 
example, by xLy, where x,y E E* and L ~ E*, we mean {x}L{y}. 

Let E and .:1 be two finite alphabets. A mapping h : E* -+ .:1* is called 
a murphism if 

(1) h(A) = A and 
(2) h(xy) = h(:c)h(y) for all x,y E E*. 

Note that condition (1) follows from condition (2), Therefore, condition (1) 
can be deleted. 

For a set S, let 2s denote the power set of S, i.e., the collection of all 
subsets of S. A mapping rp : E* -+ 2,1' is called a substitutiun if 

(1) rp(A) = {A} and 
(2) rp(xy) = rp(x)rp(y). 

Clearly, a morphism is a special kind of substitution where each word is as
sociated with a singleton set. Note that because of the second condition of 
the definition, morphisms and substitutions are usually defined by specify
ing only the image of each letter in E under the mapping. We extend the 
definitions of hand rp, respectively, to define 

h(L) = {hew) I wE L} 

and 
rp(L) = U rp(w) 

wEL 

for L ~ E*. 
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Example 1.1. Let E = {a,b,c} and..1 = {0,1}. We define a morphism h: 
E* -+..1* by 

h(a) = 01, h(b) = 1, h(c) = A. 

Then, h(baca) = 10101. We define a substitution ep: E* -+ 2-d" by 

ep(a) = {01,001}, ep(b) = {Ii Ii> O}, ep(c) = {A}. 

Then, ep(baca) = {li0101, 1i01001, 1iOO101, 1i001001 Ii> O}. o 

A morphism h : E* -+ ..1* is said to be A-free if h(a) =I A for all a E E. 
A substitution ep : E* -+ 2-d" is said to be A-free if A ¢ ep(a) for all a E E. 
And ep is called a finite substitution if, for each a E E, ep( a) is a finite subset 
of ..1*. 

Let h : E* -+ ..1* be a morphism. The inverse of the morphism h is a 
mapping h-1 : ..1* -+ 217" defined by, for each y E ..1*, 

h-1(y) = {x E E* I hex) = y}. 

Similarly, for a substitution ep : E* -+ 2-d" , the inverse of the substitution ep 
is a mapping ep-l : ..1* -+ 217" defined by, for each y E ..1*, 

ep-l(y) = {x E E* lyE ep(x)}. 

2. Finite automata 

In formal language theory in general, there are two major types of mechanisms 
for defining languages: acceptors and generators. For regular languages in 
particular, the acceptors are finite automata and the generators are regular 
expressions and right (left) linear grammars, etc. 

In this section, we describe three types of finite automata (FA): determin
istic finite automata (DFA) , nondeterministic finite automata (NFA) , and 
alternating finite automata (AFA). We show that all the three types of ab
stract machines accept exactly the same family of languages. We describe the 
basic operations of union, intersection, catenation, and complementation on 
the family of languages implemented using these different mechanisms. 

2.1 Deterministic finite automata 

A finite automaton consists of a finite set of internal states and a set of 
rules that govern the change of the current state when reading a given input 
symbol. If the next state is always uniquely determined by the current state 
and the current input symbol, we say that the automaton is deterministic. 

As an informal explanation, we consider the following example 1 . Let Ao be 
an automaton that reads strings of O's and l's and recognizes those strings 

1 A similar example is given in [98]. 
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which, as binary numbers, are congruent to 2 (mod 3). We use V3(X) to 
denote the value, modulo 3, of the binary string x. For example, v(lOO) = 1 
and v3(1011) = 2. Consider an arbitrary input string w = al ... an to Ao 
where each ai, 1 :'S; i :'S; n, is either 0 or 1. It is clear that for each i, 1 :'S; i :'S; n, 
the string al ... ai falls into one of the three cases: (0) v3(al ... ai) = 0, (1) 
v3(al ... ai) = 1 and (2) v3(al ... ai) = 2. No other cases are possible. So, 
AD needs only three states which correspond to the above three cases (and 
the initial state corresponds to the case (0)). We name those three states (0), 
(1), and (2), respectively. The rules that govern the state changes should be 
defined accordingly. Note that 

v3(al ... ai+t) == 2 * v3(al'" ai) + ai+l (mod 3). 

So, ifthe current state is (1) and the current input symbol is 1, then the next 
state is (0) since 2 * 1 + 1 == 0 (mod 3). The states and their transition rules 
are shown in Figure 1. 
Clearly, each step of state transition is uniquely determined by the current 
state and the current input symbol. We distinguish state (2) as the final state 
and define that AD accepts an input w if AD is in state (2) after reading the 
last symbol of w. AD is an example of a deterministic finite automaton. 

Formally, we define a deterministic finite automaton as follows: 
A deterministic finite automaton (DFA) A is a quintuple (Q, E, 8, s, F), 

where 
Q is the finite set of states; 
E is the input alphabet; 
8 : Q x E -- Q is the state transition function; 
sEQ is the starting state; and 
F ~ Q is the set of final states. 

Note that, in general, we do not require the transition function 8 to be total, 
i.e., to be defined for every pair in Q x E. If 8 is total, then we call A a 
complete IJFJ1. 

In the above definition, we also do not require that a DFA is connected 
if we view a DFA as a directed graph where states are nodes and transitions 
between states are arcs between nodes. A DFA such that every state is reach
able from the starting state and reaches a final state is called a reduced DFA. 
A reduced DFA may not be a complete DFA. 

Fig. 1. The states and transition rules of Ao 
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Example 2.1. A DFA Al = (Q1, L\, 81 , Sl, Fd is shown in Figure 2, where 
Q1 = {O, 1,2,3}, 171 = {a,b}, sl = 0, F1 = {3}, and 81 is defined as follows: 

81(0,a) = 1, 
81 (1,a) = 1, 
81(2,a) = 1, 
81 (3, a) = 3, 

8l (0,b) = 0, 
81 (1,b) = 2, 
8l (2,b) = 3, 
81(3, b) =3. 

The DFA Al is reduced and complete. Note that in a state transition diagram, 
we always represent final states with double circles and non-final states with 
single circles. D 

A configuration of A = (Q, 17,8, s, F) is a word in Q17*, i.e., a state q E Q 
followed by a word x E 17* where q is the current state of A and x is the 
remaining part of the input. The starting configuration of A for an input 
word x E 17* is sx. Accepting configurations are defined to be elements of F 
(followed by the empty word ).). 

A computation step of A is a transition from a configuration 0: to a con
figuration (3, denoted by 0: f- A (3, where f- A is a binary relation on the set of 
configurations of A. The relation f- A is defined by: for px, qy E Q 17* , px f- A qy 
if x = ay for some a E 17 and 8(p, a) = q. For example, Oabb f- Al 1bb for the 
DFA AI. We use f- instead of f- A if there is no confusion. The kth power of f-, 
denoted f-k, is defined by 0: f-o 0: for all configurations 0: E Q 17*; and 0: f-k (3, 
for k > 0 and 0:, (3 E Q 17*, if there exists "Y E Q 17* such that 0: f-k-l "Y and 
"Y f- (3. The transitive closure and the reflexive and transitive closure of f- are 
denoted f-+ and f-*, respectively. 

A configuration sequence of A is a sequence of configurations C l , ... , Cn, 
of A, for some n :2 1, such that Ci f- A CHI for each i, 1 :::; i :::; n - 1. A 
configuration sequence is said to be an accepting configuration sequence if it 
starts with a starting configuration and ends with an accepting configuration. 

The language accepted by a DFA A = (Q, 17, 8, s, F), denoted L(A), is 
defined as follows: 

L(A) = { w I sw f-* f for some f E F }. 

For convenience, we define the extension of 8,8* : Qx17* -> Q, inductively 
as follows. We set 8*(q,).) = q and 8*(q, xa) = 8(8*(q, x), a), for q E Q, a E 17, 
and x E 17*. Then, we can also write 

b a a, b 

Fig. 2. A deterministic finite automaton Al 
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L(A) = {w 18*(s,w) = f for some f E F}. 

The collection of all languages accepted by DFA is denoted £DFA. We 
call it the family of DFA languages. We will show later that the families 
of languages accepted by deterministic, nondeterministic, and alternating fi
nite automata are the same. This family is again the same as the family of 
languages denoted by regular expressions. It is called the family of regular 
languages. 

In the remaining of this subsection, we state several basic properties of 
DFA languages. More properties of DFA languages can be found in Section 4 .. 

Lemma 2.1. For each L E £DFA, there is a complete DFA that accepts L. 

Proof. Let L E £DFA. Then there is a DFA A = (Q, E, 8, s, F) such that 
L = L(A). If A is complete, then we are done. Otherwise, we construct a 
DFA A' which is the same as A except that there is one more state d and 
all transitions undefined in A go to d in A'. More precisely, we define A' = 
(Q', E, 8', s, F) such that Q' = Q U {d}, where d f/. Q, and 8' : Q' X E --. Q' 
is defined by 

8'( a) = { 8(p, a), if 8(p, a) is defined; 
p, d, otherwise 

for p E Q' and a E E. It is clear that the new state d and the new state 
transitions do not change the acceptance of a word. Therefore, L(A) = L(A'). 

o 

Theorem 2.1. The family of DFA languages, £DFA, is closed under union 
and intersection. 

Proof. Let L 1 , L2 ~ E* be two arbitrary DFA languages such that Ll = 
L(At} and L2 = L(A2) for some complete DFA Al = (Ql, E, 81, SI, F1 ) and 
A2 = (Q2, E, 82 , S2, F2). 

First, we show that there exists a DFA A such that L(A) = Ll U L 2. We 
construct A = (Q, E, 8, s, F) as follows: 

Q = Ql X Q2, 
I:j = (SI' S2), 
F = (Fl x Q2) U (Ql x F2), and 
8: Ql x Q2 --. Ql X Q2 is defined by 8((pl,P2),a) = (81(pl,a),82(p2,a)). 

The intuitive idea of the construction is that, for each input word, A runs 
Al and A2 in parallel, starting from both the starting states. Having finished 
reading the input word, A accepts the word if either Al or A2 accepts it. 
Therefore, L(A) = L(At} U L(A2). 

For intersection, the construction is the same except that F = Fl X F2. 
o 

Note that, in the above proof, the condition that Al and A2 are complete 
is not necessary in the case of intersection. However, if either Al or A2 is 
incomplete, the resulting automaton is incomplete. 
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Theorem 2.2. £DFA is closed under complementation. 

Proof. Let L E £DFA. By Lemma 2.1, there is a complete DFA A = 
(Q, E, 8, s, F) such that L = L(A). Then, clearly, the complement of L, de
noted L, is accepted by A = (Q, E, 8, s, Q - F). 0 

2.2 Nondeterministic finite automata 

Nondeterministic finite automata (NFA) are a generalization of DFA where, 
for a given state and an input symbol, the number of possible transitions 
can be greater than one. An NFA is shown in Figure 3, where there are two 
possible transitions for state 0 and input symbol a: to state 0 or to state 1. 

Formally, a nondeterministic finite automaton A is a quintuple (Q, E, 8, s, 
F) where Q, E, s, and F are defined exactly the same way as for a DFA, and 
8 : Q x E --+ 2Q is the transition function, where 2Q denotes the power set 
of Q. 

For example, the transition function for the NFA A2 of Figure 3 is the 
following: 

8(0,a) = {O,l}, 
8(1, a) = 0, 
8(2, a) = 0, 
8(3, a) = {3}, 

8(0, b) = {O}, 
8(1, b) = {2}, 
8(2, b) = {3}, 
8(3, b) = {3}. 

A DFA can be considered an NFA, where each value of the transition function 
is either a singleton or the empty set. 

The computation relation f-A: QE' x QE' of an NFA A is defined by 
setting px f- A qy if x = ay and q E 8(p, a) for p, q E Q, x, Y E E', and a E E. 
Then the language accepted by A is 

L(A) = { w I sw f-~ j, for some j E F }. 

Two automata are said to be equivalent if they accept exactly the same 
language. The NFA A2 which is shown in Figure 3 accepts exactly the same 
language as Al of Figure 2. Thus, A2 is equivalent to A 1 . 

Denote by £NFA the family oflanguages accepted by NFA. We show that 
£DFA = £NFA' 

Fig. 3. A nondeterministic finite automaton A2 
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Lemma 2.2. For each NFA A of n states, there exists a complete DFA A' 
of at most 2n states such that L(A') = L(A). 

Proof. Let A = (Q,E,8,s,F) be an NFA such that IQI = n. We construct a 
DFA A' such that each state of A' is a subset of Q and the transition function 
is defined accordingly. More precisely, we define A' = (Q', E, 8', s', F') where 
Q' = 2Q; 8' : Q' x E --+ Q' is defined by, for Pl, P2 E Q' and a E E, 
6'(Pl , a) = P2 if 

P2 = {q E Q I there existsp E Pl such that q E 6(p,a)}; 

s' = {s}; and F' = {P E Q' I P n F =I- 0}. Note that A' has 2n states. 
In order to show that L(A) = L(A'), we first prove the following claim. 

Claim. For an arbitrary word x E E*, sx f-~ p, for some p E Q, if and only 
if s'x f-~, P for some P E Q' (i.e., P ~ Q) such that pEP. 

We prove the claim by induction on t, the number of transitions. If t = 0, 
then the statement is trivially true since s' = {s}. We hypothesize that the 
statement is true for t - 1, t > o. Now consider the case of t, t > o. Let 
x = xoa, Xo E E* and a E E, and sxoa f-tl qa f- A P for some p, q E Q. 
Then, by the induction hypothesis, s' Xo f-~--;- P' for some P' E Q' such that 
q E P'. Since p E 6(q,a), we have 8'(P', a) = P for some P E Q' such that 
pEP by the definition of 6'. So, we have s'x f-~--;-l P'a f-A' P and pEP. 
Conversely, let s'xoa f-~l P'a f-A' P and pEP. Then 6'(P',a) = P and, 
therefore, there exists p' E P' such that p E 6(p', a) by the definition of 6'. 
By the induction hypothesis, we have sXo f-~-l p'. Thus, sx f-~-l p'a f- A p. 
This completes the proof of the claim. 

Due to the above claim, we have sw f-A f, for some f E F, if and only if 
s'w f-A' P, for some P E Q', such that P n F =I- 0, i.e., P E F'. Therefore, 
L(A) = L(A'). 0 

The method used above is called the subset construction. In the worst case, 
all the subsets of Q are necessary. Then the resulting DFA would consist of 
2n states if n is the number of states of the corresponding NFA. Note that if 
the resulting DFA is not required to be a complete DFA, the empty subset 
of Q is not needed. So, the resulting DFA consists of 2n - 1 states in the 
worst case. In Section 5., we will show that such cases exist. However, in 
most cases, not all the subsets are necessary. Thus, it suffices to construct 
only those subsets that are reachable from {s}. As an example, we construct 
a DFA A6 which is equivalent to NFA A2 of Figure 3 as follows: 

State a b 
{O} {O,l} {O} 
{O,l} {O,l} {0,2} 
{0,2} {O,l} {0,3} 
{0,3} {0,1,3} {0,3} 
{O, 1, 3} {O, 1, 3} {O, 2, 3} 
{O, 2, 3} {O, 1, 3} {0,3} 
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Fig. 4. A DFA A6 equivalent to NFA A2 

The state transition diagram for A6 is shown in Figure 4. Only six out of the 
total sixteen subsets are used in the above example. The other ten subsets 
of {O, 1,2, 3} are not reachable from {O} and, therefore, useless. Note that 
the resulting DFA can be further minimized into one of only four states. 
Minimization of DFA is one of the topics in Section 4. 

NFA can be further generalized to have state transitions without reading 
any input symbol. Such transitions are called A-transitions in the following 
definition. 

A nondeterministic finite automaton with A-transitions (A-NFA) A is a 
quintuple (Q, E, 8, s, F) where Q, E, s, and F are the same as for an NFA; 
and 8 : Q x (E U {A}) --+ 2Q is the transition function. 

Figure 5 shows the transition diagram of a A-NFA, where the transition 
function 8 can also be written as follows: 

8(0, a) = {O}, 
8(1,b) = {l}, 
8(2, c) = {2}. 

and 8(q,X) = 0 in all other cases. 

8(0,).) = {I}, 
8(1,).) = {2}, 

For a ).-NFA A = (Q,E,8,s,F), the binary relation f- A : QE* x QE* is 
defined by that px f- A qy, for p, q E Q and x, y E E*, if x = ay and q E 8(p, a) 
or if x = y and q E 8 (p, ).). The language accepted by A is again defined as 

L(A) = {w I sw f-A J, for some J E F}. 

