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Preface 

The communication complexity of two-party protocols is an only 15 years old 
complexity measure, but it is already considered to be one of the fundamen­
tal complexity measures of recent complexity theory. Similarly to Kolmogorov 
complexity in the theory of sequential computations, communication complex­
ity is used as a method for the study of the complexity of concrete computing 
problems in parallel information processing. Especially, it is applied to prove 
lower bounds that say what computer resources (time, hardware, memory size) 
are necessary to compute the given task. Besides the estimation of the compu­
tational difficulty of computing problems the proved lower bounds are useful for 
proving the optimality of algorithms that are already designed. In some cases 
the knowledge about the communication complexity of a given problem may be 
even helpful in searching for efficient algorithms to this problem. 

The study of communication complexity becomes a well-defined indepen­
dent area of complexity theory. In addition to a strong relation to several funda­
mental complexity measures (and so to several fundamental problems of com­
plexity theory) communication complexity has contributed to the study and to 
the understanding of the nature of determinism, nondeterminism, and random­
ness in algorithmics. There already exists a non-trivial mathematical machinery 
to handle the communication complexity of concrete computing problems, which 
gives a hope that the approach based on communication complexity will be in­
strumental in the study of several central open problems of recent complexity 
theory. 

This book presents the basic concepts in the study of communication com­
plexity and in its application in proving lower bounds on distinct fundamental 
complexity measures. In the applications we focus on the complexity measures 
of realistic, parallel computing models like combinational (Boolean) circuits, 
VLSI circuits and interconnection networks. The book is written at a level ac­
cessible to advanced undergraduates and to graduate students. Since it gives 
a survey on the study of communication complexity and formulates a lot of 
research problems we expect it will also prove to be a reference for researchers 
in this area. 

First of all I would like to thank Grzegorz Rozenberg and Arto Salomaa, 
who encouraged me to write this book, and to Burkhard Monien and Wolfgang 
Thomas for the good working atmosphere in Paderborn and Kiel during the 
work on the book. I am indebted to Ingeborg Mayer, Andrew Ross and Hans 
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Wossner of Springer-Verlag for their editorial help, comments and suggestions 
which essentially contributed to the quality of the presentation of the book. 

I am grateful for the comments and materials received from several people, 
including Ivana Cerna, Josef Gruska, Ivana Holtring, Oliver Matz, Dana Par­
dubska, Anna Slobodova, Ondrej Sykora, Imrich Vrto, Juraj Waczulik, and Avi 
Wigderson. Special thanks go to Martin Dietzfelbinger and Georg Schnitger for 
an intensive research cooperation, which during the work on the book led to the 
solutions of some open problems enabling to present a complete picture of some 
research directions on communication complexity in this book. I would like to 
thank Sebastian Seibert for carefully reading of the whole manuscript. I am 
indebted to Heidi Luca-Gottschalk, Oliver Matz, Walter Unger, and Thomas 
Wilke for the help with LaTeX and to Marion Kupper and Gerti Rosenfeld for 
typing some parts of the manuscript. 

My deepest thanks go to Tanja, not only for carefully typing of several parts 
of this book. 

Kiel, January 1997 Juraj Hromkovic 
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1. Introduction 

1.1 Motivation and Aims 

Parallel data processing has become a reality. Large numbers of processors (com­
puters) cooperating to compute a given task have brought an essential speed-up 
of classical sequential computations. Many computing problems requiring too 
much time to be solved in real time by sequential machines can be computed in 
parallel very quickly. Because there are many computing tasks requiring a real­
time solution in industry, the investigation of parallel computing is becoming 
one of the central parts of theoretical computer science and computer engineer­
ing. In the theory the study ranges from the study of abstract parallel computing 
models (complexity measures) and limits to parallel computations (classifica­
tion of computing problems in two classes: problems that allow quick parallel 
solution by using a realistic number of processors and problems for which no 
efficient parallel algorithm exists) to the development of parallel programming 
languages, communication algorithms for different parallel architectures, and 
automatic design of VLSI circuits. 

This book is devoted to the abstract theory of parallel complexity measures, 
where one tries to measure the computational difficulty of a computing problem 
as an inherent property of the problem. We are mainly interested in proving 
some lower bounds that say what computer resources (time, hardware, memory 
size) are necessary to compute the given task (problem). The lower bound proofs 
are usually connected with a detailed analysis of the given computing problems 
and so they provide knowledge about the nature of the problem. Besides the 
classification of the computational difficulty of the computing problems the 
proved lower bounds may be usefull in searching for efficient algorithms for the 
problem as well as for proving the optimality of algorithms that are already 
designed. 

This book concentrates on only one complexity measure - communication 
complexity of two-party protocols. Informally, a two-party protocol (shortly, pro­
tocol) is a computing model consisting of two abstract computers GJ and GIl 
with unlimited power. In this book we call GJ the first (left) computer and GIl 
the second (right) computer (see Figure 1.1). 

At the beginning one considers that an input w is divided in a balanced 
way between GJ and GIl (for instance, GJ has the first half of the input wand 
GIl obtains the second half of w). The aim is to compute the output for the 
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L-__ G_J __ -----JI "ommunicatiOn, IL-___ G_J_J __ ---' 

the first (left) computer the second (right) computer 

Fig. 1.1. The model of two-party communication protocols 

given input w. To achieve this aim GJ and GIl are allowed to communicate 
by exchanging some binary messages. The communication complexity of the 
computation on w is the sum of the lengths of all messages exchanged between 
GJ and GIl. The communication complexity of a protocol computing a finite 
problem is the maximum of the communication complexities over all inputs of 
the problem. 

Some natural questions arise: Why write a book about one complexity mea­
sure only? Why study a simple model, where the parallelism is restricted to two 
computers only? The reason is that this communication complexity is useful for 
parallel computing in a similar way as Kolmogorov complexity has been shown 
to be useful for the study of sequential computations. The communication com­
plexity measure is so close to a lot of realistic parallel (and even sequential) 
complexity measures that it can be used as method for proving lower bounds 
on the complexity measures of fundamental computing models like VLSI cir­
cuits, combinatorial circuits, interconnection networks, Turing machines, etc. 
Moreover, it enables one to achieve new results in the principal topic of theoret­
ical computer science dealing with the comparison of the computational power 
of deterministic, nondeterministic, and probalistic computations. 

The main aim of this book is to provide an overview of the study of com­
munication complexity and its application to parallel computing. The book is 
written for students as an introduction to this topic as well as for use by re­
searchers interested in working in this area. For these reasons the book includes 
a lot of exercises of varying difficulty as well as the formulations of research 
(open) problems of interest. 

More precisely, the central aims of the book are the following. 

(i) To fix the formalism in the definition of two-party protocols (note that a 
few distinct formalisms have been considered so far in the literature) and 
to define several versions of communication complexity depending on the 
partitions of the input, because different applications require consideration 
of different sets of input partitions. 

(ii) To give an overview of the basic theoretical properties of the communica­
tion complexity measure. 
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(iii) To give an overview of the methods for proving lower bounds on the com­
munication complexity of concrete computing problems. This part is of 
most interest because the lower bounds on the communication complexity 
of concrete problems are applied to get lower bounds on the complexity 
measures of realistic models of parallel computations. 

(iv) To give an overview of the main results concerning nondeterministic and 
probabilistic protocols and their communication complexity. For commu­
nication complexity one can establish results that people try but fail to 
establish for time complexity of sequential computations. For instance, 
nondeterminism and Monte Carlo probabilism can be much more power­
ful than determinism for two-party protocols, but deterministic commu­
nication complexity is polynomially related to Las Vegas communication 
complexity. 

(v) To give an overview of the use of communication complexity for prov­
ing lower bounds on different complexity measures of distinct computing 
models. The main emphasis is placed on the relation between communi­
cation complexity and area-time complexity measures of distinct circuit 
models. 

Recently, a lot of results about communication complexity have appeared 
in the literature. We are not able to present all of them. The ones chosen for 
presentation in this book are explained very carefully and their proofs usually 
contain more details than their counterparts in the journal or proceedings pub­
lications. Some of the results from the literature are formulated in the exercises 
or mentioned in the bibliographical remarks only. Because the central idea of 
the book is to give methods for proving lower bounds on parallel complex­
ity measures by applying communication complexity, the overviews connected 
with the aims (iii) and (v) above are more exhaustive than the other ones. The 
book does not contain any result connected with relativized communication 
complexity classes and oracles, whose study represents a research direction in 
communication complexity theory too. 

Proving non-trivial lower bounds on the complexity of concrete computing 
problems and especially the development of mathematical proof methods en­
abling one to achieve them is probably one of the few central topics of recent 
theoretical computer science. The reason why we are not able to solve the P 
versus N P question, which is perhaps the single most important problem of 
theoretical computer science, is the lack of powerful lower bounds methods in 
complexity theory. The two-party communication protocol model has enabled us 
to prove a sequence of important lower bounds and so to contribute essentially 
to complexity theory. This model provides several lower bound techniques based 
on information theoretic arguments and is elegant in use. There already exists 
non-trivial mathematical machinery to handle the communication complexity 
of concrete problems. From these reasons we hope that the approach based on 
communication protocols will be instrumental in solving further important open 
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problems in theoretical computer science. Belief in the future and the fruitful­
ness of the approach was the author's main reason starting to write this book. 
We hope that the book will be a modest contribution to motivating to research 
work on this topic and providing a sound basis for further investigations. 

-1.2 Concept and Organization 

This account of communication complexity is divided into four chapters. Chap­
ter 2 deals with communication complexity as an abstract complexity measure. 
Chapter 3 relates communication complexity to the complexity measures of 
Boolean circuits. Chapter 4 relates communication complexity to the complex­
ity of VLSI computations and to interconnection networks. Chapter 5 is devoted 
to the applications of communication complexity for some sequential models. 

More precisely, Chapter 2 is divided into seven sections. Section 2.1 pro­
vides definitions of some basic notions connected with formal language theory, 
Boolean function theory, and graph theory. Section 2.2 presents the formal 
model of two-party protocols and defines the communication complexity of 
computing problems according to a fixed partition of the input. Basic meth­
ods for proving lower bounds on communication complexity are presented and 
compared here. In Section 2.3 the general communication complexity is defined 
as the minimum of communication complexities of all protocols over all in­
put partitions dividing the input in a balanced way (or almost balanced way). 
This communication complexity is the measure with the closest connection to 
the parallel complexity measures studied in Chapters 3 and 4. Section 2.3 also 
provides some fundamental theoretical properties of communication complex­
ity and relates the communication complexity of language recognition to the 
Chomsky hierarchy in formal language theory. In Section 2.4 one-way protocols 
are defined as protocols with a restriction on the communication allowing only 
one message flowing from Gf to GIl during the whole computation. After GIl 
has received this message, it must immediately compute the result. Based on 
one-way protocols, one-way communication complexity is defined. Basic lower 
bounds methods for one-way communication complexity are presented there 
and the communication complexity and the one-way communication complex­
ity of concrete problems are compared. Section 2.5 is devoted to the definitions 
of nondeterministic and randomized protocols as well as to the definitions of the 
corresponding complexity measures. The computational powers of determinis­
tic, nondeterministic, and randomized protocols are compared in this section. 
Section 2.6 proposes an improved model of protocols which captures better than 
the standard model the definition of a complexity measure describing the com­
munication complexity of a computing problem as an inherent property of this 
problem. It is shown that this communication model can be applied to prove 
reasonable lower bounds on parallel computations even if the standard model 
fails to do so. The last section of this chapter is devoted to bibliographical 
remarks. 
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Chapter 3 is divided into seven sections and it is devoted to the relation 
between communication complexity and the complexity measures of Boolean 
circuits. Section 3.1 provides the introduction to this chapter. Section 3.2 gives 
the definitions of fundamental Boolean circuit models and their complexity 
measures. Section 3.3 shows how the communication complexity of a comput­
ing problem P provides lower bounds on the layout area of any Boolean circuit 
computing P. Section 3.4 deals with the classical open problem of proving a su­
perlinear lower bound on the combinational complexity (number of processors 
of Boolean circuits) of a concrete Boolean function. It is shown that this nonlin­
ear lower bound can be proved if the circuit has a sublinear separator. Special 
attention is devoted to lower bounds on the size of planar Boolean circuits. A 
proof of a version of the Planar Separator theorem is given in a well-structured, 
detailed form. Section 3.5 is devoted to lower bounds on Boolean circuits with 
unbounded fan-in and fan-out. Section 3.6 uses the communication protocol 
model for the computations of relations instead of functions in order to develop 
a lower bound method on the depth of Boolean circuits. Bibliographical remarks 
close Chapter 3. 

Chapter 4 consists of six sections. Section 4.1 provides an introduction and 
Section 4.2 contains the definitions of VLSI circuit models and their complexity 
measures. Section 4.3 shows that one-way communication complexity provides 
a lower bound on the area of VLSI circuits and how communication complexity 
can be used to obtain lower bounds on the tradeoffs of area and time com­
plexity measures of VLSI circuits. How to get still higher lower bounds on the 
VLSI complexity measures if the topology of circuits is restricted in some way 
is shown here too. In Section 4.4 a general model of interconnection networks 
with powerful processors is defined. It is shown how to apply communication 
complexity to obtain lower bounds on time and size of concrete interconnection 
networks. Section 4.5 is devoted to so-called multilective VLSI circuits, which 
are a generalization of the basic VLSI circuit model. More elaborate combina­
torial considerations than for standard VLSI circuits are needed to show how 
communication complexity can be used to get lower bounds on multilective 
VLSI computations. Section 4.6 is devoted to bibliographical remarks. 

Chapter 5 deals with the relations between communication complexity and 
some complexity measures of sequential computation. It consists of five sec­
tions. Section 5.1 is an introduction. Section 5.2 introduces a uniform model of 
one-way communication protocols and shows that the corresponding uniform 
one-way communication complexity is strongly related to the size of determin­
istic finite automata. Section 5.3 relates communication complexity to the time 
and space complexity of Turing machines. Section 5.4 shows how communica­
tion complexity can be used to obtain lower bounds on the size and the depth 
of decision trees and branching programs. Section 5.5 contains bibliographical 
remarks. 

Each chapter is organized according to the same pattern. It starts with an 
introduction giving the basic information about the main motivations, aims, 
and content of the chapter. And it ends with some bibliographical remarks. 
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Here the original sources of the main assertions presented in the chapter are 
given. Here too one can find more information and discussions about concepts, 
facts, and ideas close to the content of the chapter, but not presented there. The 
structure of the sections is uniform too. They are divided into subsections. The 
first subsection is an introduction giving information about the content of the 
section. Usually, the section finishes with the subsections Exercises and Research 
Problems. The exercises may be used to learn to work with the formalism used, 
to better understand the proof methods presented in the section, to extend the 
ideas of the section, and to find formutions of further results connected with the 
topic of the section but not presented and proved there. The exercises are divided 
into three classes according to their difficulty. The exercises without any star are 
for simple training in proof techniques presented in the section. The exercises 
marked with one star require nontrivial proofs and the doubly starred exercises 
are usually assertion from published papers requiring nontrivial proof ideas 
which cannot be considered as straightforward extensions of proof techniques 
presented in the book. The Research Problems subsections provide useful ideas 
for further investigation in the research direction of the corresponding section. 
The known open problems considered to be really hard are labelled by one or 
two stars. 

1.3 How to Read the Book 

The book contains more material than one can present in one course. If some­
body is interested to learn communication complexity as an abstract complexity 
measure it is sufficient to read Chapter 2 only. If one follows the main goal of 
the book (to use communication complexity for proving lower bounds on some 
complexity measures of parallel computations), then it is not necessary to read 
the whole of Chapter 2 before starting to read the topic of proper interest in 
Chapters 3 and 4. It suffices to read Sections 2.1 and 2.2, Sections 2.3.1, 2.3.2, 
and 2.3.3 of Section 2.3, Section 2.4, and Sections 2.6.1, 2.6.2, 2.6.3, and 2.6.4 
of Section 2.6. How much from Chapters 3 and 4 has to be read depends on 
one's interest. The first two sections of each of these two chapters provides the 
basic information about standard circuit models and their relations to commu­
nication complexity. Almost all ideas and proofs are relatively simple in these 
parts. The following sections usually contain specialized results requiring more 
involved ideas and proofs than those in the first two sections. 



2. Communication Protocol Models 

2.1 Basic Notions 

2.1.1 Introduction 

The aim of Section 2.1 is to define some standard basic notions from formal 
language theory and Boolean function theory used in this book. The reader 
is advised that this section does not give a detailed exposition (including il­
lustrative examples of objects defined or some theorems and proofs about the 
defined objects) of the topics covered, but rather a setting of the notations and 
concepts which will be freely used throughout the book. Formal definitions are 
given for all notions which will be formally handled in the next chapters. For­
mal definitions of the fundamental notions (for instance, for finite automata or 
context-free grammars here) are not included, because their formal descriptions 
are not needed to prove any results presented in this book. Nevertheless we shall 
use these notions to discuss the consequences of the presented results for other 
theories or applications, and sometimes to formulate statements. In these cases, 
we assume that the reader is familiar with the fundamentals of formal language 
theory, Boolean function theory, graph theory and combinatorics. 

Section 2.1 is organized as follows. The basic notions of formal language 
theory including alphabets, words, languages, and the operations on words and 
languages are presented in Section 2.1.2. Some fundamentals of Boolean function 
theory, including the representation of Boolean functions by Boolean matrices 
and formulas, are given in Section 2.1.3. Section 2.1.4 contains a formal descrip­
tion of the representation of computing (algorithmical) problems used as well 
as some definitions of the basic notions connected with undirected graphs. 

The last subsection contains some exercises connected with the notions de­
fined in Section 2.1, involving some fundamental observations about the objects 
defined. It is assumed that the statements included in the exercises are familiar 
to the reader. 

2.1.2 Alphabets, Words, and Languages 

Here, we fix the notations of some basic notions of formal language theory. We 
start with the notations for sets and operations on sets. 
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Definition 2.1.2.1 Let A be a set. Then IAI denotes the cardinality of A. 
For any two sets A and B, 

(i) Au B = {x I x E A or x E B} is the union of A and B 

(ii) A n B = {x I x E A and x E B} is the intersection of A and B 

(iii) A - B = {x I x E A and x t/: B} is the difference between A and B 

(iv) A ffi B = (AUB)-(AnB) = {x I (x E A and x t/: B) or (x E B and x t/: 
An is the symmetric difference between A and B 

(v) A X B = {(x, y) I x E A and y E B} is the Cartesian product of the 
sets A and 13 

(vi) A ~ B denotes the fact that A is a subset of B (i.e., every element of 
A is also element of B) 

(vii) A = B denotes the fact that A and B are identical (i.e., A ~ Band 
B~A) 

(viii) A C; B (or A C B) denotes the fact that A is a proper subset of B 
(i.e., A ~ Band B - A contains at least one element) 

(ix) A i B denotes the fact that A is not a subset of B (i.e., there is at 
least one element in A which is not in B) 

(x) A =I B denotes the fact that A and B are two different sets (i.e., 
Ai B or B i A). 

N stands for the set of all nonnegative integers, and 0 stands for the empty 
set (set containing no element). R denotes the set of all reals, and Q denotes 
the set of all rational numbers. 

Definition 2.1.2.2 Any non-empty, finite set is called an alphabet. Any el­
ement of an alphabet E is called a symbol (letter) of E. A word over the 
alphabet E is any finite sequence of symbols from E. The set of all words over 
the alphabet E is denoted by E*. The length of a word w, denoted Iwl, is 
the number of symbols in w. The empty word A is the only word consisting 
of zero symbols. The set of all non-empty words over the alphabet E is denoted 
by E+ = E* - {>'}. For any word w over E, and any symbol a E E, #a(w) 
denotes the number of occurrences of the symbol a in the word w. 

In what follows, we will mostly use the two-letter alphabet {a, I}. Note that 
for every word w over an alphabet E 
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Despite the fact that words are defined as sequences, we will omit the com­
mas in our descriptions. So, we will use 011010 to denote the word 0, 1, 1, 0, 1, 
o over the alphabet {O, 1}. 

Definition 2.1.2.3 Given two words v and waver E, we define the concate­
nation of v and w, denoted by vw (and sometimes by v . w) as the word Z 

which consists of the symbols of v in the same order, followed by the symbols of 
w in the same order. A prefix of a word w over E is any word v such that 
w = vu for some word u over E. A proper prefix of a word w over E is 
any word v such that w = vu for some word u i- A. A suffix of a word w over 
E is any word u such that w = xu for some word x over E. A proper suffix 
of a word w over E is any word u such that w = xu for some word Xi-A. A 
subword (proper subword) of a word w over E is any word y such that 
w = zyx for some words z and x (z· x i- A). A quasi-subword of a word 
w over E is any word z such that w = UIZIU2Z2 ... UkZkUk+l for some kEN, 

where z = ZlZ2 ... Zk and Ul, ... , Uk+b Zl, ... , Zk are words over E. 

Now, we define some basic operations on words. 

Definition 2.1.2.4 Let w be a word over E. Then 

(ii) wn+1 = W . wn = wnw for each n E N. 

Definition 2.1.2.5 For any word w over E the reversal of w, denoted w R , 

is defined inductively according to the length of w as follows: 

(ii) If w = au for some a E E, U E E*, then w R = (au)R = uRa. 

We note that the set E* of all words over an alphabet E with the operation 
concatenation is a monoid with A as its only unit. This monoid is commutative 
iff the alphabet E is a one-letter alphabet (lEI = 1). 

Definition 2.1.2.6 Let E be an alphabet. Then, for any n E N, 

(i) En = {x E E* Ilxl = n}, and 

n 

(ii) E~n = {x E E* Ilxl :::; n} = UEi . 

i=O 

Definition 2.1.2.7 Given two alphabets E and T, a homomorphism is a 
mapping h from E* to T* such that 



10 2. Communication Protocol Models 

(i) h()") = ,x, and 

(ii) h(uv) = h(u) . h(v) for all u, v E E* . 

It should be observed that for defining a homomorphism from E* to r*, it 
is sufficient to define h(a) for each symbol a E E. 

Now, we define the languages and the operations on languages. 

Definition 2.1.2.8 Let E be an alphabet. Each subset L ~ E* is called a 
language over E. 

Since the languages are sets of words the operations union (A U B), in­
tersection (A n B), difference (A - B), and symmetric difference (A EB B) are 
well understood as operations on sets. Next, we give some typical operations on 
languages. 

Definition 2.1.2.9 Let A be a language over an alphabet E, and B be a lan­
guage over an alphabet r. We define 

(i) h(A) = {hew) I w E A} for any homomorphism h from E* to r*, 

(ii) ACE = E* - A is the complement of the language A according to the 
alphabet E; if E = {O, I}, we use the simple notation A C, 

(iii) A· B = AB = {w I w = x . y for some x E A and some y E B} is the 
concatenation of the languages A and B, 

(iv) 

BO {A}, and 

Bi+l B . Bi for any i E N, 
00 

B+ UBi, and 
i=l 

B* = U Bi = B+ U {A}, 
iEN 

(v) B[n] = B n rn = {x E B I Ixl = n} for any n E N is called the n-th 
level of the language B. 

Definition 2.1.2.10 Let C ~ {L I L ~ {O, 1, }*} be a class of languages. We 
say that C is closed under complement iff for each language L E C, LC 

also belongs to C. Let 8 be a binary operation on languages. We say that C is 
closed under 8 iff V L1, L2 E C, L1 8 L2 E C. 

There are only few parts of this book where the reader needs to be familiar 
with such fundamental notions of formal language theory as finite automata, 
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pushdown automata, grammars, or language classes of the Chomsky hierarchy. 
For our considerations, however, formal descriptions are not needed. Neverthe­
less, we assume that the reader is familiar with the above basic concepts of 
formal language theory. 

2.1.3 Boolean Functions and Boolean Matrices 

Boolean functions and Boolean matrices are the most widely used representa­
tions of computing problems in this book. First we start with the terminology 
connected with Boolean functions. More formal and comprehensive terminology 
can be found in the standard monographs. 

Definition 2.1.3.1 A Boolean variable is any symbol to which we can asso­
ciate either of the truth values ° (''false'') and 1 ("true"). A Boolean func­
tion of n variables (for some n E N) is any mapping f from {a, l}n to {a, I}. 
Any vector & = (ar, ... , an) with ai E {a, I} for i = 1, ... , n is called 
an input of I. f(&) denotes the output value of I for the input a. 
B~ = {f I f is a boolean function from {O, l}n to {O, I}} is the set of all 
Boolean functions ofn variables. For any Boolean function f ofn variables, 
Nl(1) = {& E {a, l}n I 1(&) = I} and N°(I) = {& E {a, l}n I 1(&) = O}. If 
the input & E N l (I) for some f E B~, then we say that a satisfies I· 

Note that IB~I = 22n , and that N°(J) U Nl(J) = {a, l}n for every 1 E B~, 
n E N. 

For any 1 E B~ for some n E N we can name the Boolean variables of 1. 
Thus, "f is a Boolean function of n variables Xl, X2, ... , xn"means that the 
names of the variables of f are fixed as Xl, X2, ... , Xn. Moreover, we frequently 
use the notation I(Xt, ... , xn) instead of 1 to underline this fact. 

Definition 2.1.3.2 Let l(xl, ... , xn) E B~ be a Boolean function of n Boolean 
variables Xl,"" Xn. We say, for some i E {I, ... , n}, that I(Xl, ••. , xn) es­
sentially depends on the variable Xi iff there exist 

such that 

If f(xr, ... , xn) does not essentially depend on a variable Xj for some j E 
{l, ... ,n}, then we say that the Boolean variable Xj is dummy for I. 

For any n, mEN, m ::; n, 
B~(m) = U E B~ I 1 essentially depends on at most m variables}. 

Observation 2.1.3.3 For any n, mEN, m ::; n, 
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Proof. There are exactly (::.) ways to choose m variables from n variables, and 
IBrl = 22m. 0 

As described above, the inputs of Boolean function of n variables are con­
sidered to be vectors (a!, a2, ... , an). This is also the usual representation of 
inputs in Boolean function complexity theory. But there are cases where some 
other representations are more convenient. We shall use two of these represen­
tations in order to be able to effectively handle the inputs in distinct situations. 
We consider inputs as input words which means we use the representation (no­
tation) a = ala2 ... an instead of 0: = (a!, a2, ... , an). The most common 
representation of inputs, however, is given in the following definition. 

Definition 2.1.3.4 Let X = {x!, ... , xn} be a set of n Boolean variables 
Xl, ... , Xn for some n E N. An input assignment (on X) is any mapping a 
from X to {O, I}. 

To avoid misunderstandings, we fix the notation of inputs as follows. When 
the notion "input" is used, then we consider the vector of Boolean values as the 
input representation. In case of "input word" a word over the alphabet {O, I} is 
considered as the representation of the input. If the notion "input assignment" 
is used, then the input representation is considered to be a function from the 
input variables to {O, I}. Obviously, each of these three input representations 
is in one-to-one correspondence to the other two. So, we may alternate among 
these representations (an "input" a may be considered at the same time as 
an input, an input word, as well as an input assignment) in order to operate 
on the "input" in a comfortable way. The next definitions outline the possible 
advantages of input assignments for the input representation. 

Definition 2.1.3.5 Let X = {Xl, ... , xn} be a set of n Boolean variables for 
some n E N, and let Z = {XiI, ... , Xi m } ~ X be a subset of X. Let a be an 
input assignment on X and (3 be an input assignment on Z . We say that f3 
preserves a on Z iff (3(z) = a(z) for every z E z. 

Definition 2.1.3.6 Let X = {Xl, ... , Xn} be a set of n Boolean variables 
for some n E N. Let Xl, X2 be two subsets of X such that Xl U X2 = X 
and Xl n X2 = 0. Let II be a mapping from X to {I,2} with the property 
II(x) = 1 for every X E Xl, and II(z) = 2 for every z E X 2 • Let a be an input 
assignment on Xl and (3 an input assignment on X 2 • Then, = n-1(a, (3), 
the composition of a and f3 according to n, denotes the input assignment 
on X with the property that a preserves, on Xl and (3 preserves, on X 2 . 
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We illustrate the above definition by a small example. Let Xl = {Xl, X3, X5}, 
and X 2 = {X2' X4, X6}. Let a : Xl -+ {O, I} be defined as a(xd = a(x5) = 1, 
a(x3) = 0 (a = 101 in the word representation), and let f3 : X2 -+ {O, I} be 
defined as f3(X2) = f3(X6) = 0, f3(X4) = 1 (f3 = 010 in the word representation). 
Then, = II-I (a, f3) : Xl UX2 -+ {O, I} is defined by ,(Xl) = ,(X4) = ,(X5) = 1, 
,(X2) = ,(X3) = ,(X6) = 0 (, = 100110 in the word representation). 

A further problem is how to represent a Boolean function. The simplest 
possibility is to describe a Boolean function! of n variables as a sequence of 2n 

pairs {(ai, !(ai))h=I, ... ,2n, where {ab a2, ... , a2n} = {O, l}n. In what follows, 
we always consider ai to be the i-th input in lexicographical order. Using this 
assumption! can be unambiguously described as the sequence {J (ai) h=l, ... , 2n. 
Another possibility is to use Boolean matrices. 

Definition 2.1.3.7 A Boolean matrix of size m x k (m, kEN - {O}) is any 
matrix M = [aij]i=l, ... ,m,j=l, ... ,k, where a;j E {O, I} for every i = 1, ... , m and 
every j = 1, ... , k. M is called the identity matrix of size n, denoted by Inxn' 
if n = m = k, and aii = 1 for i = 1, ... , n, aij = 0 for i #- j, i, j E {I, ... , n}. 
For any 0 E {O, I}, M is called a IS-monochromatic matrix iff a;j = 0 for all 
i, j. M of size n x n is called symmetric iff a;j = aji for all i, j E {I, ... , n}. 

Definition 2.1.3.8 Let f be a Boolean function of n variables in X = 
{Xl, ... , xn }. Let Xl, X2 ~ X, Xl U X2 = X, Xl n X2 = 0, and let II(x) = b 
for every X E Xb (b = 1, 2). II is called a partition of X (sometimes 
we write II = (Xl, X 2)). Let IXII = r, IX2 1 = s. Then the Boolean matrix 
M(f, n) = [aij]i=I, ... ,2r,j=I, ... ,28, where aij = f(II-I(a;, f3j)) for the lexico­
graphically i-th ai in {O, lY and the lexicographically j-th f3j in {O, I}S, is the 
matrix representation of f according to n. 

Obviously, both these Boolean function representations require 2n bits to 
describe any Boolean function of n variables. It may be also very hard to observe 
some properties of Boolean functions given in these representations. In several 
cases, the representation of Boolean functions as Boolean formulas is much 
shorter and more convenient than the representations given above. So, let us 
define Boolean formulas now. 

Definition 2.1.3.9 For any two Boolean values a, f3 from {O, I}, 

(i) a 1\ f3 = { 01 if a = 1 and f3 = 1 
otherwise 

is the conjunction of a: and /3; 

(ii) a V f3 = {01 if a = 1 or f3 = 1 
otherwise 

is the disjunction of a: and /3; 

(iii) a EB f3 = { ~ if (a = 1 and f3 = 0) or (a = 0 and f3 = 1) 
otherwise 
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is the sum(mod2) of 0 and {3 (also called exclusive or); 

(iv) a == (3 = { 1 if (a =.1 and (3 = 1) or (a = ° and (3 = 0) ° otherwzse 

is the equivalence of 0: and {3; 

(v) ("0 implies (3") 
a-=;.(3 = {I if (a =.0) or (a = 1 and (3 = 1) ° otherwzse; 

( .) C = ( )C = {I if a = ° 
vz a a ° if a = 1 

is the negation of o. Sometimes we also use the denotations r(o) or 
o instead ofac or (a)c. 

Observation 2.1.3.10 For any Boolean values a and (3: 

(i) a V (3 = (aC 1\ (3C)C = r(r(a) 1\ r((3)) 

(ii) a 1\ (3 = (aC V (3C)C = r(r(a) 1\ r((3)) 

(iii) a (f) (3 = (a == (3)C = r(a == (3). 

Definition 2.1.3.11 Let X be a countable set of Boolean variables. The class 
of Boolean formulas over X (shortly, formulas) is defined recursively as 
follows: 

(i) The Boolean values (constants) ° and 1 are Boolean formulas. 

(ii) For every Boolean variable x EX, x is a Boolean formula. 

(iii) If F is a Boolean formula, then (F)C is a Boolean formula. 

(iv) If Fl and F2 are two Boolean formulas, and Ll is an operation in {V, 1\, (f), 

==, -=;.}, then (F1LlF2 ) is a Boolean formula. 

(v) Only the expressions constructed by using (i), (ii), (iii) and (iv) are 
Boolean formulas over X. 

An example of a Boolean formula is (( (Xl V X2) I\X7) -=;. (X2 == X3)). Since the 
operators V, 1\, (f) and == are commutative and associative we may sometimes 
omit the brackets. So, for instance, the expressions Xl V X2 V X3 V X4, ((Xl V X2) V 
(X3 V X4)), (((Xl V X2) V X3) V X4), etc. represent the same Boolean function. We 
shall also use V7=1 Xi [1\7=1 Xi, ffi~l Xi] instead of Xl V X2 V ... V Xn [Xl 1\ X2 1\ 
... 1\ X n , Xl (f) X2 (f) ... (f) xn], and xC instead of (x)C for any Boolean variable x. 
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Now we define the Boolean function corresponding to a given Boolean for­
mula. 

Definition 2.1.3.12 Let X be a set of Boolean variables, and let F be a formula 
over X. Let a be an input assignment on X. Then the value of F under the 
input assignment a, F(a}, is the Boolean value defined as follows: 

. {o if F = ° 
(t) F(a) = 1 if F = 1 

(ii) F(a) = a(x) if F = x for an x E Xi 

(iii) F(a) = (Fl(a))C if F = (Fl)C for some formula Fli 

(iv) F(a) = Fl(a) Ll F2(a) for some Ll E {/\, V,:=,::::::>,EB}, if F = (Fl Ll F2) 
for some formulas Fl and F2. 

Let f be a Boolean function defined on the variables in X. If, for each input 
assignment f3 from X to {O, I}, f(f3) = F(f3), then we say that F represents 

f· 

Obviously, each formula represents exactly one Boolean function. But one 
Boolean function can be represented by (infinitely) many formulas. For instance, 
the formulas Xl V X2, «Xl)C /\ (X2)C)C, Xl V X2 V Xl V X2, and (Xl::::::> X2)C V (X2 ::::::> 
xdC V (X2 ::::::> xnc represent the same Boolean function. 

Since we frequently deal with Boolean matrices, especially with their ranks, 
we give some basic definitions concerning Boolean vectors and matrices in this 
subsection. 

Definition 2.1.3.13 Let n be a positive integer. The Boolean vector on = 
(0,0, ... ,0) E {O, l}n is called the zero-vector, and the Boolean vector in = 
(1,1, ... ,1) E {O,l}n is called the one-vector. For any two vectors a = 
(ai, a2,···, an) E {O,l}n and 13 = (f3b f32, ... , f3n) E {O,l}n, Q EB [3 = (al EB 
f31, a2 EB f32, ... ,an EB f3n), and Q :S [3 if ai ~ f3i for every i E {I, ... ,n}. For any 
dE {O, I}, and any i = bb ... ,rn) E {O, 1 }n, d·1' = (d/\rb d/\r2' ... ,d/\rn). 

Definition 2.1.3.14 Let M = {aln,a2n, ... ,akn} be a set of Boolean vectors 
on {O, l}n. We say that M is linearly independent iff 

for every dl , d2, ... ,dk E {O, I}, di =f. ° for some i E {I, ... ,k}. 

Definition 2.1.3.15 Let M = [aij] be a Boolean matrix of a size m x n for some 
positive integers n, m. Let, for i = 1, ... ,m, rowi(M} = (ail, ai2, . .. ,ain) E 
{O,l}n be the Boolean vector corresponding to the i-th row of M. Let, for 
j = 1, ... , n, colj(M} = (ali> ... ,anj) E {O, l}m be the Boolean vector corre­
sponding to the j-th column of M. 



16 2. Communication Protocol Models 

Let Row{M) = {rowi(M) I i = 1, ... , m} be the set of all rows (vectors) 
of M. Then 

rank(M) = max{IMII M s:;; Row(M) and M is linearly independent} 

is called the rank of the matrix M. 
The matrix M is called singular iffrank(M) < m (i.e., Row(M) is not an 

independent set). The matrix M is called non-singular iffrank(M) = m (i.e., 
Row(M) is an independent set). 

A trivial example of a non-singular matrix is the identity matrix Inxn for 
any n E N - {O}. If n is even, and Inxn = M(J, II), where II divides the set 
of input variables {XI, ... , xn} into the sets {XI, ... , Xn/2} and {Xn/2+1, ... xn}, 
then the Boolean function f defined by M(J' II) = Inxn can be described by 
the following formula: 

n/2 

f(xI, ... , xn) = /\ (Xi == Xn/2+i). 
i=l 

Clearly, rank(M) of a Boolean matrix M defined above is rank of Mover 
the field Z2. But it is possible to consider ranks of Boolean matrices over any 
field F with the identity elements 0 and 1. Since we will need it later, we give 
the following definition. 

Definition 2.1.3.16 Let M be a Boolean matrix. For an arbitrary field F with 
identity elements 0 and 1, let rankF{M) denote the rank of the matrix M 
over F. We define 

Rank{M) = max{rankF(M) I F is a field with identity elements 0 and 1}. 

2.1.4 Representation of Computing Problems 

In this subsection we explain how computing problems are represented in this 
book. In general, the representation is based on Boolean functions. 

Definition 2.1.4.1 Let n, r be some positive integers. A computing problem 
with n inputs and r outputs p~ (or simply, a computing problem of size 
n) is a set of r Boolean functions {!I, 12,· .. ,fr}, where all Boolean functions 
in p~ are defined over the same set X = {Xl' ... ' xn} of n input variables. X 
is also called the set of input variables of P;'. Usually, we assign an output 
variable Yj to each Boolean function!; for j = 1, ... , r. The set Y = {YI, ... , Yr} 
is called the set of output variables of P;'. 

Obviously, typical computing problems like sorting, matrix multiplication, 
language recognition, etc., are computing tasks defined for all infinitely many 
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input sizes (numbers of input variables), and their complexity is measured as a 
function depending on the size of the input. We represent such computing tasks 
as (possibly infinite) sequences of computing problems with fixed sizes. 

Definition 2.1.4.2 Let J = jo, jl, ... ,ji, ... be a (possibly infinite) sequence of 
positive integers such that jq < jp for any q < p, q, pEN. Let r.p be a function 
from {jO,jl, ... ,ji' ... } to N - {a}. Then each sequence P = {Pi(s)}SEJ of 
computing problems Pits) of size s is a computing problem. 

To illustrate the above definition, let us consider the sum a EB jj of two 
Boolean vectors as a computing problem. The formal representation of the 
problem is P = {P~}~=l' where P2n = {iI, ... , fn} is the computing prob­
lem of size 2n with the set of input variables {Xl, X2,.··, Xn, Zl, Z2, ... , zn}, and 
fi(Xl, X2,· .. ,Xn, Zb Z2,· .. ,zn) = Xi EB Zi for each i E {I, ... , n}. 

Note. When considering a computing problem P = {J} for some f E B2, we 
omit the brackets. Thus, a Boolean function f (instead of {j}) will also be 
considered as a computing problem of size n. 

Next, we fix the notation for the computing problems corresponding to the 
language recognition. 

Definition 2.1.4.3 Let L be a language over the alphabet {a, I}. Then, for 
any n E N, we define hn(L) to be a Boolean function of n variables such that 
hn(L)(a) = 1 iff O! E L[n] = L n {a, l}n (or such that Nl(hn(L)) = L[n]). 

To illustrate Definition 2.1.4.3 let us consider the language L = {ww I w E 
{O,l}*}. The corresponding computing problem representation of the recogni­
tion of L is {hn(L)}~=l' where 

n/2 
/\ (Xi == Xn /2+i) for n even, and 
i=l ° for n odd. 

Among others we also consider some algorithmic problems on graphs. To 
begin with, we give some basic notions from graph theory. 

Definition 2.1.4.4 An undirected graph, for short graph, G = (V, E) 
consists of a finite set of vertices (nodes) V and a set of edges E~ {{ u, v} I 
u, v E V}. A n undirected edge {u, v} will also be denoted by (u, v) or (v, u). 

Definition 2.1.4.5 Let G = (V, E) be a graph. Two vertices v, w E V are 
adjacent if (v, w) E E . We say the edge (v, w) is incident upon the vertices 
v and w. A path is a sequence of vertices VI, V2, ... , Vn from V such that 
(Vi, Vi+!) E E for 1 ~ i < n. A path VI, V2, ... , Vn for n ~ 2 is simple if all 
vertices on the path are distinct M Vb V2, ... , vn} I = n), with the exception that 
VI and Vn may be identical (VI = Vn and I{ VI, ... , vn}1 = n - 1). The length of 
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the path Vb"" vn is n -1 (the number of edges along the path). A (simple) 
cycle in G is a path Vb' .. ,Vn of length three or more with VI = Vn. A simple 
cycle of length 3 is called a triangle. 

Definition 2.1.4.6 Let G = (V, E) be a graph. Two vertices u and V in V are 
connected iff u = V or there exists a (simple) path between u and V in G. We 
say that G is connected, ifVu, V E V, u and v are connected. G is cyclic if it 
contains at least one cycle. If G does not contain any cycle, then G is acyclic. 
A connected acyclic graph is called tree. 

Observation 2.1.4.7 Let G = (V, E) be a tree. Then IVI = lEI + 1. 

Definition 2.1.4.8 Let G = (V, E) be a graph. For each v E V, the degree of 
v, deg(v) = I{(v,u) I (v,u) E E}I, is the number of edges incident to v. The 
degree of the graph Gis deg(G) = max{deg(v) I v E V}. 

Typical algorithmic problems on graphs include decision problems (or so 
called yes/no problems). The task is to decide (to give the answer "yes" (1) or 
"no" (0)) whether a graph G (as the input) has a given property (for instance, 
whether G is connected, cyclic, acyclic, etc.). In what follows we shall consider 
graph problems as language recognition problems. To do this, we need to code 
the graphs as words over the alphabet {O, I}. 

Definition 2.1.4.9 Let G = (V, E) be a graph, and let V = {VI"'" vn} for 
some posititive integer n. Then the adjacency matrix of G is 

M(G) [m··]··1 1.J 't,J= , ... ,n, 

where mi. = {I if {Vi, Vj} E E 
J 0 otherwise. 

Note: Every adjacency matrix of an undirected graph G is symmetric, because 
(Vi, Vj) denotes the same edge as (Vj, Vi) in our notation. Note that the notation 
{u, v} for some edge between u and V would be fully correct and unambiguous, 
but we prefer to denote an edge as a pair of vertices instead as a set of two 
vertices in what follows. 

Since M(G) is symmetric, the fact of whether an edge (Vi, Vj), i -; j, is 
in G or not is included twice in M(G) as mij and as mji. Since we shall not 
consider graphs having edges (v, v) for some vertex V E V (only edges between 
two distinct vertices are allowed), the diagonal elements mii = 0 for i = 1, ... ,n 
also represent superfluous information. So, to represent G, it is sufficient to take 
only the elements mij for i < j, i, j E {I, ... ,n}. 

Definition 2.1.4.10 Let G be a graph, and let M(G) = [mij]i,j=I, ... ,n be the 
adjacency matrix of G. Then word(G) = m12m13 ... mInm23m24 ... m2n ... 

mii+I ... min' .. m n-2 n-Imn-2 nmn-I n, determined by the upper-right corner 
of M(G), is called the word representation of M(G). 



2.1 Basic Notions 19 

Obviously, Iword(G)I = (~) for any graph of n vertices, and word(G) 
does not contain any superfluous information about the existence of edges 
in G. So, the problem of deciding whether a given graph G contains a tri­
angle can be represented as recognition of the language LLl = {word(G) I 
G contains a triangle }. For constructing a graph from a word we give the fol­
lowing definition. 

Definition 2.1.4.11 Let W = Wi ... Wm E {O, 1}* be a word of length m = (~) 
for some positive integer n. Let M(w) = [aij]i,jE{l, ... ,n} be a Boolean matrix 
defined by 

where r(i,j) 

o for every i = 1, ... , n, and 

aji = Wr{i,j) for every i, j E {I, ... , n}, i =f. j, 
i-l 

(L:(n - k)) + (j - i). 
k=l 

The graph G corresponding to the symmetric matrix M (w), denoted by 
G(w), is called the graph induced by the word w. 

Using the notation of Definition 2.1.4.11, we can write LLl = {a E {0,1}* I 
lal = (~) for some n E N - {O}, and G(a) contains a triangle}. 

We have already noted that we will use three types of representation of 
Boolean inputs - inputs (Boolean vectors), words, and input assignments. But 
sometimes we have also to deal with problems defined over integers. To work 
comfortably with their binary representations, we fix the following notation. 

Definition 2.1.4.12 Let W = W1W2 ... Wm, Wi E {O, I} for i = 1, ... , m. Then 
the integer binary coded by the word w is 

m 

BIN(w) = Lw;2m - i . 

;=1 

Let k, j be nonnegative integers, k ::::: POg2 jl. Then BIN;! (j) is a word from 
{O, l}k such that BIN(BIN;l(j)) = j. 

For instance, BIN(110) = 6 and BIN~(7) = 000111. 
While undirected graphs are mostly used to describe computing problems 

here, directed graphs will be used to describe computing devices in Chapters 3 
and 4. Next, we give the basic definitions concerning directed graphs. 