Fig. 5. A >..-NFA A3 
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For example, the language accepted by A3 of Figure 5 is 

We will show that for each A-NFA, there exists an NFA that accepts 
exactly the same language. First, we give the following definition. 

Let A = (Q, E, 8, s, F) be a A-NFA. The A-closure of a state q E Q, 
denoted >.-closure(q), is the set of all states that are reachable from q by zero 
or more >.-transitions, i.e., 

>.-closure(q) = {p E Q I q f-A p }. 

Theorem 2.3. For each >.-NFA A, there exists an NFA A' such that L(A) = 
L(A'). 

Proof. Let A = (Q,E,8,s,F) be a >'-NFA. We construct an NFA A' = 
(Q, E, 8', s, F') where for each q E Q and a E E, 

8'(p, a) = 8(p, a) U u 8(q,a) , 

qE>'-closure(p) 

and 
F' = {q I >.-closure(q) n F =f. 0 }. 

The reader can verify that L(A) = L(A'). 0 
Consider >.-NFA A3 which is shown in Figure 5. We have >'-closure(O) = 

{O, 1, 2}, >.-closure(l) = {I, 2}, and >.-closure(2) = {2}. An equivalent NFA is 
shown in Figure 6, which is obtained by following the construction specified 
in the above proof. 

Let Ml = (Ql,E,81,Sl,Fd and M2 = (Q2,E,82,S2,F2 ) be two >.-NFA 
and assume that Ql n Q2 = 0. Then it is straightforward to construct >.
NFA Ml +M2, M1M2 , and Mi such that L(MI +M2) = L(MI) u L(M2)' 
L(M1M 2) = L(Ml)L(M2)' and L(Mi) = (L(MI))*, respectively. The con
structions are illustrated by the diagrams in Figure 7. Formal definitions of 
the >.-NFA are listed below: 

Fig. 6. An NFA A~ 
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<{J M] 

~O 
M2 

(a) Union 

0 A 

M] A 

M]~ 

(b) Catenation 

(c) Star 

0) 

0) 

0) 

0) 

M2 

0) 

o 

M+M 

0) 

0) 

Fig. 7. Union, Catenation, and Star operations on A-NFA 

• Union Ml+M2 = (Q,E,8,s,F) such that L(M1+M2) = L(M1 ) UL(M2)' 
where Q = Q1 U Q2 U is}, s fj. Q1 U Q2, F = F1 U F2, and 

8(S,A) = {Sl,S2}, 
8(q,a) = 81(q,a) if q E Q1 and a E E U {A}, 
8(q, a) = 82(q, a) if q E Q2 and a E E U {A}. 

• Catenation M1M2 = (Q, E, 8, s, F) such that L(M1M2) = L(M1)L(M2), 
where Q = Q1 UQ2, S = Sl, F = F2, and 

8(q,a) = 81(q,a) if q E Q1 and a E E or q E Ql - Fl and a = A, 
8(q,A) = 81(q,A) U {S2} if q E F1, 
8(q, a) = 82(q, a) if q E Q2 and a E E U {A}. 

• Star Mi = (Q,E,8,s,F) such that L(Mi) = (L(Mt))*, where Q = Q1 U 
is}, s fj. Qb F = Fl U is}, and 

8(s, A) = {Sl}, 
8(q,A) = 8l (q,A) U {stl if q E Fl , 
8(q, a) = 81(q, a) if q E Ql and a E E or q E Ql - Fl and a = A. 
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Intersection and complementation are more convenient to do using the DFA 
representation. 

Another form of generalization of NFA is defined in the following. 
A NFA with nondeterministic starting state (NNFA) A = (Q,E,8,S,F) 

is an NFA except that there is a set of starting states S rather than exactly 
one starting state. Thus, for an input word, the computation of A starts from 
a nondeterministic ally chosen starting state. 

Clearly, for each NNFA A, we can construct an equivalent A-NFA A' by 
adding to A a new state s and a A-transition from s to each of the starting 
states in S, and defining s to be the starting state of A'. Thus, NNFA accept 
exactly the same family of languages as NFA (or DFA or A-NFA). Each 
NNFA can also be transformed directly to an equivalent DFA using a subset 
construction, which is similar to the one for transforming an NFA to a DFA 
except that the starting state of the resulting DFA is the set of all the starting 
states of the NNFA. So, we have the following: 

Theorem 2.4. For each NNFA A of n states, we can construct an equivalent 
DFA A' of at most 2n states. D 

Each NNFA has a matrix representation defined as follows [107]: Let A = 
(Q, E, 8, S, F) be an NNFA and assume that Q = {ql, q2,"" qn}. A mapping 
h of E into the set of n x n Boolean matrices is defined by setting the (i,j)th 
entry in the matrix h(a), a E E, to be 1 if qj E 8(qi' a), i.e., there is an 
a- transition from qi to qj. We extend the domain of h from E to E* by 

h(w) = { ~(wo)h(a) if w = A, 
if w = woa, 

where I is the n x n identity matrix and the juxtaposition of two matrices 
denotes the multiplication of the two Boolean matrices, where 1\ and V are 
the basic operations. A row vector 7r of n entries is defined by setting the ith 
entry to 1 if qi E S. A column vector ( of n entries is defined by setting the 
ith entry to 1 if qi E F. The following theorem has been proved in [107]. 

Theorem 2.5. Let wE E*. Then wE L(A) if and only if7rh(w)( = 1. D 

2.3 Alternating finite automata 

The notion of alternation is a natural generalization of nondeterminism. It 
received its first formal treatment by Chandra, Kozen, and Stockmeyer in 
1976 [22, 23, 71]. Various types of alternating Turing machines (ATM) and 
alternating pushdown machines and their relationship to complexity classes 
have been studied [24, 37, 61, 62, 79, 72, 94, 103, 38, 55]. Such machines are 
useful for a better understanding of many questions in complexity theory. For 
alternating finite automata (AFA - not to be confused with abstract families 
of acceptors defined in [47]), it is proved in [23] that they are precisely as 
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powerful as deterministic finite automata as far as language recognition is 
concerned. It is also shown in [23] that there exist k-state AFA such that any 

equivalent complete DFA has at least 22k states. A more detailed treatment 
of alternating finite automata and their operations can be found in [45]. 

The study of Boolean automata was initiated by Brzozowski and Leiss [19] 
at almost the same time period as AFA were introduced. Boolean automata 
are essentially AFA except that they allow multiple initial states instead of 
exactly one initial state in the case of an AFA. In that seminal paper, they also 
introduced a new type of system of language equations, which can be used 
to give a clear and comprehensible representation of a Boolean automaton. 
Boolean automata and the systems of language equations have been further 
studied in [73, 75, 76, 77]. 

In the following, we will describe results obtained from both of the above 
mentioned sources. However, we will use only the term alternating finite au
tomaton (AFA). Our basic definitions of AFA follow those in [23]. The equa
tional representation is from [19, 44], and the operations of AFA are from 
[45]. 

2.3.1 AFA - the definition 
AFA are a natural extension of NFA. In an NFA, if there are two or more 
possible transitions for the current state and the current input symbol, the 
outcomes of all the possible computations for the remaining input word are 
logically ORed. Consider the NFA A4 shown in Figure 8 with the input abbb. 
When starting at state 0 and reading a, the automaton has two possible 
moves: to state 1 or to state 2. If we denote by a Boolean variable Xo whether 
there is a successful computation for abbb from state 0, and by Xl and X2 

whether there is a successful computation for the remaining of the input bbb 
from state 1 and state 2, respectively, then the relation of the computations 
can be described by the equation 

Xo = Xl V X2. 

Fig. 8. An NFA A4 
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This relation, represented by the equation, captures the essence of non deter
minism. The definition of AFA extends this idea and allows arbitrary Boolean 
operations in place of the "v" operation. For example, we may specify that 

Xo = (-,xd /\ X2· 

It means that there is a successful computation for abbb from state 0 if and 
only if there is no successful computation for bbb from state 1 and there is a 
successful computation for bbb from state 2. 

More specifically, an AFA works in the following way: When the automa
ton reads an input symbol a in a given state q, it will activate all states of 
the automaton to work on the remaining part of the input in parallel. Once 
the states have completed their tasks, q will compute its value by applying 
a Boolean function on those results and pass on the resulting value to the 
state by which it was activated. A word w is accepted if the starting state 
computes the value of 1. It is rejected otherwise. We now formalize this idea. 

Denote by the symbol B the two-element Boolean algebra B = ({ 0, I}, V, 
/\, -', 0,1). Let Q be a set. Then BQ is the set of all mappings of Q into B. 
Note that u E BQ can be considered as a vector of IQI entries, indexed by 
elements of Q, with each entry being from B. For u E BQ and q E Q, we 
write u q to denote the image of q under 'U. If P is a subset of Q then ulp is 
the restriction of u to P. 

An alternating finite automaton (AF A) is a quintuple A = (Q, E, s, F, g) 
where 

Q is the finite set of states; 
E is the input alphabet; 
sEQ is the starting state; 
F ~ Q is the set of final states; 
9 is a function of Q into the set of all functions of E x BQ into B. 

Note that for each state q E Q, g(q) is a function from E x BQ into B, which 
we will often denote by gq in the sequel. For each state q E Q and a E E, we 
define gq (a) to be the Boolean function BQ -+ B such that 

gq(a)(u) = gq(a, u), u E BQ. 

Thus, for u E BQ, the value of gq(a)(u), also gq(a,'u), is either 1 or O. 
We define the function gQ : E X BQ -+ BQ by putting together the IQI 

functions gq : Ex BQ -+ B, q E Q, as follows. For a E E and u, v E BQ, 
gQ(a, u) = v if and only if gq(a, u) = Vq for each q E Q. For convenience, we 
will write g(a, u) instead of gq(a, u) in the following. 

Example 2.2. We define an AFA A5 = (Q,E,s,F,g) where Q = {qO,ql,q2}, 
E = {a,b}, s = qo, F = {q2}, and 9 is given by 

State a b 
qo ql /\ q2 0 
ql q2 ql /\ q2 
q2 ql /\ q2 ql V q2 
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Note that we use 7j instead of -'q for convenience. 0 

We define j E BQ by the condition 

jq = 1 ¢:::::} q E F, 

and we call j the characteristic vector of F. The characteristic vector for F 
of A5 is j = (jqO' jq" jq2) = (0,0,1). 

We extend 9 to a function of Q into the set of all functions E* x BQ --+ B 
as follows: 

( ) { 
Uq, if w = A, 

gqW,'U = gq(a,g(w',u)), ifw=aw'withaEEandw'EE*, 

where w E E* and U E BQ. 
N ow we define the acceptance of a word and the acceptance of a language 

by an AFA. 
Let A = (Q, E, s, F, g) be an AFA. A word wE E* is accepted by A if and 

only if gs(w, 1) = 1, where j is the characteristic vector of F. The language 
accepted by A is the set 

L(A) = {w E E* I gs(w,1) = 1}. 

Let w = aba. Then w is accepted by A5 of Example 2.2 as follows: 
gqo(aba, 1) 
gq1 (ba, 1) /\ gq2 (ba, 1) 
(gq, (a, 1) /\ gq2 (a, 1)) /\ (gq, (a, 1) V gq2 (a, 1)) 
(gq2 (A, 1) /\ (gq, (A, 1) /\ gq2 (A, 1))) /\ (gq2 (A, 1)V 

gq, (A, 1) /\ gq2 (A, 1)) 
(jq2 /\ (jq, /\ jq2)) /\ (jq2 V jq, /\ jq2) 
(1/\ (0/\ 1)) /\ (1 VO/\ 1) 
1 

If we denote each U E BQ by a vector (uqO ' U q" uq2 ) and write j = (0,0,1), 
then we can rewrite the above: 

gqo(aba, 1) 
gqo(a, g(ba, 1)) 
gqO (a, g(b, g(a, 1))) 
gqo(a,g(b,g(a, (0,0, 1)))) 
gqo(a,g(b, (0, 1, 1))) 
gqo(a, (0, 1, 1)) 
1 
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2.3.2 Systems of equations - representations of AFA 
Consider again the example of AFA A5 • We may use the following system of 
equations instead of a table to represent the transitions of A5: 

a· (Xl t\ X2) + b· 0 
a . X 2 + b . (Xl t\ X 2 ) 

a· (Xl t\ X 2 ) + b· (Xl V X 2 ) + ). 

where a variable Xi represents state qi, 0 ~ i ~ 2, respectively; and), ap
pearing in the third equation specifies that q2 is a final state. 

(1) 

In general, an AFA A = (Q, E, s, F, g) can be represented by 

Xq = La. gq(a, X) + Cq , q E Q 
aEE 

where X is the vector of variables X q , q E Q, and 

{ ). if q E F, 
Cq = 0 otherwise, 

for each q E Q. Note that all the terms of the form a· 0 or 0, a E E, can be 
omitted. 

For each AFA A, we call such a system of equations the equational repre
sentation of A. At this moment, we consider the system of equations solely 
as an alternative form to present the definition of an AFA. 

by 
NFA are a special case of AFA. The NFA A2 of Figure 3 can be represented 

= a· (Xo V Xd + b . Xo 
b,X2 

= b,X3 
a . X3 + b . X3 + ). 

Let E be an alphabet. We define the L-interpretation as follows: 

Notation Interpretation 
0 0 
1 E* 
t\ n 
V U 
-, complement 

a, a E E {a} 
). {.x} 

set catenation 

+ U 
language equivalence 



Regular Languages 59 

Under this interpretation, the systems of equations defined above become 
systems of language equations. Systems of language equations of a different 
form were studied by Salomaa in [106]' where the operations are restricted to 
catenation, union, and star. The systems of language equations we are con
sidering can be viewed as an extension of the systems of language equations 
of Salomaa. 

Formally, a system of language equations over an alphabet E is a system 
of equations of the following form under the L-interpretation: 

(2) Xi=La·fi(a)(X)+Ci, i=O, ... ,n 
aEE 

for some n 2: 0, where X = (Xo, ... ,Xn ); for each a E E and i E {O, ... ,n}, 
fi(a\X) is a Boolean function; and Ci = >. or 0. 

The following result has been proved in [19]. 

Theorem 2.6. Any system of language equations of the form (2.3.2) has a 
unique solution for each Xi, i = 0, ... ,n. Furthermore, the solution for each 
Xi is regular. 0 

The following results can be found in [44]. 

Theorem 2.7. Let A be an AFA and E the equational representation of A. 
Assume that the variable Xo corresponds to the starting state of A. Then the 
solution for X ° in E under the L-interpretation is exactly L( A) . 0 

Theorem 2.8. For each system of language equations of the form (2.3.2), 
there is an AFA A such that the solution for Xo is equal to L(A). 0 

It is easy to observe that an AFA is a DFA if and only if each function 
gq (a, X), q E Q and a E E, in its equational representation (2.3.2) is either 
a single variable or empty. An AFA is an NFA if and only if each function in 
its equational representation (2.3.2) is defined using only the V operation. 

Such systems of language equations and their solutions have been further 
studied in [74, 76, 77]. Naturally, one may view that each such system of 
language equations corresponds directly to a set of solutions in the form of 
extended regular expressions (which will be defined in Section 3.4). However, 
it remains open how we can solve such a general system of language equations 
by directly manipulating extended regular expressions without resorting to 
transformations of the corresponding AFA. 

2.3.3 Normal forms 
The following results have been proved in [45]. 

Theorem 2.9. For any k-state AFA A, k > 0, there exists an equivalent 
k-state AFA A' with at most one final state. More precisely, A' has no final 
state if >. ~ L(A) and A' has one final state otherwise. In the latter case, the 
starting state is the unique final state. 0 
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The proof of this theorem relies on the usage of the negation operation in 
AFA. 

Theorem 2.10. For each AFA A = (Q,E,s,F,g), one can construct an 
equivalent AFA A' = (Q',E,s',F',g') with IQ'I ::; 21QI such that g~(a) is 
defined with only the 1\ and V operations, for each q E Q' and a E E. In 
other words, A' is an AFA without negations. 0 

Theorem 2.11. Let A be a k-state AFA without negations. One can con
struct an equivalent (k + 1)-state AFA without negations that has one final 
state if A ¢ L(A) and at most two final states otherwise. 0 

In the following, we define a special type of AFA, which we call an s-AFA. 
An s-AFA A = (Q,E,s,F,g) is an AFA such that the value of gq(a), 

for any q E Q and a E E, does not depend on the status of s, that is, in 
the equational representation of A, the variable Xs does not appear on the 
righthand side of any equation. 

Example 2.3. The following is an equational representation of a 4-state s
AFA which accepts all words over {a, b} that do not contain 6 consecutive 
occurrences of a. We use the convention that the operator 1\ has precedence 
over V. 

{ 
Xo = a· (Xl V X 2 ) + b . (Xl V X2 V X 3 ) + A, 
Xl = a· (Xl V X2 1\ X 3 ) + b . (Xl 1\ X 2 1\ X 3 ), 

X 2 = a· (Xl 1\ X2 V X2 1\ X3 V X 2 1\ X 3 ) + b . (Xl 1\ X2 1\ X 3 ), 

X3 = a· (Xl 1\ X 2 V Xl 1\ X3 V X 2 1\ X 3 ) + b . 1 + A. 0 

It is clear that for any AFA, there exists an equivalent s-AFA having at most 
one additional state. 

2.3.4 AFA to NFA - the construction 
Let A = (Q,E,s,F,g) be an AFA and f the characteristic vector of F. We 
construct an NNFA 

where 
Qv = EQ, 
Sv = {u E EQ I Us = 1}; 
Fv = {f}, 
8v ; Qv x E -+ 2Qv is defined by 8v(u,a) = {u' I g(a,u') = u}, for each 

'U E Qv and a E E. 

Claim. L(Av) = L(A). 

Proof. We first prove that for u E Qv (= EQ) and x E E*, 

(3) ux f-~v f -¢::=} g(x,1) = u 

by induction on the length of x. 
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For x = >., one has u = f and g(>., f) = f. Now assume that the statement 
holds for all words up to a length l, and let x = axo with a E E and Xo EEl. 

Let u = g(x,f). Then we have u = g(a,g(xo,f)). Let u' = g(xo,f). By 
the definition of ov, we have u' E ov(u, a). We also have u'xo I-Av f by the 
induction hypothesis. Therefore, 

u x = u axo I-Av U' Xo I-Av f . 

For the converse, let u x I-Av f. Then 

u x = u axo I-Av u' Xo I-Av of 

for some 'u' E Qv. Thus, u' = g(xo, f) by the induction hypothesis and 
'u = g(a, u') by the definition of ov. Therefore, u = g(a, u') = g(a, g(xo, f)) = 
g(x, f). Thus, (3) holds. 

By (2.3.4) and the definition of Sv, we have L(Av) = L(A). D 

In the above construction of Av, the state set is Qv = BQ, i.e., each state 
of the NNFA Av is a Boolean vector indexed by the states of the given AFA 
A. If the number of states of A is n, then the number of states of Av is 2n. 
Also notice that a computation of an AFA can be viewed as a sequence of 
calculations of Boolean vectors starting with f, the characteristic vector of 
F, as the initial vector and proceeding backwards with respect to the input 
word. At each step of this process, an input symbol is read and a new vector 
is calculated. Note that at each step, the new vector is uniquely determined. 
The process terminates when the first input symbol is read. Then the input 
word is accepted if and only if the resulting vector has a value 1 at the entry 
that is indexed by the starting state. We have the following results. 

Theorem 2.12. If L is accepted by an n-state AFA, then it is accepted by 
an NNFA with at most 2n states. D 

Theorem 2.13. If L is accepted by an n-state AFA, then LR is accepted by 
a DFA with at most 2n states. D 

2.3.5 NFA or DFA to AFA 
NFA and DFA are special cases of AFA. So, the transformations are straight
forward. 

Let A = (Q,E,o,s,F) be an NFA. We can construct an equivalent AFA 
A' = (Q, E, s, F, g), where 9 is defined as follows: for each q E Q, a E E, and 
'u E BQ, 

gq(a, u) = 0 -¢=} up = 0 for all p E o(q, a) . 

More intuitively, the equational representation of A' is 

X q = La. V Xp+Cq, for q E Q, 
aEE pE6(q,a) 

where Cq = >. if q E F and Cq = 0 otherwise. A proof for L(A) = L(A') can 
be found in [45]. 
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Theorem 2.14. L is accepted by a complete 2k-state DFA if and only if LR 
is accepted by a (k + I)-state s-AFA. 

Proof. The "if"-part is implied by Theorem 2.13. In the following, we de
scribe the construction of an s-AFA for a given DFA but do not give a proof 
of its correctness. For a detailed proof, the reader can refer to [73, 44]. Let 
D = (QD, E, 8, SD, FD) be the given 2k-state complete DFA and L = L(D). 
We construct a (k + I)-state s-AFA A = (QA,E,SA,FA,g) as follows. The 
main idea of the construction is that each of the 2k states is encoded by a 
k-bit Boolean vector and each of the k bits is represented by a state of the 
AFA. In addition to these k states, the s-AFA has one more state, the starting 
state. 

Let K = {I, ... , k} and Ko = K U {O}. Then we define Ko to be the 
state set of the AFA A, where ° is the starting state. We define an arbitrary 
bijection 1[' between Q D and BK. The bijection 1[' can be considered as an 
encoding scheme such that each state in QD is encoded by a distinct k-bit 
vector. For convenience, we simply use 1['(q), i.e., the k-bit vector, to denote 
q in the following. In particular, we use the vector (0, ... ,0) to denote the 
starting state SD of D. Note that one can choose any of k-bit vector to encode 
SD. We choose (0, ... ,0) purely for notational conveniece. Then, we define a 
(k + I)-state s-AFA A as follows: A = (QA,E,SA,FA,g) where 

QA = K o, 
SA = 0, and 
F _ {{O} if SD E FD, 

A - 0 otherwise. 
The function 9 is defined by setting, for a E E and u E BQ A, 

(au)={ 1 if8(uIK,a)EFD' 
go , ° otherwise 

and v = g(a,u), for some v E BQA, if and only if 8(uIK,a) = VIK' More 
precisely, we define gi(a, u), for i E K and u E BQA, in the following. Note 
that (JzCx) denotes either x or x depending on the value of z, i.e., (Jz(x) = x 
if z = 1 and (Jz(x) = x if z = 0. Then, for i E K, 

gi(a,u)= V (8(v,a)i A (Jvt(ut)A ... A(JVk(Uk)) 
vEBK 

and 
go (a, u) = V (JVt (gl (a, u)) A ... A (JVk (gk (a, u)). D 

vEFD 

Corollary 2.1. Let A be an n-state DFA and L = L(A). Then LR is ac
cepted by an s-AFA with at most flognl + 1 states. D 

As an example, we construct a 3-state s-AFA A which is equivalent to the 
4-state DFA Al of Figure 2 as follows: 
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A = (QA,E,SA,FA,g) where QA = {0,I,2}, SA = 0, FA = 0. The 
encoding of the states of Al is shown in the following. Note that we denote 
a 2-bit Boolean vector as a 2-bit binary number, i.e., we write X l X 2 instead 
of (Xl,X2 ). 

State of Al 0 1 2 3 
Encoding X l X2 00 01 10 11 

In order to explain intuitively how the function 9 is defined, we first write 
gl (a, X) informally (and in unnecessary detail) as follows: 

gl (a, X) = (8(00, ah /\ Xl /\ X 2) V (8(01, ah /\ Xl /\ X 2) 
V(8(IO, ah /\ Xl /\ X 2 ) V (8(11, ah /\ Xl /\ X 2 ) 

= «OIh /\ Xl /\ X 2) V «01h /\ Xl /\ X 2) V «OIh /\ Xl /\ X 2) 
V«l1h /\Xl /\X2 ) 

= (0/\ Xl /\ X 2) V (0/\ Xl /\ X 2) V (0/\ Xl /\ X 2) V (1/\ Xl /\ X 2) 
=Xl /\X2 

Then we have 
gl(a,X) = X l /\ X 2, 
gl(b, X) = (Xl /\ X 2) V (Xl /\ X 2) V (Xl/\ X 2) = (Xl /\ X 2) V Xl 

= Xl V X 2 , 

g2(a, X) = (Xl /\ X 2) V (Xl/\ X 2) V (Xl /\ X 2) V (Xl /\ X 2) = 1, 
g2(b, X) = «Xl /\ X2) V (Xl /\ X2) = Xl, 
go(a, X) = gl (a, X) /\ g2(a, X) = (Xl /\ X 2) /\ 1 = Xl /\ X 2, 
go(b,X) = gl(b,X) /\g2(b,X) = (Xl V X 2) /\ Xl = Xl. 

So, the equational representation of A is 

{ 
Xo = a· (Xl /\ X 2) + b· (Xt} 
Xl = a· (Xl /\ X 2) + b . (Xl V X 2) 
X 2 = a· 1 + b . (Xt} 

and the characteristic vector of FA is f = (0,0,0). 

2.3.6 Basic operations 
Let 

A(l) = (Q(l), E, S(l), F(l), gel») 

be an (m + I)-state s-AFA and 

A(2) = (Q(2),E,s(2),F(2),g(2») 

be an (n + I)-state s-AFA. Assume that Q(l) n Q(2) = 0. 
We construct an (m + n + I)-state AFA A = (Q,E,s,F,g) such that 

L(A) = L(A(1») u L(A(2») as follows: 

Q = (Q(1) _ {s(l)}) U (Q(2) - {s(2)}) U {s}, 
S ¢ Q(1) U Q(2), 
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{ 
F(l) U F(2) if sell f/- F(l) and s(2) f/- F(2), 

F = (F(l) U F(2) U {s}) n Q otherwise. 

We define 9 as follows. For a E E and u E BQ, 

( ) (1) ( ) (2) ( ) g. a,u = g8(1) a,u V g.(2) a,u , 

and for q E Q - {s}, 

{ 
g~l\a,u) 

gq(a,u) = (2) 
gq (a,u) 

if q E Q(1), 
if q E Q(2). 

An (rn +n + I)-state AFA A = (Q, E, s, F, g) such that L(A) = L(A(l)) n 
L( A (2)) is constructed as above except the following: 

g.(a, u) = g:~l) (a, u) !\ g~zl) (a, u) 

and s is in F if and only if both s(1) E F(l) and s(2) E F(2). 
For complementation, we construct an rn-state s-AFA 

such that L(A) = L(A(1)), where the function 9 is the same as g(1) except 

that gs(l)(a,u) = g~~l)(a,u); and F' = {s(1)} U F(l) if sell f/- F(l) and F' = 

F(l) - {s(1)} otherwise. 
Let Ll = L(A(1)) and L2 = L(A(2)). We can easily construct an AFA to 

accept a language which is obtained by an arbitrary combination of Boolean 
operations on Ll and L2, e.g., L = (Ll U L 2) n (Ll n L2)' The only essential 
changes are the functions for s and whether s is in the final state set, which 
are all determined by the respective Boolean operations. 

Other AFA operations, e.g., catenation, star, and shuffle, have been de
scribed in [45, 44]. 

2.3.7 IInplementation and r-AFA 
Although alternation is a generalization of nondeterminism, the reader may 
notice that AFA are backwards deterministic. We have also shown that a 
language L is accepted by a 2n-state DFA if and only if it is accepted by an 
s-AFA of n + 1 states reversely (i.e., words are read from right to left). Due 
to the above observation, we introduce a variation of s-AFA which we call 
r-AFA. The definition of an r-AFA is exactly the same as an s-AFA except 
that the input word is to be read reversely. Therefore, an r-AFA is forward 
deterministic. Then, for each L that is accepted by a DFA with n states, we 
can construct an equivalent r-AFA with at most flog n 1 + 1 states. 

An r-AFA A = (Q, E, s, F, g) can be represented by a system of right 
language equat'tons [19] of the following form: 

Xq = L gq(a, X) . a + Cq, q E Q 
aEE 



where X is the vector of variables X q , q E Q, and 

for each q E Q. 

{ A if q E F, c: -
q - 0 otherwise, 
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In the following, we present a scheme such that Boolean functions of an 
'r-AFA can be represented by Boolean vectors, and the computation of a 
Boolean function can be done with bitwise vector operations. Note that for 
a DFA of n states, its corresponding r-AFA has at most flognl + 1 states. 
So, for all practical problems, i.e., those using DFA of up to 231 states, each 
Boolean vector ~an be stored in one word. In many cases, this can save 
space tremendously in comparison to symbolic representations of AFA. Also, 
each bitwise vector operation can be done with one instruction. So, AFA 
computations can be done efficiently. 

We represent each Boolean function gq(a), q E Q and a E E, in disjunc
tive normal form. The disjunctive normal form consists of a disjunction of 
formulas ofthe type (Y1 t\ . .. t\ Ym ) where each Yi is a variable Xi or the nega
tion of a variable, Xi. We call each such formula of the type (Y1 t\ ... t\ Ym ) 

a term. For example, let X = (Xl, ... , Xs). The following Boolean function 
in disjunctive normal form 

I-"(X) = (X2 t\ X 4 t\ X 7 ) V (Xl t\ X 2 ) V (X3 t\ X4 t\ X6) 

has three terms. We name them t(1)(X), t(2)(X), and t(3)(X), respectively. 
Each term t(i)(X) can be represented by two 8-bit Boolean vectors a(i) and 
f3Ci) and the value of ti(X) can be computed with two bitwise operations. 
The two Boolean vectors are defined as follows: 

a~i) = 1 iff Xk or Xk appears in tCi) 

and 
f3ki ) = 1 iff X k appears in t Ci). 

For example, the two vectors for t(1)(X) are 

a (1) = (0,1,0,1,0,0,1,0), 

f3(1) = (0,1,0,0,0,0,1,0). 
Then, for any instance U of X, t(1)(u) = 1 iff (u & a(l)) i f3 (1 ) = 0, where & 
and i are bitwise AND and XOR, respectively, and 0 denotes the all-O vector. 

The above idea is based on the observation that a term t(X) has a value 
1 iff all the variables of the form Xi in t(X) have a value 1 and all those of 
the form Xi in t(X) have a value o. For an instance 'U of X, t(u) is evaluated 
with the above defined vectors a and f3 as follows. First, the vector a changes 
each Ui such that the variable Xi does not appear in t(X) to 0 and keeps all 
others unchanged. Then the vector f3 changes each Ui such that Xi (rather 
than Xi) is in t(X) to Ui, i.e., 1 ifui = 0 and 0 ifui = 1. Finally, t(u) is 1 iff 
'U becomes an all-O vector. 

Note that each term can be evaluated in parallel and each Boolean func
tion of an r-AFA can be evaluated in parallel as well. 
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2.4 Finite automata with output 

In the previous subsections, we have described three basic forms of finite 
automata: DFA, NFA, and AFA. They are all considered to be language ac
ceptors. In this subsection, we consider several models of finite automata with 
output, which are not only language acceptors but also language transform
ers. 

A Moore machine, informally, is a DFA where each state is associated 
with an output letter [88, 571. Formally, a Moore machine A is a 6-tuple 
(Q,E,.!1,8,0",s) where Q, E, 8, and s are defined as in a DFA; .!1 is the 
output alphabet; and 0" : Q --+ .!1 is the output function. For an input word 
al ... an, if the state transition sequence is 

then the output of A in response to al ... an is 

A Mealy machine is a DFA where an output symbol is associated to each 
transition rather than to each state [86, 571. Formally, a Mealy machine A 
is a 5-tuple (Q, E,.!1, a, s) where Q, E, and s are defined as in a DFA; .!1 is 
the output alphabet; and a : Q x E --+ Q x .!1 is the transition-and-output 
function. For an input word x = al··· an, al, ... , an E E, if a(s, ad 
(ql, b1 ), a(ql' a2) = (q2, b2), ... , a(qn-l, an) = (qn, bn ), i.e., 

then the output of A in response to x is b1 ... bn . 

For the above two models, we do not define final states. Final states can 
be defined such that only those input words that are accepted, i.e., reaching 
a final state, are associated to an output word. Then the models without final 
states are only a special case of the corresponding models with final states in 
the sense that all states are final states. 

In the above definitions, we do not require that the transition functions 
are total. If an input word cannot be completely read, then there is no output 
word associated to this input word. 

Another important model, the finite transducer model, is a generalization 
of the Mealy machines. Many closure properties of regular languages can be 
easily proved by using various finite transducers. See Section 4.2 for details. 