Definition 2.1.4.13 A directed graph G = (V, E) consists of a finite set of 
vertices (nodes) V and a set of directed edges Ec;, V x V = {( u, v) I U E 
V,V E V}. 

Definition 2.1.4.14 Let G = (V, E) be a directed graph. If e = (u, v) E E, 
then we say that e leads from u to v. We also say that (u, v) outcomes 
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from u and incomes to v. A directed path (from VI to vn) in G is a 
sequence of vertices VI, V2,···, Vn of V such that (Vi, Vi+1) E E for 1 :S i :S n. 
A directed path VI, V2, ... ,Vn for n 2 2 is simple if all vertices of the path 
are distinct n{ VI, V2, ... , vn}1 = n), with the exception that VI and Vn may be 
identical (VI = Vn and l{vI, ... , vn}1 = n - 1). The length of the directed path 
VI, ... ,Vn is n -1. A (simple) directed cycle in G is a (simple) directed path 
VI, ... ,Vn of length two or more with VI = vn. 

Definition 2.1.4.15 Let G = (V, E) be a directed graph. We say that G is 
cyclic if it contains at least one cycle. If G does not contain any cycle, then G 
is acyclic. 

Definition 2.1.4.16 Let G = (V, E) be a directed graph. For each V E V, the 
out degree of v, outdeg(v) = I{(v,u) I u E V,(v,u) E E}I, is the number 
of edges outcoming from v. The indegree of v, indeg(v) = I{(w,v) I w E 

V, (w,v) E E}I, is the number of edges incoming to v. For every V E V, the 
degree of V is deg( v) = outdeg( v) + indeg( v). 

We conclude the definition part by fixing the usual notation used in com­
plexity theory to measure the complexity of computing tasks (problems). 

Definition 2.1.4.17 Let f, g, h be arbitrary functions from N to N. Then 
f(n) = o(g(n)) denotes the fact limn-+oo(J(n)/g(n)) = o. 0(1) = {h I h is a 
function from N to N, and there exist positive integers Ch, dh such that, for every 
n 2 Ch, h(n) :S dh . f(n)}. [l(g) = {r I r is a function from N to N, and there 
exist positive integers c., dr such that, for every n 2 Cn dr· r( n) 2 g( n)}. EJ( h) 
= O(h) n {}(h). If somebody shows that the complexity of a computing problem 
P is in 8(h) (in O(h) as well as in {}(h)), then we say that the asymptotic 
complexity of P is h. 

In what follows we also write f(n) = O(g(n» [f(n) - [l(g(n))] to 
denote the fact f E O(g) [j E {}(g)]. 

2.1.5 Exercises 

The exercises formulated here are either simple, fundamental observations as­
sumed to be known to the reader, or real exercises offering training in the use 
of the presented formalism. 

Exercise 2.1.5.1 Let w E {O, l}n for some even n E N. How many different 
quasi-sub words of w exist if 

(i)w=ln 

(ii) w = (Ol)n/2 
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(iii) w = on/21 n/2 ? 

How many different ways exist to choose a quasi-subword from a word w of 
length n ? 

Exercise 2.1.5.2 Let I:- = {L I L ~ {a, 1}*}. Prove that the cardinality of I:- is 
equal to the cardinality of the set of all real numbers. 

Exercise 2.1.5.3 * Let "B;(m) = {J E B!](m) I f essentially depends exactly 
on m variables}. Estimate the cardinality of"B;(m). 

Exercise 2.1.5.4 In Definition 2.1.3.5 we have defined "{3 preserves a" for two 
input assignments a and {3. Consider a and {3 to be two words over the alphabet 
{a, I}, and define equivalently "{3 preserves a" without using the notion of input 
assignments. 

Exercise 2.1.5.5 Let M = [aij]i,j=l, ... ,n be the "upper-triangle" Boolean matrix 
(aij = 1 iffi < j). Prove, that Row(M) is an independent set. 

Exercise 2.1.5.6 Prove, that any Boolean function can be expressed as a for­
mula including only the following operations: 

(i) V, 1\, C 

(ii) V, C 

(iii) 1\, C. 

Exercise 2.1.5.7 Find a Boolean function (operation) r.p of two variables such 
that every Boolean function can be expressed as a formula only over the one 
operation r.p. 

Exercise 2.1.5.8 * Prove that, for sufficiently large n, at least one quarter of 
all n x n Boolean matrices are non-singular over Z2' 

[Hint: Choose n Boolean vectors of size n randomly, and ask for the proba­
bility that they form an independent set.] 

Exercise 2.1.5.9 Describe the Boolean functions hn(L) as formulas for the 
following language L: 

(i) L = {www I w E {a, 1}+}, 

(ii) L = {w E {a, I}* I #l(W) = 2}, 

(iii) L = {w E {a, I}* I G(w) is a graph containing a triangle}. 
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Exercise 2.1.5.10 Prove that G = (V, E) is a tree iff G is connected and 

IVI = lEI + 1. 

Exercise 2.1.5.11 Prove the following facts: 

(i) g(n) = n 3 - 2n2 + 7n - 4 E 8(n3 ). 

(ii) g(n) = nlog2n E 0(20') and g(n) ~ O(nk) for any kEN. 

(iii) Let t be a function from N to N defined recursively as follows: 

t(O) = t(l) = 1 and t(n) = k· t(n/k) + n for some kEN. 

Then t(n) E 0(nlog2n). 

(iv) Let F(O) = F(I) and F(n) = F(n - 1) + F(n - 2) be a function from N 
to N defining the Fibonacci sequence. Find an explicitly defined function 
f such that F(n) E 8(f). 

Exercise 2.1.5.12 Prove or disprove: "For any two functions f, g, f E O(g) 
iff g E Q(f)". 

Exercise 2.1.5.13 Prove the following assertion: Let A, B, C be squared 
Boolean matrices such that A = B + C. Then rank(A) ~ rank(B) + rank(C). 

Exercise 2.1.5.14 Give a formal definition of rankF(M) for any field F with 
identity elements 0 and 1. (Note that we did it for F = Z2 in Definitions 2.1.3.14 
and 2.1. 3.15.) 

Exercise 2.1.5.15 • Find a field F with identity elements 0 and 1 such that 
rankF(M) = Rank(M) for any Boolean matrix M. 

Exercise 2.1.5.16 Find a squared Boolean matrix M of size n x n such that 
M is singular (i.e., rank(M) < n) over Z2, but non-singular over Q. 

Exercise 2.1.5.17 Prove the following claim: If a Boolean matrix M has 
rank(M) = d, then M consists of at most 2d different rows. 

Exercise 2.1.5.18 Prove, for the field of reals R and for the field of rationals 
Q, that 

rankR(M) = rankQ(M) = Rank(M) 

for any Boolean matrix M. 

Exercise 2.1.5.19 Let f be a Boolean function over a set of input variables X, 
and let II be a partition of X. Prove that, for any field with identity elements 
o and 1, rankF(M(f, II)) differs from rankF(M(1, II)) at most by 1. 
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Exercise 2.1.5.20 * Find a Boolean function f such that rank(M(j, II)) 
O(10g2(rankQ(M(j, II))) for some II. 

Exercise 2.1.5.21 * Let, for every n E !'I, 

n 

f2,::od (Xl, ... ,Xn, Zl, ... ,Zn) = L)X; /\ z;) mod 2 
;=1 

be the inner product function. Let, for every Xn = {Xl, ... , Xn, Zl, ... , Zn}, lIn = 
({Xl,"" Xn}, {Zl,"" zn}) be a partition of X n. Prove, for every n E !'I, 

(i) rank( M (j2,::od , lIn)) = n, and 

(ii) rankQ(M(j2,::od, lIn)) = 2n - 1. 

[Hint: To prove (ii) consider the matrix M' = 2M(jf:,°d, lIn) - I n, where I n 
denotes the 2n x 2n matrix with In[i,j] = 1 for all i,j E {I, ... , 2n}. M' is 
so called Hadamard matrix and it can be showed that rankQ(M') = 2n. On the 
other hand, the transformation M -t 2 . M - I n can increase the rank by at 
most 1.J 

Exercise 2.1.5.22 * Prove that, for almost all Boolean matrices M of the size 
m x m, rankQ(M) = m. 

2.2 Communication Complexity According to a Fixed 
Partition 

2.2.1 Definitions 

The communication complexity in a specific case (the number of bits exchanged 
between two abstract computers) depends on the given partition of the input 
variables between the two abstract computers. Different applications of com­
munication complexity require to consider distinct sets of partitions. We start 
by defining the partitions considered here and the communication complexity 
according to a given fixed partition. Communication complexity according to 
a fixed partition is a basic stone which is sufficient for building any kind of 
communication complexity used here. 

Definition 2.2.1.1 Let X = {Xl, X2, ... ,xn} be a set of input variables. Any 
function II: X -t {I, 2} is called a partition of X. Ih,x (for short, Ih if 
the connection to X is clear) denotes the set {x E X I II (x) = I}, analogously 
IIR,x(IIR) = {x E X I II(x) = 2}. (Obviously IIR,x U IIL,x = X and IIR,x n 
IIL,x = 0.) 

So, following our abstract model of two communicating computers, the set 
IIL,x corresponds to the set of input variables assigned to the first (left) com-
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puter GI , and IIR,x corresponds to the set of input variables assigned to the 
second (right) computer GIl. 

Definition 2.2.1.2 Let II be a partition of X = {XI, ... ,xn}. We say that II 
is balanced if I IIIL,xl - IIIR,xll ::; 1. We say that II is almost balanced if 
n/3 ::; IIIL,xl ::; 2n/3 (Obviously, this implies that n/3 ::; IIIR,xl ::; 2n/3). Let 
Bal(X) = {II I II is a balanced partition of X}, and Abal(X) = {II I II is 
an almost balanced partition of X }. 

Observation 2.2.1.3 The number of all partitions of X = {Xl, ... ,xn} is 2n. 
If n is even, then the number of balanced partitions of X is (n/2)' and 

IAbal(X) I = Ln. L2n/3J ( ) 

i=rn/31 z 

The above defined partitions are suitable for the study of one-output prob­
lems (Boolean functions), because one can assume without loss of generality 
that the right computer always produces the output. Even allowing both com­
puters to compute the output (for some inputs the first computer computes the 
result, for other inputs the second one does so) has no effects on our applica­
tions. For many-output problems (the sets of Boolean functions), however, the 
partition of output variables between the two computers may be essential. So, 
we extend our definition to partitions of output variables. 

Definition 2.2.1.4 Let X = {Xl, ... , xn} be a set of input variables, and let 
Y = {Yl, ... ,Yr} be a set of output variables. Any function II : Xu Y -+ {l, 2} 
is called a partition of X and Y. Ih,x = {x E X I II(x) = I}, IIR,x = 
{x E X I II(x) = 2}, IIL,Y = {y E Y I II(y) = I}, and IIR,Y = {y E Y I 
II(y) = 2}. A partition II of X and Y is balanced if IIIIL,xl - IIIR,xll ::; 1. 
II is called almost balanced ifn/3::; IIIL,xl::; 2n/3. Bal(X, Y) = {II I II 
is a balanced partition of X and Y}, and Abal(X, Y) = {II I II is an almost 
balanced partition of X and Y}. 

Note, that we do not have any requirement on the way in which the set of 
output variables is partitioned in Definition 2.2.1.4. This means we allow any 
(unbalanced) partition of the set of output variables. 

To allow efficient handling of input assignments partitioned between the 
two computers, we give the following definition. 

Definition 2.2.1.5 Let II be a partition of X and Y, X = {Xl, ... ,xn}, Y = 
{Yl, ... ,Yr}. Let 0'. : X -+ {a, I}(,8 : Y -+ {a, I}) be an input (output) assign­
ment. We denote by OII,L (f3II,L) an assignment O'.rr,L : IIL,x -+ {a, I} (,8rr,L : 
IIL,Y -+ {a, I}) such that O'.rr,L (,8rr,L) preserves 0'. (,8). Analogously, O'.rr,R (,8rr,R) 
is the assignment from IIR,x (IIR,y) to {O,l}, preserving 0'. (,8). We denote (as 
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defined in Definition 2.1.3.6) by II-l(O'.rr,L,O'.rr,R) the original assignment 0'., 

and similarly II- l (f3rr,L, f3rr,R) = 13· 

Now we are ready to define the communication complexity of a computing 
problem according to a fixed partition. 

We start with an informal description of a communication protocol. A pro­
tocol for a computing problem p~ with a set of input variables X and a set of 
output variables Y is a pair Dn = (II, tP), where II is a partition of X and Y, 
and tP is a so-called communication function. The communication function tP de­
scribes the communication between the two abstract computers. The submitted 
messages are words over the alphabet {O,l}. The computation starts with the 
submission of a message tP(O'.L,rr,'\) from the first (left) computer Gr to the sec­
ond computer GIl, where O'.rr,L is the part of the input assignment corresponding 
to the variables in IIL,x and ,\ denotes the present, empty communication. In 
the second step, the second computer sends the message tP(O'.rr,R, tP(O'.rr,L, '\)$) 
to the first computer, etc. Thus, the arguments of the function tP are always 
the corresponding part of the input (O'.rr,L for the first computer, and O'.rr,R 
for the second computer) and all communication messages exchanged between 
the two computers (visually separated by the endmarker $) so far. The com­
putation of the protocol ends when one of the computers produces a word 
tP(O'.rr,A, c) E {a, I}lrrA,yl$ for an A E {L, R} and some c E {a, 1, $}* denoting 
the present communication. This word is interpreted as the output values for 
the variables in IIA,Y (The symbols 0, I are only used to distinguish them from 
the communication bits 0,1, but the meaning is the same.), and it is assumed 
that the other computer gets an empty message ,\$, and immediately computes 
the output assignment tP(O'.rr,B, c$) E {O,I}lrry,BI$ for the output variables in 
IIY,B, where B E {L, R}, B i= A. In fact this means that after the execution of 
the communication Gr and GIl must know together the whole output. 

Now we give a formal definition of a protocol. 

Definition 2.2.1.6 Let p~ be a computing problem of size n with the set X = 
{Xl, ... , xn} of input variables and the set Y = {Yl,"" Yr} of output variables. 
A protocol for X and Y is a pair Dn = (II, tP), where 

(a) II is a partition of X and Y, 

(b) tP is a communication function from 

{O,l}m X {a, 1, $} * U {a, l}k X {a, 1, $} * to {a, I} + U {a, I}"$ U {O, I}V$, 

where 

(i) m = IIIL,xl, k = IIIR,xl = n - m, U = IIIL,yl, v = IIIR,yl = r - u, 

(ii) tP has the prefix-freeness property (assuring that the messages 
exchanged between the two computers are self-delimiting, and no extra 
"end of transmission" symbol is required), i.e., for each c E {a, 1, $}*, 
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and any two different y, y' E {a, l}m ({O, 1 Y), If>(y, c) is not a proper 
prefix of If>(y', c), 

(iii) If> has the property that if one of the computers computes the output 
values for its output variables, then the other computer gives its out­
put in the next step, i. e., 
if If> (x , c) E {a, I}U$ for any x E {a, l}m and some c E {a, 1, $}* 
(if If>(x, c) E {a, I}V$ for any x E {a, l}k and some c E {a, 1, $}*), 
then If>(z, c$) E {a, I}V$ for any z E {a, l}k 
(If>(z, c$) E {a, I}U$ for any z E {a, 1 }m). 

A computation of Dn on an input assignment a ." X -t {a, I} is a string 
c = Cl$C2$ ... $Ck$$Ck+l, where k?: O,Cb ... Ck-l E {O,l}+,Ck,Ck+l E {a,I}*, 
and 

(1) if Ck E {a, I}U then Ck+l E {a, I}V, and 
if Ck E {a, I}v then Ck+l E {a, I}U, and 

(2) for each integer l, ° ~ l ~ k, we have 

(2.1) if l is even, then Cl+l = If>(aII,L, Cl$C2$ ... $Cl$) 

(2.2) if l is odd, then CHI = If>(aII,R, Cl$C2$ ... $Cl$). 

The communication of Dn corresponding to the computation 
C = Cl$C2$ ... $Ck$$Ck+l is c = ClC2 ... Ck-l E {a, 1}*. 

Dn computes, for an input (3 E {a, l}n and a number j E {I, ... , r}, the 
j-th output Ij E {a, I} if Yj is the i-th variable in YII,L (YII,R) and the i-th 
symbol of dE {a, I}U(d E {a, IP) is 'Yj E {a, I} for ad E {Ck' Ck+l}. 

We say that Dn computes, for an input (3 E {a, l}n, the output Dn(f3) 
= 'Y = 'Yl'Y2 ... 'Yr E {O, 1 Y if, for each j E {I, ... , r}, Dn computes the output 'Yj 
for the input (3 and the number j. We say that Dn computes P;' if Dn«(3) = 
p~ «(3) for any input assignment (3. 

The length of a computation c is #o(c) + #l(C), i.e., the total length of 
all exchanged messages. The communication complexity of the protocol 
Dn = (II, If» is cc(Dn) - the maximum of the lengths of all computations of 

Dn· ( 
The communication complexity of P;' according to a partition II 

is cc(P;.,II) = min{cc(Dn) I Dn = (II, If» for a If>, and Dn computes P~}, 
(i.e., the minimum over all communication functions If». 

We give an example to illustrate the work of a protocol. 
Let P; = {iI, 12, fa} be a computing problem for the set of input variables 

X = {Xl,"" X m, Ub"" Um, VI,"" vm}, m ?: 4, where 

m 

/\ (Xi == Ui), 
i=l 
m 

V (Xi V Ui V Vi), 
i=l 
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m 

13(X1, ... ,Xm,U1",.,Um,Vb""Vm) = V(Ui). 
i=l 

Let Y = {Vb Y2, Y3} be the set of output variables, Yi corresponding to 
the function 1;. Let us consider the following protocol Dn = (II, rJ», n = 3m, 
computing P ~ : 

(a) II is defined so that IIL,x = {Xl,"" Xm, Vb V2, V3}, IIR,x = {U1, ... , Um, 
V4, V5, ... , Vm}, IIL,Y = {Y1}, and IIR,Y = {Y2, Y3}. 

(b) rJ> is defined for every input a1a2··· am(3d32··· (3m"1112 ... "1m as follows: 
m 

rJ>(a1a2 . .. am"11 "12"13, A) = C1 E {O, I}, where C1 = (V ai) V "11 V "12 V "13 

i=l 
rJ>((31 ... (3m"14 ... "1m, C1 $) = C2 E {O, 1 }m, where C2 = (31 ... (3m; 

m 

rJ>(al ... am"11"12"13,C1$(31 ... (3m$) = 1$ if /\(ai == (3i) = 1 and 
i=l 
m 

rJ>(a1 ... am"1112"f3, C1$(31." (3m$) = 0$ if /\ (ai == (3i) = 0; 
i=l 

rJ>((31 ... (3m"14 ... "1m, C1$C2$$) = ab$, where 
m m m 

a = C1 V (V (3i) V (V "1j), and b = V (3i' 
i=l j=4 i=l 

Obviously, Dn computes P~. The communication complexity of any com­
putation of Dn is exactly m + 1 = n/3 + 1. Thus, cc(Dn) = n/3 + 1. Later, 
we shall show that n/3 communication bits are also necessary to compute P~, 
i.e., that cc(P~, II) ;:: n/3. In the previous example one can see different ways 
of computing the functions h, hand h. To compute 13, the second computer 
does not need any communication, because all variables on which 13 depends 
are in IIR,x. To compute h (the disjunction of all input variables), the first 

m 

computer computes the disjunction V Xi V VI V V2 V V3 over all input variables 
i=l 

in IIL,x, and sends the result C1 to the second computer. Then, the second 
computer can finish the computation of 12 by computing C1 V ( V z). To 

zEIIR,x 

compute h, one has to check whether Xi == Ui for every i = 1 ... , m. Since 
{X1,""Xm} ~ IIL,x and {Ub""Um} ~ IIR,x, the protocol Dn computes h 
by sending all actual values of Ul, ... , U m from the second computer to the first 
computer. After that, the first computer knows the whole input assignment of 
variables in {X1,""Xm,Ul, ... ,um} and can compute h. Obviously, it is the 
computation of h causing the high communication complexity of Dn (the sub­
mission of n/3 bits). Later we shall show that there exists no strategy to compute 
h with cc( {h}, II) < m if {Xl,"" Xm} ~ IIL,x and {Ul, ... , um} ~ IIR,x. 

We observe that to give a formal description of a protocol computing a 
concrete problem is similar to the situation when one gives a formal descrip­
tion of a Turing machine by defining its transition function. Obviously, this is 
close to programming in the machine code. As it is usual in the case of Tur­
ing machines we shall often prefere to give an informal description of protocols 
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computing concrete problems rather than to write the exact formal description. 
This will be more convinient for capturing the idea how to communicate in 
order to compute the given problem. We need the formal definition of protocols 
in order to be able to prove lower bounds on the communication complexity of 
concrete problems (i.e., to prove the non-existence of protocols with bounded 
communication complexity for the given problems). 

We nOW make some simple observations, showing that the communication 
complexity of a problem of size n according to a given partition II cannot 
be greater than n (Note that One can construct protocols using many more 
communication bits than n). 

Observation 2.2.1. 7 Let p~ be a problem of size n with a set of input variables 
X and a set of output variables Y, and let II be a partition of X and Y. Then 
cc(P~, II) :::; n. 

Proof. The idea is very simple. Each computer sends all values of its input 
variables to the other One. When both have the values of all input variables, 
then each can immediately compute any function defined on these variables. 
(Formally, we take Dn = (II, p), where P(arr,L, >.) = arr,L, P(arr,R, arr,L$) = 
arr,R, P(arr,L, arr,L$arr,R$) = the values of the output variables in IIL,Y for the 
input a, and p(arr,R, arr,L$arr,R$$) = the values of the output variables in IIR,Y 
for the input a.) 0 

Generally, the length of the communication can be still decreased if we 
assume that the whole output is computed by One computer. Obviously, in this 
case, it is sufficient to provide all input values to this computer. 

Observation 2.2.1.8 Let p~ be a problem of size n with a set of input variables 
X and a set of output variables Y. Let II be an almost balanced partition with 
the property IIL,Y = 0 (IIR,y = Y). Then cc(P~, II) :::; IIIL,xl :::; 2n/3. 

The most investigated communication complexity in the literature is the 
communication complexity of a Boolean function (i.e., of one-output problems). 
Furthermore, the theoretical properties of communication complexity are only 
studied as theoretical properties of a complexity measure of Boolean functions. 
Therefore we give the precise definition of communication protocols computing 
a Boolean function. 

Definition 2.2.1.9 Let fn be a Boolean function of n variables in X 
{Xl, ... ,Xn}. A protocol over X is a pair Dn = (II,p), where 

(a) II is a partition of X, 

(b) P is a communication function from {a, l}mx {a, 1, $}*U{O, l}k x {O, 1, $}* 
to {a, I} + U {O, I}, where 

(i) m = IIIL,xl, k = IIIR,xl = n - m; 
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(ii) tfJ has the prefix freeness property: 
For each c E {a, 1, $}* and any two different 0'., (J E {a, l}m ({O, l}k), 
tfJ(O'.,c) is not a proper prefix oftfJ«(J,c); 

(iii) IftfJ(O'.,c) E {a, I} for an 0'. E {o,l}m,c E ({0,1}+$)2p for some 
pEN (for an 0'. E {O,l}k,c E ({O,l}+$)2p+1), then for all q E 
N,'Y E {O,l}k,d E ({0,1}+$)2Q+1 (for all q E N,'Y E {O,l}m,d E 
({O,l}+$)2Q),tfJ('Y,d) ~ {a,I} [this property secures that the output 
value is always computed by the same computer independently of the 
input assignment]; 

(iv) If tfJ(O'., c) E {a, I} for an 0'. E {a, 1 }m, then tfJ«(J, c) ~ {a, I} + for 
any (J E {O, l}m [this property assures that if computer A computes 
the output for an input assignment, then computer B knows that A 
already knows the result (so B does not wait for further communica­
tion)]. 

A computation of Dn on an input assignment 0'. E {O,l}n is a string c = 
Cl$C2$ ... $Ck$Ck+l, where 

(2) for each integer l, ° ::::; l ::::; k, we have 

(2.1) if l is even, then CI+1 = tfJ(O'.II,L, Cl$C2$·.· $ez$) 

(2.2) if l is odd, then CI+1 = tfJ(O'.II,R, Cl$C2$··· $Cl$). 

We say that Dn computes In : {a, l}n -+ {a, I} if, for each 0'. E {O,l}n, 
the computation of Dn on the input assignment 0'. is finite and ends with I 
iff fn(O'.) = 1. In the following, we also say that a computation is accepting 
(unaccepting) if it ends with I(a). 

The length of a computation c is the total length of all messages in 
c (ignoring $'s and the final a, I). The communication complexity of the 
protocol Dm cc(Dn), is the maximum of all computation lengths of Dn-

The communication complexity of In according to a partition II is 
ccUm II) = min{ cc(Dn) I Dn = (II, tfJ) for a tfJ, and Dn computing fn}. 

Now we illustrate this definition by the recognition of the language i = 
{x E {a, 1}+ I #o(x) = #l(X)}. We give the protocol D2m = (II,1J) computing 
h2m (i) for any mEN. Let the set of input variables be denoted by X = 
{Xl, ... , X2m}, and let k = rlog2(m + 1)1. 

Informally D2m woks as follows. It divides the input into the first halve and 
second halve. The communication is organized as follows. GJ sends the number 
of l's in the first halve of the input to GIl. Then GIl accepts if the submitted 
number plus the number of l's in the second halve of the input is equal to m. 
The formal description of D2m follows: 
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(2) P: P(ala2'" am,).) = CI, where CI = BIN;; I (#l(al ... am)); 

p(am+l ... a2m, BIN;; I (#l(al ... am))$) 1 
if#l(al ... a m) 

P(am+l ... a2m, BIN;; 1 (#l(al ... am))$) 

if#l(al ... a m) 

+ #l(am+l'" a2m) = m 

o 
+ #l(am+l'" a2m) i m 

Obviously, cc(Dn) = k = pog2(m+1)1 S log2n. For all presented examples 
the communication complexity of each computation (for each input) is the same. 

Now we give a further example, where the lengths of computations essen­
tially differ (the "average" computation length is smaller than the maximal 
length). 

Let us consider the language Sm = {xy Ilxl = Iyl,x,y E {O,l}+,BIN(x) 
< BIN(y)}. We define D~m = (II, pI) computing h2m(Sm) for any mEN. Let 
X = {Xl, ... , Xm, yl, . .. , Ym} be the set of input variables of h2m(Sm). 

Informally, for an input al ... amf31 ... f3m, D~m consecutively searches for 
the smallest i such that ai i f3i. Obviously, the relation between ai and f3i 
determines the relation between BIN(al ... am) and BIN(f31 ... f3m). The formal 
description of D~m follows . 

• II: IIL,x = {Xl,.'" Xm}, IIR,x = {yl, ... , Ym} . 

• p': 

pl(al ... am,).) 

pl(f31'" f3m, al$) 

pl(al'" am, al$l$ ... ai$l$) 
pI (f31 ... f3m, al $1$ ... ai$l$ai+1 $) 

pl(al'" am, al$l$ ... a m-l$l$) 

p' (f31 ... f3m, al $1$ ... $l$am$) 

01 if al < f31 
00 if al > f3l 

1 if al = f3l; 

ai+l (i < m); 

01 if ai+l < f3i+1 

00 if ai+l > f3i+1 

1 if al = f3l; 

01 if am < f3m 

00 if am ~ f3m 

'Y E {O, I} for any i E {I, ... ,m}. 

2.2.2 Methods for Proving Lower Bounds 

To apply the communication complexity in real computing models for real com­
puting problems, we need to get lower bounds on communication complexity of 
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concrete problems for distinct partitions. Hence, the development of methods 
for proving lower bounds on communication complexity is the crucial point. 

The first lower bound method presented here is based on the so-called "cross­
ing sequence argument". The idea is to find a set of inputs A such that for any 
two x, yEA the communication (the communication between the two comput­
ers of the communication protocol) must be different. If one succeeds in finding 
such a set A for a given partition II, any protocol with the partition II must 
have at least IAI different communications, i.e., there must be a communication 
of length at least log2lAI. We first give an example how to find such a set A 
for the recognition of the language i, and then formalize this idea. 

Example 2.2.2.1 Let X = {XI, ... ,X2m}, n = 2m, be the set of input vari­
ables of h2m(i) for the language i = {a E {O,l}+ I #o(a) = #l(a)}. Let II be 
the partition with IIL,x = {Xl,""Xm }. Let A(h2m (i), II) = {l i ().i1 j Oi I i,j E 
{O, ... , m}, i+ j = m}. Obviously, IA(h2m(i), II) I = m+ l. Now, we shall show 
that every protocol Dn = (II,?!), computing h2m (i), must have at least m+1 
different communications. We prove this by contradiction. Let there be two dis­
tinct words a = 1 aOb 1 boa, fl = 1 eodi doe, a =I- e, in A( h2m (i), II), having the same 
communication c E {O, 1}*. Because of the prefix-freeness property of protocols 
we get 4>(1 aob, ,\) = 4>( 1 eod, ,\) = Cl, where Cl is a prefix of c. For the same reason 
we get 4>(lbOa , Cl$) = 4>(ldOe , Cl$) = C2, 4>(laOb, Cl$C2$) = 4>(leOd, Cl$C2$) = C3, 

etc. Thus any two inputs from i with the same communication of Dn must 
also have the same computation of Dn (Note that this generally holds for any 
computing problem P and any protocol computing P). 

Let C = Cl$C2$ ... $ck$I be the computation of Dn for both inputs a and fl. 
Let us show that C is also the computation for "'( = II-l(all L' fJrr R) = 1 aobi doe. , , 
Obviously, this completes the proof, because "'( tt i (h2m(i)("'() = 0 since a =I- e) 
which contradicts the fact that Dn computes I for the input "'(. 

Since Irr,L = arr,L and In,R = f3rr,R we get 

4>('frl,L''\) = 4>(laOb,'\) = 4>(aIl,L''\) = Cl, 

4>('frl,R' Cl$) = 4>(ldOe , Cl$) = 4>(fJrr,R' Cl$) = C2,··· 

4>('frl,L, Cl$ ... $Ck$) = 4> (all,L , Cl$ ... $Ck$) = I if k is even, or 

4>( 'frl,R' Cl $ ... $Ck$) = 4>(fJrr,R' Cl $ ... $Ck$) = I if k is odd. 

Thus, Dn("'() = 1, i.e., Dn does not compute h2m(i). 

We have proved that any protocol Dn computing h2m (i) for the partition II 
must have at least m + 1 different communications. Since the communications 
are words over the alphabet {O, I}, there is a communication of a length of at 
least rlog2(m + 1)1· So, cc(Dn) ~ rlog2(n/2 + 1)1 for any Dn with the partition 
II and any n E N. We note that this shows that the protocol for computing 
h2m(i) which we gave in Section 2.2.1 is optimal. 0 
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Now we formalize the above idea in order to provide a general method for 
proving lower bounds. 

Definition 2.2.2.2 Let P~ be a computing problem of size n with a set of input 
variables X = {Xl, ... ,xn } and a set of output variables Y = {yr, ... ,Yr}' Let 
II be a partition of X and Y. Then a fooling set A( P~, 11) for p~ and 11 
is any set of input assignments from X to {a, I} such that for any distinct a 
and fJ in A(P~, II) one of the following four conditions holds: 

(1) P~(II-I(aII,L' fJII,R» differs from P~(a) on some variable in IIL,Y. 

(2) P~(II-I(aII,L' fJII,R» differs from P~(fJ) on some variable in IIR,Y. 

(3) P~(II-I(fJII,L' aII,R» differs from P~(fJ) on some variable in IIL,Y' 

(4) P~(II-I(fJII,L' aII,R» differs from P~(a) on some variable in IIR,Y' 

Theorem 2.2.2.3 Let P~ be a computing problem with a set of input variables 
X, and a set of output variables Y. Let II be a partition of X and Y. If A(P~, II) 
is a fooling set for P~ and II, then 

cc(P~,II):::: flOg2i A(P~,II)il 

Proof. The idea is to show that any protocol computing P~ with the partition 
II must have different communications for different input assignments from 
A(P:;, II). Let there be a protocol Dn = (II,tf» having the same communica­
tion c for two distinct inputs a, fJ E A(P~, II). If CI $ ... $Ck-I$Ck$$Ck+1 is the 
computation of Dn on a, and dl $ ... $dr-l$dr$$dr+l is the computation of Dn 
on fJ, then c = CIC2 ... Ck-l = dl d2 ... dr - l implies that l' = k, and Ci = di for 
any i E {I, ... ,k - I}. The same communication c for a and fJ implies: 

(1') P~(II-I(aII,L' fJII,R» agrees with P~(a) = P:;(II-1 (aII,L , aII,R» on all 
variables in IIL,Y, because for both inputs II-I (aII,L, fJII,R) and a the 
argument of the left computer GJ (tf», computing the output assignment 
for the variables in IIL,Y is the same (namely, aII,L and c). 

(2') P~(II-I(aII,L' fJII,R» agrees with P~(fJ) = P~(II-I(fJII,L' fJII,R» on all 
variables in IIR,Y, because for both input assignments the right computer 
GIl computing its outputs has the same arguments, namely fJII,R and c. 

(3') P~(II-I(fJII,L' aII,R» agrees with P~(fJ) = P~(II-I(fJII,L' fJII,R» on all vari­
ables in IIL,Y, because for both input assignments the left computer GJ 

computing its outputs has the same arguments fJII,L and c. 

(4') P:; (II-I (fJII,L, aII,R» agrees with P~(a) = P~(II-I(aII,L' aII,R» on all 
variables in IIR,Y, because for both input assignments the right computer 
GIl computing its outputs has the same arguments aII,R and c. 
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Obviously, (I'), (2'), (3'), and (4') together contradict the fact that A(P~, II) is 
a fooling set (more precisely, the condition (1) or (2) or (3) or (4) given in the 
definition of the fooling set). D 

So, using Theorem 2.2.2.3, we get the following method for proving lower 
bounds. 

Method foolfix 

Input: - A problem Prn of size n with a set of input variables X and a set 
of output variables Y. 

- a partition II of X and Y. 

Step 1: Find a fooling set A(P;', II) for P;' and II. 

Step 2: Compute a = rlog2IA(P;', II)ll 

Output: "cc(Prn, II) ::::: a" 

Obviously, the method foolfix can be considered as an algorithm, but Step 1 
seems to be computationally very hard if one wants to find the largest fooling set. 
So Step 1 should be examined by researchers investigating the communication 
complexity of a computing problem. We give one more example to illustrate the 
use of this method. 

Example 2.2.2.4 Let P~ = {h 1, h2 } be a computing problem with a set of input 
variables X = {Xl, ... , Xm, Zl, . .. , Zm}, n = 2m for an even positive integer m. 
Let 

m 

EB(Xi A Zi), and 
i=l 
m/2 

h2(X1, ... , Xm, zl, ... , zm) = 1\ (Xj == Xj+m/2). 
j=l 

Let Y = {Y1, Y2}, and let II be the partition of X and Y defined by IIL,x = 
{x1, ... ,Xm/2,Zm/2+l, ... ,zm},IIR,x = {Xm/2+1, ... ,Xm,Zl, ... ,Zm/2}, IIL,Y = 
{Y1} and IIR,Y = {Y2}. Now we show that for A1 {a1a2 .. . am/2a1a2 
... am/20m I ai E {O, I} for i = 1, ... , m/2} and A2 {I m+10m-1} the 
set A = A1 U A2 is a fooling set for P~ and II. Obviously, the one­
element set A2 is a fooling set. First, we show that A1 is a fooling set. Let 
f3 = f31 ... f3m/2 f31 ... f3m/2 0m and I = 11 .. ·'m/211 ... 1m/20m be two different 
elements of A1. This means that there exists an i E {I, ... , m/2} such that 
f3i =f. Ii· 

This implies h2(II-1(rII,L,f3II,R)) = h2(r1'2 ... 'm/2f31f32 ... f3m/20m) = O. 
Since h2(f3) = h2(II- 1(f3II,L, f3II,R)) = 1, II-1(rII,L, f3II,R) differs from f3 on the 
variable Y2 in IIR,Y, i.e., the condition (2) of Definition 2.2.2.2 is fulfilled. 
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To complete the proof (of the fact that A is a fooling set), it remains to 
show that one of the conditions (1),(2),(3) or (4) of Definition 2.2.2.2 holds for 
W = 1m+10m-l and any word 6 = 61 ... 6m/26l ... 6m/20m E AI. Since hl(w) = 1, 
and hI (II-l (WII,L, 6II,R)) = hI (1 m/26l .. . 6m/20m/20m/2) = 0 for any 61 .. . 6m/2 E 
{O, 1 }m/2, W differs from II-I (WII,L, 6II,R) on the variable Yl in IIL,Y (condition 
(1) of Definition 2.2.2.2). 

Obviously, IAI = IAll + IA21 = 2m/2 + 1. Since flog21AIl = m/2 + 
1, cc(P;:, II) :::: m/2 + 1. Note that one can easily show that CC(h2' II) ::; m/2 
which, combined with the fact that Al is a fooling set for h2 and II, gives 
CC(h2' II) = m/2. 0 

The lower bound proof technique introduced above is sometimes not very 
transparent or elegant. For this reason we present two further methods for 
proving lower bounds on communication complexity of one-output problems 
(Boolean functions). One of these methods is computationally efficient. To in­
troduce them, we need the following model of the representation of Boolean 
functions. Note that the matrix M(J, II), defined in the Definition 2.2.2.5 be­
low, is the same object as M(J, II) defined in Definition 2.1.3.8; only the formal 
description of the matrix elements is given differently. 

Definition 2.2.2.5 Let f : {O, l}n ~ {O, I} be a Boolean function with a set of 
input variables X = {Xl, ... , x n }. Let II be an almost balanced partition of X, 
with I IlL ,X I = m. Then we define the 2m X 2n - m Boolean matrix M(f, n) 
= [aij]i=1,_,2m;j=1,_,2n-m, where aij = J(II- l (BIN;;;l (i -l),BIN;;-':m(j -1))). 

Obviously, the matrix M(J' II) precisely defines the function f ( containing 
the output values for all2n input assignments). As an illustration, let us consider 
the matrix M(J, II) in Figure 2.1 for f(xl, X2, X3, X4) = (Xl EB X3) V (X2 EB X4) 

and IIL,x = {Xl, X3}. 

0 1 2 3 
0 0 1 1 X2 

0 1 0 1 X4 

0 0 0 0 1 1 0 
1 0 1 1 1 1 1 
2 1 0 1 1 1 1 
3 1 1 0 1 1 0 

Xl X3 

Fig. 2.1. 

Definition 2.2.2.6 Let M be a k x 1 Boolean matrix whose rows 1, ... , k 
are labelled by iI, ... , ik Jor some positive integers i l < i2 < ... < ik , and 
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whose columns 1, ... , l are labelled by jl, ... , jl for some positive integers jl < 
j2 < ... < jl' Let SI ~ {iI, ... ,id and S2 ~ {jl, ... ,jl}' A row-split of 
M according to 8 1 is the partition of M into two matrices M(SI) of size 
ISll x land M(Sf) of size (k -ISll) x l, where M(Sd contains alllSll rows 
of M labelled by numbers of SI, and M(Sf) contains all k - ISll rows (the 
remaining rows) of M labelled by numbers of {iI, ... , ik} - SI' A column-split 
of M according to 8 2 is the partition of M into two matrices M(S2) of size 
k x IS21 and M(Sf) of size k x (l-IS21), where M(S2) contains alllS21 columns 
of M labelled by numbers of S2, and M(Sf) contains alll - IS21 columns of M 
labelled by numbers of {jl, ... , jl} - S2. 

Figure 2.2 depicts two matrices obtained by split operations from the matrix 
M = M(j, II) of Figure 2.1. The left matrix is M( {O, 2, 3}) for the row-split 
and the right one is M( {o, 3}) for the column-split. 

0 1 2 3 
0 3 

0 0 1 1 0 
0 0 0 
1 1 1 

2 1 1 1 1 
2 1 1 

3 0 1 1 0 
3 0 0 

Fig. 2.2. 

Now we show that, for each protocol Dn = (II, p) computing a Boolean 
function f : {O,l}n -+ {O, I}, one can assign a sequence of m splits to each 
computation c of length m. This can be done by the following observation. 
Because both abstract processors of Dn have unbounded power, one can assume 
that each of them knows the whole matrix M(j, II) = lars] and the complete 
definition of P. Obviously, the left computer GJ knows the number i of the row 
corresponding to its part of the input, and the right computer GIl knows the 
number j of the column corresponding to its part of the input. (Thus, if the left 
computer learns the number j, then the left computer knows the output aij' 

Similarly, if the right computer learns the number i, then the right computer 
knows the output aij') 

Let c = CIC2 ... Ck for Ci E {O, I}, i = 1, ... , k, be the communication of Dn 
for a given input. Let us consider the communication part of the computation 
of Dn as a sequence of k simple steps, where one bit is sent in one step from 
one computer to the other. First, the left computer sends the bit Cl to the right 
computer. This step corresponds to the row-split according to a set S(Cl)' where 
S(Cl) = {r E {O, ... ,2m -I} I p(BIN;;,I(r),A) = CIZ for some Z E {O,l}"}, 
for m = IIlL,xl. Set M(Cl) = M(S(Cl))' Next, the submision of the bit C2 

determines a split of M(Cl)' This split is the row-split if the bit C2 is submitted 
from the left computer to the right one, and it is the column-split if C2 is 
submitted from the left computer to the right one. 
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The matrix M(CI) describes the situation in which the left computer knows 
nothing about the input of the right computer, and the right computer knows 
that the input of the left computer is in {BIN;;,l(r) IrE S(Cln. 

Let us describe the general situation after the exchange of i bits CIC2 ... Ci 
for 1 ::; i < k. Let M(CIC2 ... e;) be the matrix obtained after the corresponding 
i splits. Let SdCIC2 ... Ci) be the set of all labels of rows in M(CIC2 ... e;) and 
SR(CIC2 . .. Ci) be the set of all labels of columns of M(CIC2 ... Ci). This describes 
the situation when the left computer knows that the input of the right computer 
is in {BIN;;-~m(s) I s E SR(CI ... e;n and the right computer knows that the 
input of the left computer is in {BIN;;,I(r) IrE SL(CI ... Cin. 

Next, the bit Ci+! is submitted. Which computer sends (and which one 
receives) is unambiguously given for the input assignments in J(Cl ... Ci) = 
{lI-I(BIN;;,I(r), BIN;;-~m(s)) IrE SdCI ... Ci), s E SR(CI ... e;n (correspond­
ing to the matrix M(CIC2 ... e;)) because of the prefix-freeness property of 
CPo [If this is not clear, then we can prove it by contradiction. Let a = 
lI-l(BIN;;,I(rd, BIN;;-~m(SI)) and {3 = 1I-1(BIN;;,lh), BIN;;-~m(s2)) be two dif­
ferent inputs in J(CI ... e;), where the (i + l)-th bit flows from the left computer 
to the right computer in the computation on a, and the (i+ l)-th bit flows from 
the right computer to the left computer in the computation on {3. Without loss of 
generality we may assume that Ci was submitted by the left computer. For {3, this 
means that the initial part of the computation is Cl ... Cjl $ ... $Cjd ... Ci$Ci+l ... 
for some jl, ... , jd and, for a, this means that the initial part of the computation 
is Cl ... cit $ ... $Cjd . .. CiCi+! .... Since Cjd ... Ci is a proper prefix of Cjd ... e;Ci+l, 
the prefix-freeness property is violated.] 

Let the bit Ci+1 be submitted by the left computer. Then, we make the row­
split of M(CI ... Ci) according to the set SL(CIC2 ... Ci+!) = {r E SdCIC2 ... Ci) I 
cP produces Ci+! for the arguments BIN;;,I(r) and the recent communication 
Cl ... Ci}, and we set M(CI ... e;+I) = M(SdcIC2 ... e;+I)). If the bit e;+1 is sub­
mitted from the right computer, then we make the column-split of M(CI ... Ci) 
according to the set SR(CIC2 ... Ci+I) = {s E SR(CIC2 ... Ci) I cP produces e;+1 for 
the arguments BIN;;-~m(r) and the recent communication Cl ... Ci}, and we set 
M(Cl ... Ci+l) = M(SR(Cl ... e;+I)). 

Now let us have a closer look at the matrix M(CI ... Ck) which must describe 
a situation where at least one computer is able to know the output value. First, 
let us assume the output is computed by the left computer. Since GI knows 
the result, the roW in M(Cl ... Ck), corresponding to the actual input a of GI, 
must either contain only O's or only l's. Since CP(a, Cl ... $ ... Ck$) E {O, I}, we 
have CP({3, Cl·.· $ ... Ck$) E {O, I} for all {3 E {BIN;;,I(r) IrE SdCl ... Ckn 
(see the property (iv) of Definition 2.2.1.9). This implies that all other rows of 
M(Cl ... Ck) also consist either only of O's or only of l's (are monochromatic). 