A finite transducer T is a 6-tuple (Q,E,.!1,a,s,F) where 

Q is the finite set of states; 
E is the input alphabet; 
.!1 is the output alphabet; 
a is the transition-and-output function from a finite subset of Q x E* to 
finite subsets of Q x .!1*; 
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sEQ is the starting state; 
F ~ Q is the set of final states. 

An example of a finite transducer T = ({O, 1, 2}, {a, b}, {a, I}, u, 0, {2}) 
is shown in Figure 9. The arc from state ° to state 1 with the label b/101 
specifies that (1,101) E u(O, b). 

For a given word u E E*, we say that v E ..1* is an output of T for u if there 
exists a state transition sequence ofT, (qI,vt) E U(S,Ul), (q2,V2) E U(ql,U2), 
... , (qn,vn ) E U(qn-l,Un ), and qn E F, i.e., 

such that U = Ul···Un , Ul, ... ,Un E E*, and v = Vl···Vn , Vl, ... ,Vn E ..1*. 
We write that v E T( u), where T( u) denotes the set of all outputs of T for 
the input word u. Note that s E F implies that A E T(A). 

T is said to be single-valued if for each input word u, T has at most one 
distinct output in response to u, i.e., IT( u) I ::::: 1 for each U E E*. 

A finite transducer T = (Q, E,..1, u, s, F) is called a generalized sequential 
machine (GSM) if u is a function from Q x E to finite subsets of Q x ..1*, 
i.e., T reads exactly one symbol at each transition. The GSM T is said to be 
deterministic if its underlying finite automaton (i.e., T without output) is a 
DFA, i.e., u is a (partial) function from Q x E to Q x ..1*. The definition of a 
GSM is not standardized in the literature. Some authors define GSMs with 
no final states [51]. 

Each finite transducer T = (Q, E,..1, u, s, F) defines a finite transduction 
T: E* --42<1°. Note that for an input word wE E*, T(w), which is the set 
of all output words in response to w, may be finite or infinite. T(w) = 0 if T 
cannot reach a final state by reading w. Also note that we use T to denote 
both the finite transducer and the finite transduction it defines since this 
clearly will not cause any confusion. For a language L ~ E*, we define 

T(L) = U T(w). 
wEL 

bl101 
aalO blA aiD 

~_bl_101~tj_A/_11~.~ 
Fig. 9. A finite transducer T 
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Example 2.4. Let us consider the transducer T of Figure 9. We have 

T(aabb) = {01Oll1, 0I0llOll1}, 

T(bbba) = {101110,101101110,101101101110}, 

T(A) = 0, T(aaab) = 0, 

T( {b, ba}) = {lOIll, 10ll1O}. 

Let L = {aiba j I i,j 2: O}. Then 

T(L) = {Ok1Oll101 I k, l 2: O}. o 

A finite transduction T can also be viewed as a relation Rr ~ E* x .1* 
defined by 

Rr = {('U,'U) I 'U E T('U)}. 

Relations induced by finite transducers are also called rational relations in 
the literature, e.g., [41]. The following is Nivat's Representation Theorem for 
finite transductions [93]. 

Theorem 2.15. Let E and .1 be finite alphabets. R ~ E* x .1* is a rational 
relat'ton ·tff there are a finite alphabet r, a regular language L ~ r* and 
morphisms g : r* -> E* and h : r* -> .1* such that 

R = ((g(w), h(w)) I w E L}. o 

Two finite transducers are said to be equivalent if they define exactly the 
same finite transduction. The equivalence problem for finite transducers is 
undecidable [60]. This holds even for nondeterministic GSMs. However, the 
equivalence problem for single-valued finite transducers is decidable [114, 32]. 
This implies that the equivalence problem for deterministic GSMs (DGSMs) 
is also decidable. 

From the above definitions, it is easy to see that morphisms can be charac
terized by one-state complete DGSMs. By a complete GSM, we mean that its 
transition-and-output function is a total function. Also, finite substitutions 
can be characterized by one-state (nondeterministic) GSMs. In both cases, 
the sole state is both the starting state and the final state. 

For a function T : E* -> 2.:1* (relation Rr ~ E* x .1*), we define T- 1 : 

L\* -> 217 * by T-1(y) = {x lyE T(x)} (R:rl ~ .1* x E* by R:r 1 = {(y,x) I 
(x, y) ERr}). Then, clearly, T (Rr) is a finite transduction (rational relation) 
iff T- 1 (R:rl) is a finite transduction (rational relation). This can be shown 
by simply interchanging the input and the output of the finite transducer. 
Then, we have the following: 

Theorem 2.16. LetT: E* -> 2.:1* be a finite tmnsd'uction. Then the inverse 
of T, i. e., T- 1 : .1* -> 217*, is also a finite transduction. 0 
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We define the following standard form for finite transducers. 
A finite transducer T = (Q, E, .,1, CT, s, F) is said to be in the standard 

form if CT is a function from Q X (E U {A}) to 2Qx(~U{>'}). Intuitively, the 
standard form restricts the input and output of each transition to be only a 
single letter or A. 

Theorem 2.17. Each finite transducer can be transformed into an equiva
lent finite transducer in the standard form. D 

The transformation of an arbitrary finite transducer to an equivalent one 
in the standard form consists of two steps: First, each transition that reads 
more than one letter is transformed into several transitions reading exactly 
one letter. Second, each transition that has a string of more than one letter 
as output is transformed into several transitions such that each of them has 
exactly one letter as output. 

More specifically, in the first step, we replace each transition of the form 

where p, q E Q, all"" aj E E, j 2: 2, and /3 E .,1*, by the following 

a 1 I 13 "Q _a_2_I--;~~ ......... _~~ __ I_I_f...-; ... ~ 6;) 

where 1'1, ... , rj-1 are new states. 
For the second step, each of the transitions of the following form 

where p, q E Q, a E E U {A}, and b1 , •.. , bk E .,1, k 2: 2, is replaced by 

Q __ a_l_b_I __ QI __ f..._I_b_2 ~" ... 

where 1'1, ... , rk-1 are new states. It is clear that the two-step transformation 
results in an equivalent finite transducer in the standard form. 

In many cases, the use of the standard form of finite transducers can result 
in much simpler proofs than the use of the general form. In Section 4.2, we 
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will use the standard form in proving that the family of regular languages is 
closed under finite transduction. 

3. Regular expressions 

In the previous section, we have defined languages that are recognized by 
finite automata. Finite automata in various forms are easy to implement 
by computer programs. For example, a DFA can be implemented by a case 
or switch statement; an NFA can be expressed as a matrix and manipu
lated by corresponding matrix operations; and an AFA can be represented 
as Boolean vectors and computed by bitwise Boolean operations. However, 
finite automata in any of the above mentioned forms are not convenient to be 
specified sequentially by users. For instance, when we specify a string pattern 
to be matched or define a token for certain identifiers, it is quite cumbersome 
to write a finite automaton definition for the purpose. In this case, a succinct 
and comprehensible expression in sequential form would be better suited than 
a finite automaton definition. For example, the language accepted by the fi
nite automaton A2 of Figure 3 can be expressed as (a + b)* abb( a + b)*. Such 
expressions are called regular expressions and they were originally introduced 
by Kleene [69]. In practice, regular expressions are often used as user inter
faces for specifying regular languages. In contrast, finite automata are better 
suited as computer internal representations for storing regular languages. 

3.1 Regular expressions - the definition 

We define, inductively, a regular expression e over an alphabet E and the 
language L( e) it denotes as follows: 

(1) e = 0 is a regular expression denoting the language L(e) = 0. 
(2) e = >.. is a regular expression denoting the language L(e) = {>..}. 
(3) e = a, for a E E, is a regular expression denoting the languge L(e) = {a}. 

Let el and e2 be regular expressions and L(el) and L(e2) the languages 
they denote, respectively. Then 

(4) e = (el +e2) is a regular expression denoting the language L(e) = L(ed U 
L(e2)' 

(5) e = (el . e2) is a regular expression denoting the language L(e) = 

L(edL(e2)' 
(6) e = ei is a regular expression denoting the language (L(ed)*. 

We assume that * has higher precedence than· and +, and· has higher 
precedence than +. A pair of parentheses may be omitted whenever the 
omission would not cause any confusion. Also, we usually omit the symbol· 
in regular expressions. 
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Example 3.1. Let E = {a, b, c} and L ~ E* be the set of all words that 
contain abcc as a subword. Then L can be denoted by the regular expression 
(a+b+c)*abcc(a+b+c)*. 0 

Example 3.2. Let L ~ {O, 1}* be the set of all words that do not contain two 
consecutive l's. Then L is denoted by (10 + 0)*(1 + A). 0 

Example 3.3. Let E = {a,b} and L = {w E E* Ilwlb is odd}. Then L can 
be denoted by (a*ba*b)*a*ba*. 0 

Two regular expressions el and e2 over E are said to be equivalent, de
noted el = e2, if L(ed = L(e2)' The languages that are denoted by regular 
expressions are called regular languages. The family of regular languages is 
denoted CREG. 

In [69], Kleene has shown that the family of regular languages and the 
family of DFA languages are exactly the same, i.e., regular expressions are 
equivalent to finite automata in terms of the languages they define. There 
are various algorithms for transforming a regular expression to an equivalent 
finite automaton and vice versa. In the following, we will describe two ap
proaches for the transformation from a regular expression to an equivalent 
finite automaton and one from a finite automaton to an equivalent regular 
expression. 

3.2 Regular expressions to finite automata 

There are three major approaches for transforming regular expressions into 
finite automata. The first approach, due to Thompson [121], is to transform 
a regular expression into a A-NFA. This approach is simple and intuitive, 
but may generate many A-transitions. Thus, the resulting A-NFA can be 
unnecessarily large and the further transformation of it into a DFA can be 
rather time and space consuming. The second approach transforms a regular 
expression into an NFA without A-transitions. This approach is due to Berry 
and Sethi [7], whose algorithm is based on Brzozowski's theory of derivatives 
[16J and McNaughton and Yamada's marked expression algorithm. Berry and 
Sethi's algorithm has been further improved by Briiggemann-Klein [13J and 
Chang and Paige [25J. The third approach is to transform a regular expression 
directly into an equivalent DFA [16, 2J. This approach is very involved and 
can be replaced by two separate steps: (1) regular expressions to NFA using 
one of the above approaches and (2) NFA to DFA. 

In the following, we give a very brief description of the first approach and 
give an intuitive idea of the marked expression algorithm [7J that forms the 
basis of the second approach. Here we will not discuss the above mentioned 
third approach. 
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3.2.1 Regular expressions to A-NFA 
The following construction can be found in many introductory books on 
automata and formal language theory, e.g., [57, 68, 78, 123]. Our approach 
is different from that of Thompson's [121, 2, 57] in that the number of final 
states is not restricted to one. 

Let e be a regular expression over the alphabet E. Then a A-NFA Me is 
constructed recursively as follows: 

(i) If e = 0, then Me = ({s}, E, 8, s, 0) where 8(s, a) = 0 for any a E Eu{A}. 
(ii) If e = A, then Me = ({s},E,8,s,{s}) where 8 is the same as in i). 
(iii)Ife = a, for some a E E, then Me = ({s,J},E,8,s,{f}) where 8(s,a) = 

{J} is the only defined transition. 
(iv) If e = el + e2 where el and e2 are regular expressions and Mel and Me2 

are A-NFA constructed for e1 and e2, respectively, i.e., L(MeJ = L(et) 
and L(Me2 ) = L(e2)' then Me = Me, +Me2 , where Mel +Me2 is defined 
in Subsection 2.2. 
Similarly, if e = el e2, then Me = Me, M e2 ; and if e = ei, then Me = M:" 
where Me, Me2 and M:, are defined in Subsection 2.2. 

Example 3.4. Following the above approach, the regular expression a(a + 
b)a*b would be transformed into the A-NFA shown in Figure 10. D 

3.2.2 Regular expressions to NFA without A-transitions 
The following presentation is a modification of the one given in [14]. An 
informal description is presented in Figure II. 

Let e be a regular expression over E. We define an NFA Me inductively 
as follows: 

(0) M0 = ({s},E,8,s,0) where 8(s,a) = 0 for all a E E. 
(1) MA = ({ s}, E, 8, s, {s}) where 8(s, a) = 0 for all a E E. 
(2) For a E E, Ma = ({s,J},E,8,s,{J}) where 8(s,a) = {f} is the only 

transition. 
(3) Assume that Me, = (Q},E,81,S1,Ft), Me2 = (Q2,E,82,S2,F2), and 

Ql n Q2 = 0. 

(3.1) M e,+e2 = (Q,E,8,S1,F) where 
Q = Ql U (Q2 - {S2}) (merging S1 and S2 into st), 

Fig. 10. A A-NFA constructed for a(a + b)a*b 
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ifs2 ¢F2, 
otherwise; 

ifq=sl, 
if q E Ql, 
if q E Q2; 

if q E Ql - Fl , 
if q E Fl. 

Such NFA are called Glushkov automata in [14] and were first defined by 
Glushkov in [48]. Note that Glushkov automata have the property that the 
starting state has no incoming transitions. One may observe that the au
tomaton constructed in step (0), (1), or (2) has no incoming transitions, and 
each operation in step (3) preserves the property. 

A detailed proof of the following result can be found in [7]. 

Theorem 3.1. Let e be an arbitrary regular expression over E. Then L( e) = 
L(Me). 0 

A regular expression e is said to be determinist'ic [14] if Me is a DFA. 

3.3 Finite automata to regular expressions 

Here, we show that for a given finite automaton A, we can construct a regular 
expression e such that e denotes the language accepted by A. The construc
tion uses extended finite automata where a transition between a pair of states 
is labeled by a regular expression. The technique we will describe in the 
following is called the state elimination technique [123]. For a given finite 
automaton, the state elimination technique deletes a state at each step and 
changes the transitions accordingly. This process continues until the FA con
tains only the starting state, a final state, and the transition between them. 
The regular expression labeling the transition specifies exactly the language 
accepted by A. 
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Let RE denote the set of all regular expressions over the alphabet E. An 
extended finite automaton (EFA) is formally defined as follows: 

Definition 3.1. An EFA A is a quintuple (Q,E,6,s,F) where 
Q is the finite set of states; 
E is the input alphabet; 
6 : Q x Q --+ RE is the labeling function of the state transitions; 
SEQ is the starting state; 
F ~ Q is the set of final states. 

Note that we assume 6(p, q) = 0 if the transition from p to q is not 
explicitly defined. 

A word W E E* is said to be accepted by A if W = Wl··· Wn , for 
Wl, ... , Wn E E*, and there is a state sequence qo, ql,··., qn, qo = sand 
qn E F, such that Wl E L(6(qo, q!)), ... , Wn E L(6(qn-l' qn)). The language 
accepted by A is defined accordingly. 

First we describe the pivotal step of the algorithm, i.e., the elimination 
of one non-starting and non-final state. Then we give the complete state
elimination algorithm which repeatedly applies the above step and eventually 
transforms the given EFA to an equivalent regular expression. 

Let A = (Q,E,6,s,F) be an EFA. Denote by epq the regular expression 
6(p, q), i.e., the label ofthe transition from state p to state q. Let q be a state 
in Q such that q i:- sand q fj. F. Then an equivalent EFA A' = (Q', E, 6', s, F) 
such that Q' = Q - {q}, i.e., q is eliminated, is defined as follows: For each 
pair of states p and r in Q' = Q - {q}, 

We illustrate this step by the diagram in Figure 12, where state 1 is eliminated 
from the given EFA. 

Now, we describe the complete algorithm. 
Let A = (Q, E, 6, s, F) be an EFA. 

(1) (a) If the starting state is a final state or it has an incoming transition, 
i.e., s E For 6(q, s) i:- 0 for some q E Q, then add a new state s' to 
the state set and define 6( s', s) = A. Also define s' to be the starting 
state. 

(b) If there are more than one final states, i.e., IFI > 1, then add a 
new state!, and new transitions 6(q,!,) = A for each q in F. Then, 
redefine the final state set to be {!'}. 

Let A' = (Q', E, 6', s', F') denote the EFA after the above steps. 