Similarly, if the output is computed by the second computer, then each 
column of M(CI ... Ck) consists either only of O's or only of l's. Thus, in both 
cases, the rank of M(Cl ... Ck) is one. Now we are ready to formulate the next 
result providing a lower bound proof technique for communication complexity. 
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Theorem 2.2.2.7 For any Boolean function f with a set X of input variables, 
and for any partition II of X 

cc(j, II) ;::: flog2(Rank(j, II))l 

Proof. Let Dn = (II, tJ» be any protocol computing f. Let F be an arbi­
trary field with identity elements 0 and 1. At the beginning of the compu­
tation, the first bit submitted by the left computer to the right one is ei­
ther 0 or 1, depending on the input assignment for IIL,x, Let M(O) and 
M(l) be the matrices obtained from M(j, II) by the row-split according to 
8(0). Obviously, at least one of the matrices M(O) and M(l) must have a 
rank of at least f rankF(M(j, II)/2)l Let M(d l ) for some dl E {O, I} have 
this property. Continuing with the split of M(dd, at least one of the matri­
ces M(dIO) and M(d l 1) must have a rank of at least frankF(M(dl ))/21 ;::: 
frankF(M(j,II)/4)l Thus, after k splits, we always find a matrix M(dl ... dk ) 

such that rankF(M(dl ... dk )) ;::: frankF(M(j, II))/2kl Since any computation 
of Dn can halt and compute the output value only after a communication cor­
responding to a matrix with rank 1, log2 (rankF (M(j, II))) communication bits 
(splits) are necessary to get a matrix of rank 1. Since we have proved this for 
every field F, the assertion of Theorem 2.2.2.7 holds. 0 

Theorem 2.2.2.7 provides the following method for proving lower bounds. 
Note, that we consider two versions of this method. One computing the rank 
over Z2 and one searching for a field F such that the rank over F is as large as 
possible. 

Method rankfix 

Input: A matrix M(j, II) for a Boolean function f with a set of input variables 
X, and a partition II of X. 

Procedure: Compute d = rank(M(j, II)) 
(for instance, by using the elimination method of Gauss) 
[or choose a field F with identity elements 0 and 1 and compute d = 
rankF(M(j, II))] 

Output: "cc(j, II) ;::: flog2 dl" 

Obviously, from the viewpoint of computational complexity, the rankfix 
method running in O(n3 ) is much more efficient that the foolfix method re­
quiring exponential time if the maximal fooling set is selected from among all 
subsets of the set of input assignments. We show in the following examples that 
lower bound proofs using the rankfix method can be easier (or more transparent) 
than those using fooling sets. 

Example 2.2.2.8 Equality problem 
Let Eq = {w E {O, 1}* I w = uu}. Let, forn = 2m,X = {Xl, ... ,Xm, Zl, ... , Zm} 
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m 

be the set of input variables of hn(Eq) = 1\ (Xi == Zi). Let us consider the 
i=l 

balanced partition II with the property IIL,x = {XI, ... , xm }. Since the matrix 
M(hn(Eq), II) is the identity matrix of size 2m X 2m, rank(M(hn(Eq), II)) = 2m. 
So, cc(hn(Eq), II) = n/2 for any even n. 0 

Example 2.2.2.9 Inequality problem 
Let Un = {xy E {O,l}* I Ixi = Iyl and X =I- y}. Let, for n = 2m,X = 

m 

{Xl, ... , Xm, Zl,···, zm} be the set of input variables of hn( Un) = V (Xi EB Zi), 
i=l 

and let II be the balanced partition of Example 2.2.2.8. Since the only 
zero elements of M(hn ( Un), II) are the diagonal elements and the sizes of 
M(hn( Un), II) are even, M(hn( Un, II) is non-singular. So, cc(hn( Un), II) 
log2(2m ) = n/2. 0 

Example 2.2.2.10 Comparison problem 
Let Com={uv E {O, l}* Ilul = Ivl and BIN-l(U) ~ BIN-l (v)}, and let X and II 
be defined as in the previous example. If the input assignments to {XI, ... , xm} 
(and also to {Zl' ... ' zm}) are sorted according to the positive integers coded 
by them, then M(hn ( Com), II) is the upper triangular matrix which is clearly 
non-singular. So, cc(hn( Com), II) ~ n/2 for any even positive integer n. 0 

Thus, one can construct numerous examples for which the rankfix method 
directly provides high lower bounds. 

The third and last lower bound proof technique presented here is also based 
on the investigation of the matrices M(f, II). Let 1 be a Boolean function de­
fined on a set X of Boolean variables, and let II E Abal(X). Let D = (II, cJ» 

be a protocol computing f. We have already observed that if c is the same ac­
cepting (unaccepting) computation of D on two different inputs a and fJ, then 
c is also the accepting (un accepting) computation of D on inputs II-l(aL,fJR) 
and II-I (fJL, aR), i.e., I(a) = l(fJ) = I(II-l(aL, fJR)) = I(II-l(fJL, aR)). For 
the matrix M(f, II) = [aii], this means that I(a) = ars and l(fJ) = akt imply 
ars = akl = art = ask. Thus, all inputs having the computation c form a sub­
matrix M(c) whose elements are the same (note that a submatrix of M(f, II) 
is any intersection of a subset of rows of M(f, II) with a subset of columns of 
M(f, II)). Let us call such submatrices monochromatic submatrices. Then 
each computation c of D corresponds exactly to one monochromatic submatrix 
M(c), and since D is deterministic (we have exactly one computation of D for 
every input), M(cd and M(C2) are disjoint for any two different computations 
Cl and C2. Since D computes I, the monochromatic submatrices determined by 
computations of D cover the whole matrix M(f, II). Thus, D having m distinct 
computations determines a covering of M(f, II) by m disjoint monochromatic 
submatrices. This means that the cardinality of a minimal cover of M(f, II) 
by disjoint monochromatic submatrices of M(f, II) directly provides a lower 
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bound on the number of different computations of every protocol D computing 

f· 
We now formally describe the lower bound method introduced above. 

Definition 2.2.2.11 Let M be a Boolean matrix and let S = {MI , ... , M k } be 
a set of monochromatic submatrices of M. We say that S is a cover of M 
if for each element aij of M there exists an m E {I, ... ,k} such that aij is an 
element of Mm. We say that S is an exact cover of M if S is a cover of M 
and Mr n Ms = 0 for every r i= s, r, s, E {I, ... , k}. The tiling complexity of 
M, Til(M), is 

min{ISII S is an exact cover of M}. 

Thus, using the formalism of Definition 2.2.2.11, we have established the 
following result. 

Theorem 2.2.2.12 For every Boolean function f defined over a set of variables 
X, and every partition II of X, 

cc(J, II) ~ POg2 Til(M(J, II))l - 1. 

Proof. We have shown above that every protocol D = (II, tfJ) computing f must 
have at least Til(M(J, II)) different computations, i.e., at least Til(M(J, II))/2 
different communications. 0 

Method tilingfix 

Input: A matrix M(J, II) for a Boolean function f with a set of input variables 
X, and a partition II of X 

Procedure: Compute d = Til(M(J, II)) 

Output: "cc(J, II) ~ POg2 dl - 1 " 

Note that, as in the case of the foolfix method, we do not know any efficient 
algorithm computing the procedure of tilingfix, and so estimating Til(M(J, II)) 
is a research problem for anyone using this method to obtain a lower bound on 
cc(J, II). 

We illustrate the use of this method by an example. Note that Examples 
2.2.2.8, 2.2.2.9, and 2.2.2.10 are also examples applying the tilingfix method, 
because it can easily be observed that Til(hn(Eq), II) = Til(hn( Un), II) ~ 
2m + 1, and Til(hn(Com),II) ~ 2m+!. 

Example 2.2.2.13 Let U::.od : {O, 1pm -+ {O, I} be a Boolean function defined 
on variables Xl, ... , X m , Zl, ... , Zm as follows: 
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Let II E Bal(X) be defined by IlL = {Xl, ... , X m }. It is not hard to observe (we 
leave this to the reader as a combinatorial exercise) that the largest monochro­
matic submatrix of M(N::.od ,II) has 2m elements. Since M(N::.od ,II) has 22m 
elements, Til(M(j2~od, II)) ~ 2m. Thus CC(j2~od, II) ~ m - 1. 0 

Now an obvious question appears. We have introduced three different lower 
bound proof methods. Which relationships exist between them (which provides 
the highest lower bounds)? How large may be the difference between cc(j, II) 
and the lower bounds provided by our lower bound methods? 

Since we have considered fooling sets for general computing problems and 
the methods rankfix and tilingfix have been introduced only for one-output 
problems we define a simplified version of fooling sets for one-output problems 
(Boolean functions) before comparing the methods. Note that the main sim­
plification lies in the fact that we do not need to consider the partition of the 
output variables (for all inputs the same computer computes the output hit). 

Definition 2.2.2.14 Let fn be a Boolean function over a set of input variables 
X = {XI,"" xn}. Let II be an almost balanced partition of X and let (J E 
{O, I}. Then, a u-fooling set A (tn, n) for In and n is any set of input 
assignments from X to {O, I} such that 

(i) Va E A(jn, II) : fn(a) = (J 

(ii) V(3,"'( E A(jn, II), (3 =I "'(: 
fn(II- I((3rr,L, "'(rr,R)) =I (J or fn(II-I("'(rr,L, (3rr,R)) =I (J. 

(We observe that if A is a IS-fooling set for some f and II, then A is a 
6-fooling set for r(j) and II.) 

We define 

Fool(tm n) = max{IAII A is a (J-fooling set for fn and II,(J E {O, I}}. 

Obviously, Definition 2.2.2.14 corresponds to the crossing sequence argu­
ment of the fooling set method (i.e., each (J-fooling set is a fooling set). If two in­
put assignments (3, "'( E A(jn, II) have the same communication (computation), 
then the protocol has the same communication (computation) for the input as­
signments II-I ((3rr,L, "'(rr,R) and II-I( "'(rr,L, (3rr,R)' Thus, if fn(II- 1 ((3rr,L, "'(rr,R» =I 
(J or fn (II-l ("'(rr,L, (3rr,R» =I (J, then the communication on the input (3 must dif­
fer from that on the input "Y-

In what follows, we set Rank(t, n)=Rank(M(j, II», rank(t, n) = 
rank(M(j, II», and Til(t,n)=Til(M(j,II» for any f,II. 

Now, we start to compare Fool(j, II), Rank(j, II), rank(j, II) and Til(j, II) 
each to each other, and to compare their logarithms to cc(j, II). We shall show 
the following main results: 

(i) max{Rank(j, II), Fool(j, II)} :::; Til(j, II) for any f and II, and log2(Til 
(j, II») is polynomially related to cc(j, II) for any f and II. 
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(ii) Til(f, II) :::; 2rank(J,1I)+1 for any f and II and there exists a Boolean func­
tion 9 with an exponential gap between Til(g, II) and rank(g, II) (i.e., 
for some Boolean functions the method tilingfix can provide essentially 
higher lower bounds than the weaker version of the rankfix method). 

(iii) There exists a Boolean function h such that the gap between Til(h, II) 
and Fool(h, II) is exponential (i.e., for some problems the foolfix method 
is very weak). 

(iv) Fool(f, II) :::; (rank(f, II)+2)2 for any f and II, and there exists a Boolean 
function 9 with an exponential gap between rank(g, II) and fool(g, II) (i.e, 
the weaker version of the rankfix method may be much better than the 
foolfix method, but the foolfix method may be only a little bit better than 
the rankfix method). 

(v) There exists a Boolean function h such that there is an exponential gap 
between rank(h, II) and Rank(h, II) (i.e. the stronger version of the rank­
fix method may be essentially better that the weaker one). 

Above we see that the tilingfix method is the best one according to the 
relation to communication complexity. But this fact is not sufficient for using 
only this method for proving lower bounds on communication complexity be­
cause it may happen, for some f and II, that Til(f, II) is hard to estimate while 
Rank(f, II) or Fool(f, II) can be easily computed. We discuss this problem still 
at the end of Section 2.2.2. 

Theorem 2.2.2.15 For every Boolean function f defined on a set X of input 
variables, and for every partition II of X 

(i) Fool(f, II) :::; Til(f, II), and 

(ii) Rank(f, II) :::; Til(f, II). 

Proof. 

(i) Let, for a k E W, S = {MI, ... , Mk } be an exact cover of M(f, II) = [aij], 
and let A be a fooling set for f and II. If a, f3 E A and a f= f3, then 
the corresponding elements aBIN(arr,L),BIN(arr,R) and aBIN(Prr,L),BIN(Prr,R) of 
M(f, II) cannot lie in the same submatrix Mi for some i E {I, ... , k} (if 
they were in the same submatrix, then f(a) = f(f3) = j(II-I(aL, f3R)) = 
f(II- I(f3L, aR)) which would contradict the fact that A is a fooling set). 
Thus IAI :::; k, which implies (i). 

(ii) Let M(f, II) have tiling complexity k = Til(j, II). Let F be any field 
with identity elements 0 and 1. Then M(f, II) = MI + M2 + ... , +Md 
for some d :::; k, where for every i E {I, ... , d} all 1 's of Mi can be 
covered by one monochromatic submatrix of Mi (i.e., rankF(Mi ) = 1 for 
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every i E {I, ... , d}). Since rankF(A) ::::: rankF(B) + rankF(C) for every 
matrix A = B + C (Exercise 2.1.5.13), we directly get rankF(M(j, II)) ::::: 

d 

~)ankF(Mi) = d ::::: k = Til(j, II) for every F. 
i=1 

o 

We see that Til(j, II) provides the closest lower bound on cc(j, II) of the 
three lower bound methods. The next result shows that log2(Til(j, II)) cannot 
be too far from cc(j, II). 

Theorem 2.2.2.16 For every Boolean function f defined on a set X of input 
variables, and for every partition II of X 

Proof. The fact pog2(Til(j, II))l - 1 ::::: cc(j, II) has been proved in Theorem 
2.2.2.12. The inequality cc(j, II) ::::: (POg2 Til(j, II))l + 1)2 will be a direct 
consequence of the investigation of nondeterministic communication complexity 
in Section 2.5. We omit the nontrivial proof here, because it is only a special 
case of the more general proof of Theorem 2.5.4.6. 0 

Next we show that log2(Fool(j, II)) and log2(rank(j, II)) are not so close 
to cc(j, II) as log2(Til(j, II)) by showing that the difference between Til(j, II) 
on one hand and Fool(J, II), and rank(J, II) on the other hand can be very 
large. Let N::.od and II respectively be the Boolean function and the balanced 
partition of Example 2.2.2.13. 

Theorem 2.2.2.17 For every Boolean function f defined on a set X of input 
variables, and for every partition II of X 

(i) Til(J, II) ::::: 2rank(j,1I)+1, and 

(ii) Til(J2~od, II) ~ 2m and rank(J2~Od ,II) ::::: m. 

Proof. If a Boolean matrix M has rank(M) = d, then M consists of at most 
2d different rows (Exercise 2.1.5.17). Each group of equal rows can be covered 
by two monochromatic submatrices (one for l's, and the other for O's). This 
implies (i). 

The fact Til(J2~od ,II) ~ 2m has already been claimed in Example 2.2.2.13. 
To see that rank(J2~od, II) ::::: m, consider the m rows of M(J2~od ,II) corre­
sponding to the following input assignments from IlL to {O, 1}: 10m- I , 01Om-2, 
... , oilOm-i-l, ... , om-II. It can be easily observed that all other rows are 
linear combination of these m rows (more precisely, if a row corresponds to an 
input assignments with 1 's on the positions it, i2, ... , iT' then this row is the 
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sum of rows corresponding to the input assignments oil-11Om-il, oi2-11Om-i2, 

... ,Oir-11Om-ir). 0 

We shall show that there is a large difference between Fool(j, II) and 
Til(j, II), but in an existential way. This existential proof is based on the inves­
tigation of random (almost all) squared Boolean matrices. To do this we have 
to observe some interesting properties of fooling sets A(j, II) connected with 
the matrix representation M(j, II) of f according to II. 

Let A= AU, II) be a fooling set for f and II, and let IAI= m. With­
out loss of generality we may assume that, for Va E A, f(O'.) = 1. Let A= 
{aI, 0'.2, ... ,am}, and let aidll ai2j,,· .. ,aimjm be the elements of M(j, II) cor­
responding to 0'.1,0'.2, ... ,am respectively. (Note that for each O'.k = II- 1(O'.kII,L, 
O'.kII,R) , ik = BIN(O'.kII,d + 1 and jk = BIN(O'.kII,R) + 1.) 

Now we show that, for all r, s E {1, ... , m}, r =f. s implies ir =f. is and 
jr =f. js (i.e., no column (or row) may contain values for two different in­
put assignments from A). We prove this fact by contradiction. Let there exist 
U, v E {1, ... , m} such that U =f. v and iu = iv[ju = js]. This means O'.uII,L = 
O'.vII,dO'.uII,R = O'.vII,R] which implies II-I (O'.uII,L, O'.vII,R) = II-I (O'.vII,L, O'.vII,R) = 
O'.v and II-I(O'.vII,L,O'.uII,R) = II- 1(O'.uII,L,O'.uII,R) = au [II-1 (O'.uII,L,O'.vII,R) 
II-I (O'.uII,L, O'.uII,R) = au and II-I (O'.vII,L, O'.uII,R) = II-I (O'.vII,L, O'.vII,R) = O'.v]. 

Thus, f(II-I(O'.uII,L,O'.vII,R)) = f(O'.v) = 1 and f(II- 1(O'.vII,L' O'.uIIR)) 
f(O'.u) = 1[J(II- I(O'.uII,L,O'.vII,R) = f(O'.u) = 1 and f(II- 1 (O'.vII,L,O'.uII,R)) 
f (O'.v) = 1], which contradicts the fact that A is a fooling set for f and II. 

So, we see that one can assign a squared submatrix of M(j, II) of the size 
IAU, II)I x IAU, II) I to each fooling set AU, II). 

On the other hand, each submatrix with the above described properties 
defines a fooling set. 

Definition 2.2.2.18 Let IS E {O, 1}. A squared Boolean matrix M = [mij]i,j=l, ... ,d 

for some dEN - {O} is called a 8-fooling matrix iff 

(i) mii = IS for i = 1, ... ,d , and 

(ii) for all r, s E {1, ... ,d}, r =f. s implies mrs = 8 or msr = 8. 

Any matrix M' obtained from a IS-fooling matrix M by any permutation of 
rows and columns of M is called a 8-quasifooling matrix. 

Now our idea is to show that, for sufficiently large m, most of the m x m 
Boolean matrixes do not have any large quasifooling matrix, but they have a 
large tiling number. Obviously, each such matrix may be considered as MU, II) 
for some balanced II and some Boolean function f. Let us start with some 
technical results. 

Lemma 2.2.2.19 Let Mf(m, k) be the number of all m x m Boolean matrices 
having a IS-quasifooling submatrix of size at least k x k for some IS E {O, 1}. 
Then 
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Proof. We have two possibilities to choose 6 E {O, I}, and (r:r possibilities to 

choose a placement ofthe k x k 6-quasifooling submatrix M' ((r:) possibilities 

to choose k rows [columns] from m rows [columns]). k elements of M' have 
fixed values 6 and their positions in M' can be chosen in k! different ways. If 
we permute the rows of M' to get a 6-fooling matrix M, then we see that we 
have only three possibilities for assiging the values to any pair of symmetrical 

elements of M ((is, is), (is, 6), and (6, is)). Thus, there are 3m possibilities for 
choosing the values for the elements in M'. All other elements lying outside M' 
may be chosen arbitrarily, providing 2 m2 - k2 possibilities. 0 

Lemma 2.2.2.20 Let Mt(m, a, b) be the number of all m x m Boolean matrices 
having a monochromatic submatrix of size a x b. Then 

Proof. There are (;) . (;) possibilities for choosing the position of an a x b 
submatrix. We have two possibilities for the value of elements in this monochro­
matic submatrix, and 2m2 - a.b possibilities for the values of elements lying outside 
this monochromatic submatrix. 0 

Lemma 2.2.2.21 For every k ::::: 20 log2 m, 

lim Mf(m, k)/2m2 = o. 
m-+oo 

Proof. To show this it is sufficient to show lim 2· (,:)2. (k!) . 3m ·2-k2 = 0 for 
m-+oo 

k ::::: 20 log2 m (see Lemma 2.2.2.19). We asympthotically bound this expression 
in the following way: 

(m k)2k 
< 2. - "2 • 3k2 / 2 • Tk2 

k! 
< 21-k2+k2( !·log2 3)+2k·log2(m- ~) 

< 2k2 (-1+(log2 3)/2+(21og2m)/k). 

It is easy to see that (log2 3)/2 + 210g2 m/k < 1 for any k ::::: 20 log2 m, and so 

lim k2 ( -1 + (log2 3)/2 + (210g2 m)/k) = -00 
m-+oo 

for k ::::: 20 log2 m. o 
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Lemma 2.2.2.22 Let Mt(m, r) = L Mt(m, a, b) be the number of all m x m 
a·b=r 

Boolean matrices having a monochromatic submatrix of r elements. Then 

lim Mt(m,r)/2m2 = 0 
m-+oo 

for any r?: 3· mlog2m. 

Proof. It is sufficient to show that Mt(m, a, b)/2m2 ::; 2-m for every a, b ::; m 
with r = a· b?: 3mlog2m. 

Mt(m,a,b)/2m2 < (:)·(7)·21- ab 

< ma. mb • 2-r ::; 2-r +(a+b).log2 m 

< 2-r+2m log2 m. 

Obviously, for r?: 3mlog2m we have Mt(m, a,b)/2m2 ::; 2-mlog2m. 0 

Now, we can formulate our comparison results. 

Theorem 2.2.2.23 There exists a Boolean function f and a balanced partition 
II such that 

(i) Til(j, II) ?: m/3log2 m, and 

(ii) Fool(j, II) ::; 20 log2 m. 

Proof. Following the Lemmas 2.2.2.21 and 2.2.2.22 we obtain that there exists 
a sufficiently large m such that 

(iii) more than half of the m x m Boolean matrices do not have any 0-
quasifooling submatrix of size 20 log2 m x 20 log2 m, and 

(iv) more than half of the m x m Boolean matrices do not have any monochro­
matic submatrices of 3m log2 m elements, i.e., they have tiling number at 
least m/3log2 m. 

Thus, there exists an m x m Boolean matrix M with both properties (iii) and 
(iv), and clearly M = M(j, II) for some f and II. 0 

Next we compare rank(j, II) and Fool(j, II). For this purpose, we need the 
following definition. 

Definition 2.2.2.24 Let A = A(j, II) = {all a2, ... ,am} be a fooling set for a 
Boolean function f and an almost balanced partition II. Let ailil' ... ,aimjm be 
the m elements of M(j, II) corresponding to al, ... , am. We define M(A, f, II) 
to be the m x m submatrix of M(j, II) obtained as the intersection of the rows 
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iI, i2, ... ,im and of the columns jl, 12, ... ,jm' We define M' (A, f, II) to be an 
m x m matrix obtained from M(A, f, II) by some row and column permutations 
such that the m elements of the diagonal of M'(A, f, II) correspond to the m 
elements of the fooling set A. 

Note that Definition 2.2.2.24 is consistent (i.e., M'(A, f, II) always exists) 
due to the property of fooling sets proved above. 

Now, we introduce a special type of fooling sets with a direct connection to 
the rank of matrices M(j, II). 

Definition 2.2.2.25 Let fn be a Boolean function with the set of input variables 
X = {Xl, ... ,Xm}, and let II be a partition in Abal(X). For a a-fooling set 
A(jn, II) = {aI, a2,' .. ,am} for fn and II, and a E {a, I}, we say that A(jn, II) 
is a u-regular fooling set if 

(i) there exists a permutation ail' ai2> ... ,aim of aI, a2,' .. ,am such that 
fn(II-l(airIl,L, aisIl,R)) = a for every r < s, r, s E {I, ... , m}. 

We observe that condition (i) of Definition 2.2.2.25 is stronger than the 
conditions given in the definition of fooling sets, because Definition 2.2.2.25 de­
termines which one of fn(II- l (airIl,L, ai8Il,R)) and fn(II-l (ai8Il,L, airIl,R)) must 
be different from a. 

Now we can already see why the a-regular fooling sets have been introduced. 
If A = A(j, II) = {aI, a2, ... ,am} is a a-regularfooling set and ail' ai2> ... ,aim 
is the permutation satisfying (i) of Definition 2.2.2.25, then M'(A, f, II) is a 
mxm matrix such that, just by permuting the rows and columns of M'(A, f, II), 
we can get a matrix M"(A, f, II) = [bij]i,j=l, ... ,m, where 

bjj = f(aiJ = a for j = 1, ... ,m 

br• = f(II-l(airIl,L, ai8Il,R)) = a for every r < s, r, s = 1, ... ,m. 

Doubtlessly, 
rank(M"(A, f, II)) = m if S = 1, and m -1 ~ rank(M"(A, f, II)) ~ m if S = ° 
(see Exercises 2.1.5.19, and 2.2.4.5 if it is not clear). Since no permutation of 
rows or columns of a matrix can change the rank of this matrix we have 

m - 1 ~ rank(M'(A, f, II)) = rank(M(A, f, II)) ~ m. 

Since M (A, f, II)) is a submatrix of M (j, II) we finally get rank(j, II) ~ m -1. 
So we have proved the following result. 

Theorem 2.2.2.26 For any Boolean function f with a set of input variables 
X, and any almost balanced partition II of X, 

rank(j, II) ~ max{IA(j, II) I I A is a a-regular fooling set for f and II, 
aE{O,I}}-1. 
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Thus, Theorem 2.2.2.26 claims that if a a-regular fooling set is among the 
largest fooling sets for f and II, then the lower bound method rankfix provides 
lower bounds at least as high as those given by the method based on fooling 
sets. However, this is not always the case (i.e., there are Boolean functions 
with large fooling sets but without equally large a-regular fooling sets). Before 
proving this fact, let us look at the structure of the matrix M'(A, f, II) for 
an arbitrary fooling set .A. Let f(a) = a for every a E .A. Then, M'(A, f, II) 
contains only a On the diagonal. If M'(A, f, II) = [bij]i,j=l, ... ,m for some mEN, 
then we note that, for any two (symmetric) elements brs and bsr , r -I s implies 
that br• = (j or bsr = (j. To realize this, note that: 

(1) br• = f(II- 1 (/3rr,L, I'rr,R)) and bsr = f(II-1(!rr,L, /3rr,R)) for some /3, I' E A, 
and 

(2) A is a fooling set, and so for all /3, I' E A, f(II- 1(/3rr,L,l'rr,R)) -I a or 
f(II-1(!rr,L, /3rr,R)) -I a; i.e., M'(A, f, II) is a 8-fooling matrix. 

Obviously, if a a-fooling matrix M is a submatrix of a matrix M(j, II) for 
some f and II, then M unambiguously defines a a-fooling set for f and II (the 
inputs corresponding to the positions of the diagonal of M are the elements 
of the fooling set). To find f and II such that there exists a large fooling 
set A(j, II) with the rank of M(j, II) smaller than IA(j, II)I, it is sufficient to 
build a a-fooling matrix M with rank(M) smaller than the size of M (Note that 
each Boolean matrix of size 2d x 2d together with an arbitrary partition of 2d 
variables unambiguously define a Boolean function of 2d variables. Moreover, 
if this matrix is a a-fooling matrix, then the 2d inputs corresponding to the 
diagonal build the fooling set for f and II). 

We start by presenting a I-fooling matrix Ml of size 4 x 4 with Rank(Ml) = 
rank(Ml) = 3 in Fig. 2.3. 

Fig. 2.3. 

The singularity of Ml over every field F follows directly from the fact that 
row 1 (M1) + row3(M1) = row2(M1) + row4(Md· 

Now we extend this idea to matrices of size 4d x 4d for any positive integer 
d. 

Lemma 2.2.2.27 For any positive integer d there exists a 1-fooling matrix Md 
of size 4d x 4d with Rank(Md) = rank(Md) = 3d. 
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Proof. We prove this by induction on d. For d = 1 the matrix Mi depicted 
in Fig. 2.3 has the required properties. Now let there be a I-fooling matrix 
Md = [aij]i,j=1, ... ,2d with Rank(Md) = 3d for some d ;::: 1. We construct Md+1 
from Md by substituting each element aij = 1 of Md by the matrix Mi , and 
each element aij = 0 of Md by the zero-matrix of size 4 x 4. Obviously, Md+1 
has size 4d+i x 4d+i. Let us denote Md+1 = [bij(rs)kj=1, ... ,4d, where bij(rs) is the 
element of the intersection of the r-th row and the s-th column of the 4 x 4 
matrix substituted at the position (i, j) of the matrix Md. For m = 1, ... , 4d, k = 
1, ... 4, let rowm,k(Md+i ) denote rOW4(m-il+k(Md+d obtained by the substition 
of rowm(Md) = (ami, am2,"" am4d) by 

(bmi(ki), bmi(k2), bmi(k3), bmi(k4), bm2(ki)"'" bm4(k4),"" am4d(ki),"" am2d(k4))' 
First, let us prove that M d+i is a I-fooling matrix. Since all diagonal ele­

ments aii(i = 1, ... ,4d) of Md are I's, and also all diagonal elements of Mi are 
l's, all diagonal elements bii(rr)(i = 1, ... , 4d, r = 1, ... ,4) are 1's too. Let bii(rr) 
and bjj(ss) be two different diagonal elements of Md+1' If i = j, then bii(rs) = 0 
or bii(sr) = 0, because Mi is a 1-fooling matrix. If i =1= j, then aij = 0 or aji = O. 
Without loss of generality, we assume aij = 0, which means that aij was substi­
tuted by the 4 x 4 zero-matrix. This implies bij(rs) = 0, because bij(uv) = 0 for 
all u, v E {1, ... , 4}. So we have proved that Md+1 is a 1-fooling matrix. 

Now we shall show that Rank(Md+1) = rank(Md+1) = 3d+1. According to 
the induction hypothesis we have Rank(Md) = rank(Md) = 3d. We also observe 
that the first three rows of Mi build an independent set of vectors over R. 
Let Sd = {Pi,P2"",P3d} be a set of numbers from Ed = {1,2, ... ,4d} such 
that R(Sd) = {rowk(Md) IkE Sd} is an independent set, and let, for each 
z E B - S, rowz(Md) be a linear combination of vectors in R(Sd). We claim 
that 

(1) R(Sd+i) = {rowm,k(Md+i) I m E Sd and k E {I, 2, 3}} is an independent 
set over Rand Z2, and 

(2) each rowu,v(Md+d ~ R(Sd+1) is a linear combination (over Z2) of rows in 
R(Sd+1)' 

(1) follows immediately from the facts that R(Sd) is an independent set, 
and that the first three rows of Mi build an independent set. 

To show (2) we distinguish two possibilities. First, let rowu,v(Md+1) ~ 
R(Sd+i), and rowu(Md) ~ R(Sd). The fact, that rowu(Md) is a linear combina­
tion (sum) of some vectors rowi j (Md), ... , rowi. (Md) for some sEN, implies 
immediately that rowu,v(Md+i ) is the same linear combination of the vectors 
rowij,v(Md+i), ... , rowis,v(Md+1)' The second (remaining) possibility for a row 
not in R(Sd+d is that the row is rowu,4(Md+1) for some rowu(Md) E R(Sd), U E 
{I, .. . 4d}. In this case, rowu,4(Md+1) is a linear combination of the vectors 
rowu,i (Md+i ), rowu,2(Md+1), and rowu,3(Md+i ). [A detailed, formal proof offacts 
(1) and (2) is left as a simple exercise for the reader]. 0 

An immediate consequence of Lemma 2.2.2.27 is the following theorem. 
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Theorem 2.2.2.28 For every positive integer n, n = 4m, m E !Ii, and every 
partition II E Bal({xI, ... ,xn}), there is a Boolean function fn depending on 
the variables Xl, ... ,Xn such that: 

(i) there exists a fooling set A(fn, II) for fn and II with IA(fn, II) I = 2n/2 
(i.e., cc(fn' II) = n/2), and 

(ii) Rank(fn, II) = 3n/4 (i.e., the rank lower bound method provides only 
cc(fn' II) ~ ((lOg2 3)/4) . n). 

Theorem 2.2.2.28 shows that there are computing problems for which the 
fooling set method can provide a litle bit higher lower bounds than the method 
based on the matrix rank. But the difference between these two lower bounds 
n/2 and (log23) . n/4 is only linear, and the question whether this difference 
may be greater for some computing problems will be answered in what follows. 

First, we need the notion of Kronecker product of two matrices generalizing 
the construction of Md+l from Md and MI in Lemma 2.2.2.27. 

Definition 2.2.2.29 Let F be a field. For arbitrary finite index sets I, J, K, L ::j:. 
o and matrices A = (G:ij)iEI,jEJ E F1XJ, B = (f3klhEK,IEL E F KxL over F, the 
Kronecker product A ® B is defined as the matrix 

C = (/Ci,k),(j,l))Ci,k,j,I)EIXKXJXL 

where rCi,k),(j,I) = G:i,j . f3k,l. 

Observation 2.2.2.30 For arbitrary A and B over some field F 

rankF(A Q9 B) = rankF(A) . rankF(B). 

Proof. Since the proof of this fact is a simple generalization of the idea of the 
proof of the fact rankF(Md+l) = rankF(Md) . rankF(MI) in the proof of Lemma 
2.2.2.27, it is left as an exercise to the reader. 0 

Now, we are ready to show that Fool(f, II) cannot be essentially larger than 
rankF(f, II) for any f, II. 

Theorem 2.2.2.31 Let X be a set of Boolean variables, IXI = 2n. For all fields 
F with identity elements 0,1, all Boolean functions f over X, and all partitions 
II E Bal(X), 

Fool(f, II) ~ (rankF(f, II) + 2)2. 

Proof. Let F be a field with the identity elements 0 and 1. Let X = {Xl, ... ,X2n} 
be a set of Boolean variables, and let II E Bal(X). The idea of the proof is to 
construct, for every Boolean function f over X, a Boolean function 1* such 
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that rankF(MU*, II')) S (rankF(MU, II)) + 1)2 and rank(MU*, II')) + 1 2: 
FooIU, II) for some partition II' of the input variables of f*. 

For every function f E B~n, we define f* : {O, I} 4n -+ {O, I} over X' = 
Xu {Yl, Y2, ... ,Y2n} as follows. For every a, j3 E {O, 1 Fn, 

We define II' E Bal(X') by setting II~ = X and Ilk = {YI, Y2,· .. ,Y2n}. 
First of all we prove (rankF(MU, II)) + 1)2 2: rankF(MU*,II')). To do it 

we define the Boolean function jR E B~n by setting jR('Y) = f(II-I('YJI,R, 'YJI,L)) 
for every 'Y E {O, 1 Fn. We observe M U*, II') = M U, II) ® M (jR, II). Because 
of Observation 2.2.2.30 we obtain 

rankF(MU*, II')) = rankF(MU, II)) . rankF(MUR , II)) 

S rankF(MU, II)) . (rankF(MU, II)) + 1). 

It remains to show rankF(MU*,II')) + 1 2: FooIU, II). We prove it by 
showing rankF (M U*, II')) + 1 2: IAI for every J-fooling set A for f and II. We 
distinquish two possibilities according to J. 

Let J = 1. Assume A = {aI, a2, ... ,ar } ~ {O, 1 Fn be a I-fooling set 
for f and II. We claim that the submatrix of MU*, II') obtained by the in­
tersection of the rows corresponding to the input assignments aI, a2, ... , a r 

from II~ to {O, I} and the columns corresponding to the input assignments 
II-I (alJI,R, alJI,L) , II-I (a2JI,R, a2JI,L) , ... ,II-I (arJI,R, arJI,d from Ilk to {O, I} 
is a diagonal matrix. For this, observe that 

= f(II-I(aiJI,L, ajJI,R)) . f(II-I(ajJI,L, aiJI,R)). 

If i = j then aij = aii = f(ai) . f(ai) = 1. If i =1= j, then the fact that A is 
a I-fooling set implies f(II-I(aiJI,L,ajJI,R)) = 0 or f(II-I(ajJI,L,aiJI,R)) = O. 
Thus aij = 0 for i =1= j. So, we have obtained 

IAI s rankF(MU*,II')) S (rankF(MU, II)) + 1)2. 

Let J = O. If IAI is a O-fooling set for f and II, then IAI is a I-fooling set 
for g(XI, ... , X2n) = f(XI, ... , X2n) EfJl and II. Following the case J = 1 above 
we obtain 

IAI s rankF(M(g*, II')) S (rankF(M(g, II)) + 1)2 S (rankF(MU, II)) + 2)2. 

o 

Note that Theorem 2.2.2.31 implies that the rankfix method provides lower 
bounds which are in the worst case the half of the lower bounds provided by 
the foolfix method, but never smaller. 
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In the opposite direction we show in an existential way that rank(j, II) can 
be exponentially larger than Fool(j, II). 

Theorem 2.2.2.32 There exists a Boolean function f of 2m variables and a 
balanced partition II such that 

(i) Fool(j, II) :::; 20 . m, 

(ii) rank(j,II) = 2m (i.e., cc(j,II) = m). 

Proof. Lemma 2.2.2.21 provides that for sufficiently large m more than three 
quarters of the 2m X 2m matrices do not have any 8-quasifooling submatrix of 
size 20· m. On the other hand, following the assertion of Exercise 2.1.5.8 for 
sufficiently large m, at least one quarter of the 2m X 2m matrices has rank equal 
to 2m . Thus, for sufficiently large m, there exists a 2m X 2m matrix m with 
rank(M) = 2m and no 8-quasifooling submatrix of size at least 20m. 0 

Now, we show that log2(rank(M(j, II))) can differ from cc(j, II) at most 
exponentially. 

Theorem 2.2.2.33 Let f be a Boolean function with a set of input variables 
X = {Xl, X2,"" xn}, and let II E Bal(X). Then 

log2(Rank(j, II)) :::; cc(j, II) :::; rank(j, II) :::; Rank(j, II). 

Proof. The fact log2(Rank(M(j, II))) :::; cc(j, II) is established in Theorem 
2.2.2.7. The upper bound cc(j, II) ::::; rank(M(j, II)) follows from the following 
consideration. Each Boolean matrix with the rank mover Z2 has at most 2m 

distinct rows (Exercise 2.1.5.17). So a protocol D = (II, ifJ) computing f can 
work as follows. The inputs of the first computer are partitioned into at most 
z = 2rank(M(f,11)) classes, each class containing inputs whose correspondig rows of 
M(j, II) are equal to each other. The first computer sends a message out of the 
set of z different messages of the length rank(M(j, II)) (we have one message 
of the set for each class of inputs). After receiving a message of the length 
rank(M(j, II)) the second computer knows that the part of the input assigned 
to the first computer is in the class of inputs corresponding to the message 
submitted. Since all rows corresponding to inputs in one class are equal, the 
output depends only on the input part assigned to the second computer. Thus, 
the second computer immediately computes the output. 0 

Finally, we show that the stronger rankfix method based on the rank over Q 
can be exponentially better than foolfix method and the weaker rankfix method 
based on the rank over Z2. To show it we take the same sequence of Boolean 
functions as in Theorem 2.2.2.17. For any n E N, we consider the inner product 
function N::od E B~ defined as follows: 
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Let Xn = {Xl, ... ,Xn,YI, ... ,Yn} and let IIn = (IIZ,II~) be a balanced parti-
tion of Xn with II;' = {Xl, ... , Xn}. 

Theorem 2.2.2.34 For every n E N, 

(i) rank(M(j~od, IIn)) = n, 

(ii) Fool(j~od, IIn) :::; (n + 2)2, and 

(iii) Rank(j~od, IIn) = 2n - 1. 

Proof. To see rank(M(j~od, IIn)) = n, consider the n rows of M(j~od, IIn) 
corresponding to the rows for input assignments 

from II;' to {O, I}. Obviously, these rows are linearly independent. It can easily 
be observed that all other rows are linear combinations of these n rows (more 
precisely,if a row corresponds to a "left" part of the input with 1 's On the 
positions iI, i 2 , •.• ,iT' then this row is the sum of the rows corresponding to the 
input assignments 

from IIZ to {a, I}). 
The claim (ii) follows directly from (i) and the assertion of Theorem 

2.2.2.31. 
To show (iii) it is sufficient to show rankQ(M(j~od, IIn)) = 2n -1. But this 

is the claim of Exercise 2.1.5.21. 0 

We conclude this subsection by discussing the comparison results estab­
lished. We have shown that the tilingfix method always provides better results 
than the other two methods, and that the methods rankfix and foolfix are in­
comparable. Rankfix may be exponentially better than foolfix, and foolfix can 
be only linearly better than rankfix. 

The tilingfix method is polynomially close to communication complexity. 
Whether rankfix method is polynomially close to communication complexity is 
an open problem. The weaker version of rankfix method based On the rank over 
Z2 is only exponentially close to communication complexity and we have given 
an example revealing this exponential gap. The lower bound provided by foolfix 
may differ exponentially from communication complexity, too. 

Whether log2(Rank(j, II)) is polynomially close to cc(j, II) for all f and II 
remains as the only one open comparison problem. Observe that the claim of 
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Exercise 2.1.5.22 provides some intuition supporting the positive answer to this 
question. 

But the "quality" of the techniques compared above cannot be measured 
only by their relation to communication complexity. A completely different issue 
is how hard it is to use them to get lower bounds for concrete problems. It 
seems that the most (successfully) used method is foolfix, followed by rankfix. 
The reason for this is that using foolfix means constructing a fooling set. So you 
prove a lower bound by a construction. If you want to use the tilingfix method 
you have to solve a minimization problem which is usually very hard. If you 
want to use the rankfix method, you can compute the rank in simple cases, but 
you often have to prove a nontrivial statement if you want to use this method 
for proving a lower bound on cc(hn(L), lIn) for all infinitely many n's. 

2.2.3 Theoretical Properties of Communication Complexity 
According to a Fixed Partition 

This subsection is devoted to the study of some theoretical properties of the 
communication complexity introduced in Section 2.2.1. Most of the results of 
this subsection are not so important for applications (the relation to real com­
puting models) and they may be skipped by readers primarily interested in the 
practical use of communication complexity. On the other hand, these theoretical 
results help to understand the nature of communication complexity and they 
are not only of theoretical importance. 

The theoretical properties of the communication complexity measure are 
mainly studied only for one-output computing problems and for balanced par­
titions. So we only consider Boolean functions and balanced partitions here. 

Definition 2.2.3.1 We define, for any m :S n, m, n E N and any balanced 
partition II of n variables COMMn,rr(m) = {J E B~ I cc(j, II) :S m} as the set 
of Boolean functions ofn variables computable within communication complexity 
m by the partition II. 

We now study the properties of the classes COMMn,rr(m). 

Observation 2.2.3.2 For any balanced partition II of 2n variables 

COMM2n,rr(n) = B~. 

The next result shows that almost all Boolean functions have the highest 
communication complexity. In what follows, let IIi denote a balanced partition 
of the set Xi = {Xl,"" Xi}. 

Theorem 2.2.3.3 For any sequence of balanced partitions {II2n } n:l 

lim ICOMM2n ,112n {n-l}1 - 0 
n-too IBgn I -. 
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Proof. The number of all Boolean functions of 2n variables is IB~nl = 222n. 

Now let us give an upper bound on e(n - 1) = ICOMM2n,II2n(n - 1)1. Each 
f E COMM2n,II2Jn - 1) can be computed by a protocol using at most 2n- 1 

communications. Thus, there is a communication c corresponding to at least 
22n /2n- 1 = 2n+1 input assignments. It means that the submatrix M(c) of the 
2n x 2n matrix M(j, II2n ) has some size a x b, where a· b ?: 2n+l , and so 
a, b ?: 2. We know that M(c) must have rank 1, and without loss of generality 
we may assume that the rows of M(c) are constant (i.e., each row consists either 
of D's or l's exclusively). 

So each matrix M(j, II2n ) for a function f E COMM2n,II2n (n - 1) must 
contain an axb submatrix M(j) ofrank 1 with a?: 2, b ?: 2, and ab ?: 2n+l, a(b-
1) < 2n+l, (a - l)b < 2n+1 [if M(c) has a size a' x b' with a' x b' "essentially" 
larger than 2n+l, we delete some rows and columns to get a submatrix M (j) 
of the size a x b with the above stated properties]. Let us bound the number of 
such matrices M(j, II2n)' 

The number of ways to select M(j) in M(j, II2n ) is 

2n 

L Qj, where Qj = ejn) . (r2n!~!Jl) 
j=2 

[the number of rows may be j = 2,3, ... , 2n and there are e;) ways to 

choose j rows from 2n rows, etc.]. 
The number of different j x i2n+l / j1 matrices with constant rows is 

Rj = 2j . 

All elements in M(j, II2n ) outside M(j) may be chosen arbitrarily, yielding at 
most 

222n 2n+1 'b'l' . - POSSI I ItIeS. 

So we obtain 

2n 

e(n - 1) = ICOMM2n,II2Jn - 1)1 ::; 222n-2n+l L Qj . Rj . 
j=2 

This implies 
2n 

e(n - l)/IB~nl ::; T 2n+1 
• L Qj . Rj . 

j=2 

By some combinatorial analysis it can be shown 

for any j = 2, ... ,2n which implies 

This completes the proof. o 
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Next we study the closure properties of Boolean function classes determined 
by communication complexity. 

Theorem 2.2.3.4 Let hi and h2 be two Boolean functions of 2n variables for 
somen E N. LetII be a balanced partition of2n variables. Ifhi E COMM2n,rr(r) 
and h2 E COMM2n,rr(s) for some r, sEN, then 

(i) hf E COMM2n,rr(r). 

(ii) hi 0 h2 E COMM2n,rr(r + s + 1), 
where 0 is any Boolean operation of two variables. 

Proof. 

(i) If D2n = (II, p) is a protocol computing hi, then D~n = (II, pI) computing 
hf is constructed as follows: 

pl(a, c) 

pl(a,c) 

p' (a, c) 

p(a, c) for any a E {O, l}n, c E {O, 1, $}* 

such that p(a, c) E {O, 1}*, 

1 if P(a, c) = 0 for some a, c, 

o if P(a, c) = 1 for some a, c. 

Obviously, D~n uses the same communications as D2n , i.e. cc(D~n) 
CC(D2n). 

(ii) Without loss of generality, we may assume that there exist protocols D~n = 
(II, pi) and Din = (II, p2) such that 

(1) D~n computes hi for i = 1,2, 

(2) cc(D~n) = r and cc(D~n) = s + 1, 

(3) for both protocols D 2~ and Din the left computer computes the 
output. 

Then D2n = (II, p), computing hi 0 h2, simulates at once the communica­
tions of D~n and Din (i.e., P(a,A) = pi(a,A) .p2(a,A) ifpi(a,A) E {O,l}+ 
or p2(a, A) E {O,l}+, etc.). The communication phase of D2n finishes when 
all messages exchanged in D~n and Din have been also exchanged in the 
computation of D2n . After this, the left computer of D2n knows both values 
hi (() and h2({) for the considered input 'Y. So the left computer computes 
b = hi('Y) 0 h2({) E {O, I} and returns the corresponding output Ii E {O, I}. 0 

Theorem 2.2.3.5 For any n E N, any k E {2, ... , n - I}, and any balanced 
partition II of 2n variables, COMM2n,rr(k) is not closed under V, i.e., 3h, h 
with cc(h, II) ::; k, cc(h, II) ::; k, and cc(h V h II) > k. 
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Proof. Let h be a function in B'2 - COMM2n,1I(k) such that INl(h)1 = I{a E 
{O,I}2n I h(a) = 1}1 is minimal for all functions in B~ - COMM2n,1I(k). Ob­
viously, such an h must exist, because B'2 - COMM2n,1I(n - 1) =I- 0. Since 
cc(h, II) > k 2: 2,INl (h)1 2: 2. Thus, we can write Nl(h) = Au B, for some 
A, B such that A n B =I- 0 and A =I- 0, B =I- 0. Let hI, h2 be functions such that 
Nl(hl) = A and Nl(h2) = B. 

Obviously, h = hI V h2' and CC(hl' II) :s: k, CC(h2' II) :s: k because INI (hI) I < 
INl(h)l, and INl (h2)1 < INl(h)1 (Note that h is a function with minimaIINl(h)1 
in B'2 - COMM2n,1I(k)). 0 

Corollary 2.2.3.6 For any n E N, any k E {2, ... , n - I}, and any balanced 
partition II of 2n variables, COMM2n,1I(k) is not closed under any Boolean 
operation 0 in {A, ---+ }. 

Proof. We prove this fact by contradiction. Let COMM2n,1I(k) be closed under 
some 0 in {A, ---+}. Since COMM2n,1I(k) is closed under complement (Theorem 
2.2.3.4) and the disjunction hI V h2 can be expressed by the operations 0 and 
the complement (for instance, hI V h2 = (hf A hf)C), the class COMM2n,1I(k) 
is closed under disjunction, contradicting Theorem 2.2.3.5. 0 

Next we show that the upper bounds of (ii) of Theorem 2.2.3.4 can be tight. 
In what follows, let II 2n denote the balanced partition of 2n variables Xl, ... , X2n 
into II L,X = {Xl, ... , xn} and II R,X = {xn+I, . .. , X2n}. 

Lemma 2.2.3.7 For any n E N, any i, j E N, i + j :s: n, there exist two Boolean 
functions hI and h2 such that 

(i) hI E COMM2n IT (i), h2 E COMM2n IT (j), and 
, 2n , 2n 

(ii) hI A h2 ~ COMM2n IT (i + j - 1). , 2n 

Proof. Let X = {Xl"",X2n}, and let 

k=l 
i+j 

h2(Xl,.··,X2n) = 1\ (Xq:=xn+q). 
q=i+l 

Obviously cc(hI, II2n ) = i and cc(h2, II2n ) = j (see Example 2.2.2.4). 
i+j 

h(Xl,'" ,X2n) = hl(Xl,'" ,X2n) A h2(Xl,'" ,X2n) = /\ (xr := xn+r)' Again, it is 
r=l 

clear that cc(h, II2n ) = i + j. 0 

We close Section 2.2 by translating the above results about Boolean func­
tions into results about computing problems (language recognition). 
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Definition 2.2.3.8 Let 9 : N -t N be a function with the property g(m) ~ m/2 
for any mEN. Let PI = {IIn}~=l be a sequence of balanced partitions, each 
lIn a balanced partition of n variables. Then we define 

COMMPI(g) = {L ~ {O, 1}* I cc(hn(L), lIn) ~ g(n) for any n EN}. 

Theorem 2.2.3.9 Let gl, g2 : N -t N be two functions, and let L1 and L2 be two 
languages over the alphabet {O, I}. Let PI be a sequence of balanced partitions. 
If L1 E COMMPI (gl) and L2 E COMMPI (g2), then 

(i) (L1)C E COMMPI (gl), and 

(ii) L1 V L2, L11\L2, L1 -L2' (L1 V L2)- (L1I\L2) E COMMPI (gl(n)+g2(n)+1). 

Proof. The proof follows directly from Theorem 2.2.3.4. o 

Theorem 2.2.3.10 For any function 9 : N -t N such that 2 ~ g(n) ~ n/2 - 1 
and any sequence PI = {IIn}~=l of balanced partitions, COMMPI(g) is not 
closed under union, intersection and symmetrical difference. 

Proof. The proof is a direct consequence of Theorem 2.2.3.5 and Corollary 
2.2.3.6. 0 

2.2.4 Exercises 

Exercise 2.2.4.1 Let X and Y be the sets of input variables and output vari­
ables respectively. Estimate the cardinality of Bal(X, Y). 

Exercise 2.2.4.2 Let f(xl, .. . ,Xn, Zl,' .. , zn) =./\ (Xi :::} Zi), and let X ,=1 
{Xl,"" Xn, Zl,"" zn}. Find some III and II2 E Bal(X) such that 

(i) cc(J, Ill) = min{ cc(J, II) I II E Bal(X)}, 

(ii) cc(J, II2) = max{ cc(J, II) I II E Bal(X)}. 

Exercise 2.2.4.3 Consider the language Sm = {xy I Ixi = Iyl, X, Y E 

{0,1}+, BIN(x) < BIN(y)}. Prove that for any n E N, there exist a balanced 
partition lIn such that cc(hn(Sm), lIn) ~ 1. 

Exercise 2.2.4.4 Prove that the largest monochromatic submatrix of the matrix 
M(J!f:.°d , II) from Example 2.2.2.13 has at most 2m elements. 

Exercise 2.2.4.5 Let A be a J-fooling set for some f and II, J E {O, I}. Prove 
that A is a 8-fooling set for fC and II. 
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Exercise 2.2.4.6 Give the formal proofs of the claims (1) and (2) presented in 
the proof of Lemma 2.2.2.27. 

Exercise 2.2.4.7 Prove the assertion of Observation 2.2.2.30. 

Exercise 2.2.4.8 * There also exists another communication protocol model for 
computing Boolean functions as well as that introduced in Definition 2.2.1.9. 
This protocol model is informally defined as follows: 
"We have again two computers and a partition partitioning the input bits to 
these two computers. The protocol (II, ¢, tJt) has two functions ¢ and tJt. tJt pre­
scribes, depending on the present communication, which of the two computers 
is to send the next message. Each message consists of exactly one bit, and what 
this bit should be depends on ¢, the input of the sender, and the present com­
munication. The protocol terminates when one processor knows the output bit 
and the other one knows this about the first one. The complexity of a protocol 
is the number of bits communicated in the worst case". 

Formalize this alternative definition of a protocol and prove that, for every f 
and II, cc(j, II) may differ at most by 1 when using this definition of a protocol 
instead of Definition 2.2.1.9. 

Exercise 2.2.4.9 Let X = {Xl,"" xn} be a set of input variables. Let II E 
Bal(X) and f E B~. Let 

p = IU E B~ I cc(j, II) = log2(rank(M(j, II)))} 1/22n 

be the probability that the rankfix method provides an optimal lower bound for a 
randomly chosen Boolean function. Give a lower bound on p (p 2: 1/4 at least 
for sufficiently large n). 

Exercise 2.2.4.10 * Find a Boolean function f and a partition II such that 

(i) there exists a large i-fooling set for f and II , 

(ii) all O-fooling sets for f and II are small. 

How large can the difference between the cardinalities of the largest 1- and 0-
fooling sets be? 

Exercise 2.2.4.11 * Theorem 2.2.2.28 shows that there exist an fn E B~ and 
a balanced partition II such that cc(jn, II) = n/2 and log2(Rank(M(jn, II))) ::; 
((log2 3)/4)· n. Use the construction idea of Theorem 2.2.2.28 in order to get a 
larger difference than the difference between 1/2 and (log23)/4. 
[Hint: Start from a different basic matrix than MI of Figure 2.3. For instance, 
there exists a fooling matrix of size 16 x 16 and rank equal to 9] 

Exercise 2.2.4.12 * Prove 2-2n+1 .Qj ·Rj = o(2-2n/2 ) for every j E {2, ... , 2n}, 
where Qj and R j are defined as in Theorem 2.2.3.3. 
[Hint: Distinguish different cases according to j.J 
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Exercise 2.2.4.13 Generalize the rankjix method to work also for many-output 
problems (not only for Boolean functions) and study analogously the properties 
of the generalized method. 

Exercise 2.2.4.14 Prove that the largest monochromatic submatrix of the ma­
trix M (j2:.0d , II) from Example 2.2.2.13 has at most 2m elements. 

Exercise 2.2.4.15 • Let k,n E N, /j E {O, I}. For every f E B~n and all 
partitions II of the set of 2n variables we dejine a 8-fooling set of order k 
according to f and II as a set A = {al, ... , am} S;;; {O, 1pn such that 

(i) f(a) = /j for all a E A, and 

(ii) for any selection of m = k + 1 elements aI, ... ,am from A the submatrix 
of M(j, II) corresponding to the intersection of the rows aW,L, ... ,amII,L 
and the columns alII,R, ... ,amII,R is not monochromatic. 

We set Fool;(j, II) = max{IAII A is a /j-fooling set of order k according to 
f and II}, Fool (j, II) = max{Fool~(j, II)/k IkE N} and Fooling(j, II) = 
max{Fool°(j, II), Fooll(j, II)}. 
Prove that 

log2(Fooling(j, II)) ~ cc(j, II) ~ (log2(Fooling(j, II)) + log2( 4n) + 1)2, 

i. e. that this generalized fooling set methods is able to provide lower bounds 
polynomially close to the communication complexity of concrete problems. 

Exercise 2.2.4.16 Prove that COMM2n,II(k) is not closed under EB and == for 
every k E {2, ... ,n -I}, n E N, and every balanced partition II of 2n variables. 

2.2.5 Research Problems 

Problem 2.2.5.1 .* Prove or disprove that cc(j, II) is polynomially close to 
log2(Rank(j, II)) for all f and II. 

Problem 2.2.5.2 • Find a injinite sequence of Boolean functions {fn}~=l with 
a suitable sequence of partitions {lIn} such that 

or improve the assertions of Theorem 2.2.2.31. 

Problem 2.2.5.3 Find a concrete sequence of Boolean functions {In}~=l with 
log2(Til(jn, II)) = D(n) (or at least D(n/log2)) and log2(Fool(jn, lIn)) = 
O(log2 n) for suitable lIn's. Note that Theorem 2.2.2.23 shows the existence 
of such a sequence of Boolean functions. 
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Problem 2.2.5.4 Find a concrete sequence of Boolean functions {fn}~=l with 
rank(fn, lIn) = 2f](n) and Fool(fn, lIn) = O(n) for suitable lIn's. Note that 
Theorem 2.2.2.32 shows the existence of such a sequence of Boolean. functions. 

Problem 2.2.5.5 * Theorem 2.2.2.16 and Exercise 2.2.4.15 provide two lower 
bound proof methods which secure (for any problem) lower bounds on the com­
munication complexity which are at least the root of the communication com­
plexity. Find another method securing still closer lower bounds than these two 
methods. 

2.3 Communication Complexity 

2.3.1 Introduction 

In this section, the basic model for measuring communication complexity is 
presented. The general communication complexity of a computing problem is 
not considered as a communication complexity according to a fixed partition, 
but as the minimum of communication complexities over a class of partitions. 
The reason for considering such a model is that exactly this model has the most 
important applications in parallel and distributed computing. The idea is to 
prove lower bounds on the amount of resources (the number of processors, the 
time of the execution of a parallel algorithm, etc .... ) of a parallel computing 
model (computing a given problem), by proving that a lot of information ex­
change must be performed between some two parts of the parallel computing 
model, where the number of communication links between these two parts is 
restricted in a reasonable way. Mostly, we are able to find a partition of the 
parallel computing device into two parts in such a way that: 

(i) the number of communication links between these parts is small in some 
reasonable sense, 

(ii) the number of input variables entering one part "does not essentially dif­
fer" from the number of input variables entering the other part, and 

(iii) no input variable enters both parts. 

Neither do we know nor can we plan which variables enter the first part of the 
computing device and which the second part. So we know that the physical 
partition of the computing model corresponds to some balanced (or almost bal­
anced) partition of input variables, but we do not know which one. Thus, if we 
want to claim that an amount of information bits must be exchanged between 
the two parts of the computing device, then we must know that at least this 
amount of bits must be used by each protocol Dn = (II, tfJ) computing the prob­
lem considered for any tfJ and any balanced (or almost balanced) partition II. 
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In this way, we see that we need the communication complexity of a comput­
ing problem as the minimum over all II and ifJ such that (II, ifJ) computes the 
problem. 

In the next subsection we give the formal definition of communication com­
plexity. In Section 2.3.3 we present the lower bound methods for this general 
communication complexity measure. Section 2.3.4 is devoted to some basic the­
oretical properties of communication complexity and Section 2.3.5 is devoted to 
the relation between communication complexity and the complexity of language 
recognition in the Chomsky hierarchy. 

2.3.2 Definitions 

We define communication complexity as the minimum over all communication 
complexities according to the partitions in Bal(X) or Abal(X). 

Definition 2.3.2.1 Let p~ be a computing problem of size n with the set of 
input variables X and the set of output variables Y. The communication 
complexity of P:;' is 

cc(P:;') = min{cc(P~,II) I II E Bal(X, Y)} 

The a-communication complexity of P:;' is 

acc(P:;') = min{ cc(P~, II) I II E Abal(X, Y)} 

Again, we give a special, separate definition of communication complexity 
of Boolean functions (one-output problems). 

Definition 2.3.2.2 Let in be a Boolean function of n variables Xl> ... , Xn, 
X = {Xl, ... , Xn}. The communication complexity of in is 

cc(fn) = min{cc(fn, II) I II E Bal(X)} 

The a-communication complexity of in is 

acc(fn) = min{ cc(fn' II) I II E Abal(X)} 

Now we give an example illustrating the possible difference between the 
communication complexity according to some fixed partition and the commu­
nication complexity defined above. 

Example 2.3.2.3 We consider the "Equality problem" , i.e., the language Eq = 
{w E {O, 1}* I w = uu}. In Example 2.2.2.8 we have seen cc(h2m(Eq), II) = m 
for any mEN (due to the method rankfix). But, cc(h2m(Eq» = 1 for any even 
mEN. To see this, let X = {Xl, ... , Xm, xm+1, ... , X2m} be the set of the 
input variables of h2m(Eq). We set D2m = (II, ifJ), where 
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(ii) P: p(al'" am/2am+1 ... a m+m/2,),) = 1 if ai = am+i for all i E 
{I, ... , m/2}; 

P(al ... am/2am+1 ... a m+m/2,),) = 0 if:3 j E {I, ... , m/2} such that 
aj =f:. am+j; 

p(am/2+1 ... a ma m+m/2+1 ... a2m, 1$) = I if ai = am+i for all i E 
{m/2+1, ... ,m}; 

p(am/2+1 ... a ma m+m/2+1 ... a2m, 1$) = 0 if:3 j E {m/2 + 1, ... ,m} 
such that aj =f:. am+j; 

p(am/2+1 ... a ma m+m/2+1 ... a2m, 0$) = O. 

Obviously, D 2m computes h2m (Eq), and CC(h2m(Eq)) ~ CC(D2m) = 1. 0 

2.3.3 Lower Bound Methods 

Since the general communication complexity is defined as the minimum over 
all partitions, the task of proving nontrivial lower bounds on communication 
complexity is much harder than that of getting lower bounds on communica­
tion complexity according to a fixed partition. Proving a lower bound on the 
communication complexity cc(P~) of a computing problem p~ of size n means 
proving this lower bound on cc(P~, II) for any of the exponentially many bal­
anced partitions II. Following this and the lower bound proof methods foolfix, 
rankfix and tilingfix for communication complexity according to a fixed par­
tition, we get the following methods for the complexity measures cc and ace 
defined in Definitions 2.3.2.1 and 2.3.2.2. 

Method fool 

Input: A problem p~ of size n with a set X of input variables and a set Y of 
output variables. 

Step 1: For each II E Bal(X, Y) [II E Abal(X, Y)], find a fooling set 
A(P~, II). 

Step 2: Compute d = min{IA(P~, II) I I II E Bal(X, Y)} 
[d = min{IA(P~, II) I I II E Abal(X, Y)}]. 

Method mrank 

Input: A Boolean function in defined on a set X of input variables. 

Step 1: For each II E Bal(X) [II E Abal(X)], construct the matrix M(fn, II). 
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Step 2: For some positive integer d, prove that 

d ~ min{Rank(M(fn,II)) I II E Bal(X)} 

[d ~ min{Rank(M(fn, II)) I II E Abal(X)}]. 

Output: "cc(fn) 2: flog2 d1" ["acc(fn) 2: flog2 d1"]· 

Method tiling 

Input: A Boolean function in defined on a set X of input variables. 

Step 1: For each II E Bal(X)[II E Abal(X)], construct the matrix M(fn, II). 

Step 2: For some positive integer d, prove that 

d ~ min{Til(M(fn, II)) I II E Bal(X)} 

[d ~ min{Til(M(fn, II)) I II E Abal(X)]}] 

Output: "cc(fn) 2: flog2 d1- 1" ["acc(fn) 2: flog2d1]-1"]. 

Obviously, none of the methods fool and mrank can be used automatically 
(algorithmically) to compute a lower bound on cc(P~) of a problem P~ of size n. 
For sufficiently large n, nobody is able to investigate the rank of exponentially 
many matrices according to n or to try to find exponentially many fooling sets 
(matrix covers), each for another partition. The problem of proving a lower 
bound becomes even more complicated if one wants to prove a lower bound on 
a general computing problem P = {hn}~=l' i.e., if one wants to prove cc(hn) 2: 
g(n) for any n E N and some function g : N -+ N. The only way to realize 
this task is to find some crucial, inherent properties of the computed problem 
considered which allow to generally formulate some assertions about the fooling 
sets for the partitions under consideration or about the ranks (covers) of all 
matrices corresponding to partitions. We present some results of this kind now. 
We start with one-output problems. 

We consider the language L = {Q: E {O, 1} + I #0 (Q:) = #1 (Q:)} of Example 
2.2.2.1. We start with the language L as a very simple example, because every­
body can see that no balanced partition has any influence on the hardness of 
checking whether #0 (Q:) = #1 (Q:) or not. Let X 2m = {Xl, ... , X2m} be the set 
of input variables of h2m (L) for any mEN. 

Theorem 2.3.3.1 For any mEN and any II E Bal(X2m), 

Proof. Let us first show CC(h2m(L), II) ~ flog2(m + 1)1 for any balanced par­
tition II. A protocol D2m (II, iJ» computing h2m(L) acts as follows. The first 
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computer sends the number i of 1 's in its part of the input to the second com­
puter, and the second computer only checks whether m = i+ the number of l's 
in the part of the input of the second computer. Obviously, i E {O, 1, 2, ... , m}, 
and the number of distinct binary words (messages) of length pog2(m + 1)1 is 
at least m+ 1 = 1{0,1,2, ... m}l. Thus, the submitted messages (BINk(i)) all 
have length k = pog2(m + 1)1 and CC(D2m) = k = pog2(m + 1)1-

Now we prove cc(h2m (L), II) ~ k for any II E Bal(X2m). Let us consider 
the 2m X 2m matrix M(h2m (L), II). Let M' be the submatrix of M(h2m (L), II) 
defined as the intersection of the m + 1 rows corresponding to the input assign­
ments om, 10m- I, 120m- 2, ... , 1 m-Io, 1m to the input variables in ilL and ofthe 
m + 1 columns corresponding to the input assignments om, 10m- I, 120m- 2, ... , 
1m - IO, 1m to the input variables in IIR . Obviously, the (m+1) x (m+1) matrix 
M' contains exactly m+11's for the m+1 input assignments 1iOi1i Oi (i+j = m, 
i, j E {O, ... , m} ). Since om, 10m -I, ... ,1m appear in this order in the sequence 
of row labels and also in the sequence of column labels of M(h2m (L), II), alII's 
of the matrix M' lie exactly on the diagonal leading from the lower left corner of 
M' to the upper right corner. Clearly, rank(M') = m+1, and so CC(h2m(L), II) ~ 
pog2(rank(M(h2m (L), II)))l ~ pog2(rank(M'))l = pog2(m + 1)1- 0 

Let LLl = {a E {0,1}+ Iial = (r;) for some mEN, and G(a) contains a 
triangle }. We shall prove a linear lower bound (st(n)) on the communication 
complexity of LLl. The proof technique we use in this case is based on the 
reduction of the task of proving a lower bound on cc(hn(LLl)) to some easier 
task - of proving a lower bound on the communication complexity of some other 
computing problem according to a fixed partition. 

Theorem 2.3.3.2 For every n = (r;), mEN, 

n 
cc(hn(LLl)) ~ 8.1010 

Proof. Let X = {x!, ... ,Xn}, n = (r;), be the set of input variables of hn(LLl). 
Obviously, each variable Xi corresponds to some "potential" edge between some 
nodes u and v of G. If, for an input a = al ... an, ai = 1, then G (a) contains the 
edge (u, v). If ai = 0, then G(a) does not contain the edge (u, v). Let us now, 
for any a E {O, l}n, view G (a) as a complete graph whose edges are labelled 
by zeros and oneS. Let II be an arbitrary balanced partition of X, and let Qm 
denote the complete graph of m nodes. We color the edges of Qm according to 
II in the following way. Each edge corresponding to a variable in ilL is red, and 
each edge corresponding to a variable in IIR (i.e., any other edge) is blue. Since 
II is balanced, the number of red edges re is equal to the number of blue edges 
bl (which is equal to n/2). 

The informal idea of the proof is as follows. We shall find three pairwise 
disjoint sets B I , B2 , A ~ V(G(a)) such that 

(i) IBII = IB21 E st(m), IAI E st(m), 
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(ii) there is a matching M ~ Bl X B2 with the cardinality IMI E Q(m), such 
that 

(ii-I) for each e = (v, u) E M, 3w(e) triangles (v, u, x), x E A, and exactly 
one of the edges (v, x) and (u, x) is red (the other one is blue), 

(ii-2) Lw(e) E Q(m2 ) = Q(n). 
eEM 

This means we will find a set ..1 of Q(n) triangles, each having a special red 
edge in (Bl U B 2 ) x A which is not included in any other triangle in ..1, and 
having one special blue edge in (Bl UB2 ) x A which is not included in any other 
triangle in .1. Thus, considering graphs containing all matching edges of M 
(the variables assigned to these edges have the value 1) we have Q(n) = Q(m2 ) 

potential triangles such that the information about the existence of each of them 
is distributed to both computers (none of the two computers has the complete 
information about the existence of all three edges, because at least one edge 
is red (blue)). Additionally, the existence or non-existence of one triangle in ..1 
does not say anything about the existence of any other triangle in ..1. Clearly, 
to decide about the existence of a triangle from the set ..1 of potential triangles, 
the communication protocol must exchange at least 1..11 bits. This fact will be 
shown by constructing a O-fooling set of cardinality 21LlI. 

Now let us formalize the above idea. 
A vertex is called red (blue) if less than m/50 of its m - 1 incident edges 

are blue (red). All other vertices are called mixed. 
First, we prove 

(1) There are at least m/100 mixed vertices. 
Suppose that fewer than m/100 mixed vertices exist. Let mix, f, b denote 

the number of mixed, red and blue vertices respectively. Since each red node is 
incident to at least {080 • m red edges, the number of red edges incident to red 
nodes (note that one edge may be incident to two nodes) must be at least 

1 98 
-·f·-·m. 
2 100 

Since the number of all red edges is re = "l2 - r:t, we get 

m2 m 1 98 
re=--- > 

4 4 
-·f·-·m 
2 100 
50 50 50 

f < -·m--<-·m 
98 98 - 98 

The same consideration for b yields 

- 50 
b<-·m 

- 98 

Now let us consider how to cover the f· 19~0 • m endpoints of the red edges 

incident to the red nodes. There are at most G) edges among the red nodes 



66 2. Communication Protocol Models 

covering at most 2 . G) endpoints. The mixed vertices can cover at most mix· 

19080 • m endpoints, and the blue vertices may cover at most b· 1~0 • m endpoints. 
Thus, we get 

Since mix < l~O • m and b :::; ~ . m we get 

98 2 98 100 
f·-·m<f -f+--·m+--·m 

100 - 10000 9800 

This leads to 
100· f2 - (98· m + 100) . f + 3 . m ~ 0 

which can be true only for f > m/2. The same consideration for the endpoints of 
blue edges incident with the blue nodes provides b > m/2. But this is impossible 
because b + f:::; m. Thus, (1) holds. 

Let us select m/lOO of the mixed nodes, and call them top nodes. Let 
A = {VI, V2,.·., Vm /100} denote the set of top nodes. Let the nodes outside 
A be called non-top nodes, and let B denote the set V(Qm) - A of non­
top nodes. Since each top node Vi E A is a mixed node there exist at least 
m/lOO red edges leading from Vi to m/lOO nodes in B, and at least m/lOO 
blue edges leading from Vi to m/lOO nodes in B. For each i E {I, ... ,m/100}, 
let Ci = {u E B I (Vi'U) is red} and Di = {u' E B I (Vi,U') is blue}. Let 
Ei = Ci X Di be the set of all directed edges from nodes in Ci to nodes in 
Di . Since ICd ~ m/IOO, and IDil ~ m/lOO for any i E {I, ... , m/IOO} we 
get lEi I 2: m2 /10000. We observe that each edge (p, q) E Ei corresponds to a 
triangle with the nodes Vi, p, q, where the edge (Vi'P) is red and the edge (Vi, q) 
is blue. 

m/100 m/lOO 

Note that B = U (D;UCi ), and set E' = U E i . For each e E E', let the 
i=l i=l 

weight of e be w(e) = max{l{iI, ... , idll ij E {I, ... , m/100} for j E 1, ... , k, 
k 

kEN, and e E n EiJ, i.e., the number of sets Ei which contain e. We observe 
j=l 

that W = L w(e) = 'L'::l1100 IEil ~ m 3/1000000. 
eEE' 

Let us now consider the graph G' = (B, E'). We want to find a matching 
M of G' such that the sum of the weights of the matching edges is in Q(m2 ). 

Since IE'I :::; (I~I) :::; m 2 /2, we get W IIE'I ~ m1500000. 

Let E~ = {e E E' I w(e) ~ m/106 }. 

Since every edge in E' - E~ has a weight smaller than one half of the average 
weight W IIE'I, the sum of the weights of all edges in E' - E~ is at most W 12 
(the half of the weights of all edges in E'). Thus 

W m 3 

w(E~) = L w(e) ~ - ~ --6· 
eEE; 2 2·10 
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Since every edge e E E' (and so every edge e E E~ too) has w( e) bounded by 
m/IOO 

w(E') m 3 /2 . 106 m 2 IE'I> __ 1_ > =--
1 - m/IOO - m/IOO 20000· 

Since IE~ I ;::: m 2 /20000 we can find a matching M ~ E~ of the cardinality 
IMI ;::: IE~I/(2· (m - 2)) ;::: m/40000. Consequently, 

Wi = L w(e) ;::: m 2 /(4. 1010 ). 

eEM 

The matching M determines two disjoint sets of nodes Bl and B2 such that 
M ~ Bl X B2 U B2 X Bl (remember that the edges in E' are considered to be 
directed). Without loss of generality, we may assume that W2 = LeEM,w(e) ;::: 
m2/(8 .1010) for the matching M' = M n (Bl x B2). Let B~ ~ Bl and B~ ~ B2 
be the set of nodes with M' ~ B~ x B~ and IM'I = IB~I = IB~I. We observe that 
then for each e = (p, q) EM', we have w(e) red edges incident to the nodes in 
A and w(e) blue edges incident to the top nodes in A. Thus, we have d = W2 

triangles consisting of one red edge, one blue edge, and one matching edge from 
M'. Let {Ul, Tl, 81}, {U2, T2, 82}, ... , {Ud, T d, Sd} be all these triangles, where 
{Ul, ... ,Ud} ~ A, {Tl, ... ,Td} ~ B~, {81, ... ,8d} ~ B~. 

Next, let us consider some selected input assignments corresponding to the 
subclass of graphs defined as follows. We determine these graphs by 

(i) fixing label 0 for some edges in Qm (i.e., edges which do not appear in 
any graph of this subclass); let Eo denote the set of those edges, 

(ii) fixing label 1 for some edges in Qm (i.e., edges which exist in all graphs 
of the subclass); let El denote the set of edges with the fixed label 1. 

All other edges are "free", i.e., they may be labelled by 0 or by 1. If the number 
of free edges is k, then we get a subclass of 2k graphs. 

Let the set of free edges be denoted by E free . 

We set El = M', Efree = {(Ui, Ti), (U;, 8;) Ii = 1, ... , d}, and Eo = E(Qm)­
(El U E free ). A graph of this subclass of graphs has a triangle iff:3 i E {I, ... , d} 
such that the red edge (Ui, Ti) and the blue edge (Ui, 8i) are labelled by 1. If Zj E 

X is the input variable corresponding to the edge (Uj, Tj) for j E {I, ... , d}, and 
Yk E X is the input variable corresponding to the edge (Uk, 8k) for k = 1, ... , d, 
then a graph from this subclass contains a triangle iff 

d 

!(Zl, ... ,Zd,Yl,···,Yd) = V(ZiAy;) = 1 
i=l 

Since all z;'s are in Ih,x (note that (Ui,T;)'S are red), and all y;'s are in Ih,R 
we get 

It remains to show that 
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To do so, we take the following set 
A(j, II) = {a1". ada~ ... a~ I ai E {O, I} for any i E {I, ... , d}, and a~ = ar 
for i = 1, ... , d}. 

We show that A(j, II) is a O-fooling set for I and II. Obviously, Ib) = 0 
for any 'Y E A(j, II). Let 6 = 61 ... 6d6f ... 6~ and (3 = (31" . (3d(3f ... (3~ be two 
words in A(j, II), and 6 f= (3. Without loss of generality, we may assume that 
:3 j that 6j = 1 and (3j = O. Then 6j 1\ (3; = 1, which implies 

o 
Theorem 2.3.3.2 provides a concrete example of a computing problem with 

linear communication complexity. Obviously, this example is only of theoretical 
importance, because the constant 8.1010 is very large. But later we show linear 
lower bounds d . n for reasonable constants d. 

Next we focus on the problem of how to prove lower bounds on the com­
munication complexity of computing problems with several outputs. First, we 
will show how the lower bounds on communication complexity of such comput­
ing problems may be achieved by proving lower bounds on the communication 
complexity of some Boolean functions according to some subclasses of balanced 
partitions. 

Observation 2.3.3.3 Let r, n E N - {O}, and let P~ = {h, h ... , IT} be a 
problem of size n with a set of input variables X. For each i E {I, ... , r}, and 
each II E Abal(X), 

acc(P~, II) ~ acc(ji, II) . 

Corollary 2.3.3.4 Let P~ = {il, 12, ... , IT} be a problem of size n for some 
n,r E N. Then 

acc(P~) ~ rnax{ acc(ji) I i = 1, ... ,r} . 

Theorem 2.3.3.5 Let r, n be some positive integers, and let P~ = {h, 12, ... ,IT} 
be a problem of size n with a set of input variables X. Let AI, A2 , ..• , AT 

r 

be subsets of Bal(X) such that UA; = Bal(X). If, for each i = 1, ... , r, 
i=l 

cc (ji , Ai) = min{cc(ji, II) I II E Ai}, then 

cc(P~) ~ min{ cc(J;, Ai) I i = 1, ... , r} 

Proof. Following Observation 2.3.3.3, for each i = 1, ... ,r, we get cc(P~, II) ~ 
CC(ji, II) for each II E Ai' Let Y be the set of output variables of P~. Following 
Definition 2.3.2.1 of cc(P~), we see that 
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min{cc(P~,ll) III E Bal(X,Y)} 

min{min{cc(P~, ll) III E Bal(X, Y) and II restricted to X is in 

Ai} I i = 1, ... ,r} 

> min{min{ CC(fi, ll) III E Ai} Ii = 1, ... , r} 
min{ CC(fi' Ai) I i = 1, ... ,r}. 

o 

Due to Theorem 2.3.3.5 the task of proving a lower bound on the communi­
cation complexity of a problem with several outputs may be easier than that of 
proving a lower bound on the communication complexity of a Boolean function. 
The idea is that we do not need to search directly for a fooling set A(P~, ll) for 
each of the exponentially many partitions ll, but it is sufficient to show that 
for each 1; E P~ there is a subset of partitions A; for which 1; is hard (i.e., 
cc(J;, Ai) is high), and that all Ai's together cover the set Bal(X) (or Abal(X)). 
Note that this technique may lead to essentially higher lower bounds than the 
lower bound max{ cc(J;) I i = 1, ... , r} of Corollary 2.3.3.4, as shown in the 
following example. 

Example 2.3.3.6 Let P;':' = {h, h, ... , 1m} be a problem of size 2m defined 
on variables Xl, ... X2m as follows: 

i=l 
m 

1\ (Xi == Xm+(i+1) mod m) 
i=l 

m 

1\ (Xi == Xm+(i+j-1) mod m) 
i=l 

m 

1\ (Xi == Xm+(i+m-1) modm). 
i=l 

We show that for each II E Bal( {Xl, ... ,X2m}), j j E {I, ... ,m} such that 
cc(fi, ll) ~ m/4, which yields cc(P;':') ~ m/4. (Note that it is easy to observe 
that CC(fi) :::; 1 for each i = 1, ... , m.) 

We shall say that a pair of variables (xr, xs) is compared by a function ik, 
if Xr == Xs occurs in the formula representation of 1k stated above. Obviously, 
for each j = 1, ... , m, it holds that 1i compares exactly m pairs. Additionally, if 
Bi denotes the set of all pairs compared by 1i for i = 1, ... ,m, then Bi n B j = 0 

m 

for i #- j and UBi = {(u,v) I u E {Xl, ... ,Xm},v E {Xm+l, ... ,X2m}}. 
i=l 
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Now we define an m x m matrix M = (mij)i,j=l, ... ,m with columns labelled 
by Xl, ... Xm and rows labelled by Xm+l' ... ,X2m as follows: mij = k for some 
k E {I, ... ,m} iff (Xi, Xj) is compared by fk. Following the above considerations, 
we see that each number from {I, ... , m} appears exactly m times in M, and 
M looks like Figure 2.4. 

Xl X2 X3 Xm-2 Xm-l Xm 
Xm+l 1 m m-l 4 3 2 
Xm+2 2 1 m 5 4 3 
Xm+3 3 2 1 7 5 4 

X2m-l m-l m-2 m-3 2 1 m 
X2m m m-l m-2 3 2 1 

Fig. 2.4. 

Let II be an arbitrarily balanced partition of {Xl, ... ,X2m}. Obviously, ei­
ther IlL contains at least r m/21 variables of {Xl, ... ,Xm } or IlR contains at least 
r m/21 variables of {Xl, ... , X m }. Without loss of generality we assume that IlL 
does. Then IlR contains at least r m/21 variables of {Xm+l, ... , X2m}. Let M' be 
a d l x d2 submatrix of M defined by the column labels IlL n {Xl, ... , xm} and 
by the row labels IlR n {Xm+l, ... , X2m}. Since dl ~ r m/21 and d2 ~ r m/21, 
the number of elements in M' is at least d l . d2 ~ m2 /4. Since the ele-
ments of M' are numbers 1,2, ... , m, there exists j E {I, ... , m} appearing 
at least T times in MI. Thus, we have T pairs (XipXrJ, ... , (Xim/4 ,Xrm/J 
[note that rk = m + (ik + j - 1) mod m] compared by fJ with the property 
{Xip ... ,Xim/J <;:;: IlL and {xr1 ,···, Xrm/4 } <;:;: IlR. Following Example 2.2.2.4 
and the fact that 

m/4 
fJ(Xl, ... , X2m) = (/\ (Xid == xrJ) /\ f(Xl, ... X2m), 

i=l 

where f(Xl, ... , xm) = 1 for the setting Xz = 1 for all Z E {I, ... , 2m} -
{i l , ... , im/4' rl, ... , rm/4}, we immediately see that cc(fJ, II) ~ m/4. 0 

2.3.4 Theoretical Properties of Communication Complexity 

The results presented in this and the next subsection help us to understand the 
nature of communication complexity beyond the way in which communication 
complexity is applied to real computing devices. So these two subsections may 
be skipped by anybody interested primarily in the relations to real parallel 
computations. 

As in the case of communication complexity according to a fixed partition, 
we shall define the communication complexity classes and investigate their prop­
erties. 
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Definition 2.3.4.1 We set for anyn,m E N, m::; n/2, COMMn(m) = {J E 

B'2 1 cc(J) ::; m} as the set of all Boolean functions of n variables computable 
within communication complexity m. 

Definition 2.3.4.2 Let 9 : N -+ N be a function with the property g(n) < 
n/2 for any n E N. We set COMM(g(n» = {L ~ {O,l}* 1 cc(hn(L)) < 
g(n) for any n EN}. 

We first study the hierarchy of the communication complexity classes. We 
start by showing that almost all Boolean functions of 2n variables have the 
highest possible communication complexity n. 

Lemma 2.3.4.3 ICOMM2n (n - 1)1 E 0(222n). 

Proof. We have proved in Theorem 2.2.3.3 that for any balanced partition II 
e(n -1) = ICOMM2n,rr(n -1)1 E 0(2n. 2-2n/2 . 222n). Since ICOMM2n (n -1)1 ::; 

L ICOMM2n,rr(n - 1)1, and IBal(X)1 = e:) ::; 22n we get 
rrEBal(X) 

o 

Corollary 2.3.4.4 For any natural number n 

i.e., 3f E B~n which belongs to COMM2n(n) - COMM2n (n - 1). 

Now we extend this result in order to show that one additional communi­
cation bit always increases the power of communication protocols. 

Lemma 2.3.4.5 For any m, n E N, m::; n, B~n(n + m) ~ COMM2n(m). 

Proof. Let f be a Boolean function of 2n variables which essentially depends 
on exactly n + m variables. (n - m variables are dummies for 1). Then f can 
be computed by a protocol D2n = (II, tJ», where 

(1) IlL contains all n - m dummy variables of f, 

(2) tJ> is defined in such a way that the left computer sends the values of its 
m essential variables for f to the right computer, and the right computer, 
knowing the values of all n + m essential variables of f, computes the 
output. 

So each f E B~n essentially depending on at most n + m variables is in 
COMM2n (m). 0 
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Corollary 2.3.4.6 For any m, n E N, m S n, 

o 

Lemma 2.3.4.7 For any m, n E N, m S n, 

Proof. To get this result, we modify the proof of Theorem 2.2.3.3. Let f E 
B~n (n+m), and let f be defined on the set ofvariables X = {Xl, ... , X2n}. Let II 
be any balanced partition of X. Obviously, f can be unambiguously described by 
a matrix M(f, II) such that M(f, II) is a submatrix of M(f, II), and M(f, II) 
has 2n+m elements. Now we estimate the number of Boolean functions f E 
B~n(n + m) n COMM2n,1I(m - 1). 

Each f E COMM2n,1I(m -1) can be computed by a protocol using at most 
2m - l different communications. Thus, there is a communication c corresponding 
to a submatrix M(c) of M(f, II) such that M(c) contains at least 2n+m /2m - l = 
2n+1 elements. 

Following exactly the steps of the proof of Theorem 2.2.3.3 we get that the 
number of matrices M(f, II) for f E B~n(n+m) nCOMM2n,1I(m-1) is limited 
by 

2n 

22n+m-2n+l . L QjRj . 
j=2 

Since we know that 2-2n+1 • Qj . Rj E o(2-2n/ 2 ) for any j = 2, ... ,2n we get 

for any balanced partition II. Since 

ICOMM2n (m - 1)1 S L ICOMM2n,1I(m - 1)1, 
lIEBaJ(X) 

we get 

o 

Thus, we get an important result providing a strong hierarchy of the com­
munication complexity classes. 
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Theorem 2.3.4.8 For any m, n E N, m :::; n, 

Proof. Lemma 2.3.4.5 claims that every f E B~n(n+m) is also in COMM2n (m), 
and Lemma 2.3.4.7 claims that almost all functions from B~n(n + m) do not 
belong to COMM2n (m - 1). 0 

The consequence of Theorem 2.3.4.8 for language classes is included in the 
next assertion. 

Theorem 2.3.4.9 Let g : N -t N be a function with the property 1 :::; g(n) :::; n/2 
for any n E N. Then 

COMM(g(n) - 1) S; COMM(g(n)) . 

The rest of Section 2.3.4 is devoted to the closure properties of communi­
cation complexity classes. First, we make the following trivial observation. 

Observation 2.3.4.10 The classes COMM2n (m) and COMM(g(n)) are closed 
under complement for any m, n E N, m :::; n and any function g(n) : N -t N, 
g(n) :::; n/2. 

We shall show that communication complexity is "extremly unclosed" under 
disjunction and conjunction. Namely, for any n E N we show that there exist two 
Boolean functions f1 and 12 of 2n variables, such that cc(h) = 0, cc(12) = 1, 
and cc(h V h) 2:: dn for some constant d independent of n. Obviously, this 
surprisingly differs from the properties of communication complexity according 
to a fixed partition, for which cc(h V 12, II) :::; cc(h, II) +cc(h, II) + 1 holds for 
any functions f1' 12 and any balanced partition II. Let us now explain the reason 
for this difference. Since cc(h) is defined as the minimum of cc(h, II) over all 
balanced partitions, cc(h) can be small, because there is some partition II for 
which cc(h, II) is small. But if cc(h, II) is small for partitions II for which 
cc(h, II) is large, and if cc(h, II') is small for partitions II' for which cc(h, II') 
is large, then one can get that cc( {h, 12}) is large. If hand 12 are convieniently 
constructed, a large cc( {h, 12}) also implies a large cc(h V f2)' Before proving 
the existence of such functions, we prove two technical lemmas. 

Lemma 2.3.4.11 Let f E B~n have the maximal possible communication com­
plexity (i.e., cc(J) = n). Then acc(J) 2:: l2n/3J - 1. 

Proof. We prove this fact by contradiction. Let f E B~n, cc(J) = n, and let 
acc(J) < l2n/3 J - 1. Then there is an almost balanced partition II' such that 
acc(J, II') < l2n/3J - 1, i.e., there is a protocol D~n = (II', tf>') computing f 
and cc(D~n) < l2n/3J - 1. 
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Now we describe the construction of another protocol D2n = (ll, p) com­
puting f with a balanced partition II and working with CC(D2n) < n. Without 
loss of generality, we may assume that Illtl 2: Illkl· Let llt = {Xl,' .. , Xn+i}, 
llk = {Zl"'" Zn-i} for some i :::; n/3. We set llL = {XI, ... , xn} and 
llR = {xn+l,"" Xn+i, ZI, ... zn-;}. Now let D2n act as follows. First, the 
left computer sends 0 (start of the communication) to the right computer. 
Then the right computer sends the values of all variables Xn+l,"" Xn+i to 
the left computer. After this information exchange of i + 1 bits the left com­
puter knows the values of all input variables of llL and the right computer 
knows the values of all input variables in llR ;;2 llk. So D2n can simu­
late the communication of D~n in order to compute the output. This implies 
CC(D2n) = i + 1 + cc(D~n) < i + 1 + l2n/3J - 1 :::; n/3 + l2n/3J :::; n. 0 

Lemma 2.3.4.12 Let f and f' be Boolean functions defined over the same set 
of variables X. Let l' be a variable which does not belong to X. Then, for the 
functions 9 = l' 1\ f and g' = r C 1\ f', 

cc(g V g', ll) 2: max{ cc(g, ll), cc(g', lln - 2 

for every II E Bal(X U {r}). 

Proof. Let II be a balanced partition of the set Xu {r}. Let D = (ll, p) be a 
protocol computing 9 V g' with the property cc(D) = cc(g V g', ll). We describe 
a protocol D = (ll,~) computing 9 with cc(D) = cc(D) + 2. The first two 
rounds are used to secure that both computers know the value of the variable r. 
Obviously, the number of exchanged bits in the first two rounds is exactly two. 
Now, if the value of l' is zero, both computers know that the result is 0 (note 
that 9 = 1'1\ f). If the value of l' is one, then g(a) = g(a) V g'(a) for the actual 
input assignment a, because g'(a) = O. Then D simulates the computation 
of D on a to compute g(a) V g'(a) = g(a). Thus, cc(D) = cc(D) + 2, and 
cc(g, ll) :::; cc(D) + 2. Realizing the same consideration for the function g', we 
also get cc(g', ll) :::; cc(D) +2 = cc(gV g', ll) +2, which completes the proof. 0 

Now we are ready to prove the main non-closure property. Let X 
{Xl, ... , X2n-2, Zl, ... , Z2n-2, rI, 1'2, 1'3, r4} be a set of input variables of the 
Boolean functions II, h E Bin. Let f E B~n-2 be a function defined on the 
variables Xl, ... , X2n-2 with cc(f) = n -1 (such a function f must exist accord­
ing to Cororally 2.3.4.4). We define 

Note that 1'2,1'3,1'4 are dummy variables for hand h. 