(2) If Q' consists only of s' and!" then the resulting regular expression is 
es'f,ej,f" where es'f' = 6'(s',!') and ef'f' = 6'U',!'), and the algorithm 
terminates. Otherwise, continue to (3). 
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ab 

a 

b 

(a) Given EFA 

b 

(b) Working sheet for deleting State 1 

G ab+ab,a~ 

~ b;Y3 2 

bb'bg b 

(c) Resulting EFA after deleting State 1 

Fig. 12. Deletion of a state from an EFA 
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(3) Choose q E Q' such that q 1= 8' and q 1= 1'. Eliminate q from A' following 
the above description. Then the new state set will be Q' - {q} and 8' is 
changed accordingly. Continue to (2). 

Note that every DFA, NFA, or A-NFA is an EFA. So, the above algorithm 
applies to all of them. 

3.4 Star height and extended regular expressions 

Among the three operators of regular expressions, the star operator is per
haps the most essential one. Regular expressions without the star operator 
define only finite languages. One natural measurement of the complexity of 
a regular expression is the number of nested stars in the expression, which 
is called the star height of the expression. Questions concerning star height 
were considered among the most fascinating problems in formal language the
ory. Some unsolved problems are still attracting researchers. In the following, 
we first give the basic definitions and then describe several of the most well 
known problems and results concerning star height. The interested reader 
may refer to [98J or [107J for details on the topic. 

The star height of a regular expression e over the alphabet E, denoted 
H(e), is a nonnegative integer defined recursively as follows: 

(1) H(e) = 0, if e = 0, A, or a for a E E. 
(2) H(e) = max(H(el),H(e2)), if e = (el + e2) or e = (ele2), where el and 

e2 are regular expressions over E. 
(3) H(e) = H(ed + 1, if e = ei and el is a regular expression over E. 

The star height of a regular language R, denoted H(R), is the least integer 
h such that H (e) = h for some regular expression e denoting R. 

Example 3.5. Let el = (ab(cbc)*(ca* + c)*)* + b(ca* + c)*. Then H(el) = 3. 
Let e2 = a(aaa*)* and L = L(e2)' Then H(e2) = 2 but H(L) = 1 because L 
is denoted also by a + aaaa* and L is of at least star height one since it is 
infini te. 0 

Concerning the star height of regular languages, one of the central ques
tions is whether there exist languages of arbitrary star height. This question 
was answered by Eggan in 1963 [39J. He showed that for each integer h ~ ° 
there exists a regular language Rh such that H(Rh) = h. However, in his 
proof the size of the alphabet for Rh grows with h. Solutions with a two
letter alphabet were given by McNaughton (unpublished notes mentioned in 
[18]) and later by Dejean and Schiitzenberger [35J in 1966. 

Theorem 3.2. For each integer i ~ 0, there exists a regular language Ri 
ave". a two-letter alphabet such that H (Ri) = i. 0 
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The language R;, for each i ;::: 0, is given by a regular expression e; defined 
recursively as follows: 

eo ,x, 

Thus, for example, 

el = (ab)*, 
e2 = (a 2(ab)*b 2(ab)*)*, 
e3 = (a4(a2(ab)*b2(ab)*)*b4(a2(ab)*b2(ab)*)*)*. 

Clearly, H(e;) = i. This implies that H(R;) :::; i. The proof showing that 
H(R;) is at least i is quite involed. Detailed proofs can be found, e.g., in 
[106, 107]. 

Since there exist regular languages of arbitrary star height, one may natu
rally ask the following question: Does there exist an algorithm for determining 
the star height of a given regular language? This problem, often refered to as 
"the star height problem", was among the most well-known open problems 
on regular languages [18]. It had been open for more than two decades until 
it was solved by Hashiguchi [52] in 1988. The proof of the result is more than 
40 pages long. The result by Hashiguchi can be stated as follows. 

Theorem 3.3 (The Star Height). There exists an algorithm which, for 
any given regular expression e, determines the star height of the language 
denoted bye. 

Generally speaking, almost all natural important properties are decidable 
for regular languages. The star height is an example of a property such that, 
although it is decidable, the proof of decidability is highly nontrivial. 

In the following, we discuss the extended regular expressions as well as 
the extended star height problem. 

An extended regular expression is one which allows the intersection n 
and the complement -, operators in addition to the union, catenation, and 
star operators of a normal regular expression. We specify that the languages 
denoted by the expressions (el n e2) and -,el, respectively, are L(el n e2) = 
L(ed n L(e2) and L(-,ed = L(ed. We assume that n has higher precedence 
than + but lower precedence than· and *; and -, has the lowest precedence. 
For convenience, we use e to denote -,e in the following. A pair of parentheses 
may be omitted whenever the omission would not cause any confusion. 

For instance, 0, X, and a(a+ b)* n (a + b)*bb(a + b)* are all valid extended 
regular expressions over E = {a, b} denoting, respectively, E*, E+, and the 
set of all words that start with an a and contain no consecutive b's. Clearly, 
extended regular expressions denote exactly the family of regular languages. 

The definition for the star height of an extended regular expression has 
the following two additions to the definition for a standard regular expression: 



(4) H(e) = max(H(ed, H(e2)), if e = (el n e2); 
(5) H(e) = H(el), if e = eli 
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where el and e2 are extended regular expressions over E. Similarly, the ex
tended star height of a regular language R, denoted H(R), is the least integer 
h such that H (e) = h for some extended regular expression e denoting R. 

The star-free languages, i.e., languages of extended star height zero, form 
the lowest level of the extended star height language hierarchy. It has been 
shown that there exist regular languages of extended star height one. How
ever, the following problem which was raised in the sixties and formulated 
by Brzozowski [18] in 1979 remains open. 

Open Problem Does there exist a regular language of extended star height 
two or higher? 

Special attention has been paid to the family of star-free languages. The 
study of star-free languages was initiated by McNaughton [84, 85]. An in
teresting characterization theorem for star-free languages using noncounting 
(aperiodic) sets was proved by Schiitzenberger [113]. A set S ~ E* is said to 
be noncounting (aperiodic) if there exists an integer n > 0 such that for all 
x, y, z E E*, xynz E S iff xyn+1 z E S. We state the characterization theorem 
below. The reader may refer to [113] or [98] for a detailed proof. 

Theorem 3.4. A regular language is star-free iff it is noncounting (aperi
odic). 0 

It appears that extended regular expressions correspond to AFA directly. 
It can be shown that the family of star-free languages can also be character
ized by the family of languages accepted by a special subclass of AFA, which 
we call loop-free AFA. An AFA is said to be loop-free if there is a total order 
< on the states of the AFA such that any state j does not depend on any 
state i such that i < j or state j itself. The following result can be found in 
[110]. 

Theorem 3.5. A regular language is star-free iff it is accepted by a loop-free 
A~. 0 

A special sublass of star-free languages which has attracted much atten
tion is the locally testable languages [20, 41, 84]. Informally, for a locally 
testable language L, one can decide whether a word w is in L by looking at 
all subwords of w of a previously given length k. 

For k ~ 0 and x E E* such that Ixl ~ k, denote by prek(x) and sufk(x), 
respectively, the prefix and the suffix of length k of x, and by intk(x) (interior 
words) the set of all subwords of length k of x that occur in x in a position 
other than the prefix or the suffix. A language L ~ E* is said to be k-testable 
iff, for any words x,y E E*, the conditions prek(x) = prek(y), su/k(x) = 
sufk(y), and intk(x) = intk(Y) imply that x E L iff y E L. A language is said 
to be locally testable if it is k-testable for some integer k ~ 1. 
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Many useful locally testable languages belong to a smaller class of lan
guages, which are called locally testable languages in the strict sense [84]. 
A language L ~ E* is k-testable in the strict sense if there are finite sets 
P, S, I c E* such that, for all x E E* of length at least k, x E L iff 
prek(x) E P, sufk(x) E S, and intk(x) ~ I. A language is said to be lo
cally testable in the strict sense if it is k-testable in the strict sense for some 
integer k > o. There are languages that are locally testable but not locally 
testable in the strict sense. For example, let L be the set of all words over 
{O, I} that contain either 000 or 111 as an interior word but not both. Then 
L is locally testable but not locally testable in the strict sense. The class of 
locally testable languages is closed under Boolean operations. This is not true 
for the class of languages that are locally testable in the strict sense. 

More properties of locally testable languages can be found in [20, 41, 84, 
98, 125]. 

3.5 Regular expressions for regular languages of polynomial 
density 

Given a regular language, it is often useful to know how many words of a 
certain length are in the language, i.e., the density of the language. The 
study of densities of regular languages has a long history, see, e.g., [112, 41, 
109, 10, 120]. Here, we consider the relationship between the densities of 
regular languages and the forms of the regular expressions denoting those 
languages. In particular, we consider the forms of regular expressions that 
denote regular languages of polynomial density. 

For each language L ~ E*, we define the density function of L 

where lSI denotes the cardinality of the set S. In other words, pLCn) counts 
the number of words of length n in L. If pLCn) = 0(1), we say that L has a 
constant density; and if pLCn) = O(nk) for some integer k ~ 0, we say that 
L has a polynomial density. Languages of constant density are called slender 
languages [34, 115]. Languages that have at most one word for each length 
are called thin languages [34]. 

The first theorem below characterizes regular languages of polynomial 
density with regular expressions of a specific form. A detailed proof can be 
found in [120]. Similar results can be found in [112, 41, 109, 10]. 

Theorem 3.6. A regular language Rover E has a density in O(nk), k ~ 0, 
iff R can be denoted by a finite union of regular expressions of the following 
form: 

(4) 

o 
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The following result ([120]) shows that the number of states of a finite 
automaton A may restrict the order of the density function of L(A). 

Theorem 3.7. Let R be a regular language accepted by a DFA of k states. 
If R has a polynomial density, then the function pR(n) is O(nk- 1). 0 

Theorem 3.6 is a powerful tool in proving various properties of regular 
languages of polynomial density. As an application of Theorem 3.6, we show 
the following closure properties: 

Theorem 3.8. Let L1 and L2 be regular languages over E with PL, (n) = 
8(nk ) and PL2(n) = 8(nl). Then the following statements hold: 

(a) If L = prejix(Ld = {x I xy E L1 for some y E E*}, then pLCn) = 8(nk ). 

(b) If L = injix(Lt) = {y I xyz E L1 for some x, z E E*}, then pLCn) = 
8(n k ). 

(c) If L = suffix(L1) = {z I xz E L1 for some x E E*}, then pLCn) = 8(nk). 
(d) If L = L1 U L 2, then pLCn) = 8(nmax(k,l)). 

(e) If L = L1 n L 2, then pLCn) = O(nmin(k,l)). 
(1) If L = L 1L 2, then pLCn) = O(nHl). 

(g) If L = heLd where h is an arbitrary morphism[30J, then pLCn) = O(nk). 
(h) If L = ~ (L1) = {Xl I xl ... Xm E L 1, for Xl, ... , Xm E 17*, and 

IX11 = ... = Ixml}, then pLCn) = 8(n k ). 

Proof. We only prove (a) as an example. The rest can be similarly proved. 
Since PL , (n) = 8(nk ), by Theorem 3.6, L1 can be specified as a finite 

union of regular expressions of the form: 

(5) 

where X,Y1,Zl, ... ,Yk+1,Zk+1 E 17*. Then clearly, L, where L = prejix(L1), 
can be specified as a finite union of regular expressions of the following forms: 

X' , 
xyt z 1' ··yiY~, 
xyt Zl ... yi z~, 

X' is a prefix of x, 
y~ is a prefix of Yi, 1 :=:; i :=:; k + 1, 
z~ is a prefix of Zi, 1 :=:; i :=:; k + 1. 

Then, by Theorem 3.6, the density function pL(n) is in O(nk). Since L is a 
superset of L 1, we have pL(n) ;::: PL1(n), i.e., pL(n) = D(nk ). Thus, pLCn) = 
8(nk ). 0 

It is clear that all regular languages with polynomial densities are of star 
height one. But, not all star-height one languages are of polynomial density. 
For example, the language (ab + b) * (a + E) is of exponential density. However, 
there is a relation between these two subclasses of regular languages, which 
is stated in the following theorem. 
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Theorem 3.9. A regular language is of star height one if and only if it is the 
image of a regular language of polynomial density under a finite substitution. 

Proof. The if part is obvious. For the only if part, let E be a regular ex
pression of star height one over an alphabet E. Denote by X the set of all 
regular expressions e (over E) such that e* is a subexpression of E. Choose 
.1 = E U X, where X = {e leE X}. Let E be the regular expression over 
.1 that is obtained from E by replacing each subexpression of the form e*, 
e EX, by e*. By Theorem 3.6, L(E) is a regular language of polynomial den
sity. We define a finite substitution 1f : .1* --+ 217' as follows. For each a E E, 
1f(a) --+ {a} and for each e E X, 1f(e) = L(e). Then clearly 1f(L(E)) = L(E). 

o 
It is clear that P0(n) = 0 and PE,(n) = IEln. For each L ~ E*, we 

have P0(n) ::; pdn) ::; PE' (n) for all n ~ O. It turns out that there exist 
functions between P0 (n) and P 17* (n) which are not the density function of 
any regular language. The following two theorems [120] show that, for the 
densities of regular languages, there is a gap between 8(nk) and 8(nk+1), 
for each integer k ~ 0; and there is a gap between polynomial functions and 
exponential functions of the order 2B(n). For example, there is no regular 
language that has a density of the order y'n, nlogn, or 2.;n. 

Theorem 3.10. For any integer k ~ 0, there does not exist a regular lan
guage R such that pR(n) is neither O(nk) nor D(nk+1). 0 

Theorem 3.11. There does not exist a regular language R such that PR(n) 
is not O(nk), for any integer k ~ 0, and not of the order 2!1(n). 0 

It is not difficult to show that, for each nonnegative integer k, we can 
construct a regular language R such that P R (n) is exactly n k. Therefore, 
for each polynomial function f(n), there exists a regular language R such 
that PR(n) is 8(j(n)); and for each regular language R, either there exists 
a polynomial function f(n) such that pR(n) = 8(j(n)), or PR(n) is of the 
order 2B(n). 

4. Properties of regular languages 

4.1 Four pumping lemmas 

There are many ways to show that a language is regular; for example, this 
can be done by demonstrating that the language is accepted by a finite au
tomaton, specified by a regular expression, or generated by a right-linear 
grammar. To prove that a language is not regular, the most commonly used 
tools are the pumping properties of regular languages, which are usually stated 
as "pumping lemmas". The term "pumping" intuitively describes the prop
erty that any sufficiently long word of the language has a nonempty subword 
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that can be "pumped". This means that if the subword is replaced by an 
arbitrary number of copies of the same subword, the resulting word is still in 
the language. 

There are many versions of pumping lemmas for regular languages. The 
"standard" version, which has appeared in many introductory books on the 
theory of computation, is a necessary but not sufficient condition for regu
larity, i.e., every regular language satisfies these conditions, but those con
ditions do not necessarily imply regularity. The first necessary and sufficient 
pumping lemma for regular languages was introduced by Jaffe [63J. Another 
necessary and sufficient pumping lemma, which is called "block pumping", 
was established by Ehrenfeucht, Parikh, and Rozenberg [40J. In contrast, for 
context-freeness of languages, only some necessary pumping conditions are 
known, but no conditions are known to be also sufficient. 

In the following, we describe four pumping lemmas for regular languages: 
two necessary pumping lemmas and two necessary and sufficient pumping 
lemmas. We will give a proof for the first and the third, but omit the proofs 
for the second and the fourth. Examples will also be given to show how these 
lemmas can be used to prove the nonregularity of certain languages. 

The first pumping lemma below was originally formulated in [5J and has 
appeared in many introductory books, see, e.g., [57, 108, 123, 27, 58J. 

Lemma 4.1. Let R be a regular language over E. Then there is a constant k, 
depending on R, such that for each w E R with Iw I ~ k there exist x, y, z E E* 
s'uch that w = xyz and 

(1) IxYI ::; k, 
(2) IYI ~ 1, 
(3) xytz E R for all t ~ o. 

Proof. Let R be accepted by a DFA A = (Q, E, 8, s, F) and k be the number 
of states of A, i.e., k = IQI. For a word w = al ... an E R, all ... , an E E, we 
denote the computation of A on w by the following sequence of transitions: 

where qQ, ... , qn E Q, qQ = S, qn E F, and 8(qi' aiH) = qiH for all i, 
o ::; i < n. 

If n ~ k, the above sequence has states qi and qj, 0 ::; i < j ::; k, such 
that qi = qi. Then for each t ~ 0, we have the following transition sequence: 

where {a}t denotes that a is being repeated t times. Let x = al ... ai, Y = 
aiH ... aj, and z = ajH ... an. Then xytz E R for all t ~ 0, where Ixyl ::; k 
and Iyl ~ 1. 0 

The lemma states that every regular language possesses the above pump
ing property. Therefore, any language that does not possess the property is 
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not a regular language. For example, one can easily show that the language 
L = {a i bi I i ~ o} is not regular using the above lemma. The arguments 
are as follows: Assume that L is regular and let k be the constant for the 
lemma. Choose 'W = akbk in L. Clearly, I'WI ~ k. By the pumping lemma, 
'W = xyz for some x, y, z E 2)* such that (1) IxYI ::; k, (2) Iyl ~ 1, and (3) 
xyt z E R for all t ~ o. By (1) and (2), we have y = am, 1 ::; m ::; k. But 
xyoz = xz = ak-rnbk is not in L. Thus, (3) does not hold. Therefore, L does 
not satisfy the pumping property of Lemma 4.1. 

The pumping lemma has been used to show the nonregularity of many 
languages, e.g., the set of all binary numbers whose value is a prime [57], the 
set of all palindromes over a finite alphabet [58], and the set of all words of 
length i 2 for i ~ 0 [123]. 

However, not only regular languages but also some nonregular languages 
satisfy the pumping property of Lemma 4.1. Consider the following example. 

Example 4.1. Let L ~ 2)* be an arbitrary nonr-egular- language and 

L# = (# + L) U 2)* 

where # .;. 2). Then L# satisfies the conditions of Lemma 4.1 with the 
constant k being 1. For any word 'W E #+ L, we can choose x = A and y = #, 
and for any word 'W E 2)*, we choose x = A and y to be the first letter of 
'W. However, L# is not regular, which can be shown as follows. Let h be a 
morphism defined by h( a) = a for each a E 2) and h( #) = A. Then 

L = h(L# n #+ 2)*). 

Clearly, #+ 2)* is regular. Assume that L# is regular. Then L is regular since 
regular languages are closed under intersection and morphism (which will 
be shown in Section 4.2). This contradicts the assumption. Thus, L# is not 
regular. 0 

Note that L# is at the same level of the Chomsky hierarchy as L. So, there 
are languages at all levels of the Chomsky hierarchy, even non-recursively 
enumerable languages, that satisfy Lemma 4.1. 

Note also that, for each language L ~ 2)*, we can construct a distinct 
language L# ~ (2) U { #})* that satisfies Lemma 4.1. Consequently, there are 
uncountably many nonregular languages that satisfy the pumping lemma. 

Below, we give two more examples of nonregular languages that satisfy 
the pumping condition of Lemma 4.1. They are quite simple and interesting. 

Example 4.2. Let L ~ b* be an arbitrary nonregular language. Then the 
following languages are nonregular, but satisfy the pumping condition of 
Lemma 4.1: 

(1) a+LUb*, 
(2) b* UaLUaa+{a,b}*. 

Note that the first example above is just a simplified version of the language 
given in Example 4.1, with the alphabet 2) being a singleton. 0 
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Lemma 4.2. Let R be a regular language over E. Then there is a constant 
k, depending on R, such that for all u, v, wE E*, if Iwl ~ k then there exist 
x, y, z E E*, y i= A such that w = xyz and for all t ~ 0 

[uxyt ZV E L iff uwv E L. o 

Any language that satisfies the pumping condition of Lemma 4.2 satisfies 
also the pumping condition of Lemma 4.1. This follows by setting u = A 
and Iwl = k in the condition of Lemma 4.2. However, the converse is not 
true. We can show that there exist languages that satisfy the pumping con
dition of Lemma 4.1, but do not satisfy that of Lemma 4.2. For example, 
let L = {aibi I i ~ O} and consider the language L# = #+L U {a,b}* as 
in Example 4.1. Clearly, L# satisfies the pumping condition of Lemma 4.1. 
However, if we choose u = #, v = A, and w = akbk for Lemma 4.2 where k is 
the constant (corresponding to L#), it is clear that there do not exist x, y, z 
as required by the lemma. Therefore, the set of languages that satisfy the 
pumping condition of Lemma 4.2 is a proper subset of the set of languages 
that satisfy the condition of Lemma 4.1. In other words, Lemma 4.2 can rule 
out more nonregular languages. In this sense, we say that Lemma 4.2 is a 
stronger pumping lemma for regular languages than Lemma 4.1. 

Nevertheless, Lemma 4.2 still does not give a sufficient condition for reg
ularity. We show in the following that there exist nonregular languages that 
satisfy the pumping condition of Lemma 4.2. In fact, the number of such 
languages is uncountable. A different proof was given in [40]. 

Example 4.3. Let L be an arbitrary nonregular language over E and $ rf. E. 
Define 

L$ = {$+ul$+a2$+ ... $+am$+lala2 ... u=EL, al,a2, ... ,amEE,m~0} 

U{$+Xl$+X2$+ ... $+xn $+ I Xl,X2,··· ,Xn E E*, n ~ 0, IXil i= 1 

for some i, 1:::; i:::; n}. 

We can easily prove that L$ is nonregular. Let E$ denote E U {$}. We now 
show that L$ satisfies the pumping condition of Lemma 4.2. Let k = 3 be 
the constant for the pumping lemma. To establish the nontrivial implication 
of the statement of the lemma, it suffices to show that for any u, w, VEE; 
with uwv ELand Iwl ~ 3, there exist x, y, Z E E; with w = xyz and y i= A 
such that uxyizv E L$ for all i ~ o. We can choose y = $ if w contains a $ 
and y = a for some a E E if w does not contain any symbol $. 0 

The next pumping lemma, introduced by Jaffe [63], gives a necessary and 
sufficient condition for regularity. A detailed proof of the following lemma 
can be found also in [108]. 
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Lemma 4.3. A language L E E* is regular iff there is a constant k > 0 such 
that for all wE E*, if Iwl 2: k then there exist x, y, z E E* such that w = xyz 
and y =I A, and for all i 2: 0 and all v E E*, wv E L iffxyizv E L. 

Proof. The only if part is relatively straightforward. Let A be a complete 
DFA which accepts Land k the number of states of A. For any word w of 
length 1 2: k, i.e., w = ala2 ... ai, let the state transition sequence of A on w 
be the following: 

al a2 at qo --7 ql --7 • • • --7 ql, 

where qo is the starting state. Since there are at most k distinct states among 
qo, ql, ... , ql and k < 1 + 1, it follows that qi = qj for some i,j, 0 :::; i < j :::; l. 
This implies that the transition from qi to qj is a loop back to the same state. 
Let x = al ... ai, Y = ai+l'" aj, and z = aj+1 ... al (x = A if i = 1 and z = A 
if j = l). Then, for all i 2: 0, 

8*(qo,xyiz) = ql, 

i.e., A is in the same state ql after reading each word xyiz, i 2: O. Therefore, 
for all i 2: 0 and for all v E E*, xyizv E L iff wv E L. 

For the if part, let L be a language which satisfies the pumping con
dition of the lemma and k be the constant. We prove that L is regular by 
constructing a DFA AL using the pumping property of L and then proving 
that L(AL) = L. 

The DFA AL = (Q, E, 8, s, F) is defined as follows. Each state in Q cor
responds to a string w, in E*, of length less than k, i.e., 

Q = {qw I w E E* and Iwl :::; k - I}, 

s = q), and F = {qw E Q I w E L}. The transition function 8 is defined as 
follows: 

(1) If Iwl < k - 1, then for each a E E, 

8(qw, a) = qwa' 

(2) If Iwl = k - 1, then by the pumping property of L, for each a E E, wa 
can be decomposed into xyz, y =I A, such that for all v E E*, xyzv E L 
iff xzv E L. There may be a number of such decompositions. We choose 
the one such that xy is the shortest (and y is the shortest if there is a 
tie). Then define 

8(qw, a) = qxz' 

Now we show that the language accepted by AL is exactly L. We prove 
this by induction on the length of a word w E E*. It is clear that for all 
words w such that Iwl < k, w E L(Ad iff w E L by the definition of A L. We 
hypothesize that for all words shorter than n, n 2: k, w E L(Ad iff w E L. 
Consider a word w with Iwl = n. Let w = WoV where Iwol = k. By the 
construction of A L , we have 8*(s, wo) = 8*(s, xz) = qxz for some x, z E E* 
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where Wo = xyz, Y E E+, and for any v' E E*, wov' E L iff xzv' E L. We 
replace the arbitrary v' by v, then we have that W E L iff xzv E L. Since 
xz and Wo reach the same state in A L, xzv and W = WoV will reach the 
same state, i.e., W E L(AL) iff XZV E L(Ad. Notice that Ixzvl < n. By the 
hypothesis, xzv E L(AL) iff XZV E L. So, we conclude that W E L(AL) iff 
wE L. D 

Example 4.4. Let L = {aib i I i ~ O} and L# = (#+L) U {a,b}*. We have 
shown that L# satisfies the pumping condition of Lemma 4.1. Now we demon
strate that L# does not satisfy the pumping condition of Lemma 4.3. Assume 
the contrary. Let k > 0 be the constant of Lemma 4.3 for L#. Consider the 
word W = #akbk and any decomposition W = xyz such that y -I- A. If y does 
not contain the symbol #, i.e., y E a+, y E b+, or y E a+b+, then let v = A 
and, clearly, wv E L# but xy2zv (j. L#. If y contains the symbol #, then let 
'U = a and we have wv = xyzv (j. L# but xzv E L#. So, L# does not satisfy 
the pumping condition of Lemma 4.3. D 

Notice that Lemma 4.3 requires a decomposition W xyz that works 
for all WV, v E E*. Another necessary and sufficient pumping lemma for 
regularity, which does not require this type of global condition, was given 
by Ehrenfeucht, Parikh, and Rozenberg [40J. The latter is called the block 
pumping lemma, which is very similar to Lemma 4.2 except that the decom
position of w into xyz has to be along the given division of w into subwords 
(blocks) Wl, ... , Wk, i.e., each of x, y, and z has to be a catenation of those 
subwords. 

Lemma 4.4. (Block pumping) L ~ E* is regular iff there is a constant k > 0 
s'uch that for all u, v, W E E*, if W = Wl ... Wk, Wl, ... ,Wk E E*, then theT'e 
exist m, n, 1 ::; m < n ::; k, such that W = xyz with y = Wm+1'" Wn , 
x,Z E E*, and for all i ~ 0, 

uwv E L iff uxyi ZV E L. D 

Example 4.5. Let L = {aibi I i ~ O} and let L$ be defined as in Example 4.3. 
We have shown in Example 4.3 that L$ satisfies the pumping property of 
Lemma 4.2. Here we show that L$ does not satisfy the pumping property of 
Lemma 4.4. Assume the contrary. Let k be the constant in the lemma and 
choose u = A, Wl = $a, W2 = $a, ... , Wk = $a, v = ($b)k$, and W = Wl ... Wk. 
Then 'uwv E L$. But, clearly, there do not exist m, n, 1 ::; m < n ::; k, such 
that y = Wm+l .. 'Wn, W = xyz, and uxzv = UWl' "WmWn+l' "WkV 
($a)k-n+m($b)k$ E L$. D 

In Lemma 4.4, the pumping condition is sufficient for the regularity of 
L even if we change the statement "for all i ~ 0" to "for i = 0". Then the 
pumping property becomes a cancellation property. It has been shown that 
the pumping and cancellation properties are equivalent [40J. A similar result 
can also be obtained for Lemma 4.3. 
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4.2 Closure properties 

The following theorem has been established in Section 2. and 3 .. 

Theorem 4.1. The family of regular languages is closed under the following 
operations: (1) union, (2) intersection, (3) complementation, (4) catenation, 
(5) star, and (6) reversal. D 

The next theorem is a remarkably powerful tool for proving other prop
erties of regular languages. 

Theorem 4.2. The family of regular languages is closed under finite trans
d'uct'ion. 

Proof. Let L be an arbitrary regular language accepted by a DFA A = 
(QA,E,D,s,F) and T = (QT,E,11,aT,sT,FT ) a finite transducer in the 
standard form. We show that T(L) is regular. 

Construct a A-NFA R = (QR,11,DR,sR,FR ) where 
QR = QA x QT; 
SR = (SA, ST); 
FR = FAX FT ; 
DR is defined by, for (p, g) E QR and b E .1 u {A}, 

DR((p, g), b) = ((p',g') I there exists a E E such that 

DA(P, a) = p' & (g', b) E aT(g, a), or (g', b) E aT(g, A) & p = p'}. 

Now we show that L(R) = T(L). 
Let w be accepted by R. Then there is a state transition sequence of R 

(SA,ST) ~ (Pl,gd ~ ...... ~ (Pn,gn) 

where w = b1 ··· bn , b1 , ... , bn E 11 U {A}, and Pn E FA, gn E FT' By the 
definition of R, there exist aI, ... ,an E E u {A} such that 

Let ai" ... , ai~ be the non-A subsequence of al, ... , an, i.e., ai" ... , ai~ E E 
and u = ai, ... ai~ = al ... an. Note that if ak = A, then Pk-l = Pk (assuming 
Po = SA)' Thus, we have 

So, u is accepted by A and w E T(u). Therefore, w E T(L). 
Let 'U E L(A) and T(u) = w. We prove that w E L(R). Since T(u) = w, 

there is a state transition sequence of T 
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for u = a1 ... an, al. ... , an E E U {A}, w = b1 ... bn , bl. ... , bn E L1 U {A}, 
and qn E FT. Let ail"'" ai", be the non-A subsequence of al.' .. ,an, i.e., 
ail'" ai", = a1 ... an = u. Since u E L(A), we have 

where Pm E FA. Then, by the construction of R, there exists a state transition 
sequence of R 

where ro = SR = (pO,qo) and for each j, 1:::; j:::; n, rj = (Pk,qj) if aj =1= A 
and j = i k; rj = (Pk-1, qj) if aj = A and i k- 1 < j < i k , 1 :::; k :::; m. Thus, 
wE L(R). 0 

Many operations can be implemented by finite transducers. Thus, the fact 
that regular languages are closed under those operations follows immediately 
by the above theorem. We list some of the operations in the next theorem. 

Theorem 4.3. The family of regular languages is closed under the following 
operations (assuming that L ~ E*): 

(1) prefix(L) = {x I xy E L, x,y E E*}, 
(2) suffix(L) = {y I xy E L, x, Y E E*}, 
(3) infix(L) = {y I xyz E L, X,y,z E E*}, 
(4) morphism, 
(5) finite substitution, 
(6) inverse morphism, 
(7) inverse finite substitution. 

Proof. (4) and (5) are obvious since they are only special cases of finite 
transductions: morphisms can be represented as one-state deterministic finite 
transducers (DGSMs) and finite substitutions can be represented as one
state (nondeterministic) finite transducers without A-transitions. Note that, 
in both cases, the sole state is both the starting state and the final state. 

(6) and (7) are immediate since, by Theorem 2.16, an inverse finite trans
duction is again a finite transduction. 

Each of the operations (1)-(3) can be realized by a finite transducer given 
below. We omit the proof showing, in each case, the equality of the trans
duction and the operation in question. Figure 13 gives the transducers in the 
case where E = {a,b}. 

(1) Tpre = (Q1, E, E, 0"1, Sl, F1) where Q1 = {I, 2}, Sl = 1, F1 = Ql. and 0"1: 
0"1 (1, a) = {(I, a), (2, An, for each a E E; 
0"1(2,a) = {(2,An, for each a E E. 