2.3 Communication Complexity 75 

Theorem 2.3.4.13 Let h, 12 E Bin be functions as defined above. Then 

(i) cc(h) = 0, cc(12) = 1, and 

(ii) cc(h V h) 2:: 2n/3 - 6. 

Proof. Taking the partition III with III = {x!,"'' X2n-2, Tl, T2} we imme­
diately get cc(fd ::; cc(h, Ill) = O. Taking the partition II2 with IIi = 
{Xl, Zl, X2, Z2, ... ,Xn-l, Zn-l, Tl, T2} it is easy to see that cc(12) ::; cc(12, II2) = l. 

Now let us prove (ii). Following Lemma 2.3.4.12 we have cc(h V h, II) 2:: 
max{ cc(h, II), cc(h, II)} - 2 for any II E Bal(X). Thus, to prove cc(h V h) 2:: 
2n/3 - 6, it is sufficient to prove that for every II E Bal(X), max{ cc(h, II), 
cc(h, II)} 2:: 2n/3 - 4. We distinguish the following two possibilities according 
to the partition II: 

(1) IIIL n {Xl,"" X2n-2}1 ::; l(2n - 2)/3J ·2 and 
IIIR n{Xl, ... ,X2n-2}1::; l(2n-2)/3J ·2, 

(2) IIIL n{xl, ... ,X2n-2}12:: 2·l(2n-2)/3J or 
IIIR n{Xl, ... ,X2n-2}12:: 2·l(2n-2)/3J. 

(1) If X' = {Xl, ... ,X2n-2}, IIILnX'I::; l(2n-2)/3J ·2, and IIIRnX'I::; 
l(2n - 2) /3 J . 2, then II' defined as lIt = IlL n X' and Ilk = IIR n x' is 
an almost balanced partition of X'. Since cc(h, II) 2:: CC(fl' II') - 2 (see 
Lemma 2.3.4.12), we get from Lemma 2.3.4.11 (note that II' E Abal(X')) 
cc(h, II) 2:: cc(f, II) - 2 2:: l(2n - 2)/3 J - 1 - 2 2:: 2n/3 - 4. Thus, we 
have for any II E Bal(X) with property (1) cc(h V h, II) 2:: 2n/3 - 6. 

(2) Let II E Bal(X) have the property (2). Without loss of generality, we may 
assume that \ IlL n {Xl, ... ,X2n-2} \ 2:: 2 ·l(2n - 2)/3 J. Since II is balanced, 
\IIRn{Zl,"" Z2n-2}\ 2:: 2n-4-\IIRn{Xl"'" X2n-2}\ 2:: 2·l(2n-2)/3J -2. 
Then there exist at least 

k = 2· l(2n - 2)/3J + 2· l(2n - 2)/3J - 2 - (2n - 2) 2:: 2n/3 - 2 

positive integers il, i2 , .•• ,ik E {I, 2, ... , 2n - 2} such that 

(i) {Xill Xiw .. ,Xik} ~ IlL, 

(ii) {Zill Zi2"'" ZiJ ~ IIR, 

(iii) 12(xl,"" X2n-2, Zl, ... ,Z2n-2, Tl, ... ,T4) = 
k 

/\ (Xij == Zij) /\ f~(xl' ... ,X2n-2, Zl, ... , Z2n-2, Tl, ... ,T4), 
j=l 

where n(Xl,"" X2n-2, Zl, ... , Z2n-2, Tl, T2, T3, T4) = 1 
for each input assignment with Tl = 0 and u = 1 for each u E 

X - {Tl' Xi! , ... , Xi k , Zit , ... , Zi k }. 
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Using our standard proof scheme, we see that (i) 1\ (ii) 1\ (iii) implies 
cc(h, II) ~ k. Thus, for each II E Bal(X) with the property (2) 

cc(h V 12, II) ~ cc(12, II) - 2 ~ 2n/3 - 4. 
D 

Corollary 2.3.4.14 For the functions f1' 12 E Bin of Theorem 2.3·4·13 

cc({h,12}) ~ 2n/3 - 8 . 

Proof. Each protocol computing {flo f2} can be modified by using 2 additional 
communication bits to secure that both computers know boths output values 
(for h and h) at the end of the computation. 

Obviously, this means that each computer knows h V 12 at the end of the 
computation, i.e., cc( {h, 12}, II) + 2 ~ cc(h V h, II) for any II E Bal(X). D 

Next, we show the strong non-closure property of the conjunction. 

Theorem 2.3.4.15 Let h, 12 E Bin be the functions considered in Theorem 
2.3.4.13. Then 

(i) cc(jf) = 0, cc(jg) = 1, and 

(ii) cc(jf 1\ fg) ~ 2n/3 - 6. 

Proof. Since COMM4n(m) is closed under complement for any mEN, (i) is 
obvious. For the same reason (Observation 2.3.4.10) cc((h V 12)C) ~ 2n/3 - 6. 
The fact (h V 12)C = ff 1\ fg completes the proof. D 

The interpretation of the results of Theorem 2.3.4.13 and Theorem 2.3.4.15 
for formal languages can be formulated as follows. 

Theorem 2.3.4.16 There exist two languages L1 and L2 such that 

(i) L1 E COMM(O), L2 E COMM(l), and 

(ii) L1 U L2 ~ COMM(n/6 - 7) 
L~ n Lg ~ COMM(n/6 - 7). 

Proof. It is sufficient to consider the languages L1 and L2 defined as follows: 
For any n = 4m,hn (L1) = f1 and hn (L2) = h, for h,12 E B'2. D 

Note that our proof of Theorem 2.3.4.13 (as of Theorem 2.3.4.15 and 
2.3.4.16) is existential. Further below, we give a constructive proof of this non­
closure property, yielding interesting practical consequences. The practical im­
portance of these strong non-closure properties of communication complexity 
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lies in the fact that by using communication complexity we shall be able to 
show such strong non-closure properties for real complexity measures of real 
circuit models. Thus, knowing that the circuit complexity of f = h V 12 is 
much greater than the sum of the circuit complexities of hand 12 helps the 
circuit designers to decide not to design the circuit for f (or for {h, f2}), but 
to design two circuits, one for h and one for 12. If h V 12 has to be computed, 
this can be done by software. 

2.3.5 Communication Complexity and Chomsky Hierarchy 

In this section we study how hard the languages of the Chomsky hierarchy are 
for communication complexity. We show that regular languages have small (con­
stant) communication complexity, but already the context-free languages (the 
second level of the Chomsky hierarchy) may be the hardest ones for communi­
cation complexity (linear communication complexity is required). Furthermore, 
we shall show that there are also languages which are the hardest ones in the 
Chomsky hierarchy but lie in COMM(O). This result is not surprising, because 
all languages of the Chomsky hierarchy are described uniformly by devices with 
a finite description and the protocols are non-uniform computing devices (i.e., 
each language is described by a potentially infinite sequence of protocols which 
means that in this way we can also describe languages for which no finite de­
scri ptions exist). 

First, we study the communication complexity of regular languages. 

Theorem 2.3.5.1 For each regular language L ~ {O, 1}* there exists a constant 
k such that L E COMM(k). 

Proof. If L is regular, then there exists a deterministic finite automaton A 
recognizing L. Let A have s states qo, ql,' .. ,qs-1, and let k = flog2 S 1. 

For each n E N we construct a protocol Dn = (il, tP) computing hn(L). 
il is defined by ilL = {Xl, ... , xrn/21}' The work of tP can be described as 
follows. tP(a1" .arn/21').) is BIN;l(r) iff the automaton A working on the 
input word a1 ... arn/21 (from its initial state) ends in the state qr' Then 
tP(arn/21+1'" an, BIN;; 1 (r)$) = I (0) iff the automaton A starting in the state 
qr with the postfix arn/2l+1 ... an ends in an accepting (rejecting) state. Obvi­
ously, Dn computes hn(L) and cc(Dn) = k = flog2sl 0 

Next, we show that no positive integer m exists such that all regular lan­
guages are in COMM(m). 

Theorem 2.3.5.2 For every positive integer m, there exists a regular language 
L(m) such that L(m) ¢ COMM(m). 



78 2. Communication Protocol Models 

Proof. Let m be a positive integer, and let L(m) = {w E {0,1}* I #1(W) = 
2m+I}. Let, for any n ~ 2m+2, hn(L(m)) be defined over the set of variables 
X = {Xl, ... , Xn}. We shall prove cc(hn(L(m))) > m for every n;::: 2m+2. 

Let II be any balanced partition of X. Let k E {l n/2 J, r n/21} be the 
cardinality of IlL. Let M' be a submatrix of M(hn(L(m)), II) defined as the 
intersection of the 2m +1 + 1 rows labelled by the input assignments Ok, 10k-I, 
... ,12m+l0k-2m+l and of the 2m +1 + 1 columns labelled by the input assignments 
ok, 10k-I, 120 k - 2, ... , 12m+l0k-2m+l. Obviously, the (2m +1 + 1) x (2m +l + 1) 
matrix M' has exactly (2m +1 + 1) l's, all lying on the diagonal leading from 
the lower left corner to the upper right corner. Thus, for any n ~ 2m+2 and any 
II E Bal(X) 

rank(M(hn(L(m)), II)) ;::: rank(M') ;::: 2m +1 + 1, 

which implies 

for any n ;::: 2m+2 and any balanced partition II. o 

Following Theorems 2.3.5.1 and 2.3.5.2, it is easy to see that the fact 
COMM(m - 1) S; COMM(m) for any positive integer m [a special case of 
the hierarchy COMM(g(n) - 1) S; COMM(g(n)) claimed in Theorem 2.3.4.9J 
can be proved constructively [in constract to the existential (counting) proof of 
Theorem 2.3.4.9J by showing L(m) E COMM(m + 2) - COMM(m + 1) for any 
mEN. 

Now let us consider the following context-free language 

LR = {Ol dOwwR l r I d;::: 0, r E {O, I}, r + d is even, wE {O, 1}*}U 

{l swwR Q1k I k ;::: 0, s E {I, 2}, s + k is odd, wE {0,1}*}. 

We will show that LR has linear communication complexity. Before doing so, 
we give a useful, technical lemma. 

Lemma 2.3.5.3 Let nand m be positive integers. Let X = {Xl, ... ,Xn }, and 
let f : {o,l}n -+ {O, U be a Boolean function defined on the variables in X. 
Let f(xI, ... ,xn ) = V;=I!;(XI, ... ,xm) for some Boolean functions iI,· .. ,fm E 

B"2, and let II be a partition of X. Let A(J;, II) be a I-fooling set for f; and II 
(i.e., f;(a) = 1 for every a E A(J;, II)), and additionally 

(i) for every a, fJ E AU;, II), and every j E {I, ... , m} - {i}: 
h(II-I(aII,L, fJII,R)) = h(II-I(fJII,L, aII,R)) = o. 

Then AU;, II) is also a I-fooling set for f and II. 

Proof. Obviously, for every a E AU;, II) : f(a) = f;(a) = 1. Let a, fJ E 
A(J;, II), and a =1= fJ. Then !;(II-I(aII,L, fJII,R)) = 0 or !;(II-I(fJII,L, aII,R)) = o. 
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Following property (i) we get !(II-1(O'.II,L,f3II,R)) = ° or !(II-1(f3II,L,O'.II,R)) 
=0. D 

Theorem 2.3.5.4 For every positive integer n, 

Proof. We have to prove cc(hn(LR)) ~ n/8 - 2 for any n E N. SO, let n be 
an arbitrary, positive, even integer (for odd n the proof can be realized in the 
same way), and let X = {Xl, ... , Xn} be the set of variables over which hn(LR) 
is defined. We can write LR = LR,o U LR,l, where 

LR,o {OI dOwwRIT I d ~ 0, r E {a, I}, r + d is even, w E {a, 1 }*} and 

LR ,l {I S wwR Q1k I k ~ o,s E {I,2},s+k is odd,w E {a, I}*}. 

Further, 

where 

n-2 
LR,o n {a, I}n = U LR,o,i[nj, 

i=O 
n-2 

LR,l n {a, I}n = U LR,l,j[n], 
j=O 

LR,o,i[nj = {OIiOwwRIT I w E {a, I}*,r E {a, I}, Iwl = (n - i - r - 2)/2} 

and 

LR,l,j[n] = {l"wwROlj I w E {a, l}*, s E {l, 2}, Iwl = (n - s - j - 1)/2} 

Thus, 

n-2 
(V hn(LR,o,i)(Xl,."'Xn)) V 

i=O 
n-2 
(V hn(LR,l,j)(Xl, ... , xn)), 
j=O 

where 

i+1 
x~ 1\ U, xT) 1\ X~+2 1\ 

T=2 
(n-i-2)/2+i+2 
( 1\ (xs == Xn-s+i+2)) 

s=i+3 
for all even i E {a, ... , n - 2}, 
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i+l 

hn (LR,o,i)(XI, ... , Xn) = X~ 1\ (1\ Xr) 1\ X~+2 1\ Xn 1\ 
r=2 

(n-i-3}/2+i+2 
( 1\ (XS == Xn- s+i+2)) 

8=i+3 
for all odd i E {1, ... , n - 3}, 

1+(n-j-2}/2 
hn(LR,I,j)(XI, ... ,Xn) xll\( 1\ (x r ==X(n-j-2}-r+3)1\ 

r=2 
n 

X~_j 1\ ( 1\ xm) 
m=n-j+l 

for all even j E {O, ... , n - 2}, and 
2+(n-j-3}/2 

hn(LR,I,j)(Xl, ... ,xn) = XIl\x21\( 1\ (xr ==X(n-j-3}-r+5)1\ 

n 

X~_j 1\ ( 1\ xm) 
m=n-j+l 

for all odd j E {I, ... , n - 3}. 

Since LR,O[nlnLR,dnl = 0, and LR,o,i[nlnLR,o,j[nl = LR,I,i[nlnLR,I,j[nl = 0 
for any i i= j, we observe that if A is a I-fooling set for some II and some 
/ E {hn(LR,o,i), hn(LR,I,j) I i, j = 0, ... n - 2} with the property /(0'.) = 1 for 
every a E A, then A has the property (i) of Lemma 2.3.5.3 according to the 
functions in {hn(LR,k,i) IkE {I, OJ, i E {O, ... , n-2} }-{J}. So the assumption 
of Lemma 2.3.5.3 holds for hn(LR) which means that it is sufficient to show that 
for each II E Bal(X) there exist k E {I, 2}, i E {O, ... , n - 2} such that we can 
find a large fooling set A(hn(LR,k,i), II) for hn(LR,k,i) and II. 

Let us do this. In what follows we say that hn(LR,k,i) compares a pair of 
variables (X., xr) iff Xs == Xr is included in the above stated formula of hn(LR,k,i). 
Let 

S(k,i) = {(X.,xr) I (X.,xr) are compared by hn(LR,k,i)} 

be the set of all pairs compared by hn(LR,k,i) for any k E {O, I}, i E {O, ... ,n-
2}. We observe that (k l i= k2 ) or (il i= i2) implies S(kl, i l ) n S(k2 , i2) = 0 for 
every kl, k2 E {O, I}, iI, i2 E {O, ... , n - 2}. Further, we see that 

IS(d, m)1 ~ r(n - m - 3)/21 

for every d E {O, I}, and every m E {O, ... , n - 2}. Thus, the number of distinct 
pairs compared by hn(LR) is 

n-2 
L L IS(d,m)1 

d=O,1 m=O 

n-3 
~ L(n-m - 3) 

m=O 

n-3 
> 2· L r(n - m - 3)/21 

m=O 

n-3 n2-5n+6 
LZ= . 
z=l 2 
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Since the number of all unordered pairs (X., x r ) of input variables is exactly 
(~) = n2;n we have that at most 2n - 3 pairs of variables are not compared by 

hn(LR)' 
Let II be an arbitrary balanced partition of X. For any pair (X., x r ), r, s = 

1, ... , n, we say that II separates the pair (X., x r ) iff (xr E II L and x s E II R) or 
(xr E IIR and Xs E IlL)' Each II E Bal(X) separates exactly n2/4 unordered 
pairs. Let Sep(II) denote the set of all by II separated pairs. 

Following our enumerations we see 

n-2 n2 
I( U ( U S(d, m))) n Sep(II) I ~ 4 - 2n 

d=O,l m=O 

So there must exist k E {O, I} and i E {O, ... , n - 2} such that 

IS(k, i) n Sep(II) I ~ (n2/4 - 2n)/(2n - 2) ~ i -2 

Thus, the function hn(LR,k,i) compares at least n/8 - 2 pairs of variables sep­
arated by II. Using the standard technique (already presented above (e.g., in 
Example 2.2.2.4)), one can construct a I-fooling set A(hn(LR,k,i), II) of cardi­
nality 2n/8- 2. Following Lemma 2.3.5.3, A(hn(LR,k,i), II) is also a I-fooling set 
for hn(LR) and II which completes the proof. D 

Following Theorem 2.3.5.4, we see that one of the fundamental computing 
problems, the recognition of context-free languages, has already the highest 
(linear) communication complexity. Another contribution of Theorem 2.3.5.4 
and Lemma 2.3.5.3 is the proof technique showing that sometimes the proof of 
a lower bound on cc(J) for some Boolean function i can be "reduced" to prove 
a lower bound on cc( {it, ... , ir}), where it, ... , ir have some special properties 
related to f. 

Finally, we show that COMM(O) contains some languages which are not 
recursively enumerable. Note that this result is only due to the fact that com­
munication protocols are non-uniform computing models. Let LRE denote the 
class of recursively enumerable languages. 

Theorem 2.3.5.5 
COMM(O) - LRE =f:. 0 

Proof. There are infinitely many languages L ~ LRE with the property IL[n]1 = 
1 for every n E N, L <;;; {O, I}*. Let L be such a language. We construct L' = 
{wy I w ELand y E {O, 1}lwl}. Obviously, L' is not in LRE' On the other hand, 
CC(h2n(L')) = 0 for any n E N because if the left computer has the first half of 
input variables, then it can directly decide whether the input assignment is the 
only word in L[n] or not. Obviously, CC(h2n+1 (L')) = 0 for any n E N because 
L'[2n+I] =0. D 
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2.3.6 Exercises 

Exercise 2.3.6.1 Prove ee(h2m(L)) :S fIog2(m + 1)1 (claimed in Theorem 
2.3.3.1) by using the fool (tiling) method. 

Exercise 2.3.6.2 Prove the lower bound presented in Theorem 2.3.3.2 by using 
the mrank method. 

Exercise 2.3.6.3 * Prove aee(hn(L,1)) = st(n) for any n = (r;), mE N-{O, I}. 

Exercise 2.3.6.4 Let P2% be the problem defined in Example 2.3.3.6. Prove 
aec(P~) = st(m). 

Exercise 2.3.6.5 * Find a language L ~ {O, 1}* such that 

(i) ee(hn(L)) = st(n), 

(ii) aee(hn(L)) :S 1 for every n E N. 

Exercise 2.3.6.6 Define, for any positive integers n, m, m :S ~, aCOMMn(m) = 
{j E B~ I ace (j) :S m}. Prove a strong hierarchy of such complexity classes. 

Exercise 2.3.6.7 * Find two languages U and V such that 

(i) aee(hn(U)) :S 1, and acc(hn(V)) :S 1 for every n E N, and 

(ii) acc(hn(U U V)) = st(n). 

Exercise 2.3.6.8 * Construct two specific languages L1 and L2 such that 

(i) cc(hn(L1)) :S 1, and cc(hn(L2)) :S 1 for every n E N, and 

(ii) cc(hn(Ll U L2)) = st(nk) for some positive, real number k :S 1. 

Note that Theorem 2.3.4.16 does not render such results, because the language 
L1 is chosen existentially. 

Exercise 2.3.6.9 A Boolean function f E B~nis symmetric if for every a, (3 E 

{O,1}2n, #l(a) = #1((3) implies f(a) = f((3). Prove that, for every symmetric 
Boolean function f E B~n, cc(j) :S flog2n 1, and that there exists a symmetric 
Boolean function h E B~n such that cc(h) = pog2n 1-

Exercise 2.3.6.10 * Let c be a fixed constant. Let f be a Boolean function of n 
variables, n E N. Let II be a balanced partition of the input variables of f such 
that cc(j, II) = st(n). Give a general construction which for given f provides 
a function 1* such that cc(j*) = st(n) [1* is hard for all partitions] and 1* is 
defined on c . n variables. 
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2.3.7 Research Problems 

Problem 2.3.7.1 * Find a specific language L ~ {a, I}* such that 

(i) cc(hn(L)) ~ ~ for all sufficiently large n, or 

(ii)** cc(hn(L)) ~ ~ - o(n). 

Note that the highest lower bound we know for a specific language is ~. 

Problem 2.3.7.2 Define, for every Boolean function f defined on a set X of 
input variables, 

(i) Fool(f) = min{1 Fool(f, II) II II E Bal(X)}, 

(ii) Rank(f) = min{Rank(f, II) I II E Bal(X)}, and 

(iii) Til(f) = min{Til(f, II) I II E Bal(X)}. 

Obviously, the numbers Fool(f), Rank (f) , and Til(f) describe the potency 
of the lower bound proof methods fool, mrank, and tiling. 

Find the maximal possible differences between cc(f), Fool(f), Rank (f) , and 
Til (f) as done in Section 2.2.2 for fixed partitions. At present, we do not 
know any paper presenting an exponential gap between any pair from {Fool(f), 
Rank (f) , Til(f), cc(f) P despite the fact that we gave exponential gaps for some 
relations between Fool(f, II), Rank(f, II), Til(f, II), and cc(f, II) for some fixed 
partition II. 

Problem 2.3.7.3 How hard (from the communication point of view) is the 
recognition of linear languages? 

Problem 2.3.7.4 Find an interesting, intensively investigated computing prob­
lem P = {It, ... ,fd such that cc(P)[acc(P)] is large, and there exists a parti­
tion of the problem P into subproblems P1, P2, ... ,Pt (P1 U P2 U ... U PI = P) 
with small cc(Pi ) for every i E {I, ... ,l}. 

Problem 2.3.7.5 Prove or disprove: 
"There exists a context-free language L such that cc(hn(Ld) +cc(hn(L2)) = 

.f.?(n) for any languages L1 and L2 such that L = L1 U L2 (L = L1 n L2)." 
Consider the above problem for a decompostion of L into several languages 

(L=L1UL2 U ... ULk , k~3). 

2.4 One-Way Communication Complexity 

2.4.1 Introduction 

The definition of one-way communication complexity is based on the very hard 
restriction to (communication) protocols allowing only one communication mes-
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sage from the left computer CJ to the right computer CII . After this the right 
computer must give the output (outputs). The importance of one-way commu­
nication complexity is in the combination of the following facts: 

1. One-way communication complexity directly provides lower bounds for 
some important complexity measures of parallel computing models (for 
instance, the area of VLSI circuits). 

2. One-way communication complexity is in many cases essentially higher 
than the communication complexity. 

We know several examples of computing problems for which the communi­
cation complexity is too small to provide useful lower bounds, but the one-way 
communication complexity is high enough to help to prove the optimality of 
some parallel algorithms according to some parallel complexity measures. We 
shall show some of these examples later. 

Section 2.4 is organized as follows. Section 2.4.2 presents the formal def­
inition of one-way communication complexity. Section 2.4.3 is devoted to the 
lower bound proof methods for one-way communication complexity. Section 
2.4.4 studies the relation between communication complexity and one-way com­
munication complexity, and also some theoretical properties of one-way com­
munication complexity. 

2.4.2 Definitions 

We start with the definition of one-way protocols. 

Definition 2.4.2.1 Let Dn = (il, p) be a protocol computing a computing prob­
lem p~ of size n for some n, r E N - {a}. For every kEN, a k-round com­
putation of Dn is any computation of Dn of the form C = Cl$C2$ ... $Ck$Ck+ld, 
where Ci E {O,I}+ for i = 1, ... , k (i.e., C contains exactly k messages ex­
changed), CHI E {O, I} +, and d E {A, $$Ck+2} for some Ck+2 E {O, I} +. We say 
also that the computation c has k rounds. Dn is called a k-round protocol 
if each computation of Dn has at most k rounds. A one-round protocol is also 
called a one-way protocol. 

We observe that everyone-way protocol computing a Boolean function has 
either one-round computations or zero-round computations, i.e., there is no 
one-way protocol having a one-round computation and also a zero-round com­
putation (see condition (iii) of Definition 2.2.1.6 and condition (iv) of Definition 
2.2.1.9). Obviously, a protocol (il, p) computing a Boolean function f can have 
zero-round computations only if f does not essentially depend on any variable 
in ilR . 

Definition 2.4.2.2 Let p~ be a computing problem with the set of input vari­
ables X and the set of output variables Y for some n, r E N-{a}. The one-way 
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communication complexity of P:; according to an almost balanced 
partition II E Abal(X, Y) is 

cCI(P:;,II) = mjn{cc(D) I D = (II,p) is a one way protocol computing P~} 

The one-way communication complexity of P:; is 

and the one-way a-communication complexity of P:; is 

Despite the fact that Definition 2.4.2.2 works also for p~ problems, we give a 
separate definition of one-way communication complexity of Boolean functions. 

Definition 2.4.2.3 Let f be a Boolean function of n variables in X for some 
n E N - {O}. The one-way communication complexity of f according to 
a partition II E Abal(X) is 

CCI (f, II) = min{ cc(D) I D = (II, p) is a one-way protocol computing J} 
p 

The one-way communication complexity of f is 

CCI(f) = min{cc1(f, II) I II E Bal(X)}, 

and the one-way a-communication complexity of f is 
, 

accI(f) = min{cc1(f, II) I II E Abal(X)} . 

Observation 2.4.2.4 For every computing problem p~ of size n, n, r E N, 
acc1(P~) ::; CC1(P~), acc(P~) ::; acc1(P~)' and cc(P~) ::; CC1(P~). 

We illustrate Definition 2.4.2.3 by one problem for which the communication 
complexity is the same as the one-way communication complexity. 

Example 2.4.2.5 Let us consider the language L = {a E {O,l}+ I #o(a) = 
#1 (a)} from Example 2.2.2.1. In Theorem 2.3.3.1 we have proved cc(h2m(L)) = 
pog2(m + 1)1 for every m E N- {O}. The protocol used to get the upper bound 
was a one-way protocol which yields cc(h2m(L)) = cC1(h2m (L)) for \;f m E 

N - {O}. 0 

Example 2.4.2.5 shows that there exist problems for which there is no differ­
ence between one-way communication complexity and communication complex­
ity. Considering the same language L one can easily show that acc(h2m(L)) = 
aCC1 (h2m (L)) for every positive integer m. Later, we shall also show that there 
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are computing problems for which the gap between one-way communication 
complexity and communication complexity is exponential. 

We close this section by giving the definition of Boolean function classes 
and language classes determined by one-way communication complexity. 

Definition 2.4.2.6 We set for all n, mEN, m :::; n/2, COMM~ (m) = {f E 
B?] I CCI (I) :::; m} as the set of all Boolean functions of n variables computable 
within one-way communication complexity m. 

Definition 2.4.2.7 Let g : N --+ N be a function with the property g(n) < 
n/2 for any n E N. We set COMM1 (g(n)) = {L ~ {0,1}* I cCI(hn(L)) < 
g(n) for any n EN}. 

2.4.3 Methods for Proving Lower Bounds 

We shall present two lower bound methods for one-way communication com­
plexity that are close to the lower bound methods for communication complexity 
presented in Sections 2.2.2 and 2.3.3. In fact the following methods are simpli­
fications of the methods introduced for communication complexity. We start 
with the lower bound proof technique based on the idea of fooling sets. 

Definition 2.4.3.1 Let P; be a computing problem of size n with the set of input 
variables X = {Xl, ... , xn}, and the set of output variables Y = {Yb.··, Yr}. 
Let II be a partition of X and Y. Then a one-way fooling set Al (P': , ll) 
for P': and II is any set of input assignments from Ih,x to {O, I} such that, 
for any distinct a and (3 in Al (P;, II) , there exists an input assignment "I from 
IIR,x to {O, I} such that P;(II-I(a, "I)) differs from P;(II- I((3, "I)) on some 
variable in II R,Y. 

If P; = {f} for some Boolean function f we get the following version of the 
previous definition. 

Definition 2.4.3.2 Let f be a Boolean function defined on n variables from 
X = {Xl, ... ,Xn}. Let II be a partition of X. Then a one-way fooling set 
A 1 (f, ll) for f and II is any set of input assignments from IIL,x to {O, I} 
such that, for any distinct a and (3 in Al (I, II), there exists an input assignment 
"I from IIR,x to {O, I} such that f(II- I (a, "I)) i= f(II- I ((3, "I)). 

To see an example of a one-way fooling set we shall consider the function 
f(xI, X2, X3, X4, X5, X6) = Xl EBX2 EBX3 EBX4 EBX5 EBX6· Let II be a partition of X = 
{Xl, ... , X6} defined by II(XI) = II(X2) = II(X3) = 1 and II(X4) = II(X5) = 
II(X6) = 2. Then Al = {OOO, 001}, A2 = {010, 110}, and A3 = {111,000} are 
one-way fooling sets for f and II because 1 = f(OOOOO1) i= f(001001) = 0 
b = 001), 1 = 1(010110) i= 1(110110) = 0 b = 110), and 1 = f(111"1) i= 
1(000"1) = 0 for every "I E {OOO, 110,011,101}. 
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Theorem 2.4.3.3 Let P~ be a computing problem of size n with the set of 
input variables X and the set of output variables Y. Let II E Abal(X, Y). If 
Al (P~, II) is a fooling set for P~ and II, then 

CCl(P~, II) ::::: flog2IAl(P~, II) 11 . 

Proof. The idea is to show that anyone-way protocol computing P~ with 
the partition II must have different communications (the messages from the 
left computer to the right computer) for every two different assignments from 
Al (P~, II). Assuming IAI (P~, II) I ::::: 2 we get that IIR,Y =I 0 which implies that 
every protocol (II, tJ») computing P~ with the partition II has all the compu­
tation of the form Cl$C2W, where Cl E {0,1}+, C2 E {O,l}+, and wE {A,$$d} 
for a d E {O, 1} +. Let us assume that there are two different a, (3 E Al (P~, II) 
such that tJ)(a, A) = tJ)((3, A). (i.e., a and (3 have the same communication). 
Then tJ)(8,tJ)(a,A)) = tJ)(8,tJ)((3,A)) for all input assignments 8 from IIR,x to 
{a, I}. But this contradicts the assumption that Al (P~, II) is a one-way fool­
ing (i.e., that there exists an input assignment I : IIR,x --t {a, I} such that 
tJ)({, tJ)(a, A)) =I tJ)({, tJ)((3, A)). D 

So, following Theorem 2.4.3.3 we get the method "Hool" for proving lower 
bounds on one-way communication complexity. 

Method Hool 

Input: A problem P~ of size n with a set of input variables X and a set of 
output variables Y. 

Step 1: For each II E Bal(X, Y) [II E Abal(X, Y)], find a fooling set 
Al(P~, II). 

Step 2: Compute d = min{IA1(P~' II) I I II E Bal(X, Y)} 
[d = min{IAl(p~, II) I I II E Abal(X, Y)}] 

Output: "cc(P~)::::: flog2 dl" ["acc(P~) ::::: flOg2 dl"] 

We illustrate the use of the method Hool to get a lower bound for the 
recognition of the language L = {u = WIW2 ... Wm E {a, I}* 1m = 2T for some 
r E N, and IWil = r for all i E {I, ... , m}, and Wj = IT for j = BIN(WBIN(wl))}. 
Note that the recognition of the language L can be viewed as the test for the 
content of a register by indirect addressing. 

Theorem 2.4.3.4 For any n E N, n = r . 2T for some r ::::: 4, r E N, 

cCl(hn (L))::::: (n/log2n)I/2 . 

2" 

Proof. Let X = UWi , Wi = {X(i-l)T+1,X(i-l)T+2, ... ,XiT} for every i E 
i=1 

{I, ... , 2T}, be the set of input variables of hn(L) for each n = r· 2T, r ::::: 2. We 
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have to prove CCI (hn(L), II) ~ vn/ log2 n for every II E Bal(X). We distinguish 
two possibilities according to the partition II. The first one assumes that, for 
all i E {2, ... , m}, IIlL n Wil ~ 1. The second possibility assumes that there is 
a j E {2, ... , m} such that IIlR,x n Wjl = r (Wj <:;:; IlR,x). We deal with these 
two cases separately. 

1. Let, for all i E {2, ... , m}, IlL n Wi -=I- 0. Clearly, there must exist 
j E {2, ... ,m} such that IIlR n Wjl ~ r /2. The informal idea is based on 
setting WI in a way such that BIN(WI) = j. Since IIlRnwjl ~ r/2 the left 
computer does not know BIN(wj). Moreover, the left computer "must" 
consider at least 2T / 2 different, possible values of BIN(wj) depending on 
aR. The input is accepted iff WBIN(wj) = IT, and we assume IlL n Wi -=I- 0 
for all i E {I, ... ,m}. This means that, for each of (at least 2T / 2 ) possible 
k = BIN(wj), the left computer "has to submit" a message containing 
information whether all the variables in Wk n IlL have assigned the ac­
tual values 1 or not. Only with this information can the right computer 
immediately decide whether WBIN(wj) = IT for each possible actual value 
of BIN(wj). 

We now formalize this idea. Let {3 E {O, I} be a value such that if we set 
x = {3 for all x E IlL n Wj then no input assignment from IlR n Wj to 
{a, I} causes BIN(wj) = j (obviously, such {3 must exist). We claim that 
AI ({3,j) is a one-way fooling set for hn(L) and II, where 

A I({3,j) = {aL: IlL ---+ {a, I} I :3 aR: IlR ---+ {a, I} such that: 

- II-I (aL' aR) = WIW2 ... Wm , m = 2T , IWil = r for r = 1, ... , m; 

- hn(L)(Il-I(aL,aR)) = 1; 

- BIN(wd = j 
- aL(z) = {3 for all Z E Wj n IlL; 

- for all i E U = {BIN(Wj) I Wj : Wj ---+ {a, I}, Wj(Z) = adz) = {3 for 
all Z E Wj n IlLl, if 6 is an assignment of variables in IlL n Wi then 
6 E {O}* U {1}*; 

- for every i E {2, ... ,m} - (U U {j}) the assignments of variables in 
IlL n Wi belongs to {O}*}. 

To see that Al ({3, j) is a one-way fooling set for hn(L), let al and a2 E 
Al ({3, j), al -=I- a2· al -=I- a2 implies that there is a k E U such that al 
and a2 differ on the assignment of variables in IlL n Wk. All assignments 
, : IlR ---+ {a, I} causing BIN(WI) = j, BIN(wj) = k, and ,(x) = 1 for all 
x E IlR n Wk have the property hn(L)(Il-I(al,')) -=I- hn(L)(Il-I(a2,'))' 

lUI ~ 2T / 2 implies IAI(,6,j)1 ~ 22r / 2
, which means that the length of the 

message submitted is at least 2T /2. 

2. Let us assume that there is a j E {2, ... , m} such that IIlR n Wj I = r 
(Wj <:;:; IlR)' The informal idea of the proof is based on the fact that 
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we set BIN(Wl) = j. Since the left computer does not know any bit of 
Wj it "must" take all 2r possibilities into account. This meanS that the 
only message submitted from the left computer to the right computer has 
to contain, for any i E {2, 3, ... , 2r} - {j} such that Wi n Ih =f. 0, the 
information whether all values of the variables in Winlh have assigned the 
value 1 or not. Since there are at least 2r- 1 numbers such that Winlh =f. 0, 
the length of the message must be at least 2r-l. 

We formalize this idea. Let tJ = {i E {2, 3, ... , 2r} - {j} I Wi n Ih =f. 0}. 
We claim that ... Lh(j) is a one-way fooling set for hnCE) and II, where 

A 1(j) = {aL : IlL ~ {O, I} I :3 aR : IIR ~ {O, I} such that: 

- hn (L)(II- 1 (aL, aR)) = 1; 

- BIN (WI) = j; 
- each of the input assignments 6i : IILnWi ~ {O, I} belongs to either 

{I} + or {O} * for each i E tJ. 

Let a, fJ E Al(j), and a =f. fJ· a =f. fJ implies that there is a k E tJ such that 
a and fJ differ on the assignment of variables in IlL n Wk. All assignments 
, : IIR ~ {O, I} causing BIN(Wl) = j, BIN(wj) = k, and ,(x) = 1 for all 
x E IIR n W k have the property hn(L)(II- 1(a, ,)) =f. hn (L)(II- 1(fJ, ,)). 
Since I tJl ~ 2r /2 implies IAI (j) I ~ 22r-1, the length of the message is at 
least 2r-l. 

Obviously, the minimum of 2r/2 (case 1) and of 2r- 1 (case 2) is 2r/2, and we 
conclude that, for every II E Bal(X), cCl(hn(L,II)) ~ 2r/2 ~ (n/log2n)I/2. 0 

Note that Theorem 2.4.3.4 cannot be substantially improved. There is a 
one-way protocol D for hn(L) working within 2n1/ 2 + 21og2 n communication 
bits. The idea of the construction of D is already described in part 1 of the 
lower bound proof of Theorem 2.4.3.4. We choose a II E Bal(X) such that 
WI ~ IlL and the remaining Wi are split approximately equally (r /2 - 1 ::; 
IWi n IlL I ::; r/2) between the two computers. The only message flowing from 
the first computer to the second one is the concatenation of three words WIUV, 
where 

-WI is the actual input assignment from WI to {O, I} providing the information 
that j = BIN(Wl)' IWll = r; 

-u is the actual input assignment from Wj n IlL to {O, I}, lui::; r /2; 

-v is of length lUI::; 2r/2+1, and if U = {iI, ... i m }, then the £-th bit of v is 
1 iff the input assignment from Wit n IlL to {O, I} is in {I} +. 

Since r + r /2 + 2r /2+1 ::; 21og2 n + 2n 1/2 the upper bound is established. 
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Next, we introduce the lower bound proof method for one-way communi­
cation complexity based on the matrix representation M(j, II) of a Boolean 
function f according to a partition II. In what follows we shall show that 
the method for one-way communication complexity is much simpler than the 
method for communication complexity based on the evaluation of the rank of 
M(j, II). For any matrix M, let IRow(M)I denote the number of different rows 
in M (i.e., the cardinality of {roWl (M), row2(M), ... ,rowm(M)} if the size of 
Mis m x k for some m, k E ]\:I - {O}). 

Theorem 2.4.3.5 Let fEB;' for some n E ]\:I, and let X be the set of input 
variables for f. Let II be a partition from Abal(II). Then 

CCl(j, II) ~ flog2IRow(M(j, II))I 1. 

Proof. Let II be a partition in Abal(II), and let m = lIlLI, k = IIIRI. Let D = 
(II, tJJ) be a one-way protocol computing f. We shall show by contradiction that 
D must have different communications for any two different rows of M(j, II). 
Let rowi(M(j,II)) #- rowj(M(j, II)) for some i #- j, i,j E {1, ... ,2m}, and 
let tP(BIN;;/(i ~ 1),,x) "" di(mN;;,1(j ~ 1), ),), Th~n P('Y1P(BIN,i/(i 1)$) == 
tJJ(")',<P(BIN,;,l(j -1)$) E {G,!} for every input asssignment,: IIR -+ {O,l}. 
But this implies (assuming that D computes f) J(II-l(BIN;;.l(i - 1),,)) = 
J(II-l(BIN;;.l(j -1),,)) for every, : IIR -+ {a, I} which contradicts the fact 
that rowi(M(j, II)) #- rowj(M(j, II)). 

So, the number of different communication messages must be at least as 
large as the number of different rows in M(j, II), which completes the proof. 

o 

Following Theorem 2.4.3.5 we get the following lower bound method. 

Method mrow 

Input: A Boolean function J with a set of input variables X. 

Step 1: For each II E Bal(X) [II E Abal(X)], construct the matrix M(j, II). 

Step 2: Compute d = min{IRow(M(j, II))II II E Bal(X) [II E Abal(X)]}. 

Output: "CCl(j) ~ POg2 d1" ["accl(j) ~ POg2 dl"l· 

We call attention to the fact that the methods fool (based on fooling sets) 
and the method mrank (based on the matrix representation of f) may yield 
distinct lower bounds (as shown in Section 2.2) for communication complexity. 
Here, both methods 1£001 and mrow always yield the same lower bound for 
every Boolean function f. 

This fact is proved in the following lemmas. 
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Lemma 2.4.3.6 Let fEB;' for some n E N, and let II E Abal(X), where 
X is the set of input variables of f. Let m = IIILI· Let {roWi, (M(J, II)), 
rowiz(M(J, II)), ... , rowik(M(J, II)) I rowdM(J, II)) i= row;'(M(J, II)) for 
any r i= s, r, s E {I, ... , k}} be an arbitrary set of pairwise different rows of 
M(J, II). Then Al = {BIN;;"/(il - 1), BIN;;-/(i2 - 1), ... , BIN;;-.l(ik - I)} is a 
one-way fooling set for f and II. 

Proof. To prove Lemma 2.4.3.6 it is sufficient to show that, for any u, v E 
{iI, i2, ... ik}, U i= v implies the existence of a '"'( : IIR -+ {O, I} such that 
f(II-I(BIN;;-.I(u - 1),'"'()) i= f(II-I(BIN;;-.I(v - 1),'"'()). But this is obvious, be­
cause the existence of'"'( follows directly from the fact that rowu(M(J, II)) i= 
rowv(M(J, II)). D 

Lemma 2.4.3.7 Let fEB;' for some n E N, and let X be the set of 
input variables for f. Let II E Abal(X), and let m = IIILI· If Al 
{ aI, a2, ... , ak I ai i= aj for i i= j} is a one-way fooling set for f and II, 
then l{rowi,(M(J,II)),rowiz(M(J,II)), ... ,rowik(M(J,II)) I ij = BIN(aj) + 
1 for j = 1, ... ,k}1 = k. 

Proof. Since, for any two u, v E {I, ... , k}, u i= v implies the existence of an 
input assignment '"'(: IIR -+ {O,I} such that f(II-I(au,'"'()) i= f(II-I(av,'"'()) we 
get rowu(M(J, II)) i= rowv(M(J, II)) for any u, v E {I, ... , k}, u i= v. D 

So, the abilities of the methods Hool and mrow are the same. The choice of 
the method used to prove a lower bound on CCI (J) for some Boolean function 
f is only a question of convenience (which of the two methods Hool and mrow 
yields a shorter (more readable, easier) proof of the lower bound). 

The only remaining question is how much close are the lower bounds pro­
vided by the methods Hool and mrow to the one-way communication complex­
ity. The answer is very pleasant in this case. These method are able to provide 
the exact estimation on the communication complexity of any computing prob­
lem. This claim is an obvious consequence of the following theorem. 

Theorem 2.4.3.8 Let f be a Boolean function defined over a set X of input 
variables. Let II E Abal(X). Then 

cCI(J,II) = llog2IRow(M(J,II))ll 

Proof. The fact CCI (J, II) 2: 1l0g2 IRow( M (J, II)) Il has been proved in The­
orem 2.4.3.5. To see the opposite inequality it is sufficient to realize that, for 
all f and II, one can construct a one-way protocol with CJ sending exactly 
IRow(M(J, II))I different messages (one message for each group of equal rows). 

D 
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2.4.4 Communication Complexity Versus One-way Communication 
Complexity 

In this subsection we shall compare the computational power of protocols and 
one-way protocols. We shall show an exponential gap between these two models 
for the recognition of the language L defined in the previous Section 2.4.3. 
On the other hand we prove, for every kEN, that there exists a Boolean 
function computable within one-way communication complexity k + 1 but not 
within communication complexity k. Finally we show a very strong unclosure 
property of one-way communication complexity classes according to disjunction 
and conjunction. 

First, we show that the difference between communication complexity and 
one-way communication complexity cannot be unboundedly large. 

Theorem 2.4.4.1 For all positive integers n, m, m :::;; n/2 

Proof. To prove Theorem 2.4.4.1 it is sufficient to show that, for each pro­
tocol D working within communication complexity m, there exists an equiva­
lent (computing the same Boolean function) one-way protocol working within 
communication complexity 2m+1. Let D = (Il,1» work in communication com­
plexity m, i.e., there are at most 2m+1 different computations of D. Since each 
computation can be coded as a word over the alphabet {a, I} we can linearly 
order all possible 2m +! communications of D. The equivalent, one-way proto­
col D1 = (Il,1>1) uses the same partition, and, for each aL : ilL ---+ {a,l}, 
1>1 (aL,),) = C1C2 ... C2m+1 E {a, 1 pm+l, where Ci = 1 iff the i-th word from 
{a,l}m+! is a valid (possible) computation from the first computer's point of 
view (corresponding to the actions of the first computer on the input aL for 
all possible messages submitted by the second computer). Then, the second 
computer can unambiguously choose from the computations labelled by 1 (by 
the first computer) the unique valid computation from its point of view (i.e., 
corresponding to the actions of the second computer on a given input assign­
ment aR : IlR ---+ {a, I}). Knowing the whole computation the second computer 
knows obviously the output. 0 

Corollary 2.4.4.2 For any function g : N ---+ N, g(n) :::;; n/2, 

Now, we show that the simulation presented in Theorem 2.4.4.1 is opti­
mal in the sence that there is a language having exponentially greater one-way 
communication complexity than communication complexity. 
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Theorem 2.4.4.3 For any integer n = r . 2T , r E W, r ~ 4 

Proof. The fact that cCI(hn(L)) ~ (n/log2n)I/2 is proved in Theorem 2.4.4.3. 
It remains to prove the upper bound on the communication complexity of L 
recognition. Let X = U::I Wi be the set of input variables of hn(L) as described 
in the proof of Theorem 2.4.3.4. We construct a (two-round) protocol D = 
(II, rfJ), where II is a partition from Bal(X) fulfilling 

(i) WI ~ IlL 

(ii) for every i E {2, 3, ... ,2T}, IWi n IlL I :S r /2. 