(2) TsuJ = (Q2,E,E,0"2,S2,F2) where Q2 = {0,1}, S2 = 0, F2 = Q2, and 
0"2: 
0"2(0, a) = {(O, A), (1, an, for each a E E; 
0"2(1, a) = {(I, an, for each a E E. 
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a/ a a/ A al A ala 
bib bl A bl A bib 

~cal----:~ ~-----+-((;J, ~~ 
(a) Prefix (b) Suffix 

alA ala al A 
bl A bib bl A 

-Qr-----:~:--g-:~~-((;J 
(c) Subword 

Fig. 13. Finite transducers realizing the prefix, suffix, and infix operations 

(3) Tin! = (Q3,E,E,(J3,S3,F3) where Q3 = {0,1,2}, S3 = 0, F3 = Q3, and 
(J3: 
(J3(0, a) = {(O, A), (1, an, for each a E E; 
(J3(1, a) = {(l, a), (2, An; for each a E E; 
(J3(2, a) = {(2, An, for each a E E. o 

A substitution cp : E* -+ 2,d* is called a regular substitution if, for each 
a E E, cp(a) is a regular language. The reader can verify that each regular 
substitution can be specified by a finite transduction. Thus, we have the 
following: 

Theorem 4.4. The family of regular languages is closed under regular sub
stitution and inverse regular substitution. 0 

Let L be an arbitrary language over E. For each x E E*, the left-quotient 
of L by x is the set 

x\L = {y E E* I xy E L}, 

and for a language Lo ~ E*, the left-quotient of L by Lo is the set 

Lo \L = U x\L = {y I xy E L, x E Lo}. 
xELo 

Similarly, the right-quotient of L by a word x E E* is the set 

L/x = {y E E* I yx E L}, 

and the right-quotient of L by a language Lo ~ E* is 
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L/ Lo = U L/x = {y I yx E L, x E Lo}. 
xELo 

It is clear by the above definition that 

(L1 \L) U (L2\L) = (L1 U L2)\L 

for any L1,L2 ~ E*. This implies that {x,y}\L = x\LUy\L. Similar equal
ities hold for right-quotient of languages. 

For L ~ E*, we define the following operations: 

• mine L) = {w ELI there does not exist x E L such that x is a propel' prefix 
of w} . 

• max(L) = {w ELI there does not exist x E L such that w is a propper 
prefix of x}. 

Theorem 4.5. The family of regular languages is closed under (1) left
quotient by an arbitrary language, (2) right quotient by an arbitrary language, 
(3) min, and (4) max. 

Proof. Let L ~ E* be a regular language accepted by a DFA A = 
(Q,E,5,s,F). We define, for each q E Q, DFA Aq = (Q,L',5,s,{q}) and 
A(q) = (Q,E,5,q,F). For each of the four operations, we prove that the re
sulting language is regular by constructing a finite automaton to accept it. 
We leave the verifications of the constructions to the reader. 

For (1), let Lo ~ E* be an arbitrary language. Then Lo \L is accepted by 
the NNFA A1 = (Q, E, 5, 8 1 , F) where Q, 5, and F are the same as in A; and 

is the set of starting states of the NNFA. 
For (2), we construct a DFA A2 = (Q, E, 5, s, F2) where Q, 5, and s are 

the same as in A; and F2 = {q E Q I L(A(q)) n Lo i= 0}. 
For (3), we define A3 = (Q, E, 53, s, F) where 53 is the same as 5 except 

that all transitions from each final state are deleted. 
For (4), we define A4 = (Q,E,5,s,F4) where F4 = {f E F I 5*(j,x) (j. 

F for all x E E+}. 0 

Let m and n be two natural numbers such that m < n. Then, for a 
language L ~ E*, ~ (L) is defined to be the language 

meL) {W1" .wm I w1" 'Wm Wm +1" .wn E 
n 

L,W1, ... ,Wn E E*,lw11 = ... = Iwnl}· 

Note that the above definition requires that the division of a word into n 
parts has to be exact. Then, the operations ~ and ~7: are not equivalent 
for an integer c > 1. For example, let L = p., a, ba, aab, bbab}; then ~(L) = 
p, b, bb}, but ~(L) = p, bb}. We show that the family of regular languages 
is closed under the ~ operation. 
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Theorem 4.6. Let L ~ E* be a regular language and m, n be two natural 
numbers such that m < n. Then ~(L) is regular. 

Proof. Let L be accepted by a DFA A = (Q,E,8,s,F). For each q E Q, we 
construct a variant of an NFA A(q) which reads m symbols at each transition. 
Such a variant can clearly be transformed into an equivalent standard NFA. 
More specifically, A(q) = (Q', E, 8', Sq, Fq) where Q' = Q x Q; 8 : Q' X Em --+ 

2Q' is defined, for ai,"" am E E, 

8'((pl, P2), ai ... am) = {(p~ ,p~) I 8*(pi' ai ... am) = p~ and 

there exists x E E n - m such that 8* (p2, x) = p~}; 

Sq = (s, q); and Fq = {(q, f) I f E F}. 
Intuitively, A(q) operates on two tracks, starting with the states sand 

q, respectively. A word u with lui = em, for some nonnegative integer c, is 
accepted by A(q) if A(q), working on the first track, can reach q by reading 
'U and, simultaneously working on the second track, can reach a final state of 
A from the state q by reading a "phantom" input of length c(n - m). 

It is easy to see that ~(L) = UqEQL(A(q)). We omit the details of the 
~~ 0 

4.3 Derivatives and the Myhill-Nerode theorem 

The notion of derivatives was introduced in [99, 100, 43] (under different 
names) and was first applied to regular expressions by Brzozowski in [16]. 

We define derivatives using the left-quotient operation. Let L ~ E* and 
x E E*. The derivative of L with respect to x, denoted DxL, is 

DxL = x\L = {y I xy E L}. 

For L ~ E*, we define a relation =L~ E* x E* by 

for each pair x, y E E*. Clearly, =L is an equivalence relation. It partitions 
E* into equivalence classes. The number of equivalence classes of =L is called 
the index of =L. We denote the equivalence class that contains x by [X]=:L' 
i.e., 

[X]=:L = {y E E* I y =L x}. 

Clearly, x =L y iff [X]L = [yl£. We simply write [x] instead of [X]=:L if there 
is no confusion. 

A relation R ~ E* x E* is said to be right-invariant with respect to 
catenation if x R y implies xz R yz, for any z E E*. It is clear that the 
relation =L is right-invariant. 
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Lemma 4.5. Let A = (Q, E, 8, s, F) be a DFA and L = L(A). For each q E 
Q, let Aq = (Q, E, 8, s, {q}). Then, for all x, y E E* and q E Q, x, Y E L(Aq) 
implies x =L y. 

Proof. Let x, y E L(Aq). Define A(q) = (Q, E, 8, q, F). Then, clearly, DxL = 
L(A(q») ",; DyL. Thus, x =L y by the definition of =L. 0 

The following is a variant ofthe theorem which is called the Myhill-Nerode 
Theorem in [57]. The result was originally given by Myhill [90] and Nerode 
[91]. A similar result on regular expressions was obtained by Brzozowski [16]. 

Theorem 4.7. A language L ~ E* is regular iff =L has a finite index. 

Proof. Only if: Let L be accepted by a complete DFA A = (Q, E, 8, s, F). 
As in Lemma 4.5, we define Aq = (Q,E,8,s,{q}) for each q E Q. Since A is 
a complete DFA, we have 

U L(Aq) = E*. 
qEQ 

Thus, 7rA = {L(Aq) I q E Q} is a partition of E*. By Lemma 4.5, for each 
q E Q, X,y E L(Aq) implies x =L y, i.e., L(Aq) ~ [x] for some x E E*. 
This means that 7rA refines the partition induced by =L. Since 7rA is a finite 
partition, the number of the equivalence classes of =L is finite. 

If We construct a DFA A' = (Q',E,8',s',F') where the elements of Q' are 
the equivalence classes of =L, i.e., Q' = {[x] I x E E*}; 8' is defined by 
8'([x], a) = [xa], for all [x] E Q and a E E; s' = [A]; and F' = {[x] I x E L}. 
Note that 8' is well-defined because =L is right-invariant. It is easy to verify 
that 8'(s', x) = [x] for each x E E* (by induction on the length of x). Then 
x E L iff 8'(s',x) = [x] E F'. Therefore, L(A') = L. 0 

Theorem 4.8. Let L be a regular language. The minimal number of states 
of a complete DFA that accepts L is equal to the index of =L' 

Proof. Let the index of =L be k. In the proof of Theorem 4.7, it is shown 
that there is a k-state complete DFA that accepts L. We now prove that k is 
minimum. Suppose that L is accepted by a complete DFA A = (Q, E, 8, s, F) 
of k' states where k' < k. Then, for some q E Q, L(Aq) contains words from 
two distinct equivalence classes of =L, i.e., x "¥:-L y for some x, y E L(Aq). 
This contradicts Lemma 4.5. 0 

Corollary 4.1. Let A = (Q, E, 8, s, F) be a complete DFA and L = L(A). A 
is a minimum-state complete DFA accepting L iff, for each q E Q, L(Aq) = 
[x] for some x E E*. 

Proof. The if part follows immediately from Theorem 4.8. For the con
verse implication, assume that A is a minimum-state complete DFA. By 
Lemma 4.5, the partition of E* into the languages L(Aq), q E Q, is a re
finement of =L. By Theorem 4.8, IQI equals to the index of =L. Hence, each 
language L(Aq), q E Q, has to coincide with some class of the relation =L. 0 
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From the above arguments, one can observe that for minimizing a given 
DFA A that accepts L, we need just to merge into one state all the states 
q such that the corresponding languages L(Aq) are in the same equivalence 
class of =L. Transitions from states to states are also merged accordingly. 
This can be done because of the right-invariant property of =L. 

More formally, for a DFA A = (Q, E, 8, s, F), we define an equivalence 
relation ~ A on Q as follows: 

for p, q E Q. Note that ~A is right-invariant in the sense that if p ~ q then 
8*(p,x) ~A 8*(q,x), for any given x E E*. It is clear that each equivalence 
class of ~A corresponds exactly to an equivalence class of =L(A). Then we 
can present the following DFA minimization scheme: 

(1) Partition Q into equivalence classes of ~A: 

il = {[q]1 q E Q}. 

(2) Construct A' = (Q',E,8',s',F') where Q' = il, s' = [s'], F' = {[i]1 f E 
F}, and 8'([p],a) = [q] if 8(p, a) = q, for allp,q E Q and a E E. 

Note that the right-invariant property of ~A guarantees that 8' is well defined. 
The major part ofthe scheme is at the step (1), i.e., finding the partition of 

Q. A straightforward algorithm for step (1) is that we check whether p ~A q 
by simply testing whether L(A(p)) = L(A(q)). However, the complexity of 
this algorithm is too high (£?(n4) where n is the number of states of A). 

Many partition algorithms have been developed, see, e.g., [56,49, 57, 11, 
12]. The algorithm by Hopcroft [56], which was redescribed later by Gries 
[49] in a more understandable way, is so far the most efficient algorithm. A 
rather complete list of DFA minimization algorithms can be found in [122]. 

An interesting observation is that, for a given DFA, if we construct an 
NFA that is the reversal of the given DFA and then transform it to a DFA by 
the standard subset construction technique (constructing only those states 
that are reachable from the new starting state), then the resulting DFA is 
a minimum-state DFA [15, 67, 81, 12]. We state this more formally in the 
following. First, we define two operations 'Y and -r on automata. For a DFA 
A = (Q,E,8,s,F), 'Y(A) is the NNFA AR = (Q,E,8R,F,{s}) where 8R : 
Q -+ 2Q is defined by 8R(p,a) = {q I 8(q, a) = p}; and for an NNFA M = 
(Q, E,'T/, S,F), -reM) is the DFA M' = (Q', E,'T/', s',F') where s' = S; 'T/' and 
F' are defined by the standard subset construction technique; and Q' ~ 2Q 
consists of only those subsets of Q that are reachable from s'. 

Theorem 4.9. Let A = (Q, E, 8, s, F) be a DFA with the property that all 
states in Q are reachable from s. Then L(-r(-y(A))) = LR and -r(-y(A)) is a 
rninimum-state DFA. 
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Proof. Let l'(A) be the NNFA AR = (Q,E,8R,F,{s}) and T(AR) be the 
DFA A' = (Q', 17, 8', s', F') as defined above. Obviously, L(A') = LR. To 
prove that A' is minimum, it suffices to show that, for any p', q' E Q', p' ~ A' q' 
implies p' = q'. Notice that p' and q' are both subsets of Q. If p' ~A' q', then 
L(A,(p'l) = L(A,(q'l). Let l' E p'. Since 8*(s,x) = l' for some x E 17*, we 
have s E (8R)*Cr,x) and, thus, x E L(A(p'l). This implies that x E L(A(q'l) 
and, thus, there exist t E q' such that 8* (s, x) = t. Since 8 is a deterministic 
transition function, l' = t, i.e., l' E q'. So, p' ~ q'. Similarly, we can prove 
that q' ~ p'. Therefore, p' = q'. 0 

From the above idea, a conceptually simple algorithm for DFA mini
mi,mtion can be obtained as follows. Given a DFA A, we compute A' = 
T(1'(T(1'(A)))). Then A' is a minimum-state DFA which is equivalent to A. 
The algorithm is descriptively very simple. However, the time and space com
plexities of the algorithm are very high; they are both of the order of 2n in 
the worst case, where n is the number of states of A. This algorithm was 
originally given by Brzozowski in [15J. Descriptions of the algorithm can also 
be found in [81, 67, 12, 118, 122J. Watson wrote an interesting paragraph on 
the origin of the algorithm in [122J (on pages 195-196). 

Theorem 4.8 gives a tight lower bound on the number of states of a DFA. 
Can we get similar results for AFA and NFA? The following result for AFA 
follows immediately from Theorem 2.14 and Theorem 4.8. 

TheoreIll 4.10. Let L be a regular language and k > 1 be the minimum 
number of states of a DFA that accepts L R, i. e., the reversal of L. Then the 
minimum number of states of an s-AFA accepting L is flog k 1 + 1. 0 

Note that there can be many different minimum-state AFA accepting a given 
language and they are not necessarily identical or equivalent under a renam
ing of the states. 

NFA are a special case of AFA. Any lower bound on the number of states 
of an AFA would also be a lower bound on the number of states of an NFA. 

Corollary 4.2. Let L be a regular language and k > 1 be the minimum 
number- of states of a DFA that accepts LR. Then the minimum number of 
states of an NFA accepting L is greater than or equal to flog k 1 + 1. 

The above lower bound is reached for some languages, e.g., the languages 
accepted by the automata shown in Figure 18. 

Also by Lemma 2.2, we have the following: 

TheoreIll 4.11. Let L be a regular language. Let k and k' be the num
bers of states of the minimal DFA accepting Land L R, respectively. Then 
the nmnber of states of any NFA accepting L is greater than or equal to 
max(flog k 1, flog k'l). 0 

Observe that minimum-state NNFA that accept Land L R , respectively, 
have exactly the same number of states. A minimum-state NFA requires at 



96 Sheng Yu 

most one more state than a minimum-state NNFA equivalent to it. So, this 
gives another proof for the above lower bound. 

5. Complexity issues 

In the previous sections, we studied various representations, operations, and 
properties of regular languages. When we were considering the operations 
on regular languages, we were generally satisfied with knowing what can be 
done and what cannot be done, but did not measure the complexity of the 
operations. In this section, we consider two kinds of measurements: (1) state 
complexity and (2) time and space complexity. One possibility would have 
been to discuss these complexity issues together with the various operations 
in the previous sections. Since this topic has usually not been at all included 
in earlier surveys, we feel that devoting a separate section for the complexity 
issues is justified. 

5.1 State complexity issues 

By the state complexity of a regular language, we mean the minimal number 
of states of a DFA representing the language. By the state complexity of an 
operation on regular languages we mean a function that associates the sizes of 
the DFA representing the operands of the operation to the minimal number 
of states of the DFA representing the resulting language. Note that in this 
section, by a DFA we always mean a complete DFA. 

State complexity is a natural measurement of operations on regular lan
guages. It also gives a lower bound for the time and space complexity of those 
operations. State complexity is of central importance especially for applica
tions using implementations of finite automata. However, questions of state 
complexity have rarely been the object of a systematic investigation. Exam
ples of early studies concentrated on this topic are [104, 105] by Salomaa and 
[89] by Moore. Some recent results can be found in [6, 102, 101, 124, 111]. 
Most of the results presented in this section are from [111]. 

By an n-state DFA language, we mean a regular language that is accepted 
by an n-state DFA. Here, we consider only the worst-case state complexity. 
For example, for an arbitrary m-state DFA language and an arbitrary n-state 
DFA language, the state complexity of the catenation of the two languages 
is m2" - 2,,-1. This means that 

(1) there exist an m-state DFA language and an n-state DFA language such 
that any DFA accepting the catenation of the two languages needs at 
least m2n - 2n- 1 states; and 

(2) the catenation of an m-state DFA language and an n-state DFA language 
can always be accepted by a DFA using m2n - 2n- 1 states or less. 
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So, it is a tight lower bound and upper bound. In the following, we first 
summarize the state complexity of various operations on regular languages. 
Then we give some details for certain operations. For each operation we 
consider, we give an exact function rather than the order of the function. 