Then, for every input assignment a : X -+ {O, I}, D works as follows. rfJ(aL'..\) = 
WIV, where WI is the input assignment from IlL n WI = WI to {O, I}, and v is 
the input assignment from IlL n WBIN(wt) to {O, I}. Knowing j = BIN(WI) after 
receiving the message rfJ(aL'..\) the second computer sends the message ud to 
the first computer, where u is the input assignment from IIR n Wj to {O, I} and 
dE {O, I} is equal to 1 iff the input assignment WBIN(wj) from IIR n WB1N(wj) to 
{O, I} is in {1}*. After receiving ud the first computer computes the result I if 
d = 1 and the input assignment from IlL n WB1N(j) to {O, I} is in {1} +, and 0 if 
d = 0 or the input assignment from IlL n WB1N(j) to {O, I} is not in {l}+. D 

So, we see that there is an exponential gap between communication complex­
ity and one-way communication complexity. On the other hand we note there 
are computing problems whose one-way communication complexity is equal to 
their communication complexity. To see examples, consider the language L from 
Example 2.4.2.5 and also the regular languages L(m) for any positive integer 
m from Theorem 2.3.5.2. All the above mentioned languages have the property 
that they can be recognized with some one-way communication complexity g(n) 
but not with communication complexity g(n) - 1. Thus, one additional com­
munication bit to one-way protocols can bring more computational power than 
allowing the (one-way) protocols to use an arbitrary large number of rounds. 
We formulate this result more strongly: 

Theorem 2.4.4.4 For any m :S n: 

lim IB~n(n + m) n COMM~n(m)1 = 00 

n--+oo IBin(n + m) n COMM2n (m - 1)1 

Proof. From Lemma 2.3.4.5 we have that B~n(n+m) ~ COMM~n(m) because 
the protocol described in the proof of Lemma 2.3.4.5 is a one-way protocol. So 
IB~n(n+m)nCOMM~n(m)1 = IB~n(n+m)1 = 22n+m. On the other hand Lemma 
2.3.4.7 yields the fact IB~n(n + m) n COMM2n (m - 1)1 = o(22n+m). D 
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Now, we investigate the closure properties of one-way communication com­
plexity. Obviously COMM~(m) is closed under complementation for any positive 
integers, n, m, m :::; n. Using the same Boolean functions (languages) as in Sec­
tion 2.3.4 it is possible to prove that for any n E N - {O} there are two Boolean 
functions h, 12, E B~ n COMM~(1) such that h V 12 1- COMM~(n/6 - 7) 
[Note that Theorem 2.3.4.13 proves that h V 12 1- COMMn (n/6 - 7) ;2 
COMM~(n/6 - 7), and the protocols used to compute hand 12 are one-way 
protocols.] Because the proof of this strong unclosure property in Section 2.3 is 
existential (the function h is not constructed), we prefer to present a construc­
tive proof here. 

We consider the following two languages: 

Ro = {I WI W2 ... Wm I mEN, Wi E {O} m U {I} m for i = 1, ... , m}, 

and 

Co {OXlX2" 'Xm I m E N,Xi = XiI" ,Xim E {O, l}m for i = 1, ... ,m, 
and Xlj = X2j = ... = Xmj for every j E {I, ... , m}}. 

Theorem 2.4.4.5 For any positive integer n = m2 + 1, mEN - {O}: 

(i) cCl(hn(Ro)) :::; 2 and cCl(hn(Co)) :::; 2, and 

(ii) cCl(hn(Ro) V hn(Co)) ~ m/2. 

Proof. The facts cCl(hn(Ro)) :::; 2 and cCl(hn(Co)) :::; 2 are obvious. To construct 
one-way protocols providing cCl(hn(Ro)) :::; 2 and cCl(hn(Co)) :::; 2 is a simple 
exercise left to the reader. 

The idea of the proof of the fact (ii) is again based on the fact that 
cCl(hn(Ro),II) is small only for partitions II for which cCl(hn(Co),II) is 
large, and vice versa. Let the set of input variables of hn(Ra) V hn(Co) be 

m m 

X = {xo} U UWi = {xo} U UXj , where Wi = {Xil,Xi2, ... ,Xim} for every 
i=l i=l 

i = 1, ... ,m, and Xj = {Xlj,X2j, ... ,Xm j} for every j = 1, ... ,m. Let us call 
Wi'S the rows of X, and Xi's the columns of X. The informal idea of the proof 
uses the fact that each partition II E Bal(X) divides either at least m/2 rows 
into two nonempty parts or at least m/2 columns into two nonempty parts. If 
this is clear, then it remains to prove that: 

if Xo = 1 ,then each divided row requires one bit in the message submitted, 

and 

if Xo = 0 ,then each divided column requires one bit in the message submitted. 

Now, let us formalize this idea. To prove (ii) it is sufficient to show that 
cCl(hn(Ro) V hn(Co), II) ~ m/2 for every II E Bal(X). We distinguish the 
following three possibilities according to II: 
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(1) 3r,s E {I, ... ,m} such that Wr <:;:; Ih and Ws <:;:; IIR ; 

(2) ViE {l, ... ,m} : Wi n IlL s;; Wi; 

(3) V j E {I, ... , m} : Wj n IIR S;; Wj. 

We deal with these possibilities separately. 

1. (1) implies that, for every k E {I, ... ,m}, X k n IlL f 0 and X k n IIR f 0. 
Without loss of generality we assume that Xo E IlL' We observe that 

Ai = {OZlZ2 .. ,Zm I Zi: Xi n IlL -+ {O, I} and Zi E {O}+ U {I}+} 

is a one-way fooling set for hn(Ro) V hn(Co) [also for hn(Ro)] and II. Since 
lAd = 2m we get cCl(hn(Ro) V hn(Co),II) ~ m. 

2. If IlL contains a nonempty part of each row Wi and II is balanced, then 
there exists a set of positive integers Srr = {ii, i2 , .•• , id } <:;:; {I, ... , m} 
such that d> m/2 and, for every £ E Srr, Wi n IIR f 0. Without loss of 
generality we assume that Xo E IlL. Following this we can simply observe 
that 

A = {Ow~w~ ... w;"lw::WinIIL-+{O,I}fori=I, ... ,m; 

for every j E Srr, wj E {O}+ U {I}+; and 

for every r E {I, ... ,m} - Srr, w~ E {I}+} 

is a one-way fooling set for hn(Ro) V hn(Co) and II. Obviously IAI = 
21Srrl > 2m/2. So, cCl(hn(Ro) V hn(Co)) ~ m/2. 

3. The case (3) can be handled in the same way as case (2) because we 
have divided at least m/2 rows of X by II. So, we get again cCl(hn(Ro) V 
hn(Co)) ::::: m/2 for every II having the property (3). 

2.4.5 Exercises 

Exercise 2.4.5.1 Find some languages L such that 

(i) cc(hn(L)) = cCl(hn(L)) for every n E N, and 

(ii) acc(hn(L)) = accl(hn(L)) for every n E N. 

o 

Give some sufficient conditions (having nothing common with communication 
complexity in their formulation) for a language L to have the property (i). 

Exercise 2.4.5.2 Give, for every Boolean function f and every partition II, the 
formal description of a one-way protocol using exactly IRow(M(j, II))I distinct 
messages. 
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Exercise 2.4.5.3 • Prove that there exists a language L with cc(hn(L)) 
0(log2 n) and cCl(hn(L)) = D(n). 

Exercise 2.4.5.4 Establish the exact one-way communication complexity of the 
languages Ro and Co. 

Exercise 2.4.5.5 • Improve the result of Theorem 2.4.4.5 by constructing some 
specific languages Ll and L2 such that cCl(hn(Ld) E 0(1), cCl(hn(L2)) E 0(1) 
and cCl(hn(Ll U L2)) E D(n 19io). 

Exercise 2.4.5.6 Find some specific languages L l ,L2 such that CCI (hn (L l )) and 
cCl(hn(L2)) are small, but cCl(hn(Ll n L 2)) is large. 

Exercise 2.4.5.7 Prove that accl(hn(Ro U Co)) = D(vIn). 

Exercise 2.4.5.8 Find some languages Ll and L2 distinct from Ro and Co such 
that accl(hn(Ll)) + accl(hn(L2)) is small and accl(hn(Ll U L2)) is large. 

Exercise 2.4.5.9 Prove that cCl({hn(Co),hn(Ro)}) = D(vIn). Prove also a 
similar result for one-way a-communication complexity. 

Exercise 2.4.5.10 Find an interesting, intensively investigated computing prob­
lem P = {h, ... ,A} such that CCl(P)(accl(P)) is large, and there exists a 
partition of the problem P into subproblems PI, P2, ... , Pt(Pl U P2 U ... U Pt = 
{h, ... , fk}) with small CCI (Pi) for every i E {I, ... , l}. Obviously, the formu-
lated task corresponds to the search for the decompsition of a hard problem into a 
small number of easy problems. We know (from the un closure properties proved) 
that such problems exist, but the interest is in searching for a nice pattern from 
the class of the fundamental computing problems. 

2.4.6 Research Problems 

Problem 2.4.6.1 • Find a specific language L such that 

cc(hn(L)) = o (log2 n) and cc(hn(L)) = D(log2 n) and cCl(hn(L)) = D(n). 

Note that the existence of such a language has been proved (Exercise 2.4.5.3), 
but nobody knows a concrete language with this property. Any improvement of 
the gap cCl(hn(L)) = D((lo;n)~) and cc(hn(L)) = 0(10g2 n) is of interest. 

Problem 2.4.6.2 • Find some specific languages Ll and L2 such that 

Note that the existence of such languages has been proved in Theorem 2.3.4.13. 
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Problem 2.4.6.3 * Find a specific language L such that 

(i) CCI (hn (L)) ~ ~ for all sufficiently large n EN, or 

(ii) ** cCl(hn(L)) ~ ~ - o(n). 

2.5 Nondeterministic Communication Complexity and 
Randomized Protocols 

2.5.1 Introduction 

The communication protocols investigated in the previous sections were deter­
ministic devices. Despite the fact that nondeterminism is not a natural property 
of any real computing model, the experience with the study of nondeterminis­
tic computing models and complexity measures shows us that by investigating 
nondeterminism we can learn new, essential knowledge about realistic, deter­
ministic computations. On the other hand nondeterminism provides a base for 
randomization (probabilistic computations) which recently has been frequently 
used in practice in order to speed up large deterministic computations. These 
observations are also the main reasons for introducing nondeterministic (com­
munication) protocols and for investigating them. 

This section is organized as follows. Section 2.5.2 contains the definition of 
nondeterministic protocols, and it shows that there is no difference between one­
way nondeterministic communication complexity and nondeterministic commu­
nication complexity. The methods for proving lower bounds on nondeterminis­
tic communication complexity are presented in Section 2.5.3. It is shown there 
that I-fooling sets provide lower bounds on nondeterministic communication 
complexity, and that the cardinality of the minimal exact-cover of a matrix 
M(f, II) is equal to the nondeterministic communication complexity of f ac­
cording to II. The ("deterministic") communication complexity is compared 
with nondeterministic communication complexity in Section 2.5.4. Among oth­
ers an exponential gap between these two complexity measures is proved for a 
concrete language (LLl). On the other hand a special kind of a polynomial rela­
tion is shown: If cc(fn) and the nondeterministic communication complexity of 
fn (ncc(fn)) are not polynomially related for some computing problem {fn}~=l' 
then at least cc(fn) and ncc(f;:) are polynomially related. The Las Vegas ran­
domized protocols and Monte Carlo randomized protocols are introduced in 
Section 2.5.5, where also some nice examples showing the power of randomized 
computations are presented. In Section 2.5.6 some comparisons among deter­
minism, nondeterminism, Las Vegas randomness, and Monte Carlo randomness 
are realized. Using concrete languages it is shown that: 

(i) two-sided error Monte Carlo communication complexity can be exponen­
tially smaller than nondeterministic communication complexity (than one­
sided error Monte Carlo communication complexity), 
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(ii) one-sided error Monte Carlo communication complexity can be eponen­
tially smaller than communication complexity, and 

(iii) Las Vegas communication complexity can be approximately the root of 
communication complexity. 

Note that the above mentioned results (i), (ii), and (iii) are of special interest, 
because for almost all fundamental complexity measures the proofs showing that 
randomness (nondeterminism) is more powerful than determinism are missing. 

2.5.2 Nondeterministic Protocols 

In this section the nondeterministic protocols and nondeterministic communica­
tion complexity are defined. Note that we shall investigate only nondeterministic 
protocols computing Boolean functions (i.e. one-output problems). 

Definition 2.5.2.1 Let f be a Boolean function with a set of input variables 
X = {Xl, ... , xn} for some n E N. A nondeterministic protocol over X is a 
pair Dn = (II, if», where 

(a) II is a partition of X, 

(b) if> is a communication relation in 

({O,I}m x {O,I,$}*U{o,l}n-m x {O,I,$}*) x ({O,I}+u{o,I}), 

where 

(i) m = IIlL,xl, k = n - m = IIlR,xl, 

(ii) if> has the prefix freeness property: 
For all ((0:, c), d), ((0:', c), d') E if> d is not a proper prefix of d'. 

(iii) if ((0:, c), d) E if> and dE {O,I} for some 0: E {o,l}m, C E ({O,1}+$)2p, 
pEN [for some 0: E {O,I}k, C E ({O, l}+$)2P+l, pEN], then, for any 
d' E {O, I}, q E N, 'Y E {O,I}k, d E ({O,I}+$)2q+l [for any d' E {O, I}, 
q E N, 'Y E {o,l}m, d E ({O,I}+$)2q], (('"'(,d),d') fj. if> (this property 
secures that the output value is always computed by the same computer 
independently of the input assignment). 

A computation of Dn on an input assignment a E {o,l}n is a string 
c = Cl$C2$ ... $Cr$Cr+l, where 

(1) r E N, Cl, ... , Cr E {O, 1}+, Cr+l E {O, I}, 

(2) for each integer f, 0 ::::; f ::::; k we have 

(2.1) iff is even, then ((O:II,L,Cl$C2 ... $Cf$),CH1) E if> 
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r is called the number of rounds of c. Dn is called an r-round nonde­
terministic protocol if every computation of Dn has at most r rounds. A 
one-round nondeterministic protocol is also called a one-way nondetermin­
istic protocol. 

We say that Dn computes 1 [0] for an input assignment a E {O,I}n, 
Dn (0:) = 1 [0]' if there exists a computation c = Cl $ ... $Cr+l of Dn on a 
with Cr+l = 1: [if every computation of Dn on a either ends with a or does 
not end with any result from {a, l}j. We say that Dn computes f if, for each 
a E {O, I}n, f(a) = Dn(a). In what follows we shall also say that a computation 
is accepting [unaccepting] if it ends with 1: [OJ. 

The length of a computation c of Dn is the total length of all messages 
in c. For each a E {O,I}n such that Dn(a) = 1, let ncc(Dm 0:) denote the 
length of the shortest accepting computation of Dn on a. 

The nondeterministic communication complexity of the nondeter­
ministic protocol Dn is 

ncc(Dn) = max{ncc(Dn, a) I a E {O,l}n and Dn(a) = I} 

Definition 2.5.2.2 Let f be a Boolean function over a set of input variables 
X = {Xl, ... ,Xn}. Let II be a partition of X. The nondeterministic com­
munication complexityof f according to II is 

ncc(f, II) = min{ ncc(D) I D = (II, iP) for a communication relation iP and 

D computes J} . 

The nondeterministic communication complexity of f is 

ncc(f) = min{ncc(j, II) I II E Bal(X)} . 

Definition 2.5.2.3 Let f be a Boolean function over a set X of input variables 
and let II be a partition of X. The one-way nondeterministic communi­
cation complexity of f according to II is 

nccl (f' II) = min{ncc(D) I D = (II, iP),for a iP, is a one-way 

nondeterministic protocol computing J}. 

The one-way nondeterministic communication complexity of f is 

nCCl(f) = min{nccl(j,II) I II E Bal(X)}. 

Now, we illustrate the above stated definitions. First, we consider the lan­
guage L = {u = WIW2 ... Wm E {O,I}* 1m = 2r for some r E N, and IWil = r 
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for all i = {I, ... , m}, and Wj = IT for j = BIN(WBIN(wt))} for which Theorem 
2.4.3.4 establishes cCl(hn (L)) 2 (nj log2 n)I/2. 

2r 

Example 2.5.2.4 Let X = Ui =1 Wi, Wi = {X(i-l}r+l, X(i-l}r+2, ... , Xir} for 
every i E {l, ... , 2r}, be the set of input variables of hn(I) for each n = r· 2r, 
r 2 2. We shall construct a one-way nondeterministic protocol Dn = (II, ?i) 
computing hn(L). 

First, we give an informal description of Dn. II divides any input a = 
WIW2 ... W2r into the first half and the second half. So, G1 knows WI. If 
z = BIN(wd E {1, ... ,2r- 1} and BIN(wz ) E {1, ... ,2r- 1}, then G1 decides 
whether a E L or a rf. Land G1 submits the result to GIl- If z = BIN(wd E 
{l, ... ,2r - 1}, and BIN(wz ) rf. {1, ... ,2r- 1}, then G1 submits Wz to GIl. Then, 
GIl can decide whether WBIN(wz} = IT (a E L) or WBIN(wz} # IT (a rf. L). If 
z = BIN(Wl) rf. {1, ... ,2r- 1 }, then G1 guesses Wz = WBIN(wt) E {O,lY and it 
sends WI and Wz to GIl' Additionaly, if j = BIN(wz ) E {I, 2, ... , 2r- 1 } for the 
guessed word Wz , then G1 sends Wj to GIl. Now, GIl checks whether the guess 
W z of G1 is correct or not. If not, then GIl reject the input. If the guess has been 
correct, GIl has all input parts sufficient to decide whether a E L or a rf. L. 

Let II L = U::~l Wi' The communication relation tP is defined as follows. 
For every input assignment a = WI W2 ... W2r: 

- if z = BIN(Wl) E {I, ... , 2r-l}, j = BIN(wz ) E {I, ... , 2r-l}, and Wj = IT 
[# IT ], then 

((all,L' ,\), 11) E tP, 

[((allL'.\)'OO) E 4>] 

- if z = BIN(Wl) E {I, ... , 2r-l}, and j = BIN(wz ) rf. {I, ... , 2r-l}, then 

((all,L' ,\), 10wz ) E tP, 

- if z = BIN(Wl) rf. {I, ... , 2r-l}, then, for each (3 E {O, 1 Y, 
((all,L' ,\), 0IWl(3y) E tP, 

where y = orH for BIN((3) E {2r-l + 1, 2r- 1 + 2, ... , 2T}, and y = lWBIN({3} 

if BIN ((3) E {I, 2, ... , 2r - 1 }, [(3 is the nondeterministic guess of the first 
computer for the input part WBIN(wt), assigned to the second computer], 

- for every all,R 

((arr,R' 11$), I) E tP, 
((allR, 00$), 0) E tP, 

- for every, E {O, 1 Y such that WBIN(-y} = IT [# IT] 

((all,R' 10,$), I) E tP 

[((all,R' 10,$),0) E tP], 
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- if {3 =1= WBIN(wtJ = wz , then, for every y E {,X} U {O, lY, [i.e. if the guess 
was wrong] 

((O:il R' 0Iw1{3y$) , 0) E P, 

- if {3 = WBIN(wtJ = Wz (z E {2T- 1 + 1, ... , 2T}) and (y = 1'+1 or WBIN({:/) = l' 
for BIN({3) E {2T-1 + 1, ... , 2T}), then 

((O:il,R' Olw1{3y$), I) E P, 

- if {3 = WBIN(wtJ and (y =1= 0'+1 or (y = OT+1 and WBIN({:/) =1= 1'», then 

Example 2.5.2.5 We consider the language Star = {w E {O,l}* Ilwl = (;) 
for some mEN, m ~ 2, and G(w) is a graph containing at least one star (a 
node which is connected directly via edges to all other nodes in G(w), i.e. a 
node with the degree n - 1) }. Let X = {Xij Ii < j, i,j E {1, ... , m}} be the 
set of input variables of hn(Star) for some n = (;), and let II be any balanced 
partition of X. We claim ncc1 (hn(Star), II) :::; log2 n + 1 for every II E Bal(X). 
We informally describe the work of the nondeterministic protocol D = (II, p) 
[with ncc(D) = log2 n + 1] on any input 0: = 0:12··· 0:1m0:23··· 0:2m'" O:m-1m. 
Let d = POg2 m 1. 

The first computer GJ of D checks whether there exists an i = {I, ... ,m} 
[a vertex Vi of G] such that O:ij = 1 for every j E {r I Xir E IId. If not, then the 
first computer GJ sends message 0 and the second computer GIl gives the output 
O. If there exist some i's with this property [the candidates among the nodes of 
G( 0:) for the degree m -1], then the first computer nondeterministically chooses 
one of them and submits the message 1BINd'1(i) to the second computer. The 
second computer accepts iff O:iz = 1 for every Z E {£ I Xii E IIR }. 0 

In both previous examples we have used one-way nondeterministic protocols 
to compute the given computing problems. This is not by chance because, as 
we shall show in what follows, the one-way nondeterministic protocols are as 
powerful as the general nondeterministic protocols. 

Theorem 2.5.2.6 For every Boolean function f defined over a set of input 
variables X, and for every partition II of X, 

ncc1(J, II) 

i. e., ncc1 (J) 

ncc(J, II), 

ncc(J). 

Proof. Let D = (II, p) be a nondeterministic protocol such that ncc(D) = 
ncc(J, II) = k. We construct a one-way nondeterministic protocol D' = (II, p') 
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computing f with ncc(D') = k. The only message submitted from the first 
computer of D' to the second one is a guess of D' [p'] of the communication of 
an accepting computation of D on a given input n. In fact «nU,L, -X), c) E P 
for every "valid" communication c E {O, I} + corresponding to an accepting 
computation from nU,L (first computer) point of view. If c is not valid from the 
nU,R (second computer) point of view, then «nU,L, c$), 0) E P. If c is valid also 
from the second computer point of view, then «nU,R, c$), 1) E P. 

Thus, we have proved nccl(j, II) ::; ncc(j, II) for every f, and every II. 
Since the opposite unequality ncc(j, II) ::; nCCl (j, II) is obvious, the proof of 
Theorem 2.5.2.6 is completed. 0 

Since there is no difference between nondeterministic communication com­
plexity and one-way nondeterministic communication complexity we define the 
complexity classes only for nondeterministic communication complexity. 

Definition 2.5.2.7 We set for any n, mEN, m ::; n/2, NCOMMn(m) 
= {f E B'!j I ncc(j) ::; m} as the set of all Boolean functions of n variables 
computable within communication complexity m. 
Let 9 : N -+ N be a function with the property g(n) ::; n/2 for any n E N. We 
set NCOMM(g(n)) = {L ~ {O, 1}* I ncc(hn(L)) ::; g(n) for any n EN}. 

The definition of the nondeterministic protocols above (and so of nonde­
terministic communication complexity) is not the only possibility how to add 
nondeterminism to the protocols. We observe, that in Definition 2.5.2.1 of non­
deterministic protocols the computers GJ and GIl are two independent non­
deterministic devices. This means (in contrast to the fact that both of the 
computers GJ and GIl know the whole communication relation P, the partition 
II and the complete definition of the problem) that one computer G receiving a 
message does not know automatically which nondeterministic decision (guess) 
has been done by the computer sUbmitting this message. This computer G can 
learn it if this nondeterministic decision is coded in the message. Note, that we 
did it in this way in Examples 2.5.2.4 and 2.5.2.5. So, each of the two com­
puters can be viewed as a nondeterministic computer having a private source 
of "advice" variables whose values decide about the nondeterministic choice of 
the message submitted. But none of GJ and GIl know the actual values of the 
advice variables of the other computer. This is the reason why one call the 
terms introduced above private nondeterministic protocols and private 
nondeterministic communication complexity. 

Another possibility to define nondeterministic protocols is to consider a 
common (so-called public) source of advice variables. This means that each 
computer knows the values of advice variables which has been used to take 
a nondeterministic decision by the other computer. This can be viewed as an 
additional free exchange of the values of advice bits between the computers of 
the protocol model introduced in Definition 2.5.2.1. 
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There are several possibilities how to formalize the definition of public non­
deterministic protocol. To do this formalization we prefare to consider a public 
nondeterministic protocol as a set of deterministic protocols (one determinis­
tic protocol for each assignment to the advice variables), where an input 0: is 
accepted if at least one of these protocols accept 0: (i.e., if there exists an as­
signment to the advice variables leading to an accepting computation on 0:). 
The advantages of this formalization are: 

(i) the possibility to measure the degree of nondeterminism by the number 
of advice variables, and 

(ii) a good base for defining randomized protocols in Section 2.5.5. 

Definition 2.5.2.8 Let n, m be positive integers. Let X = {Xl, X2, ... , xn} and 
U = {Ul, ... , urn} be sets of Boolean variables, and let II be a partition of X. 
A public nondeterministic protocol D over X and U is any sequence of 
21U1 = 2m protocols 

1 ( 1) 2 ( 2) 2m ( 2m ) D = II, P , D = II, P , ... , D = II, P 

(each D; corresponds to the assignment BIN;;,l (i - 1) from U to {O, I} for any 
i E {I, ... , 2m } ). A public nondeterministic protocol over X and U is also called 
a lUI-public nondeterministic protocol over X. The set U is called the 
set of advice variables. 

For every input assignment 0: : X -+ {O, I}, we say that D accepts a, 
D(a) = 1 (D computes 1: for 0:), if there exists an i E {I, ... ,2m } such 
that D; accepts 0: (D; (0:) = 1). For every input assignment f3 : X -+ {O, I}, 
we say that D rejects j3, D(j3) = 0 (fJ computes 0 for (3), if Dj rejects f3 
(D j (f3) = 0) for all j E {I, ... , 2m }. Let f be a Boolean function defined over the 
set X. We say that the public nondeterministic protocol D over X and 
U computes f if D(o:) = f(o:) for every input assignment 0:: X -+ {O, I}. 

The nondeterministic communication complexity of the public 
nondeterministic protocol D is 

pncc(D) = max{cc(D;) Ii = I,2, ... ,2m }. 

Definition 2.5.2.9 Let f be a Boolean function over a set X of input variables. 
Let m be a positive integer, and let II be a partition of X. 

The m-public nondeterministic communication complexity of f 
according to II is 

m-pncc(f, II) = min{pncc(D) I D = (II, p) for a P is am-public 

nondeterministic protocol computing J}. 

The public nondeterministic communication complexity of f ac­
cording to II is 
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pncc(f, II) = min{ m-pncc(j, lJ) I ° ::; m ::; IXI}. 

The m-public nondeterministic communication complexity of f is 

m-pncc(f) = min{ m-pncc(j, lJ) IlJ E Bal(X)}. 

The public nondeterministic communication complexity of f is 

pncc(f) = min{pncc(j, lJ) IlJ E Bal(X)}. 

Now we informally describe public nondeterministic protocols for the lan­
guages L and Star from Examples 2.5.2.4 and 2.5.2.5 in order to illustrate the 
power of public nondeterminism. 

Example 2.5.2.10 Let X and lJ have the same meaning as in Example 2.5.2.4, 
IXI = n = r . 2T, r ~ 2. We describe a 2r-public nondeterministic protocol 
D = (lJ, pI) computing hn(L) with pncc(D) = 1. Let the set of advice variables 
be U = UI uU2 , IUil = r for i = 1,2. An assignment from UI to {O, I} is a guess 
for the input part WI. An assignment from U2 to {O, I} is a guess for the input 
part WBIN(Wl). 

HOJ has the input assignments a: lJL -+ {0,1} and f3I : UI -+ {0,1}, 
f32 : U2 -+ {O, I}, then it submits 1 iff WI = f3I and (WBIN(wtl = f32 for BIN(WI) E 
{I, 2, ... , 2T- I} or BIN(WI) tf. {I, 2, ... , 2T- I}) and (WBIN(,82) = IT for BIN(f32) E 
{1,2, ... ,2T- I} or BIN(f32) tf. {1,2, ... ,2T- I). Else OJ sends 0. OIl accepts if 
and only if the message submitted was 1 and (WBIN(wtl = f32 if BIN(WI) tf. 
{1,2, ... ,2T-I}) and (WBIN(,82) = IT if BIN (f32) tf. {l,2, ... ,2T- I}). Thus, an 
input is accepted if the nondeterministic guesses f3I and f32 for WI and WBIN(w.) 

are correct and WBIN(B2) = IT. 0 

Example 2.5.2.11 We consider the language Star from Example 2.5.2.5. Let 
the set X of input variables be as described in Example 2.5.2.5, IXI = n = C;) 
for some positive integer m. Let d = flog2 m 1. We shall informally describe an r­
public nondeterministic protocol computing hn(Star) for an arbitrary partition 
lJ of X. Let the set of advice bits be U. An assignment f3 from U to {O, I} is a 
guess for the name of one node which has to be connected to all other nodes. 
OJ sends 1 if its input does not contradict the guess f3. Else, OJ sends 0. OIl 
accepts iff the bit submitted is 1 and the input part of OIl does not contradict 
the guess f3. Thus, independently on lJ, the protocol computes hn(Star) within 
communication complexity 1. 0 

The examples above show that public nondeterministic protocols can save 
communication by guessing the values of the crutial input variables distributed 
between OJ and CIl . In fact the whole input or a whole computation of a 
(deterministic) protocol may be guessed. This leads to the following observation. 

Observation 2.5.2.12 For every Boolean function f defined over a set X of 
input variables, and for every lJ E Bal(X), 
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fIXI/21-pncc(f, II) ::::; 1. 

Proof. For every input a, the public nondeterministic protocol guesses aII,L. 
If the guess is correct Gj sends 1. If the guess has been false, then Gj sends O. 
If the bit submitted is I, then GIl knows aII,R and the guessed word which is 
aII,L. Thus, GIl knows the whole input a = II-I (aII,L, aII,R) and it can compute 
f(a). 0 

A direct consequence of Observation 2.5.2.12 is that pncc(f) < 1 for ev­
ery Boolean function f. This means that there is no reason to deal with the 
complexity measure pncc(f). But, it may be reasonable to study the trade­
off between the public nondeterministic complexity and the number of advice 
variables. The following assertion is a simple extention of the ideas above. 

Lemma 2.5.2.13 Let n be a positive integer, and let X be a set of Boolean 
variables, IXI = n. For every Boolean function f over X, and for every positive 
integer r, r ::::; n/2, 

r-pncc(f)::::; In/2J -r+1. 

Proof. Let II be any partition from Bal(X) with I IlL I = In/2J. For every input 
a, the nondeterministic protocol D = (II, cp) guesses the first r values of the 
input assignment aII,L. If the guess is correct, Gj submits I/" where/, contains 
the rest of aII,L. Else, Gj submits o. After this GIl knows the whole input a 
and it can compute f(a). 0 

Observation 2.5.2.12 and Lemma 2.5.2.13 are the reasons why we shall not 
study the public nondeterministic communication complexity in what follows. 
But, we shall use the model of public nondeterministic protocols as the base for 
introducing randomized protocols in Section 2.5.5. 

2.5.3 Lower Bounds on Nondeterministic Communication 
Complexity 

Again, we present two lower bound proof methods, one based on the fooling set 
idea and another one based on the matrix representation of the computing prob­
lem. The method based on fooling sets is very close to the fooling set method 
for deterministic communication complexity, namely all fooling sets A(f, II) 
with the property A(f, II) ~ N I (f) provide a direct lower bound on ncc(f, II). 
In the case of the matrix representation methods we change the tiling (exact­
cover) method (working for communication complexity) for a method based on 
a cover of all ones in M(f, II) with (not necessarily disjoint) I-monochromatic 
submatrices of M(f, II). The later method provides not only a lower bound 
but also the upper bounds. So, an optimal use of this technique can lead to ex-
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act estimations on the nondeterministic communication complexity of concrete 
problems. 

We start with the fooling set method. 

Theorem 2.5.3.1 Let f be a Boolean function over a set X of input variables, 
and let II be a partition of X. Then, for every l-fooling set A(f, II) for f and 
II 

ncc(f, II) ~ flog2IA(f, II) 11 . 

Proof. Following Theorem 2.5.2.6 it is sufficient to prove 

ncc1 (f, II) ~ flog2 IA(f, II) 11 = r. 

We do it by contradiction. Let D = (II, rI» be a one-way nondeterministic 
protocol with ncc(D) < r. Since the number of accepting computations c$l, 
c E {0,1}+, is at most 2ncc(D) ~ 2r- 1 < IA(f,II)I, there exist a, (3 E A(f,II) 
having the same accepting computation C1 $1 for some C1 E {O, I} +. This implies 
that c1$1 is also an accepting computation of D on II-1(arr,L,(3rr,R) and on 
II-1((3rr,L, arr,R) , and so D(II-1(arr,L, (3rr,R)) = D(II-1((3rr,L, arr,R)) = 1. But 
this contradicts to the fact that A(f, II) is a I-fooling set (i.e. to the fact that 
f(II-1(arr,L, (3rr,R)) = 0 or f(II- 1((3rr,L,arr,R)) = 0). 0 

We note that O-fooling sets do not provide lower bounds on nondeter­
ministic communication complexity (later we shall show also an example of 
ncc(f, II) = log2(log2 m), where m is the size of the largest fooling set for f and 
II). The reason is that from the existence of the rejecting computation c$O for 
two inputs a, (3 we can only conclude the existence of the rejecting computation 
c$O also for II-1(arr,L, (3rr,R) and II-1((3rr,L, arr,R). But this says nothing about 
the acceptance or the rejection of II-1(arr,L, (3rr,R) and II-1((3rr,L, arr,R). 

Thus, we can formulate the method nfool for proving lower bounds on the 
nondeterministic communication complexity. 

Method nfool 

Input: A Boolean function f with a set of input variables X. 

Step 1: For each II E Bal(X) find a l-fooling set A(f, II) 

Step 2: Compute d = min{IA(f, II) 1 1 II E Bal(X)} 

Output: "ncc(f) ~ flog2 d1" . 

Following the method nfool we see that all lower bounds proved on com­
munication complexity using I-fooling sets are also lower bounds on nonde­
terministic communication complexity. For instance, the I-fooling sets used to 
prove a linear lower bound on the communication complexity of the context­
free language LR provides also the following lower bound on its nondeterministic 
communication complexity. 
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Corollary 2.5.3.2 For any n E N, 

We have already noted that O-fooling sets cannot be used to prove lower 
bounds on nondeterministic communication complexity. Another question may 
arise: Do one-way I-fooling sets provide a direct lower bound on nondetermin­
istic communication complexity? The reason for this question is the fact that 
nccl(f) = ncc(f) for every Boolean function f. But already the results estab­
lished show that the logarithm of the cardinality of a one-way I-fooling set is not 
a lower bound on nondeterministic communication complexity because it is not 
a lower bound on the communication complexity (In Theorem 2.4.3.4 the one-

way I-fooling sets of the cardinality 2Vn / 1og2 n are constructed for the language 
L, but ncc(hn(L)) ~ cc(hn(L)) = O(lOg2 n).) Despite the fact that the answer 
to our question is clearly "no" we shall try to find the real reasons behind why 
one-way I-fooling sets cannot be used to prove lower bounds on nondetermin­
istic communication complexity. This effort will help us to find another lower 
bound proof method for nondeterministic communication complexity based on 
the matrix representation M (f, II) of f. 

Let D = (II, tP) be a one-way nondeterministic protocol computing a 
Boolean function f, and let A = Al (f, II) be a one-way I-fooling set for f 
and II. If ncc(D) < log2lAI, then there are two input parts arr,L, {3rr,L E A 
such that 

(i) ...I- {3 arr,L" rr,L 

(ii) :3 arr,R, (3rr,R and, such that f(a) = f(II- l (arr,L, arr,R)) = f({3) = 1 and 
1 = f(II- l (arr,L,,)) -I f(II- l ({3rr,L,,)) = ° 

(iii) :3 a communication c E {O, I} + such that ((arr,L, A), c) E tP, (({3rr,L, A), c) E 

tP, and c$I is accepting computation for boths input a and (3. 

Why are the conditions (i), (ii) and (iii) not sufficient to get a contradic­
tion? The reason is that (i), (ii) and (iii) do not imply anything about the 
acceptance of II- l (arr,L,,) or of II- l ({3rr,L,')' This is because it is possible 
that (b,c$), I) ¢ tP and yet D(II- l (arr,L,,)) = 1. So, for the input part arr,L, 
there may exist several distinct communications from the first computer lead­
ing to an accepting computation in the dependence on the input assignment 
, : IIR --+ {O, I} read by the second computer. 

The main observation following from our considerations is the following 
one. Let D = (II, tP) be a one-way nondeterministic protocol. Let a = I ilL I and 
b = IIIRI. Let c E {O, l}+ be a message with the property ((8, A), c) E tP for a 
8 E SI = {BIN;;:-I(il), ... ,BIN;;:-I(ik)} and ((W,A),c) ¢ tP for any w ¢ SI, and 
with the property (b, c$), I) E tP for, E S2 = {BIN;;I(jl),"" BIN;;I(jm)} and 
(({3, c$), I) ¢ tP for any {3 ¢ S2. Then, the accepting computation c$I of D is the 
accepting computation exactly for inputs corresponding to the 1-monochromatic 
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submatrix of M(j, II) given by the intersection of the rows i1 + 1, i2 + 1, ... , 
ik + 1 and the columns j1 + 1, j2 + 1, ... , jm + 1. So, every accepting computation 
of D correponds to one I-monochromatic submatrix of M(j, II). This fact leads 
to a new lower bound method. 

Definition 2.5.3.3 Let M = [aij] be a Boolean matrix of a size n x m for 
some n, mEN - {a}. Let Sl = {iI,i2, ... ,id S;; {I, ... ,n}, and S2 = 
{j1,h, ... ,j£} S;; {I, ... ,m}. Then M[SI,S2] denotes the k x £ submatrix of 
M consisting exactly of the elements [brs ]r=l, ... ,k,s=l, ... ,£ for brs = airj •. 

Note that M[Sl, S2] is exactly the submatrix of M which can be obtained 
by Sl-row splitting of M immediately followed by S2-column splitting of M(Sd. 

Definition 2.5.3.4 Let M be a Boolean matrix, and let M[Sl, R 1], M[S2, R 2], 
... , M[Sk, R k] be some I-monochromatic submatrices of M (not necessarily 
pairwise disjoint). We say M[SI, R I], M[S2' R 2], ... , M[Sk, R k] cover all 
ones of M if each I-element of M is also an element of one of the matrices 
M[Sl, R 1], M[S2, R 2], ... , M[Sk, Rk]' Let Cov(M) be the least natural number 
t such that all 1 's of M can be covered by t I-monochromatic submatrices. 

Theorem 2.5.3.5 Let f be a Boolean function with a set of input variables X, 
and let II E Bal(X). Then 

ncc(j, II) = POg2 Cov(M(j, II))l . 

Proof. Since ncc(j, II) = ncc1 (j, II) for any f and II, it is sufficient to prove 
ncc1(j,II) = pog2Cov(M(j,II))l First we show that 

nccl(j, II) s:; flog2 Cov(M(j, II))l . 

To do it we construct, for each set of I-monochromatic submatrices M[Sl, Rd, 
M[S2, R 2], ... , M[Sk, R k] covering M(j, II), a one-way nondeterministic pro­
tocol D = (II, cfJ) such that D computes f and ncc(D) = POg2 k 1 = d. The idea 
of the construction is very simple. If the first computer has an input assignment 
all,L : IlL ~ {D, I} as a part of an input a , then it looks for I-monochromatic 
submatrices from {M[Sl, R l ], M[S2, R 2], ... , M[Sk, Rk]} which have an in­
tersection (cover at least one 1) with (of) the row of M(j, II) correspond­
ing to all,L' Then, the first computer nondeterministic ally guesses a number 
such that M[Si, R] covers the 1 corresponding to the input a in M(j, II) (i.e., 
((all,L, A), BIN;t1(i - 1)) E cfJ for every i such that M[Si, R] covers at least one 
1 of the (BIN(aIl,d + 1)-th row of M(j, II)). If the nondeterministic guess i of 
the first computer is correct (i.e., if the column corresponding to all,R intersects 
the I-monochromatic submatrix M[Si, R]), then the second computer accepts; 
otherwise the second computer rejects. 

To prove flog2 Cov(M(j, II))l ::; ncc1(j, II) we show that, for every one­
way nondeterministic protocol D = (II, cfJ) computing f, one can construct 
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a cover of M(j, II) containing so many I-monochromatic submatrices as the 
number of different accepting computations of D is. As we have already noted 
above all elements of M(j, II) corresponding to inputs having the same ac­
cepting computation c$1 form exactly one I-monochromatic submatrix M(c) (if 
((8, >'), c) E cP exactly for 8 E 81 = {BIN(i1), ... , BIN(ik)} and if (b, c$), 1) E cP 
exactly for 'Y E R1 = {BIN(j1),"" BIN (jm)} , then c$1 is the accepting com­
putation exactly for inputs corresponding to the I-monochromatic submatrix 
M(c) = M({i1 +1, ... ,ik+l}, {j1 +1, ... ,jk+1}). Since for every 1 in M(j,II) 
there exists an accepting computation of D on the corresponding input the 1-
monochromatic submatrices in {M (c) I c is an aceepting computation of D} 
cover all l's in M(j, II). The fact that the number of the accepting computa­
tions of D is at most 2ncc(D) completes the proof. 0 

Taking Theorem 2.5.3.5, we get the following lower bound method for non­
deterministic communication complexity. 

Method cover 

Input: A Boolean function f with a set of input variables X. 

Step 1: For each II E Bal(X) find a minimal set 8(II) of I-monochromatic 
submatrices covering M(j, II). 

Step 2: Compute d = min{18(II) I I II E Bal(X)}. 

Output: "ncc(j) = fiOg2 dl" 

We note that the use of the method cover for proving lower bounds on 
ncc(j, II) is in general no simple task because it means proving another lower 
bound - the nonexistence of small covers of the matrix M(j, II). The lower 
bound on the cardinality of the covers of M(j, II) can be immediately obtained 
only in the trivial cases when M(j, II) is a diagonal matrix, upper-triangle 
matrix, etc. 

2.5.4 Deterministic Protocols Versus Nondeterministic Protocols 

One of the crucial tasks in complexity theory is to decide whether nonde­
terminism is more powerful than determinism for concrete complexity mea­
sures. Most questions of this type remain unanswered (see, for instance, the 
P versus NP problem, NLOGSPACE versus DLOGSPACE, etc.). It is an in­
teresting property of communication complexity that we are able to answer 
such questions by showing that nondeterminism may be much more power­
ful than determinism. First, we observe that there are languages for which 
the communication complexity is almost the same or the same as the non­
deterministic one. For instance, following the lower bound proof of Theorem 
2.3.3.1 we see that the proof may be easily adjusted to work also for nonde­
terministic communication complexity (the minimal cover of M' constructed 
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in the proof contains exactly m + 1 I-monochromatic submatrices), and so 
ncc(h2m (i,)) = CC(h2m(L)) = ncc(h2m (L), II) = pog2(m + 1)1 for every bal­
anced partition II of 2m input variables and every mEN - {O}. Another 
example yields Theorem 2.3.5.4, where cc(hn(LR)) ~ n/8 - 2 for the context­
free language L R is proved. Since the proof is based on the constructions of large 
I-fooling sets it works also for nondeterministic communication complexity, i.e. 
ncc(hn(LR)) ~ n/8-2. Thus, several lower bounds on communication complex­
ity established in the literature work also for nondeterministic communication 
complexity because they are based on I-fooling sets (the O-fooling sets are used 
not so frequently). 

We now give a general simulation of nondeterministic protocols by deter­
ministic ones, and we show that this simulation is optimal in some sense. 