Let E be an alphabet, L1 and L2 be an m-state DFA language and an 
n-state DFA language over E, respectively. A list of operations on L1 and L2 
and their state complexity are the following: 

• L1L2 : m2n - 2n- 1; 
• (L2)* : 2n- 1 + 2n- 2; 
• L1 nL2 : mn; 
• L1 UL2 : mn; 
• L\L2 : 2n - 1, where L is an arbitrary language; 
• L 2/ L : n, where L is an arbitrary language; 
• L¥ : 2n. 

The state complexity of some of the above operations is much lower if we 
consider only the case when lEI = 1. For unary alphabets, we have 

• (L2)* : (n - 1)2 + 1; 
• L1L2 : mn (if (m, n) = 1). 

5.1.1 Catenation 
We first show that for any m ;::: 1 and n > 1 there exist an m-state DFA 
A and an n-state DFA B such that any DFA accepting L(A)L(B) needs at 
least m2n - 2n- 1 states. Then we show that for any pair of m-state DFA A 
and n-state DFA B defined on the same alphabet E, there exists a DFA with 
at most m2n - 2n- 1 states that accepts L(A)L(B). 

Theorem 5.1. For any integers m ;::: 1 and n ;::: 2, there exist a DFA A of 
m states and a DFA B of n states such that any DFA accepting L(A)L(B) 
needs at least m2n - 2n - 1 states. 

Proof. We first consider the cases when m = 1 and n ;::: 2. Let E = 
{ a, b}. Since m = 1, A is a one-state DFA accepting E*. Choose B = 
(P, E, {jB,PO, FB ) (Figure 14) where P = {po, ... ,Pn-d, FB = {Pn-I }, 
and {jB(PO, a) = Po, {jB(PO, b) = PI, {jB(Pi, a) = PHI, 1 :::; i :::; n - 2, 
{jB(Pn-1' a) = Pb {jB(Pi, b) = Pi, 1 :::; i :::; n - 1. 

It is easy to see that 

L(A)L(B) = {w E E* I w = ubv, Ivl a == n - 2 mod (n - I)}. 

Let (iI, ... ,in-I) E {O, 1 }n-1 and denote 

w(ib ... ,in- 1) = bi1 abi2 ... abin- 1. 

Then, for every j E {O, ... ,n - 2}, W(ib" . ,in_dai E L(A)L(B) iff ii+1 = 1. 
Thus a DFA accepting L(A)L(B) needs at least 2n - 1 states. 
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Fig. 14. DFA B 

Now we consider the cases when m;::: 2 and n;::: 2. 
Let E = {a, b, c}. Define A = (Q, E,OA,qo, FA) where Q = {qo, ... , qm-d; 

FA = {qm-l }; for each i, 0 ~ i ~ m - 1, 

{ 
qj, j = (i + 1) mod m, ~f X = a, 

OA(qi,X) = qo, If X = b, 
qi, if X = c. 

Define B = (P,E,oB,Po,FB) where P = {PO, ... ,Pn-d; FB = {Pn-I}; 
and for each i, 0 ~ i ~ n - 1, 

{ 
Pj, j = (i + 1) mod n, ~f X = b, 

OB(Pi,X)= Pi, IfX=a, 
PI, if X = c. 

The DFA A and B are shown in Figure 15 and Figure 16, respectively. 
The reader can verify that 

L(A) = {xy I x E (E*{b})*, Y E {a,c}* & IYla = m -1 mod m}, 

and 
L(B) n {a,b}* = {x E {a,b}* Ilxlb = n-l mod n}. 

Now we consider the catenation of L(A) and L(B), i.e., L(A)L(B). 

Fact 5.1. For m > 1, L(A) n E*{b} = 0. o 

For each x E {a, b}*, we define 

S(x) = { i I x = uv such that U E L(A), and i = Ivlb mod n }. 

Consider X,Y E {a,b}* such that S(x) =I- S(y). Let k E S(x) - S(y) 
(or S(y) - S(x)). Then it is clear that xbn- 1- k E L(A)L(B) but ybn- 1- k f/. 
L(A)L(B). So, x and yare in different equivalence classes of =L(A)L(B) where 
=L is defined in Section 4.3. 
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Fig. 15. DFA A 
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Fig. 16. DFA B 

For each x E {a, b}*, define T(x) = max{lzll x = yz & z E a*}. Consider 
u,v E {a,b}* such that S(u) = S(v) and T(u) > T(v) mod m. Let i = 
T( u) mod m and w = cam-l-ibn-l. Then clearly uw E L(A)L(B) but vw ¢ 
L(A)L(B). Notice that there does not exist a word wE E* such that 0 ¢ S(w) 
and T(w) = m-I, since the fact that T(w) = m-I guarantees that 0 E S(w). 

For each subset s = {i1, ... ,itl of {O, ... ,n -I}, where i1 > ... > it, 
and each integer j E {O, ... ,m - I} except the case when both 0 ¢ sand 
j = m - I are true, there exists a word 

such that S(x) = sand T(x) = j. Thus, the relation =L(A)L(B) has at least 
m2n - 2n- 1 distinct equivalence classes. 0 

The next theorem gives an upper bound which coincides exactly with the 
above lower bound result. Therefore, the bound is tight. 
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Theorem 5.2. Let A and B be two complete DFA defined on the same al
phabet, where A has m states and B has n states, and let A have k final 
states, 0 < k < m. Then there exists a (m2n - k2n- 1 )-state DFA which 
accepts L(A)L(B). 

Proof. Let A = (Q, E, tiA, qo, FA) and B = (P, E, tiB,po, FB ). Construct 
C = (R, E, tic, ro, Fe) such that 

R = Q x 2P - FAX 2P -{po} where 2x denotes the power set of X; 
ro =< qo,0 > if qo rf. FA, ro =< qo, {Po} > otherwise; 
Fe = {< q,T >E R I TnFB =f. 0}; 
tie« q,T >,a) =< q',T' >, for a E E, where q' = tiA(q,a) and T' 
tiB(T, a) U {po} if q' E FA, T' = tiB(T, a) otherwise. 

Intuitively, R is a set of pairs such that the first component of each pair 
is a state in Q and the second component is a subset of P. R does not 
contain those pairs whose first component is a final state of A and whose 
second component does not contain the initial state of B. Clearly, C has 
m2n - k2n- 1 states. The reader can easily verify that L(C) = L(A)L(B). 0 

We still need to consider the cases when m ~ 1 and n = 1. We have the 
following result. 

Theorem 5.3. The number of states that is sufficient and necessary in the 
worst case for a DFA to accept the catenation of an m-state DFA language 
and a i-state DFA language is m. 

Proof. Let E be an alphabet and a E E. Clearly, for any integer m > 0, the 
language L = {w E E* I Iwl a == m - 1 mod m} is accepted by an m-state 
DFA. Note that E* is accepted by a one-state DFA. It is easy to see that any 
DFA accepting L E* = {w E E* I #a(W) ~ m - I} needs at least m states. 
So, we have proved the necessary condition. 

Let A and B be an m-state DFA and a I-state DFA, respectively. Since 
B is a complete DFA, L(B) is either 0 or E*. We need to consider only the 
case L(B) = E*. Let A = (Q, E, tiA, qo, FA)' Define C = (Q, E, tic, qo, FA) 
where, for any X E E and q E Q, 

tie(q, X) = { tiA(q, X), ~f q rf. FA, 
q, 1f q E FA. 

The automaton C is exactly as A except that final states are made to be 
sink-states: when the computation has reached some final state q, it remains 
there. Now it is clear that L(C) = L(A)E*. 0 

5.1.2 Star operation (Kleene closure) 
Here we prove that the state complexity of the star operation of an n-state 
DFA language is 2n- 1 + 2n-2. 

Theorem 5.4. For any n-state DFA A = (Q,E,ti,qo,F) such that IF
{qo}1 = k ~ 1 and n > 1, there exists a DFA of at most 2n- 1 +2n- k - 1 states 
that accepts (L(A))*. 
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Proof. Let A = (Q, E, 8, qo, F) and L = L(A). Denote F - {qo} by Fo. Then 
lFol = k ~ 1. We construct a DFA A' = (Q', E,8', qb,F') where 

qb f/. Q is a new start state; 
Q' = {qb}U{PIP ~ (Q-Fo)&P =f 0}U{RIR ~ Q&qo E R&RnFo =f 0}; 
8'(qb, a) = {8(qo, an, for any a E E, and 
8'(R a) _ { 8(R, a) if8(R, a) n Fo = 0, 

, - 8(R, a) U {qo} otherwise, 
for R ~ Q and a E Ej 
F' = {qb} U {R I R ~ Q & R n F =f 0}. 

The reader can verify that L(A') = L *. Now we consider the number 
of states in Q'. Notice that in the second term of the union for Q', there 
are 2n - k - 1 states. In the third term, there are (2k - 1)2n - k- 1 states. SO, 
IQ'I = 2n - 1 + 2n - k - 1• 0 

Note that if qo is the only final state of A, i.e., k = 0, then (L(A))* = L(A). 
So, the worst-case state complexity of the star operation occurs when k = 1. 

Corollary 5.1. For any n-state DFA A, n> 1, there exists a DFA A' of at 
most 2n - 1 + 2n - 2 states such that L(A') = (L(A))*. 0 

Theorem 5.5. For any integern ~ 2, there exists a DFA A ofn states such 
that any DFA accepting (L(A))* needs at least 2n - 1 + 2n - 2 states. 

Proof. For n = 2, it is clear that L = {w E {a, b}* Ilwla is odd} is accepted 
by a two-state DFA, and L* = {c} U {w E {a, b}* I Iwla ~ I} cannot be 
accepted by a DFA with less than 3 states. 

For n > 2, we give the following construction: An = (Qn, E, 8n , 0, {n-1}) 
where Qn = {O, ... ,n - I}; E = {a, b}; 8(i, a) = (i + 1) mod n for each 
OS; i < n, 8(i, b) = (i + 1) mod n for each 1 S; i < nand 8(0, b) = 0. An is 
shown in Figure 17. 

We construct the DFA A~ = (Q~,E,8~,qb,F~) from An exactly as de
scribed in the proof of the previous theorem. We need to show that (I) every 
state is reachable from the start state and (II) each state defines a distinct 
equivalence class of =L(An )*. 

Fig. 17. An n-state DFA An: The language (L(An))* requires 2n - 1 + 2n- 2 states 
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We prove (I) by induction on the size of the state set. (Note that each 
state is a subset of Qn except qb.) 

Consider all q such that q E Q' and Iql = 1. We have {O} = 8~(qo, b) and 
{ i} = 8~ (i - 1, a) for each 0 < i < n - 1. 

Assume that all q such that Iql < k are reachable. Consider q where 
Iql = k. Let q = {i1,i2,oo.,ik} such that O::S: iI < i 2 °o' < i k < n -1 if 
n - 1 rf. q, il = n - 1 and 0 = 'i 2 < ... ik < n - 1 otherwise. There are four 
cases: 

(i) il = n -1 and i2 = O. Then q = 8~({n - 2,i3 -1, ... ,ik - 1},a) where 
the latter state contains k - 1 states. 

(ii) il = 0 and i2 = 1. Then q = 8~(q',a) where q' = {n-l,O,i 3 -1, ... i k -l} 
which is considered in case (i). 

(iii) il = 0 and i2 = 1 + t for t > O. Then q = 8~(q'Y) where q' = {O, l,i3-
t, ... , ik - t}. The latter state is considered in case (ii). 

(iv) il = t > O. Then q = 8~(q',at) where q' {O,i2 - t, ... ,ik - t} is 
considered in either case (ii) or case (iii). 

To prove (II), let i E P - q for some p, q E Q~ and p =f. q. Then 
8~(p, an-I-i) E F~ but 8~(q, an-I-i) rf. F~. 0 

Note that a DFA accepting the star of a I-state DFA language may need 
up to two states. For example, 0 is accepted by a I-state DFA and any 
complete DFA accepting 0* = {E} has at least two states. 

It is clear that any DFA accepting the reversal of an n-state DFA language 
does not need more than 2n states. But can this upper bound be reached? 
A result on alternating finite automata ([23]' Theorem 5.3) gives a positive 
answer to the above question if n is of the form 2k for some integer k ~ O. Leiss 
has solved this problem in [73] for all n > O. A modification of Leiss's solution 
is shown in Figure 18. If we reverse all the transitions of this automaton, we 
will get a good example for showing that, in the worst case, a DFA equivalent 
to an n-state NFA may need exactly 2n states. 

5.1.3 An open problem 
For the state complexity of catenation, we have proved the general result 
(m2n - 2n- 1 ) using automata with a three-letter input alphabet. We have 
also given the complexity for the one-letter alphabet case. We do not know 
whether the result obtained for the three-letter alphabet still holds if the size 
of the alphabet is two. 

5.2 Time and space complexity issues 

Almost all problems of interest are decidable for regular languages, i.e., there 
exist algorithms to solve them. However, for the purpose of implementation, 
it is necessary to know how hard these problems are and what the time and 
space complexities of the algorithms are. In the following, we list some basic 
problems, mostly decision problems, for regular languages together with their 
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b,c 

Fig. 18. An n-state DFA such that L(A)R requires 2n states 

complexity. We give a brief explanation and references for each problem. The 
reader may refer to [46, 57, 4] for terminology in complexity theory. 

One may observe that many of the following problems are NP-complete 
or even PSPACE-complete, which are categorized as computationally in
tractable in complexity theory. However, finite automata and regular expres
sions used in many applications are fairly small in size. In such cases, even 
exponential algorithms can be practically feasible. 

(1) DFA Membership Problem: 
Given an arbitrary DFA A with the input alphabet E and an arbitrary 
word x E E*, is x E L(A)? 
Complexity: DLOGSPACE-complete [64]. 

(2) NFA Membership Problem: 
Given an arbitrary NFA A with the input alphabet E and an arbitrary 
word x E E*, is x E L(A)? 
Complexity: NLOGSPACE-complete [66]. 

(3) AFA Membership Problem: 
Given an arbitrary AFA A with the input alphabet E and a word x E E*, 
is x E L(A)? 
Complexity: P-complete [64]. 

(4) Regular Expression Membership Problem: 
Given a regular expression e over E and a word x E E*, is x E L( e)? 
Complexity: NLOGSPACE-complete [64]. 

(5) DFA Emptiness Problem: 
Given an arbitrary DFA A, is L(A) = 0? 
Complexity: NLOGSPACE-complete [66]. 

(6) NFA Emptiness Problem: 
Given an arbitrary NFA A, is L(A) = 0? 
Complexity: NLOGSPACE-complete [66]. 
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(7) AFA Emptiness Problem: 
Given an arbitrary AFA A, is L(A) = 0? 
Complexity: PSPACE-complete [64]. 

(8) DFA Equivalence Problem: 
Given two arbitrary DFA Al and A 2, is L(At) = L(A2)? 
Complexity: NLOGSPACE-complete [26]. 

(9) NFA Equivalence Problem: 
Given two arbitrary NFA Al and A 2, is L(At) = L(A2)? 
Complexity: PSPACE-complete [46]. 

(10) AFA Equivalence Problem: 
Given two arbitrary AFA Al and A 2, is L(At) = L(A2)? 
Complexity: PSPACE-complete [64]. 

(11) Regular Expression Equivalence Problem: 
Given two regular expressions el and e2, is L(et) = L(e2)? 
Complexity: PSPACE-complete [59]. (Note that if one of the regular 
expressions denotes a language of polynomial density, then the complex
ity is NP-complete.) 

The following problems can also be converted into decision problems. 
However, we prefer to keep them in their natural form: 

(i) DFA Minimization Problem: 
Given a DFA with n states, convert it to an equivalent minimum-state 
DFA. 
Complexity: O(nlogn) [56]. 

"') NFA Minimization Problem: 
Given an NFA, convert it to an equivalent minimum-state NFA. 
Complexity: PSPACE-complete [59,119]. 

(iii) DFA to Minimal NFA Problem: 
Given a DFA, convert it to an equivalent minimum-state NFA. 
Complexity: PSPACE-complete [65]. 

The following problems remain open: 

(a) Is membership for regular expressions over a one-letter alphabet 
NLOGSPACE-hard1 

(b) Is membership for extended regular expressions P-hard1 
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