Theorem 2.5.4.1 Let m, n be positive integers, m < n/2. Then 

Proof Let f E NCOMMn(m), i.e., there is a one-way nondeterministic protocol 
D = (II, if» computing f with ncc(D) :s: m. The bound on the communication 
complexity of D implies that there are at most 2ncc(D) :s: 2m different com­
munication messages submitted by the first computer of D in the shortest ac­
cepting computations on inputs in Nl(f). Now, we construct one-way protocol 
D' = (II, if>') computing f as follows. For an input 0:, if>'(O:U,L,'>') = CIC2 ... C2m E 
{O,1}2m, where Ci = 1 iff ((o:u,L,.>.),di ) E if>, where di is the lexicographically 
i-th communication of D. Then c[>1((O:U,R' CIC2 ... C2m$) = I iff:3j E {I, ... , 2m} 
such that Cj = 1, and ((o:u,R,dj $), I) E c[> for the j-th communication dj of 
D. 0 

Corollary 2.5.4.2 For any function g : N ---+ N, g(n) :s: n/2, 

Theorem 2.5.4.3 For every n = (;), mEN, 

(i) cc(hn(LLl)) :2 n/(64 .1010), and 

(ii) ncc(hn(LLl)):S: 2+ pog2nl 

Proof The fact (i) has been proved in Theorem 2.3.3.2. We prove (ii). Let 
k = flog2 n 1. We construct a one-way nondeterministic protocol D = (II, c[» for 
an arbitrary balanced partition II of n input variables. For every input 0:, c[> is 
defined as follows: 
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((aIT,L, ,X), 11) E ijj if G(a) contains a triangle due to aIT,L 
(independently on aIT,R), 

((aIT,L, ,X), OlBINk1 (i)) E ijj for every i such that if the i-th edge is present 

(by aIT,R) then it forms together with some 

present edges of aIT,L a triangle, 

((aIT,L, ,X), IOBINkl(j)) E ijj for every j such that the j-th edge is present 

in aIT,L, 

((aIT,R, 11$), I) E ijj 

((aIT,R, OlBINk1(i)$), I) E ijj iff the i-th edge is present by aIT,R, 

((aIT,R, IOBINk1 (j)$), I) E ijj iff there exist two present edges in aIT,R which 

form together with the j-th edge a triangle. 

Obviously, D computes hn(L"j,) and ncc(D) :::; 2 + POg2 n l. 0 

We observe that we were able to establish the exponential gap between the 
communication complexity and the nondeterministic communication complex­
ity for the recognition of the language L"j, because the lower bound proof on 
cc(hn(L"j,)) has been realized by O-fooling sets and there exists no large I-fooling 
set for hn(L"j,) and any balanced partition II. This provides a very strong unclo­
sure property of nondeterministic communication complexity classes according 
to the complement. 

Let L"j, = {a I lal = (r;) for some m E H, and G(a) does not contain any 
triangle }. 

Theorem 2.5.4.4 For every n = (r;), mE H, 

(i) ncc(hn(L"j,))::; 2 + flog2nl 

(ii) ncc(hn(L"j,)) :::: n/(64· 1010) 

Proof. Fact (i) has been proved in Theorem 2.5.4.3. The claim (ii) follows 
from the fact that the proof of Theorem 2.3.3.2 provides large O-fooling sets for 
hn(L"j,) which implies directly the existence of large I-fooling sets for hn(L"j,) == 
hn((L"j,)C) for n = (r;). (The fooling sets are the same only ones and zeros are 

exchanged in M(hn(L"j,), II) in the comparison with M(hn(L"j,), II)). 0 

The above results show that non determinism can be much more powerful 
than determinism for some computing problems. On the other hand we shall 
show in what follows that m + lone-way deterministic communication bits can 
be more powerful than m nondeterministic communication bits for any positive 
integer m (i.e., non determinism is not able to compensate for one additional 
communication bit). 
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Theorem 2.5.4.5 For every enough large n E N, and every mEN, m < n, 

Proof. We consider the following two cases: 

(1) m 2: log2 n. Since Lemma 2.4.3.6 claims 

B~n(n + m + 1) ~ COMM~n(m + 1) 

we get 
ICOMM~n(m + 1)1 2: 22n+m+l. 

Now, we give an upper bound on INCOMM2n (m)1 by enumerating the 
number of all "different" nondeterministic protocols D2n = (II, ljJ) with 
ncc(D2n) :::; m. Obviously, the number of distinct balanced partitions II 
is e:). Since ncc(D2n) :::; m, the number of different accepting compu­
tations of D2n is at most 2m . Let us enumerate the number of different 
ljJ's providing exactly p (1 :::; p :::; 2m) accepting computations. As we 
have seen already earlier, each accepting computation of Dn corresponds 
to a set of inputs described exactly by a I-monochromatic submatrix of 
M(f, II). Since M(f, II) is of the size 2n x 2n the number of possible ways 
to choose pI-monochromatic submatrices of M(f, II) is 

Thus, the number of different f E B~n computed by nondeterministic 
protocols within communication complexity m is at most 

2 2n 22n+m+l 
. 22n+m+1 

(n/4)! < < 

for sufficiently large nand m 2: log2 n. Thus, ICOMM~n(m + 1) 1 > 
INCOMM2n (m)1 for sufficiently large nand m 2: log2n. 

(2) m:::; log2 n. While the prooffor the case (1) was existential we shall prove 
the case (2) in a constructive way. Let, for any mEN, 

Lmod m = {a E {O, I}* 1 #o(a) mod 2m = O}. 

Obviously, h2n (L mod (m+l)) E COMM~n(m + 1). Now assume II is a bal­
anced partition of 2n variables. We can easily observe that 
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is a I-fooling set for h2n (L mod (m+l)) and II. Thus, 

ncc(h2n(L mod (m+l)), II) ;::: m + 1 

for every balanced partition II, i.e. ncc(h2n(L mod (m+1))) ;::: m + 1. 
o 

Above in Theorem 2.5.4.3 we have showed that there is an exponential 
gap between communication complexity and nondeterministic communication 
complexity. To achieve this result we have found the computing problem hn(L.c:.) 
with large O-fooling sets but small I-fooling sets. Theorem 2.5.4.4 claims that 
this means that we have also large I-fooling sets for the complementary problem 
(hn(L.c:.))c. So, ncc((hn(L.c:.))C) = Q(n), i.e., nondeterministic communication 
complexity is "very strongly" unclosed according to complementation. A natural 
question arises: "Does there exists a Boolean function f with small ncc(j) and 
ncc(jC), and large cc(j)?" In what follows we give the negative answer to this 
question by showing cc(j) ~ ncc(j) . (ncc(jC) + 2) for every Boolean function 

f. 

Theorem 2.5.4.6 Let f be a Boolean function defined on a set X of variables, 
and let II be a partition of X. Then 

cc(j, II) ~ ncc(j, II) . (ncc(jc, II) + 2). 

Proof. Let us consider the matrix M(j, II). The fact that f has nondeter­
ministic communication complexity Tl = ncc(j, II) implies that all ones in 
M(j, II) can be covered by at most 2T1 I-monochromatic submatrices. The fact 
TO = ncc(jc, II) implies that all zeros in M (j, II) can be covered by at most 
2TO O-monochromatic submatrices. We shall use the above facts to construct a 
protocol f within communication complexity Tl • (TO + 2). 

First, we give some needed denotations and observe some simple facts. 
Let C = {G1, .. . ,Gm }, m ~ 2TO , be a set of O-monochromatic submatrices of 
M(j, II), and let H = {HI"'" He}, C ~ 2T1 , be a set of I-monochromatic sub­
matrices of M(j, II) covering all ones in M(j, II). Let Ai denote the submatrix 
of M(j, II) formed by those rows of M(j, II) that meet Gi, and let Bi denote the 
submatrix of M(j, II) formed by those columns of M(j, II) that meet Gi . Let 
int(Ai) and int(Bi) respectively denote the number of I-monochromatic sub­
matrices from H having a nonempty intersection with Ai and Bi respectively. 
Since the intersection of Ai and Bi is exactly Gi, and Gi is a O-matrix, we get 
that no matrix H j E H (for any j) has nonempty intersections with both Ai 
and B i , i.e., int(Ai) + int(Bi) ~ C = IHI· Let G1 = {Gk E G I int(Ak) ~ fC/2l} , 
and let G2 = G - G1 ~ {Gs Eel int(Bs) ~ C/2}. 

Now, we describe the first two rounds of a protocol D = (II, iJ») computing 
f. Let ct be an input. The first computer having ctL looks at the row of M(j, II) 
corresponding to ctL to see whether it intersects any of the I-monochromatic 
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submatrices in 0 1 . If so, it sends the message 1" where, is the binary code of 
the smallest index j such that OJ E 0 1 and OJ intersects roWBIN(<>L)+1 (M(f, lJ)). 
If not, the first computer sends O. 

If the second computer receives 0, it looks at the column corresponding to its 
input O'.R to see whether it intersects any of the I-monochromatic submatrices 
in O2 , If so, it sends the message I{3, where {3 is the binary name of such a 
I-monochromatic submatrix (if there are several matrices with this property, 
one can again to choose the one with the "smallest" name). If not, the second 
computer sends O. If the second computer receives 1" it sends 1 to the first 
computer. 

Now, let us discuss all three possible situations after the first two rounds. 

Case 1: The current communication is "00", i.e., both computers failed to find 
an appropriate O-submatrix. Since 0 1 U O2 = C and the set 0 covers all 
zeros in M(f, lJ) we get that f(O'.) = f(lJ- 1(O'.L, O'.R)) = 1. 

Case 2: Let the first message be 1, = lBIN;I(k) for z = fIOg2 m 1. After re­
ceiving 1, the second computer knows that f(O'.) belongs to the submatrix 
Ak. Since Ok E 0 1 we obtain int(Ak) .::; r £/21 .::; 2T1 - 1. This means that all 
ones in Ak can be covered by at most 2T1 - 1 I-monochromatic submatri­
ces of Ak . (Note that these I-submatrices are all intersections of Ak with 
I-monochromatic submatrices HI, ... , He of M(f, lJ).) 

Case 3: Let the first communication message be "0" and the second one be 
I{3 = IBIN;I(d). After receiving I{3 the first computer knows that f(O'.) 
belongs to the submatrix B d . Since Cd E C2 we have int(Bd) :S rl'/21 .::; 
2T1 - 1, i.e., all ones in Bd can be covered by at most 2T1 - 1 I-monochromatic 
submatrices. 

Thus after the first two rounds either both computers know f(O'.) or both 
computers know f(O'.) lies in a matrix M 1(E {Ak' Bm}) whose ones can be cov­
ered by at most 2T! -1 I-monochromatic submatrices of Ml (and by at most 
2TO O-monochromatic submatrices). Following the same construction (i.e., defin­
ing I-monochromatic submatrices and O-monochromatic submatrices covering 
ones and zeros in MI, and defining new actual sets 0 1 and O2 ) and the same 
kind of information exchange in the next two rounds for the matrix Ml as de­
scribed above for M(f, lJ), we get either the result f(O'.) or a matrix M2 whose 
ones can be covered by 2T! -2 I-monochromatic submatrices of M 2 • Continu­
ing in this way both computers know the result f(O'.) after at most rl rounds. 
Since each information exchange in rounds 2i, 2i + 1 has the length at most 
2 + z = 2 + fIOg2 £1 .::; 2 + ro we obtain that the length of the communication is 
bounded by rl(2 + ro). 0 

A direct consequence of Theorem 2.5.4.6 is the following result. 
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Theorem 2.5.4.7 For every Boolean function f 

cc(f) ~ ncc(f) . (ncc(fc) + 2). 

We call attention to the fact that Theorem 2.5.4.6 cannot be essentially 
improved. Later, in Lemma 2.5.5.9 we give a function fn E B!] for any n E 1'1, n 2: 
m 2 , such that cc(f~,II) = n, ncc (fn , II) = vn + log2n, and ncc(f~,II) < 
vn(log2 vn + 1). 

2.5.5 Randomized Protocols 

In this subsection and in the next one we shall study two kinds of random­
ization of protocols (probabilistic protocols) - Las Vegas randomization and 
Monte Carlo randomization. This section gives the basic definitions of ran­
domized protocols and presents some examples illustrating the computational 
power of probabilistic (randomized) computations (communications). Section 
2.5.6 proves results establishing some relations between determinism and non­
determinism on one side, and randomness on the other. 

Generally, Las Vegas probabilistic algorithms are nondeterministic algo­
rithms (after each step the algorithm may randomly decide what to do in the 
next step) whose each of possibly many computations on a given input must lead 
to the correct result. Note that nondeterministic algorithms for the language 
recognition require only the existence of at least one accepting computation if 
the given input is in the given language. Another difference between nonde­
terministic algorithms and Las Vegas algorithms is that the complexity of a 
nondeterministic algorithm A working on an input 0: is the complexity of the 
shortest correct computation of A on 0: while the complexity of a Las Vegas 
algorithm B working on an input 0: is the "average" of complexities of all com­
putations of Bon c¥. More precisely, each computation C of B has assigned its 
probability (weight for computing the "average" value) which is the product of 
probablities of all random decisions made in C. In what follows we shall study 
only the basic model in which all computations have the same probability to be 
executed. 

To introduce Monte Carlo probabilistic algorithms (protocols) one can again 
start from nondeterministic computing models. Again, the first difference is that 
instead of guessing the next action (communication) from the allowed set of 
steps (communications), we several times "toss the coin" and make the move as 
a function of the outcome. This makes a difference in the definition of accepting: 
while in nondeterminism the input is accepted iff there is at least one accepting 
computation on the input, in the Monte Carlo algorithms we consider the prob­
ability of getting an accepting computation. With each given computation one 
associates a probability (in the same way as for Las Vegas algorithms) which 
is the product of the probabilities at the coin-tossing steps of the computation. 
The probability of accepting an input is the sum of probabilities associated with 
the accepting computations of the algorithm on the given input. 
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Two-sided-error Monte Carlo randomization means that the input is ac­
cepted iff the probability of its accepting is greater than ~, and the input is 
rejected iff the probability of its accepting is smaller than ~. If the probabil­
ity of accepting lies between ~ and ~ for some input, then the randomized 
algorithm is unable to decide whether the input has to be accepted or not. 
One-sided-error Monte Carlo randomization has a yet harder restriction on the 
definition of acceptance. The input is rejected iff all computations on this input 
are unaccepting (the probability of accepting is equal to zero), and the input is 
accepted if the probability of its accepting is greater than ~. The inputs whose 
probability of accepting is greater than zero and smaller than ~ are not allowed 
(if they are allowed, then the protocol is not able to decide whether they are 
accepted or not). 

Obviously, the main practical interest is in the design of Las Vegas proba­
bilistic algorithms because they give always the correct result, and if they are 
quicker than the best known deterministic algorithms for a given problem, then 
they provide the most effective reliable solution of the problem. But Monte Carlo 
probabilistic algorithms are also suitable for practical applications because (es­
pecially in the one-side-error case) repeating the work of such algorithm on a 
given input several times one can get a result whose probability to be correct 
is as large as one wishes. For instance, performing three independent compu­
tations of a one-sided-error Monte Carlo algorithm A on an input word a one 
get three outputs. If at least one output is 1, then the right result is surely 
1 (acceptance). If all three outputs are zeros, then the result 0 (rejection) is 
correct with the probability 1 - (~)3 = ~. So, after performing k computations 
on the given input a we know either surely the fact that the input a is accepted 
or the fact that the probability of the correctness of the rejection of a is at least 

1- (~t 
One can get the definitions of Monte Carlo protocols and Las Vegas pro­

tocols by taking the nondeterministic protocols and changing the definition of 
acceptance in the appropriate ways. But we have introduced two kinds of non­
determinism in Section 2.5.2 - the standart (private) one and the public one. 
Here, we prefer to use public nondeterministic protocols as the base for defining 
randomized protocols because of the simplicity of such definition. One need not 
to take too much care of the difference between the public source of random 
bits and the private sources of random bits because this difference is at most 
a logarithm of the input length. (Note that this contrasts to the case of non­
deterministic protocols, where public nondeterminism is extremely powerful). 
This public model will enable us to directly measure the amount of randomness 
used. For a given number of bits m, we shall define the m-randomized protocol 
as a set of 2m deterministic protocols, where each one of these deterministic 
protocols realizes the computations corresponding to one concrete choice of the 
values for the "tossing the coin" m times before their own computation of the 
protocol. Thus, our interpretation is that both computers get the whole result 
of "tossing the coin" and depending on these m random bits they start to work 
deterministically on the given input. 
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Definition 2.5.5.1 Let n, m be positive integers. Let X = {Xl, X2, ..• , xn} and 
U = {Ul' ... ,um } be sets of Boolean variables, and let il be a partition of X. 
A randomized protocol D over X and U is any sequence of 2m protocols 

1 ( 1) 2 (2) 2m ( 2m ) D = il, iP ,D = il, iP , ... , D = il, iP 

(each Di corresponds to the random sequence BINm(i - 1)). A randomized pro­
tocol over X and U is also called a lUI-randomized protocol over X. The 
set U is called the set of random variables. For every input a E {O, 1 t the 
probability of acceptance of a by D is 

o 

Definition 2.5.5.2 Let n, m be positive integers, and let D be an m-randomized 
protocol over a set of n variables. Let f E B'2. We say that D is a one-sided­
error Monte Carlo m-protocol computing f if 

(i) Va E Nl(J) : Pb(D, a) ~ ~ 

(ii) "1(3 E N°(J) : Pb(D, (3) = o. 

We say that D is a two-sided-error Monte Carlo m-protocol computing 
f if 

(iii) Va E Nl(J) : Pb(D, a) > ~ 

(iv) "1(3 E N°(J) : Pb(D, (3) < ~. 

We say that D is a Las Vegas m-protocol computing f if 

(v) Va E Nl(J) : Pb(D,a) = 1 

(vi) "1(3 E N°(J) : Pb(D, (3) = O. o 

Observation 2.5.5.3 Each one-sided-error Monte Carlo m-protocol computing 
a Boolean function f is a public nondeterministic protocol computing f. 

Proof. Of course, each public nondeterministic protocol D computing f may be 
viewed as am-randomized protocolfor some m, where Va E N l (J) : Pb(D, a) > 
o (for each a with f(a) = 1 there exists at least one accepting computation of 
D on a), and "1(3 E N°(J) : Pb(D, (3) = 0 (for each (3 such that f((3) = 0 all 
computations of Dare unaccepting). Thus, the condition (i) of Definition 2.5.5.2 
is a harder restriction than the above restriction for public nondeterministic 
protocols. 0 
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Definition 2.5.5.4 Let n, m be positive integers, and let X = {Xl, ... ,xn } be 
a set of Boolean variables. Let D be an m-randomized protocol Dl , D2, ... , D2m 

over X. The communication complexity of D is 

cc(D) = max{cc(Di) Ii = 1, ... , 2m}. 

Let f be a Boolean function over X. We define the one-sided-error m-Monte 
Carlo communication complexity of f according to a partition II 
E Abal(X) as 

m-lMCcc(f, II) min{cc(D) I D = (II,pl), ... , (II,p2m) for arbitrary 
pI, ... , p2m, and D is a one-sid ed-error Monte 
Carlo m-protocol computing J}. 

We define the two-sided-error m-Monte Carlo communication com­
plexityof f according to a partition II E Abal(X) as 

m-2MCcc(f, II) = min{cc(D) I D = (II,pl), ... , (II,p2m) for arbitrary 
pI, ... ,p2m such that D is a Monte Carlo m-protocol 
computing J}. 

The one-sided-error m-Monte Carlo communication complexity of f 
is 

m-lMCcc(f) = min{m-1MCcc(J, II) I II E Bal(X)}, 

and the (two-sided-error) m-Monte Carlo communication complexity 
of f is 

m-2MCcc(f) = min{m-2MCcc(J, II) I II E Bal(X)}. 

o 

Definition 2.5.5.5 Let n, m be positive integers, and let X = {Xl, ... , xn }. Let 
D be a Las Vegas m-protocol computing a Boolean function f over X. The Las 
Vegas communication complexity of D on input 0: E {O, l}n is 

2m 

pcc(D,o:) = T m L CC(Di, a), 
i=l 

where CC(Di, a) is the length of the communication of Di on a. 
The Las Vegas communication complexity of D is 

pcc(D) = max{pcc(D, a) I a E {O, l}n}. 

The m-Las Vegas communication complexity of f according to a par­
tition II of X is 
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m-LVcc(f, n) min{pcc(D) I D = (II, pI), ... , (II, p2m) for arbitrary 

pI, ... , p2m, and D is a Las Vegas m-protocol 

computing n. 
The m-Las Vegas communication complexity of f is 

m-LVcc(f) = min{m-LVcc(f, II) I II E Bal(X)}. 

Now we show an example of the work of a randomized protocol. 

o 

Example 2.5.5.6 We consider the language Un = {xy I x =I- y, Ixl 
Iyl,x,y E {O,I}+}. Let X2n = {XI, ... ,X2n} be the set of input variables of 
h2n ( Un), and let II2n E Bal(X2n ) be the partition defined by II2n (Xi) = 1 for 
i = I, ... ,n. Since the matrix M(h2n (Un),II2n ) is the O-diagonal matrix we 
know that CC(h2n(Un», II2n ) = n. Let m = f210g2 nl 

Now, we show that m-IMCcc(h2n (Un),II2n ):::; f210g2 nl Letp!' ... ,Pr be 
all prime numbers such that 2 :::; Pi :::; n 2 for every i = 1, ... ,r. For sufficiently 
large n we know that r is approximately -1 n 2 

• At the beginning a binary code of 
age n 

a number i E {I, ... , r} is randomly chosen. Then, the protocol Di = (II2n , pi) 
works as follows. The first computer computes the remainder x' of its input 
x modulo Pi and sends x' to the second computer. Receiving x' the second 
computer computes the remainder y' of its input y modulo Pi, and compares it 
with x'. If they are distinct, the second computer concludes that x =I- y (i.e., it 
accepts). If they are the same, it concludes that x=y (i.e., it does not accept). 

If x = y (i.e., xy (j. NO(h2n ( Un»), then each protocol Dj for every j E 
{I, ... , r} reaches the right conclusion (i.e., V13 E N° (h2n ( Un)) : Pb(D, 13) = 0). 
If x and yare different, however, then it could happen that x' and y' are the 
same and the protocol reaches the wrong conclusion. This happens if Pi divides 
BIN(x) - BIN(y). Since IBIN(x) - BIN(y)1 < 2n, BIN (x) - BIN(y) has fewer 
than n different prime divisors. On the other hand r is aproximately n2 /2 loge n, 
and so the probability that one chooses from r primes one of the divisors of 
IBIN(x) - BIN(y) I tends to zero. Thus, for sufficiently large n, Pb(D,o:) ?: 1/2 
holds for every 0: E N I (h2n ( Un». 0 

Following Observation 2.5.5.3 we get immediately the following result. 

Theorem 2.5.5.7 For any Boolean function f E B~, any partition II of n 
variables, and any mEN 

ncc(f, II) - m :::; m-pncc(f, II) :::; m-IMCcc(f, II). 

o 
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Theorem 2.5.5.7 renders the fact that, for every f and II, I-fooling sets for f 
and II, and Cov(M(j, II)) provide direct lower bounds on m-lMCcc(j, II) +m 
(in the same way as they do for ncc(j, II)). Note that the O-diagonal matrix 
used to get the linear lower bound on CC(h2n( Un), II2n ) in Example 2.5.5.6 
corresponds to a O-fooling set, and so we were able to show an exponential gap 
between communication complexity and one-sid ed-error (210g2 n)-Monte Carlo 
communication complexity. But taking the language Eq = {ww I w E {O,I}*} 
(which is a complement of Un in some sense) the matrix M(h2n(Eq), II2n ) is 
the usual diagonal matrix corresponding to the I-fooling set N I(h2n(Eq)) of the 
cardinality 2n. 

Thus m-IMCcc(h2n(Eq), II2n ) ~ n - m = CC(h2n(Eq), II2n ) - m for every 
mEN. This is not only an example where the one-sided-error Monte Carlo 
randomness does not help. It is also an example showing that two-sided-error 
Monte Carlo randomness is more powerful than one-sid ed-error Monte Carlo 
randomness. 

Lemma 2.5.5.8 Let X 2n = {Xl, ... ,X2n} be a set of 2n input variables, and let 
II2n E Bal(X2n ) be defined as II2n (xi) = I for every i E {I, ... , n}. Then 

(i) m-IMCcc(h2n(Eq), II2n ) ~ n - m for every mEN, and 

(ii) (2Iog2n)-2MCcc(h2n(Eq),II2n) ::; 2log2 n for sufficiently large n. 

Proof. The fact (i) is proved above. To see (ii) take the protocol D from Example 
2.5.5.6. Let DI work exactly as D does except that DI accepts iff D does not 
accept (DI does not accept iff D does). Then, for each,B E NI(h2n(Eq)) = {ww I 
w E {O,l}n}, Pb(DI',8) = 1 > ~. For each a E N°(h2n(Eq)) = {xy I X, Y E 
{O, I}n,x =1= y}, Pb(DI,a) ::; 1/3 for sufficiently large n because Pb(DI,a) 
tends to zero as shown in Example 2.5.5.6. 0 

Above, we have presented two examples showing the power of Monte Carlo 
probabilistic communication algorithms. Obviously, the most realistic and suit­
able model for practical computations is Las Vegas probabilistic computation. 
Thus, we give one more example showing that Las Vegas protocols may be much 
more powerful than deterministic ones. 

We consider the language 

L",v = {XIX2 ... XmYlY2 .. ·Ym I mE N,for Vi E {1, ... ,m}, Xi,Yi E {O,l}m, 
and 3j E {I, ... ,m} that Xj = Yj}. 

Lemma 2.5.5.9 Let n, m be two positive integers, n = m2. Let X = (U~l Xi) U 
(U~l Yi) be a set of n Boolean variables, where Xi = {XiI, ... , Xim}, Yi = 
{Yil, ... ,Yim} for every i E {I, ... ,m}. Let II E Bal(X) be defined as IlL = 
U~IXi. Then 

(i) ncc(h2n (L3v) , II) = m + flog2 m 1 , 
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(ii) cc(h2n (L3v ),II) = n = m 2, 

(iii) pOg2 m l2 -LVcc(h2n (L3V)' II) ~ m(pog2 m l2 +4) for sufficiently large m's. 

Proof. 

(i) To prove the lower bound on nondeterministic protocols we use the 
method foolfix. Consider the sets 

for every k E {I, ... , m}. Obviously, for every k E {I, ... , m}, Ak is a 
I-fooling set for hn(L3V) and II. We claim that also A = Uk=l Ak is a 
I-fooling set for hn(L3V) and II (Note that Ak'S are pairwise disjoint). 
The fact "1"( E A: hn(L3V)("() = 1 is obvious. Since Ak'S are I-fooling sets 
it remains to show that i -j. j implies hn(L3V)(II-1("(IiL,JIiR)) = 0 for 
every "( E A; and every J E Aj . Let ' , 

for some O:i E {O, 1m} - {om, 1m}, and let 

J = om(j-1)/3jom(m-j)lm(j-1)/3jlm(m-j) E Aj 

for some /3j E {O, l}m - {om, 1m}. Since {O:j, /3j} n {om, 1m} = 0 it can be 
easily seen that 

II-1('V= J-) - Om(i-1)0:·Om(m-i)lm(j-1) rqm(m-j) d L 
I II,L' II,R -, PJ 'F 3'1· 

Since IAI = mlA11 = m(2m - 2) we get 

ncc(hn(L3v ),II)::::: flog2(m(2m - 2))l 

To see the upper bound it is sufficient to consider a one-way nonde­
terministic protocol Dn = (II, l!» working as follows. For every input 
0: = 0:10:2 ... O:m/31/32 ... /3m, O:i, /3i E {O, I} m, the first computer guesses an 
integer k E {1, ... ,m} and submits the message BIN[i~g2ml(k)O:k of the 
length m + flog2 m l. If O:k = /3k, then the second computer accepts 0:, 

elsewhere it rejects 0:. 

(ii) To show that CC(h2n (L3V ), II) ::::: n it is sufficient to prove cc( (h2n (L3V ))C, II) 
::::: n. Note that (L3V)C = {X1X2 ... XmY1Y2 ... Ym 1m E N, Vi E {I, ... ,m} : 
Xi -j. Yi;Xi,Yi E {O, l}m}. To do it we use the method rankfix. We define 
the function 

L L··· L h2n(L~v)(X1' ... Xn, Y1,··· Yn) mod 2, 
XI ;eWI X2;eW2 Xn;eWn 
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where Wi, Yi, Xi E {O, l}m for every i E {I, ... , m}. We claim that g2n(a) = 
h2n(Eq)(a), i.e., that g(WI, ... ,Wm,Yl, ... ,Ym) = 1 iff Vi E {l, ... ,m} : 
Wi = Yi· Let us prove it. First consider inputs a = WI ... WmWI ... Wm for 
any Wi E {O, l}m. 

because there are exactly 2m - 1 words from {O, I} m different from Wi 
and h2n(L~\I)(,B,wl, ... ,wm) = 1 for all,B E {XIX2 ... Xm E {O,I}n I Vi E 
{I, ... ,m}: Xi E {O, l}m,xi I- Wi}. 

Now we consider inputs 'Y E {WIW2 ... WmYIY2 ... Ym I Wi,Yi E {O,I}m for 
every i E {I, ... , m}, and 3j such that Wj I- Yj}. 

Let'Y = UIU2···UmVIV2··.Vm, where Ui,Vi E {O,I}m, Uk I- Vk for ev­
ery k E {jl, ... ,jr} ~ {1, ... ,m}, and up = vp for Vp E {1, ... ,m}­
{jl, ... , jr}. Then 

Thus, the matrix M(g2n, II) is the diagonal matrix of size 2n x 2n 
and rank(M(g2n, II)) = 2n. Following the definition of g2n we see that 
M(g2n, II) is obtained from M(h2n(L~\I)' II) by adding rows [each row of 
M (g2n, II) is a sum mod 2 of rows of M (h2n (L~\I ), II]. 

So, rank(M(h2n(L3\1)' II)) = rank(M(h2n(L~\I)' II)) ;::: rank(M(g2n), II) = 
2n. 

(iii) First, we describe the Las Vegas protocol D2n = (II, tfJ) computing 
h2n (L3\1), and then we analyse its communication complexity. 

Let S = {Pl,P2, ... ,Pr I Vj = l, ... ,r : Pj ~ m and Pi is a prime}. 
(Note that r rv !o;m). We describe the work of Dn on an input a = 
ala2 . .. am,Bl,B2 ... , ,Bm, ai,,Bi E {O, 1} m for every i E {I, ... , m}. For each 
i = 1, ... , m, D2n uses the following procedure to check whether Xi = Yi 
or not. 

Step 1 flog2 m 1 = d numbers 81, ... , 8d from S are randomly chosen 

Step 2 The first computer submits the message "BINd1(BIN(ai) mod PsJ 
BINd 1 (BIN(ai) mod PS2).·. BINd1(ai) mod PsJ" 

Step 3 If (for Vj E {I, ... , m} : BIN (ai) mod PSj = BIN(,Bi) mod PsJ, then 
the second computers submits the message "1". After that the first 
computer submits the whole ai to the second computer. If ai = ,Bi the 
second computer accepts a (otherwise the second computer submits 
"0" and the protocol continues to check whether aiH = ,Bi+l). 

Step 4 If 3j E {I, ... , m} such that BINd1(ai) mod PSj I- BINd1(,Bi) mod 
PS j , then the second computer sends "0" to the first one and D2n 
continues to check whether ai+l = ,Bi+l 
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Note, that the numbers 81,,'" 8d randomly chosen from S may be used 
for the comparison of ai and f3i for every i E {I, 2, ... , m}, i.e. we do 
not need to choose new d numbers for every comparison. So, D2n can be 
viewed as a sequence of protocols, such that each of these protocols has 
rlog2 m 1 = d prime numbers from S as a random input (d2 bits) and each 
one computes h2n(L3V)' 

To analyse the communication complexity of D2n we use the following fact 
known from number theory and already proved in Example 2.5.5.6: 

Fact. For every two numbers a, b E {O, 1, ... , 2m - I}, a =1= b implies 
I {z E S I a mod z =1= b mod z} I::::: ~. 

We compute the communication complexity of the rounds of D2n con­
nected with the comparison of ai and f3i for an i E {I, ... , m}. The step 
2 takes always d2 bits. If ai =1= f3i, then the fact stated above implies that 
the probability of the use of step 3 is 2-d (more precisely, 2-d is the ratio 
of the number of deterministic protocols using step 3 to the number of all 
protocols in the sequence of protocols D2n)' Hence, if ai =1= f3i then the 
average (expected) number of bits sent is steps 2 and 3 is 

d2 + 2-d m + 2 ::; d2 + 3. 

If ai = f3i, then the steps 2 and 3 are performed and the number of 
exchanged bits is d2 + m + 1. Note that the equality case ai = f3i occurs 
only once during the execution of the communication algorithm because 
after knowing ai = f3i the second computer halts and accepts. 

Thus, for every a E N°(h2n(L3V)), the average (over all protocols in the 
sequence D2n ) length of the communication is 

m(d2 + 3) = m(flog2 m 12 + 3). 

For every I E N 1 (h2n (L3V )) the average length of the communication is 
at most (the worst-case input is the input with am = f3m and ai =1= f3i for 
all i = 1, ... , m - 1) 

(m - l)(d2 + 3) + d2 + m + 1::; m(d2 + 4) ::; m(flog2 m 12 + 4). 

D 

2.5.6 Randomness Versus Nondeterminism and Determinism 

In the previous section we gave some examples showing the power of random­
ized protocols for one fixed partition. The aim of this section is to compare 
the randomized communication complexity as minimum over all balanced par­
titions with communication complexity and nondeterministic communication 



124 2. Communication Protocol Models 

complexity. Since we consider the private nondeterminism and public random­
ness we define the probabilistic complexity measure in a way forcing the ex­
change of random bits. In this way we obtain a convenient base for the com­
parison of nondeterministic protocols and randomized ones. Note that this ad­
ditional +m factor in the following definition of randomized communication 
complexity is not of a crucial importance because m can be always bounded by 
O(lOg2 (the number of input variables)) (see Exercise 2.5.7.18 for more details). 

Definition 2.5.6.1 Let J be a Boolean Junction defined on a set X oj Boolean 
variables. The Las Vegas communication complexity of f is 

LVcc(f) = min{m-LVcc(J) + m I mEN}, 

and the one-sided-error Monte Carlo communication complexity of f 
is 

IMCcc(f) = min{m-1MCcc(J) + m I mEN}. 

The two-sided-error Monte Carlo communication complexity of f 
is 

2MCcc(f) = min{m-2MCcc(J) + m I mEN}. 

We start with some simple observable relations. 

Theorem 2.5.6.2 For every Boolean Junction J 

(i) ncc(f) ::; IMCcc(f) ::; cc(f) , and 

(ii) ncc(J) :::; LVcc(J) :::; cc(J) :::; (LVcc(J) + 2)2. 

Proof. (i) is a direct consequence of Theorem 2.5.5.7. ncc(J) :::; LVcc(J) fol­
lows from the facts that every Las Vegas randomized protocol is also a non­
deterministic protocol, and that the communication complexity of the nonde­
terministic protocol on an input O! is the length of the shortest communica­
tion while the complexity of Las Vegas randomized protocol on an input O! is 
taken as the average of the length of all computations on O!. LVcc(J) :::; cc(J) 
holds because for every mEN and every deterministic protocol D one can 
construct an Las Vegas randomized m-protocol consiting of 2m copies of D. 
The last unequality cc(J) :::; (LVcc(J) + 2)2 follows from Theorem 2.5.4.6 
[cc(J) :::; ncc(J)(ncc(JC) + 2)] and from the fact that Las Vegas communica­
tion complexity is closed under complementation [i.e., ncc(JC) :::; LVcc(J)]. D 

We show now an exponential gap between communication complexity and 
one-sided error Monte Carlo communication complexity. To do it we consider 
the language 
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Lshift = {XIX2 ... XmZI··· Zd 1 Xi E {O, I} for i = 1, ... , m, Zj E {O, I} 
for j = I, ... , d, m E 1'\1, m mod 4 = 0, d = fiOg2 m 1, and for 
k = BIN(ZI ... Zd) : 

XIX2 ... X m /4 = XkX(k+l) mod m· .. X(k+m/4-1) mod m}. 

Theorem 2.5.6.3 Let n = m + ilog2 m 1 for some m = 4b, b E 1'\1. Let d = 
fiOg2 m 1. Then 

(i) ncc(hn(L~hift))::; ilog2m1 and 2d-1MCcc(hn(L~hift))::; 2fiog2ml, 

(ii) cc(hn(L~hift)) = D(n). 

Proof. 

(i) Because of Theorem 2.5.6.2 it is sufficient to show 2d-1MCcc(hn(L~hift)) ::; 
2d. Let X = {XI, ... , X m , ZI, ... , Zd} be the set of input variables of 
hn(L~hift). To compute hn(L~hift) we take a Monte Carlo 2d-randomized 
protocol Dn = (II, <P), where II is choosen in a way such that IlL ;2 
{Zl, ... ,Zd,Xl, ... , Xm /4}. We describe the work of Dn on an input 
al, .. ·, a m /3l··· /3d· Let k = BIN(/31 ... /3d), and for every r E 1'\1, Sr = 
{p E Nip ::::; rand p is prime} = {PI, ... ,Par}. The first com­
puter knows k and 11 = al ... a m /4-l, and Z 2 0 bits from 12 = 
aka(k+l) mod m ... ak+m/4-l mod m· If the knowledge about this Z bits im­
plies 11 # 12 the protocol accepts the input. If not, then the protocol has 
to check whether /31 # /32 for /31, /32 E {O, 1 }m-z such that the first com­
puter knows /31 and nothing about /32, and the second computer knows /32 
and nothing about /31. This can be done by using the random input J E 
{O, 1}f1og2(am- z )1. The first computer sends BINd"I(BIN(/3l) mod PBIN(5)) 

to the second computer. If BIN (/31) mod PBIN(5) # BIN(/32) mod PBIN(5), 

then the second computer accepts a, otherwise it rejects a. Following the 
fact 1 {p E Sm-z 1 b1 mod P # b2 mod p} I::::; 1 Sm-z 1/2 for any bi # b2 , 

bI, b2 E {O, 1 }m-z , we see that the protocol described above is a one­
sided-error Monte Carlo log2(am _ z )-protocol (note that am - z ::; (m - z)2 
which implies log2(am - z ) ::; 2d). 

(ii) Because communication complexity classes are closed under complement, 
it is sufficient to prove that cc(hn(Lshift)) 2 n/32. Let II be any bal­
anced partition of X = {Xl, ... , Xm , ZI, ... Zd}. Without loss of gener­
ality we may assume that 1 IlL n {Xl,X2, ... ,Xm /4} 12 m/8 (if not, 
the same proof can be made from the point of view of the second 
computer). Let IlL n {Xl, ... ,Xm /4} = {Xlp, ... ,X;p}, P 2 W. Let, for 
j = m/4, ... ,3/4m-1,Sj = {(i1 +j) mod m, ... ,(ip+j) mod m}, 
and Sj(x) = {xr E X 1 r E Sj}. Let Sj = ISj(x) n IlRI for every 
j E {m/4 + 1, ... , (3/4)m}. Now, we want to prove that there exists 
U E {m/4 + I, m/4 + 2, ... , (3/4)m} such that Su 2 n/32. 

For every k E {I, ... ,p} , let 
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Rk = {(ik + m/4 + 1), (ik + m/4 + 1), ... , (ik + 3/4m)}, 

Rk(X) = {Xb E X I bE Rk}, and rk = IRk(X) n JIRI. 

Obviously, U~=l Rk(X) = U~:~~4+1 Sj(x) and L~:~~4+1 Sj = L~=l rk· 

(One can see the situation as a matrix whose p rows are Rk(X)'S and 
whose m/2 columns are Sj(x)'s). Since JI E Bal(X), rk ~ m/2-
((m· pog2ml)/2 - p) for every k E {l, ... ,p} (otherwise JIL will con­
tain more than the half of input variables). 

Thus, 

3m/4 p p 

L Sj = L rk ~ L[m/2-((mpog2 ml)/2-p)] ~ p(p-( I092m)/2) ~ 
j=m/4+1 k=l k=l 

p(m/8 - (lo92m)/2) ~ p(2n - 510gm)/8 ~ pn/8 ~ mn/64 

for sufficiently large n. 

So, among the m/2 numbers Sj (j = m/4 + 1, ... , 3m/4) there exists a 
number 

3m/4 

Su ~ L sj/(m/2) ~ n/32. 
j=m/4+1 

This means that if the input assignment , : {Zl, ... , Zd} -+ {D, I} is 
chosen so that BIN(,) = u, then the protocol has to check Xb = Xb+u , 
where Xb E JIL , Xb+u E JIR, for n/32 different variables Xb. Using either 
the fooling set method or the rank method the proof can be completed in 
the standard way. 0 

We see that the lower bound proof of (ii) of Theorem 2.5.6.3 is based on 
"shifting", which means that: 

1. We change the original computing problem P comparing values (Xi = 
Xj) of some variables (and so having large communication complexity 
according to a fixed partition partitioning the compared pairs of variables) 
to a "relativized" version of P, where the choice of pairs of variables that 
must be compared depends on the shift given by the values of some new 
variables. 

2. For each balanced partition JI of variables of the relativized problem, 
there exists a shift (a choice of values for the new variables) such that JI 
divides a lot of pairs of variables that must be compared according to the 
given shift. 
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The above shifting idea can be used also to extend Lemma 2.5.5.9 to show 
that Las Vegas randomized protocols can be more powerful than deterministic 
ones (LVcc(f) « cc(f) for some f shifting the problem hn (L3V)). Note that 
the gap between LVcc(f) and cc(f) can be at most quadratic because of (ii) of 
Theorem 2.5.6.2. 

Finally, we deal with the relation between the following powerful protocols: 
nondeterministic ones and (two-sided-error) Monte Carlo ones. We show an ex­
ponential gap between nondeterministic communication complexity and Monte 
Carlo communication complexity. 

Theorem 2.5.6.4 Let n = m + POg2 m 1 for some m = 4b, bEN. Let d = 
ilog2 m 1. Then, 

(i) ncc(hn(Lshi/t)) = Q(n), and 

(ii) d-2MCcc(hn(Lshi/t) = O(log2 n). 

Proof. 

(i) In the proof of (ii) of Theorem 2.5.6.3 we have proved (for sufficiently large 
n) cc(hn(Lshi/t)) 2: n/32 by constructing a I-fooling set of cardinality 
at least 2n / 32 for every balanced partition II. Thus, we get immediately 
ncc(hn(Lshi/t)) 2: fi for sufficiently large n. 

(ii) Let X = {Xl, ... , X m, Zl, ... ,Zd} be the input variables of hn (Lshi/ t). Ob­
viously, it is sufficient to prove d-MCcc(hn(Lshi/t) , II) :::; log2 n for some 
II E Bal(x) and all sufficiently large n. 

We choose a II such that {Zl! ... , Zd, Xl! ... , X m /4} ~ ilL. Then, for 
any input assignment I : {Zl, ... , Zd} ~ {O, I}, the first computer 
knows the shift k = BIN (,), and the task is only to check whether 
Xl· .. X m /4 = XkX(k+l) mod m ... X(k+m/4-1) mod m or not. Anyway, indepen­
dently of which variables from {Xk' X(k+l} mod m, ... ,X(k+m/4-1} mod m} are 
in ilL (known for the first computer), the task is only to check whether 
0: = f3 for 0:, f3 E {O, 1 y, r :::; m/4 - 1. But this can be done by using the 
log2 r-Monte Carlo protocol DI from the proof of Lemma 2.5.5.8 (see also 
Example 2.5.5.6 working within log2 n communication complexity). 

o 
We note that Theorem 2.5.6.4 shows not only that Monte Carlo can be more 
powerful that nondeterminism, but also that Monte Carlo can be much more 
powerful than Las Vegas and one-sided-error Monte Carlo. 

2.5.7 Exercises 

Exercise 2.5.7.1 Let n, m be two positive integers, m :::; n/2. Let iI, 12 E B~ be 
two Boolean functions defined on a set X of input variables. Let II E Abal(X). 
Prove that ncc(fI, II) :::; m and ncc(h II) :::; m imply ncc(iI V 12, II) :S m + 1. 
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Exercise 2.5.7.2 Prove that there exist two languages Ll and L2 such that 
ncc(hn(Ll)) ::; 1, ncc(hn(L2)) ::; 1, and nec(hn(Ll U L2)) = Q(n). 

Exercise 2.5.7.3 Let h,h E B~ for some positive integer n, and let II 
be a balanced partition of their input variables. Prove that nce(h 1\ 12, II) ::; 
ncc(h, II) + ncc(h, II) + 1 is always true. 

Exercise 2.5.7.4 * Prove that there exist two languages Ll and L2 such that 
ncc(hn(Ld) ::; 1, nec(hn(L2)) ::; 1, and nce(hn(Ll n L2)) = Q(n). 

Exercise 2.5.7.5 * Find some further languages L such that cc(hn(L)) is large 
and ncc(hn(L)) is small. 

Exercise 2.5.7.6 * Find some further languages L with the property 

for some i E N. 

Exercise 2.5.7.7 Define Las Vegas communication complexity classes and 
prove that they are closed under complement. 

Exercise 2.5.7.8 Prove that Las Vegas communication complexity language 
(function) classes are not closed under union and intersection (disjunction and 
conjunction). Note that it is possible to prove that there exist languages Ll and 
L2 such that LVcc(hn (L1)) ::; 1, LVcc(hn (L2)) ::; 1 and LVcc(hn(Ll U L2)) = 
Q(n). 

Exercise 2.5.7.9 Define one-sided-error Monte Carlo communication complex­
ity classes and two-sided-error Monte Carlo communication complexity classes. 
Prove that the first ones are not closed under complementation while the second 
ones are. 

Exercise 2.5.7.10 Prove that there exist languages Ll and L2 such that 
1MCec(hn(Ld) ::; 1, 1MCce(hn(L2)) ::; 1, and 1MCec(hn(Ll U L2)) = Q(n). 

Exercise 2.5.7.11 * Define a shifting version LSh3'1 of the language L3'1 such 
that LVec(hn(Lsh3'1)) = O(fo· (log2nF) and cc(hn(Lsh3'1)) = Q(n). 

Exercise 2.5.7.12 * Prove or disprove: 
"There exists a language L such that 1MCcc(hn(L)) grows essentially (ex­

ponentially, if possible) more quickly than ncc(hn(L))." 

Exercise 2.5.7.13 Improve the nondeterministic protocol Dn of Example 
2.5.2.4 in such a way that necl (Dn) ::; 2 ·log2 n + 4. 
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Exercise 2.5.7.14 Find a language L such that for any n, r E N, 0 ~ r ~ 
log2 n, 

Exercise 2.5.7.15 * Define, for all positive integers m and k, and for ev­
ery Boolean function f, the m-public nondeterministic k-rounds communication 
complexity of f, and denote it by m-pncck(J). We known that the numbers of 
rounds is not essential for nondeterministic protocols. This changes if one fixes 
the degree of nondeterminism. Find, for every kEN, a language Lk such that 

(i) cCk(hn(Lk)) ~ k ·log2 n, and 

(ii) for every c, 0 < c < 1, (c ·log2n)-pncck_l(hn(Lk)) = D(n1- C). 

Exercise 2.5.7.16 Prove that, for every positive integers nand r ~ n/2, there 
exists a Boolean function f E B'!j such that 

r-pncc(J) ::::: In/2j - r. 

Exercise 2.5.7.17 Prove that there is a language L such that 

(i) cc(hn(L)) = n, and 

(ii) ncc(hn(L)) ~ fiog2nl + 1. 

Exercise 2.5.7.18 * Prove that there exists a positive integer c such that, for 
every language L and every function g : N -+ N, 

(i) g(n)-lMCcc(hn(L)) ~ (c ·log2 n)-lMC(hn(L)), 

(ii) g(n)-2MCcc(hn(L)) ~ (c ·log2 n)-2MC(hn(L)), and 

(iii) g(n)-LVcc(hn(L)) ~ (c ·log2n)-LVcc(hn(L)). 

Exercise 2.5.7.19 * Prove that, for every Boolean function f, every positive 
integer m, and every partition II of the set of the input variables of f 

ncc(J, II) ~ m-LVcc(J, II). 

Exercise 2.5.7.20 * Improve the result of Lemma 2.5.5.9 by showing 

Exercise 2.5.7.21 * Find a language L such that 
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(i) ncc(hn(L) = O(y'n), 

(ii) cc(hn(L)) = S?(n), and 

(iii) LVcc(hn(L)) = O(y'n· (log2n)2). 

Exercise 2.5.7.22" Consider the language DISJ = {XIX2 ... XnYIY2···Yn I 
Xi, Yi E {O, I} for i E {I, ... ,n}, n E N, and L:i=l XiYi = O}. Prove that 

(i) ncc(h2n (DISJc, II)) = O(log2 n), and 

(ii) 2MCcc(h2n (DISJC)) = S?(y'n). 

Exercise 2.5.7.23 .* Find, for any function s : N -+ N, a language Ls such 
that 

(i) s(n)-pncc(h2n (Ls)) = O(s(n)), and 

(ii) o(s(n)/log2n)-pncc(h2n (Ls)) = S?(n/log2(n/s(n))). 

This means that a loss of a logarithmic factor of advice bits has to be payed for 
with an almost maximal increase in communication, even if the original number 
of advice bits is large (i.e., superlogarithmic). 

Exercise 2.5.7.24 • Define one-way Las Vegas communication complexity and 
prove that it has a linear relation to one-way communication complexity. Find 
a language L such that the one-way Las Vegas communication complexity of 
hn(L) is equal to cCl(hn(L))/2. 

2.5.8 Research problems 

Problem 2.5.8.1 • Find, for some functions g(n) : N -+ N, g(n) > log2 n, 
a concrete language Lg such that Lg E NCOMM(g(n)) - NCOMM(g(n) - 1). 
Note that NCOMM(g(n)) -NCOMM(g(n) -1) =/:- 0 has been proved in Theorem 
2.5.4.5, but for g(n) > log2 n the proof is existential. Probably, this task is too 
hard, and so results of the kind Lg E NCOMM(g(n)) - NCOMM(g(n)/2) are 
of interest too. 

Problem 2.5.8.2 Prove that there is a language L such that cc(hn(L)) = 
S?(ncc(hn(L))ncc(hn(LC))) or improve the upper bound given in Theorem 2.5.4.7. 

Problem 2.5.8.3 • Find, for every kEN, a language Lk such that 

(i) cCk(hn(Lk)) = O(log2 n), and 

(ii) s(n)-pncck_l(hn(Lk)) = S?(na ) 
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for a real number a > 0 and a superlogarithmic function s : N -+ N (or prove 
that such a result is impossible). Note that this assertion extends the claim of 
Exercise 2.5.7.15, where the importance of the number of communication rounds 
for a small number of random bits is given. 

Problem 2.5.8.4 ** Let s : N -+ N be a superlogarithmic function. Does there 
exists a language Ls such that s(n)-pncc(hn(Ls)) is small (O(s(n)) for instance) 
and o(s(n))-pncc(hn(Ls)) is large (almost as cc(hn(Ls))? This would strengthen 
the assertion of Exercise 2.5.7.23 by showing a very strong threshold on the 
number of advice bits for some computing problems. 

Problem 2.5.8.5 ** Consider unbounded-error randomized protocols (commu­
nication complexity). Is there possible to restrict the number of random bits for 
these probabilistic protocols in a similar way as we did it for Las Vegas and 
Monte Carlo protocols in Exercise 2.5.7.18 ? 

2.6 An Improved Model of Communication Protocols 

2.6.1 Introduction 

The communication complexity measure introduced and studied in the previous 
sections has the following two drawbacks: 

(1) There are computing problems requiring a lot of communication to be 
solved in parallel, but our communication complexity is small (Le., our 
communication complexity is unable to provide a lower bound close to 
upper bounds given by designed parallel algorithms). 

(2) It is mostly very hard to prove nontrivial lower bounds on communica­
tion complexity of specific problems because communication complexity 
is a minimum of communication complexities according to all (almost) 
balanced partitions. 

While the drawback (2) is obvious, the drawback (1) needs a more care­
ful explanation. Let us consider a problem consisting of a constant number 
of subproblems defined over disjoint sets of input variables. Let some of these 
subproblems require linear (maximal) communication complexity, and let small 
(constant, for example) communication complexity suffice to obtain the solution 
of the problem in the case that the solutions of the subproblems are known. 

Now, if we take a partition of input bits that gives the input variables of some 
subproblems to the first computer and the input bits of additional subproblems 
to the second computer, the problem can be solved with small (constant) com­
munication complexity. On the other hand the complexity of parallel algorithms 
solving the problem is large because the SUbproblems are difficult (they have 
a large communication complexity). An extreme example of the drawback (1) 



132 2. Communication Protocol Models 

is a problem {II, h}, where cc(h) = cc(h) = n, h is defined over the set of 
input variables X = {Xl, ... ,Xn }, h is defined over the set of input variables 
Z = {ZI, ... ,Zn}, and XnZ = 0. Obviously cc({h,h}) = 1 (choose a parti­
tion II such that IlL = X) but the real communication complexity of parallel 
processing is large. 

To partially overcome the drawbacks mentioned above we redefine the com­
munication complexity as follows. Let P be a problem with a set of input vari­
ables X, and let Z be a subset of X. We define the communication complexity 
according to Z as the minimum over all partitions of X which divide Z into 
two (almost) equal-sided parts (this means that input variables from X - Z are 
distributed arbitrarily). Then, we define the new s(subset)-communication com­
plexity of P as the maximum (over all Z ~ X) of communication complexities 
according to Z. 

Let us now look at our s-communication complexity. It is defined in such 
a way that we may choose some "kernel" Z of the set of input variables and 
then we can measure the communication complexity as minimum over parti­
tions dividing Z into two (almost) equal-sided parts. Thus, there is no problem 
which has a small s-communication complexity and simultaneously contains a 
subproblem with a large s-communication complexity. As we shall show in the 
next chapters, s-communication complexity provides lower bounds on parallel 
complexity measures almost always in the same way as communication com­
plexity does. This means that it is suitable to use s-communication complexity 
because it is always at least as large as communication complexity (the kernel Z 
can be chosen as the whole set of input variables), i.e., it provides lower bounds 
on parallel complexity measures that are at least as high as that provided by 
communication complexity. 

Let us now return to the drawback (2). The possibility to choose a suitable 
Z ~ X can also help to make some lower bound proofs easier. The reason 
for this assertion is that choosing a suitable Z ~ X we do not need to deal 
with some partitions (dividing X in a balanced way) for which the lower bound 
proof is especially hard. We shall show a few such examples in the following 
subsections. 

This section is organized as follows. Section 2.6.2 contains the formal def­
inition of s-communication complexity, and Section 2.6.3 is devoted to lower 
bound proofs for s-communication complexity. Communication complexity and 
s-communication complexity are compared in Section 2.6.4, and some theoreti­
cal properties of s-communication complexity are presented in Section 2.6.5. 

2.6.2 Definitions 

To define s-communication complexity we do not need to change the definition 
of protocols; we have only to deal with some new sets of partitions. 

Definition 2.6.2.1 Let X be a set of input variables, and let Z be a subset of 
X. Let II be a partition of X. We say that II is Z-balanced if 
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II Ih,x n Z I - I IIR,x n Z II ~ 1. 

We say that II is almost Z-balanced if 

IZI/3 ~ IIIL,x n Z I~ 2IZI/3. 

Let Balz(X) = {II I II is a Z-balanced partition of X}, and let Abalz(X) 
= {II I II is an almost Z-balanced partition of X}. 

Definition 2.6.2.2 Let X be a set of input variables, and let Y be a set of output 
variables. Let Z be a subset of X. A partition II of X and Y is Z-balanced if 
II IIL,x n Z I - I IIR,x n Z II ~ 1. A partition II of X and Y is called almost 
Z-balanced if IZI/3 ~ I IIL,x n Z I ~ 2IZI/3. Let Balz(X, Y) = {II I II is a 
Z-balanced partition of X and Y}, and let Abalz(X) = {II I II is an almost 
Z-balanced partition of X and Y}. 

Note that there is no requirement on the partitioning of X - Z and of 
Y in the above definitions. Now we define the s-communication complexity as 
informally described in the previous subsection. 

Definition 2.6.2.3 Let p~ be a computing problem with a set X of input vari­
ables (IXI = n) and a set Y of output variables (WI = r). Let Z be a subset of 
X. The communication complexity of P;' according to Z is 

cc(P;', (Z») = min{cc(P~, II) I II E Balz(X, Y)}, 

and the a-communication complexity of P;' is 

acc(P;', (Z») = min{cc(P~,II) I II E Abalz(X, Y)}. 

The one-way communication complexity of P;' according to Z is 

and the one-way a-communication complexity of P;' according to Z is 

We define the s-communication complexity of P;' as 

scc(P;') = max{cc(P~), (Z») I Z C;;; X}, 

the s-a-communication complexity of P;' as 

sacc(P;') = max{ccl(P~, (Z») I Z C;;; X}, 

the one-way s-communication complexity of P;' as 
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and the one-way s-a-communication complexity of P;' as 

The simplified version of the previous definition for one-output problems is 
as follows. 

Definition 2.6.2.4 Let f be a Boolean function defined on a set X of Boolean 
variables. Let Z be a subset of X. The communication complexity of f 
according to Z is 

cc(f, (Z)) = mini cc(j, 11) 111 E Balz(X)}, 

and the a-communication complexity of f is 

acc(f, (Z)) = min{acc(j,l1) 111 E Abalz(X)}. 

The one-way communication complexity of f according to Z is 

CCl(f, (Z)) = min{ccl(j,l1) 111 E Balz(X)}, 

and the one-way a-communication complexity of f according to Z is 

accl(f, (Z)) = min{ccl(j,l1) 111 E Abalz(X)}. 

We define the s-communication complexity of f as 

scc(f) = maxi cc(j, (Z)) I Z ~ X}, 

the s-a-communication complexity of f as 

sacc(f) = max{acc(j, (Z)) I Z ~ X}, 

the one-way s-communication complexity of f as 

and the one-way s-a-communication complexity of f as 

saccl(f) = max{accl(j, (Z)) I Z ~ X}. 

The following facts follow directly from the definitions stated above. 

Observation 2.6.2.5 For any problem P 

(i) cc(P) ::::: scc(P), 
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(ii) CC1(P) ~ SCC1(P), and 

(iii) scc(P) ~ SCC1(P). 

We close this subsection by defining the s-communication complexity classes. 

Definition 2.6.2.6 Let n, m be positive integers, m ~ n/2. We define 

SCOMMn(m) = {f E B~ I scc(J) ~ m}, 

and 
SCOMM~(m) = {f E B~ I SCC1(J) ~ m}. 

Definition 2.6.2.7 Let 9 be a function from N to N. We define 

SCOMM(g(n)) = {L ~ {O, 1}* I scc(hn(L)) ~ g(n) for every n EN}, 

and 

SCOMM1 (g(n)) = {L ~ {O, 1}* I sccl(hn(L)) ~ g(n) for every n EN}. 

2.6.3 Lower Bound Methods 

All three lower bound methods developed for communication complexity can be 
simply transformed to lower bound methods for s-communication complexity. 
We present these methods without proving their correctness. But the proofs are 
obvious and we leave them to the readers. 

Method subset-fool 

Input: A problem P~ with a set X of input variables and a set Y of output 
variables. 

Step 1: Choose a suitable Z ~ X. 

Step 2: For every II E Balz(X, Y) [II E Abalz(X, Y)] find a fooling set 
A(P~, II). 

Step 3: Compute d = min{IA(P~, II) I I II E Balz(X, Y)} 
[d = min{1 A(P~, II) II II E Abalz(X, Y)}]. 

Output: "scc(P~)::::: rlog2 dl" ["sacc(P~)::::: flOg2 dl"]. 

Method subset-rank 

Input: A Boolean function f defined on a set X of input variables. 

Step 1: Choose a suitable Z ~ X. 

Step 2: For every II E Balz(X) [II E Abalz(X)] construct the matrix 
M(J,II). 
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Step 3: For some positive integer d, prove that 

d:S:; min{rank(M(f, 11)) 111 E Balz(X)}. 

[d:S:; min{rank(M(f, 11)) 111 E Abalz(X)}]. 

Output: "scc(f) ~ POg2 dl" ["scc(f) ~ POg2 dl"] 

Method subset-tilling 

Input: A Boolean function f defined on a set X of input variables. 

Step 1: Choose a suitable Z S;; X. 

Step 2: For each 11 E Balz(X) [11 E Abalz(X)] construct the matrix 
M(f,l1). 

Step 3: For some positive integer d, prove that 

d:S:; min{Til(M(f, 11)) 111 E Balz(X)} 

[d:S:; min{Til(M(f, 11)) 111 E Abalz(X)}.] 

Output: "scc(f) ~ POg2 dl - I" ["sacc(f) ~ POg2 dl - I"]. 

Analogously, the methods for proving lower bounds on one-way communication 
complexity can be transformed to methods providing lower bounds on one-way 
s-communication complexity. 

Method subset-lfool 

Input: A problem P; with a set X of input variables and a set Y of output 
variables. 

Step 1: Choose a suitable Z S;; X. 

Step 2: For each 11 E Balz(X, Y) [11 E Abalz(X, Y)] find a one-way fooling 
set A1(P;, 11). 

Step 3: Compute d = min{IA1(P;, 11)1111 E Balz(X, Y)} 

[d = min{IA1(P;, 11)1111 E Abalz(X, Y)}. 

Output: "SCCI (P~) ~ flog2 dl" ["sacc(P~) ~ POg2 dl"]· 

Method subset-mrow 

Input: A Boolean function f defined on a set X of input variables. 

Step 1: Choose a suitable Z ~ X. 

Step 2: For each 11 E Balz(X) [11 E Abalz(X)] construct the matrix 
M(f,l1). 

Step 3: Compute d = min{IRow(M(f, 11))1111 E Balz(X)} 
[d = min{1 Row(M(f, 11))1111 E Abalz(X)}. 

Output: "SCCl(f) ~ flog2 dl" ["sacc(f) ~ flog2 dl"]. 
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Next we present three examples of lower bounds on s-communication com­
plexity of specific Boolean functions. All these examples show that the choice 
of a suitable subset Z of the set X of input variables can help to simplify the 
lower bound proof in the comparison to the lower bound proof for Z = X. Let 
us first consider the following language 

Lchoice = {wyuv E {O, 1}* Ilwl = IYI = Ivl = lui = m,m E N, 
w = WI, ... , W m, Y = YI, ... , Ym; 
if U = Z11z2, V = rl1r2, #1(ZI) = #1(rl), 
IZll = j -l,and hi = i -1 for some i,j E N, then Wj = Vi}. 

Note that Lchoice is similar to LshiJt, because the subwords u and v decide which 
positions of wand Y has to be compared. 

Theorem 2.6.3.1 For every n = 8k, kEN, scc(hn(Lchoice)) ~ n/8. 

Proof. Let Xn = Wn U Yn U Un U Vn be the set of input variables of hn(Lchoice) 
for Wn = {Wl, ... ,Wm}, Yn = {YI,···,Ym}, Un = {UI, ... um}, and Vn = 
{VI, ... vm}(m = n/4 = 2k). We show that cc(hn(Lchoice), (Wn)) ~ k = n/8. 
Let II be a partition from Balwn (Xn). Without loss of generality we assume 
that I IIR n Yn I~ k = m/2. Let iI, i 2 , ... ,ik, and jI, j2, ... jk be such numbers 
that 

IILnWn = {Wi"Wi2,···,Wik} and IIRnYn <:;;; {Yj"Yh, ... ,Yjk}. 
Now, we fix the values of variables in Vn U Un in the following way. For any 
dE {l, ... ,k}, Ud = 1 ifd E {i1, ... ,id, else Ud = o. For any d E {l, ... ,k}, 
Vd = 1 if d E {JI, ... , jd, else Vd = O. Thus, for every input a fulfilling the 
partial value assignment described above 

k 

hn(Lchoice)(a) = 1 iff 1\ (Wir =: Yjr) is equal to 1. 
r=1 

Since we have shown a suitable assignment of values of variables in Un U Vn for 
every II E Balwn (Xn) the proof can be completed in one of the already routine 
ways (either by constructing a I-fooling set of cardinality 2k or by showing that 
M(hn(Lchoice), II) contains a diagonal submatrix of size 2k x 2k). 0 

Note that the communication complexity of Lchoice is also large, but to 
show it requires an extensive analysis dealing with all possible partitions of 
Wn U Yn U Un U Vn into two equal-sided parts. 

The next language Lsm = {wuwv E {O, 1}*1 21wI = luvl} is also an example 
presenting the advantages of s-communication complexity in creating the lower 
bound proofs. 

Theorem 2.6.3.2 For every n = 32k, kEN, 
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Proof. Let Wn = {Wl,W2, ... W8d and Un = {Ul>U2, ... ,U24k} be the input 
variables of hn{Lsm) for any n E N. We show that scc{hn{Lsm), (Wn )) 2: k. 
Let II be a balanced partition from BalwJXn). Without loss of generality we 
may assume I IlL I ~ IIIRI· Let WnnIIL = {Wil,Wiw··,Wi4k} and UnnIIR = 
{Ujl> uh, ... ,UjJ for some z E {12k, 12k + 1, ... ,24k}. Using the same idea as 
in the proof of fact (ii) of Theorem 2.5.6.3 it can be shown that there exists 
i E {8k, ... ,24k} such that 

Now, the proof can be completed in a way similar to that of Theorem 2.6.3.1. 
o 

The last language 

Ldcf = {OW10W20 ... OWa_10wa1bOwaOWa_10 ... OW20Wl 1c I 
a, b, c 2: 1, Wi E {O, I} for i = 1,2, ... , a} 

presented here is of special importance because Ldcf is a deterministic context­
free language. So, showing a linear lower bound on scc(Ldcf ) we get the interest­
ing claim that the parallel recognition of deterministic context-free languages 
(belonging among the simplest languages of the Chomsky hierarchy) has a non­
negligible computational difficulty. 

The idea of the lower bound proof for Ldcf is again based on a shift (deter­
mined by 1 band 1 C) specifying which positions of the input have to be equal 
(compared). 

Theorem 2.6.3.3 For all sufficiently large positive integers n 

Proof. Let X = {Xl, X2, ... ,xn } be the set of input variables of hn (Ldcf ), and let 
r be the even one of the numbers In/8J, In/8-1J. Let Z = {X2' X4, X6, ... , X2r}, 
I Z 1= r. In what follows we say that a pair {i,j}, i,j E {I, ... , n}, i =j:. j, is 
divided by a partition II of X iff neither IlL nor IIR involves both Xi and Xj. 

Now, we prove that, for any partition II E Balz(X), there exists a natural 
positive integer m, 2r < m < 6r, such that at least r / 4 of the pairs {2i, m + 2r-
2i + 2}, i = 1,2, ... , r, are divided by II. Consider the r x r Boolean matrix 
M(II) = [aijkj=l, ... ,r where aij = 1(0) iff the pair {2i,6r - 2j + 2} is (not) 
divided by II. Since exactly r /2 elements from Z = {X2' X4, ... ,X2r} belong to 
IlL, exactly r2/2 elements [(r /2)d + (r /2) (r - d), where d denotes the number 
of elements from {X6r, X6r-2, ... , X4r+2} belonging to IIRJ of the matrix M(II) 
are equal to 1. The following 2r - 1 disjoint sets 

Aq = {ai,i+q liE {1,2, ... r - q}} for q = 0,1, ... ,r -1, 
Ap = {ai,i+p liE {I - p, 2 - p, ... ,r}} for p = -1, -2, ... , -(r - 1) 

are the diagonals of M(II) , and so they form the partition of elements of 
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M(II) into 2r - 1 sets. Obviously, there must exist an integer u, -(r - 1) :::; 
u :::; r - 1, such that at least r / 4 elements from Au are equal to 1. This means 
we have for every II E Balz(X) a set of integers {iI, i2, ... ilr/4J} ~ {I, 2, ... , r} 
such that all the pairs {2i l ,6r - 2u - 2il + 2}, {2i2,6r - 2u - 2i2 + 2}, ... , 
{2ilr/4J,6r - 2u - 2ilr/4J + 2} are divided by II. 
Thus, we can see that A(hn(Ldcf , II) is a I-fooling set for hn(Ldcf ) and II, where 

A(hn(Ldcf), II) = {YIY2 ... Yn I Yij = Y6r-2u-2ij+2 E {O, I} for every 
j E {I, ... , lr/4J}, Yt = 1 for every integer t such that 
2r < t :::; 4r - 2u or 6r - 2u < t :::; n, and Yv = 0 
for all v rf. {ij, 6r - 2u - 2ij + 21 j = 1, ... , lr/4J}U 
{t I 2r < t :::; 4r - 2u or 6r - 2u < t :::; n} }. 

We observe that the cardinality of A(hn(Ldcf),II) is 2rr/4l 

2.6.4 Communication Complexity Versus s-communication 
Complexity 

o 

In this subsection we show some differences between s-communication com­
plexity and communication complexity. We start with a concrete example of a 
language with linear s-communication complexity and constant communication 
complexity. Let L be a language with cc(hn(L)) E D(n) (for instance, La, Lshift 
or any other language for which we have proved a linear lower bound on the 
communication complexity). We consider UL = {xy E {O,I}* I Ixi = lyl and 
x E L}. 

Theorem 2.6.4.1 Let L be a language with cc(hn(L)) = D(n). Then 

CC(hn(UL)) = 0 and sCC(hn(UL)) = D(n). 

Proof. Let X = {Xl, X2, ... , X2m}, n = 2m, be the input variables of hn(UL). 
To see that cc( hn (U L)) = 0 it is sufficient to consider the partition II of input 
variables with II L = {Xl> ... , xm} (note that the variables Xm+1, ... , X2m as­
signed to the second computer are dummy variables). To show scc(hn(Ud) = 
D(n) we consider Z = {XI,X2, ... ,Xm}. It can be simply observed that 
sCC(hn(UL), (Z)) ~ cc(hn(L)) = D(n). 0 

Theorem 2.6.4.1 is based on using dummy variables. But taking UL = {xy E 

{O,I}* Ilxl = IYI and x, Y E L} instead of UL we get also cc(hn(UL )) :::; 1 and 
scc(hn(UL )) ~ cc(hn(L)) and no dummy variable has been used. But the idea 
with dummy variables gives us the possibility to show that there is a large 
quantity of languages with different communication complexity and s-commu­
nication complexity. In Lemma 2.3.4.5 we have proved that B~n(n + m) ~ 
COMM2n (m) for every m, n E N, m :::; n. But almost all functions in B~n(n+m) 
have s-communication complexity equal to l(n + m)/2j. 
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Lemma 2.6.4.2 For every n EN, and every positive integer m ~ n, 

(iJ B2(m) ~ SCOMM~(lm/2J), and 

( •. J ll·m IB2'(m)nSCOMMn CLm/2J-l)1 - ° 'or any m "grow·ng" w·th n . 
• t n--+oo IB2'Cm)1 - J' •• 

Proof. 

(i) Let f E B2(m) be defined on variables in X = {Xl, ... , Xm, Zl, Z2,··. , 

zn-m}, where Zl, ... , Zn-m are the dummy variables of f. To prove (i) 
it is sufficient to show that cc(j, (Z)) ~ lm/2J for every Z ~ X. But, 
for every Z ~ X, there is a partition II E Balz(X) such that the first 
computer has assigned at most lm/2J variables from IlLn{XI, ... ,xm }. 

Thus after receiving the values of all variables from IlL n {Xl, ... xm}, the 
second computer can immediately compute the result. 

(ii) Let f E B2(m) be defined on variables in X = {Xl, ... , Xm, Zl,···, zn-m}, 
where Zl, ... , Zn-m are dummy variables of f. Let II' be a partition of X, 
where Il~ = {Xl, ... ,xm} and Ilk = {ZI, ... ,Zn-m}. Since all variables 
in Ilk are dummy ones we can define a Boolean function f' E B2'(m) 
as 1'(0'.) = f(Il1-l(O'.,{3)) for every assignment a from {XI, ... ,Xm} to 
{a, I} and every input assignment {3 from {Zl, ... , zn-m}to {a, I}. We 
observe that scc(j) ~ scc(j, ({Xl, ... , xm})) ~ cc(j') because each pro­
tocol (II, cp) computing I' for some II E Bal( {Xl, ... , xm}) can be directly 
(step by step) simulated by a protocol (Ill, cpl) , where IlL ~ III, IlR <::;; 

Ilh, III E Bal{xl, ... ,xm}(X). 

In Lemma 2.3.4.7 and in Theorem 2.4.4.4 we have proved that almost all Boolean 
functions I' E B2(m) have cc(j') = lm/2J. So, following the consideration 
stated above we get that almost all f E B2(m) have scc(j) ~ lm/2J. D 

2.6.5 Some Properties of s-communication Complexity 

All the theoretical questions related to communication complexity may be in­
vestigated also for s-communication complexity. Since almost all results can 
be achieved by using modifications of proof techniques used above for com­
munication complexity we restrict our attention only on the following three 
fundamentals points: 

1. Hierarchy of s-communication complexity classes, 

2. Relation between one-way s-communication complexity and s-communi­
cation complexity, 

3. Gap between nondeterministic s-communication complexity and deter­
ministic one. 
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We start by dealing with point 1. 

Theorem 2.6.5.1 For every sufficiently large n E N, and every mEN, n/2 ~ 
m~ 1, 

SCOMM~{m) - SCOMMn{m - 1) i= 0. 

Proof. The fact (i) of Lemma 2.6.4.2 claims that B~(2m) ~ SCOMM~(m). 
For sufficiently large nand m ~ log2 n, B~(2m) Cl SCOMMn(m - 1) follows 
directly from the fact (ii) of Lemma 2.6.4.2. For m :::; log2 n, let us consider the 
language Lmod m = {o: E {O, 1}* I #0(0:) mod 2m = O}. Obviously hn(Lmod m) E 
SCOMM~(m). In Theorem 2.5.4.5 we have proved that ncc(hn(Lmod m)) ~ m, 
and so scc(hn(Lmod m)) ~ cc(hn(Lmod m)) ~ ncc(hn(Lmod m)) ~ m. 0 

So, we have again the property that one additional communication bit can 
bring more computational power than the extension of the one-way communi­
cation mode to the two-way communication mode. The following hierarchies are 
direct consequences of Theorem 2.6.5.1 

Theorem 2.6.5.2 For every sufficiently large positive integer n, and every 
mE {I, 2, ... , n/2}, 

and 
SCOMM~(m - 1) S;; SCOMM~(m). 

Theorem 2.6.5.3 Let 9 : N -+ N - {O} be any unbounded function. Then: 

SCOMM(g(n) - 1) S;; SCOMM(g(n)), 

and 
SCOMM1(g(n)) - 1) S;; SCOMM1 (g(n)). 

Now, we present the exponential gap between s-communication complexity 
and one-way s-communication complexity. 

Theorem 2.6.5.4 For any positive integers n, m, m :::; n/2 

Proof. To prove Theorem 2.6.5.4 it is sufficient to show that, for each protocol 
D = (II, tP) with cc(D) = m, there exists an equivalent one-way protocol D' = 
(II, tP/) with cc(D) = 2m+l. But this fact is already proved in the proof of 
Theorem 2.4.4.1. 0 
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Corollary 2.6.5.5 For any function 9 : N -t N, g(n) ~ n/2, 

SCOMM(g(n» ~ SCOMMl (2g(n)+l). 

o 

To show that the difference between SCCl (f) and scc(f) can be very large 
for some f, we consider the language L introduced in Theorem 2.4.3.4. 

Theorem 2.6.5.6 For any integer n = r2T, r E N, r ~ 4 

(i) scc(hn(L» ~ (n/log2n)l/2,and 

(ii) scc(hn(L» ~ 2log2 n + 1. 

Proof. Since SCCl(f) ~ CCl(f) for every Boolean function f, and cCl(hn(L» ~ 
(n/ log2 n)l/2 has been proved in Theorem 2.4.3.4 , the fact (i) is proved. The 
fact (ii) is obvious (if not, see the proof of Theorem 2.4.4.3). 0 

Finally we shall deal with nondeterminism. To do it we need the following 
definitions. 

Definition 2.6.5.7 Let f be a Boolean function defined on a set X of Boolean 
variables. Let Z be a subset of X. The nondeterministic communication 
complexity of f according to Z is 

ncc(f, (Z» = min{ncc(f, 11) 111 E Balz(X)}, 

and the nondeterministic s-communication complexity of f is 

sncc(f) = max{ncc(f, (Z» I Z ~ X}. 

Definition 2.6.5.8 Let n, m be positive integers, m ~ n/2. We define 

SNCOMMn(m) = {J E B~ I sncc(f) ~ m}. 

For any function 9 : N -t N, g(n) ::; n/2, we define 

SNCOMM(g(n» = {L ~ {D, 1}* I scc(hn(L» ~ g(n) for every n EN}. 

Theorem 2.6.5.9 Let n, m be positve integers, m ~ n/2. Then 

Proof. The proof is the same as the proof of Theorem 2.5.4.1. o 
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Corollary 2.6.5.10 For any function g : l\! -+ l\!, g(n) S; n/2, 

Theorem 2.6.5.11 For every n = (;), mEl\!, 

(i) scc(hn(L~)) = Q(n), and 

(ii) sncc(hn(L~)) S; 2 + IIOg2 n 1-

Proof. The fact (i) follows from Theorem 2.3.3.2 claiming cc(hn(L~)) E Q(n). 
The fact (ii) is obvious. 0 

2.6.6 Exercises 

Exercise 2.6.6.1 Give a formal proof of the fact that the method A provides 
lower bounds on s-communication complexity for A E {subset-fool, subset-rank, 
subset-tiling} . 

Exercise 2.6.6.2 Give a formal proof of the fact that the method B provides 
lower bounds on one-way s-communication complexity for B E {subset-lfool, 
subset-mrow} . 

Exercise 2.6.6.3 * Prove the lower bound of Theorem 2.6.3.1 by using the 
subset-tiling method. 

Exercise 2.6.6.4 Define the one-way (one-round) nondeterministic s-commu­
nication complexity of a Boolean function, and prove that it is always equal to 
unrestricted nondeterministic s-communication complexity. 

Exercise 2.6.6.5 Prove that for every sufficiently large n and every positive 
integer m ::; n/2, 

SCOMM~(m) - SNCOMMn(m - 1) f= 0. 

Exercise 2.6.6.6 * Define Las Vegas s-communication complexity and Monte 
Carlo s-communication complexities. Prove results about relations between ran­
domized s-communication complexity measures, nondeterministic s-communica­
tion complexity, and deterministic complexity similar to the relations between 
different kinds of communication complexity measures presented in Section 2.5. 

Exercise 2.6.6.7 Specify the lower bounds proof methods on nondeterministic 
s-communication complexity based on I-fooling sets and matrix covers. 
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Exercise 2.6.6.8 • Compare the lower bound techniques subset-fool, subset­
rank, subset-tiling each with each other. Find some specific languages for which 
different techniques render essentially different lower bounds. 

2.6.7 Problems 

Problem 2.6.7.1 • We know that for every even positive integer n, there exists 
an f E B2 such that scc(j) = n/2, but the lower bound scc(hn(Lchoice)) ~ n/8 of 
Theorem 2.6.3.1 is one of the highest known lower bounds for explicitly defined 
functions. 

(i) Prove scc(hn(L)) ~ n/d for some specific language Land d < 4. 

(ii) •• Prove (or find at least a candidate L) for some specific language L with 
the property 

scc(hn(L)) ~ n/2 - o(n). 

Problem 2.6.7.2 Find a smallest possible kEN such that for all n ~ k, and 
all mE {l, ... ,n/2} 

SCOMM~(m) - SCOMMn(m - 1) =J 0. 

Note that we have proved this fact in Theorem 2.6.5.1 for "sufficiently large n". 

Problem 2.6.7.3 • Theorem 2.6.5.6 shows the largest known gap between s­
communication complexity and one-way s-communication complexity for a spe­
cific language (existentially it is proved that there exists L with CCl (hn (L)) = 
Q(n) and cc(hn(L)) = o (log2 n)). Find a specific language S for which the gap 
between sccl(hn(S)) and scc(hn(S)) is larger than the gap for the language Lin 
Theorem 2.6.5.6. 

2.7 Bibliographical Remarks 

The communication complexity of computing problems according to a fixed par­
tition has been introduced by Abelson [Ab78, Ab80] and Yao [Ya79] in order to 
get a lower bound proof technique for distributive computing. Communication 
complexity as the minimum over all (almost) balanced partitions and its con­
nection to lower bounds on VLSI computations have been explicitly introduced 
by Lipton and Sedgewick [LS81] and Yao [Ya81]. (Note that a lower bound 
proof technique based on information transfer was implicitly included in several 
previous work on VLSI lower bounds.) The formal definitions of protocols and 
communication complexity used here are based on those in Papadimitriou and 
Sipser [PS82, PS84a]. Another approach for defining communication protocols 
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was given by Lovasz in [L089] (see Exercise 2.2.4.3), where a survey of com­
munication complexity according to a fixed partition is given. Several authors 
interested only in a rough, asymptotical measurement of the communication 
complexity of concrete problems do not use any formal model of protocols. The 
formal models mentioned above are mainly used by researchers investigating 
also theoretical properties of communication complexity as an abstract com­
plexity measure. 

The lower bound method based on fooling sets is a version of the "crossing 
sequence argument" which is the most widely used lower bound argument in the 
classical (sequential) complexity theory (see, for instance, Hopcroft and Ullman 
[HU79]). The fooling method for proving lower bounds on VLSI computations 
was described by Brent and Kung [BK80, BK81J, Abelson and Andreae [AA80J, 
Thompson [Th79, Th80J, Lipton and Sedgewick [LS81J, Yao [Ya81J, and Ullman 
[Ul84] (not as a lower bound method on communication complexity). The fool­
ing (foolfix) method as a method providing lower bounds on communication 
complexity is first formulated by Aho, Ullman and Yannakakis in [AUY83]. 
The study of matrices M(f, II), and the introduction of the tiling (tilingfix) 
method has been introduced by Yao [Ya81]. The mrank (rankfix) method has 
been introduced by Mehlhorn and Schmidt [MS82]. Aho, Ullman, and Yan­
nakakis [AUY83] were the first researchers dealing with the comparison of these 
lower bound proof methods for communication complexity according to a fixed 
partition (no paper dealing with the comparison of these methods as methods 
for general communication complexity is known to the author of this book). 
Most of the relationships between these methods and their relations to com­
munication complexity according to a fixed partition are presented in Section 
2.2.2. Theorems 2.2.2.15, 2.2.2.16, 2.2.2.17 were established in [AUY83]. The 
rest of the comparison results of Section 2.2.2 follows the work of Dietzfelbinger, 
Hromkovic and Schnitger [DHS94]. An inprovement of Theorem 2.2.2.28 has 
been proved by Hiihne [Hue93]. The generalized fooling set method introduced 
in Exercise 2.2.4.15 is due to [DHS94]. A new lower bound method on commu­
nication complexity (not presented here) has been introduced by Kushilevitz, 
Linial, and Ostrovsky [KL096]. Another survey on the comparison of lower 
bound proof methods for communication complexity can be found by Orlitsky 
and El Gamal [OG88]. The main open problem in the comparison study is the 
question whether the lower bounds provided by the rank method are polyno­
mially close to communication complexity (Problem 2.2.5.1). Some nontrivial 
considerations connected with Problem 2.2.5.1 and the first examples of com­
puting problems with at least a small difference between their communication 
complexity and their ranks are presented by Nisan and Wigderson [NW94J, and 
by Raz and Spiker [RS93]. The assertion of Exercise 2.1.5.22 about the rank of 
random Boolean matrices has been proved by Kom16s [K065, K068]. 

Theorem 2.2.3.3 showing the existence of a Boolean function f of 2n vari­
ables with CC(f' II) = n for a balanced partition II was proved by Papadimitriou 
and Sipser [PS84a]. The rest of Section 2.2.3 devoted to the unclosure proper-
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ties of communication complexity classes according to fixed partitions is due to 
Gubas and Waczulfk [GWB6]. 

The strong communication complexity hierarchy of Theorems 2.3.4.B and, 
2.3.4.9 were established by Papadimitriou and Sipser [PSB2, PSB4a]. Theorems 
2.3.4.13, 2.3.4.15, and 2.3.4.16 showing the extreme unclosure of communication 
complexity classes in a non-constructive way are chosen from [GWB6]. A con­
structive proof of this fact is given by GuMs and Waczulfk in [GWB7]. Theorem 
2.3.3.2 giving a linear lower bound on the communication complexity of L,j. has 
been established in [P8B2]. The relation between the Chomsky hierarchy and 
the communication complexity hierarchy has been investigated by Hromkovic 
in [HrB6c], where Theorems 2.3.5.1, 2.3.5.2, and 2.3.5.5 were proved. Theorem 
2.3.5.4 showing a context-free language of linear communication complexity was 
proved here in order to complete the comparison. The proof of Theorem 2.3.5.4 
is based on an idea developed by Kumicakova [KuB9). The idea to obtain hard 
functions (languages) for every balanced partition by taking new input variables 
"shifting" the original problem is due Vuillemin [VuBO]. 

One-way (one-round) protocols were first investigated by Papadimitriou and 
8ipser [PSB2], where also the exponential gap between communication complex­
ity and one-way communication complexity is established (Theorems 2.4.4.1 and 
2.4.4.3). One-way fooling sets representing the classical crossing sequence argu­
ment are used as defined in [HrB9a]. Ullman [UlB4] uses a little bit different 
notion of one-way fooling sets based on a combination of one-way communica­
tion complexity of Yao [YaB1] and fooling sets of Lipton and Sedgewick [LSB1). 
The one-way fooling sets are related to one-way communication complexity in 
[HrB9b]. The extreme unclosure of one-way communication complexity under 
disjunction and conjunction (Theorem 2.4.4.5) is due to GubM and Waczulik 
[GWB6]. 

Nondeterministic protocols were already considered by Lipton and Sedgewick 
[L8B1] who pointed out that the fooling method provides lower bounds on non­
deterministic communication, too. Nondeterministic communication was for­
mally introduced by Papadimitriou and Sipser [P8B2], where the exponential 
gap between communication complexity and nondeterministic communication 
complexity (Theorem 2.5.4.1 and 2.5.4.3) was proved. This result is of special in­
terest for complexity theory because we have only a few examples of complexity 
measures for which one can prove that nondeterminism is much more power­
ful than determinism. The comparison of nondeterminism and determinism for 
sequential time is perhaps the central open problem of theoretical computer sci­
ence. The lower bound method on nondeterministic communication complexity 
based on Cov(M(j, II)) has been investigated by Aho, Ullman, and Yannakakis 
[AUYB3], who used it to show that ncc(j) . ncc(jC) is an upper bound on cc(j) 
(Theorems 2.5.4.5 and 2.5.4.7). Theorem 2.5.4.5 showing that m + 1 bits de­
terministicly communicated can be more powerful than m bits used by nonde­
terministic protocols is due to Duris, Galil, and Schnitger [DGSB4). The public 
nondeterministic communication complexity was introduced and investigated 
by Hromkovic and Schnitger [Hr896]. The assertion of Exercise 2.5.7.15 show-
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ing the existence of superlogarithmic thresholds on the number of advice bits 
was proved in [HrS96]. Note that one does not have any proof of the existence 
of such thresholds on the degree of non determinism for other fundamental com­
plexity measures. In this paper the notion of self-verifying non determinism was 
introduced too. A self-verifying nondeterministic protocol computing a function 
f must have at least one accepting computation for every a with f(a) = 1, and 
at least one rejecting computation for every (3 with f({3) = O. There may exist 
computations finishing with the answer "I do not know". Because of Theorems 
2.5.4.5 and 2.5.4.7 self-verifying nondeterministic communication complexity is 
polynomially related to deterministic one. In [HrS96] the power of the degree of 
self-verifying non determinism for communication protocols is investigated too. 

The power of randomization for communication protocols was investigated 
in several papers (see, for instance, Ablayev [AbI96], Chor and Goldreich [CG85], 
Fiirer [Fue87], Halstenberg and Reischuk [HR88], Ja'Ja, Prassanna Kamar, and 
Simon [JPS84], King Pang and Abhasel Gamal [KA86]' Kalyanasundaram and 
Schnitger [KS87], Mehlhorn and Schmidt [MS82], Meinel and Waack [MW92], 
Nisan and Wigderson [NW91], Newman [New91], Paturi and Simon [PaS84], 
Razborov [Ra90], and Yao [Ya83]) including some kinds of randomization. Here, 
we have restricted ourselves to Las Vegas randomization and Monte Carlo ran­
domization with uniform probability distribution over the random variables, 
because these fundamental models of probabilistic computations suffice to show 
the advantages of randomized communications over deterministic. The results 
of Section 2.5.5 are selected from results established by Mehlhorn and Schmidt 
[MS82] and Ja' Ja, Prassanna Kamar and Simon [JPS84], except Example 2.5.5.6 
based on the idea of Freivalds [Fr77]. Lemma 2.5.5.9 and Exercise 2.5.7.11 claim­
ing that Las Vegas protocols are more powerful than the deterministic ones is 
due to Mehlhorn and Schmidt [MS82]. The assertions of Theorems 2.5.6.3 and 
2.5.6.4 showing the power of Monte-Carlo probabilistic computations were ob­
tained by Ja' Ja, Prassanna Kamar and Simon in [JPS84]. One of the main 
results on randomized protocols not presented here is the lower bound D(n1/ 2 ) 

on the two-sided-error Monte Carlo communication complexity of the disjoint­
ness given by Kalyanasundaram and Schnitger [KS87]. A simplified proof has 
been given later by Razborov [Ra90]. The linear relation between Las Vegas and 
determinism for one-way communication complexity was proved by Hromkovic 
and Schnitger [HrS95]. The fact that there is at most a logarithmic difference 
between the communication complexity of randomized protocols with public 
random bits and the communication complexity of randomized protocols with 
private random source [Exercise 2.5.7.18] was proved by Newman [New91]. A 
nice survey on randomized protocols was given by Schmetzer and Schnitger in 
[SS96]. 

Aho, Ullman, and Yannakakis [AUY83] have proposed to revise the defi­
nition of communication complexity for the reasons described in Section 2.6. 
The revised version of communication complexity called s-communication com­
plexity was investigated in [Hr86a, Hr88b, Hr88c, Hr89a, Ku89]. All results of 
Section 2.6 are taken from Hromkovic [Hr89a], except the linear lower bound on 
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the s-communication complexity of the recognition of the deterministic context­
free languages established by Kumicakova [Ku89]. 

We call attention to the fact that Chapter 2 announced the presentation 
only of some fundamental results devoted to theoretical aspects of the commu­
nication complexity measure. Next, we mention some further research directions 
and results connected with our model of communication protocols. Papadim­
itriou and Sipser [PS82] have introduced the k-round protocols (as defined in 
Definition 2.4.2.1) and k-round communication complexity as the minimum of 
communication complexities over k-round protocols. They have formulated a 
conjecture about the exponential gap between (k + I)-round communication 
complexity and k-round communication complexity. Duris, Galil, and Schnitger 
[DGS84] have proved, for every positive integer k, the existence of a language Lk 
with logarithmic (k + I)-round communication complexity but linear k-round 
communication complexity. Furthermore, they have constructed a language L~ 
with (k + I)-round communication complexity in 0(10g2 n) and k-round com­
munication complexity in Q(nl/2/(logn)3). The extension of the above results 
for some randomized protocols has been achieved by Halstenberg and Reischuk 
[HR88] in a non-constructive way, and by Nisan and Wigderson [NW9I] in a 
constructive way. Obviously we have no hierarchy on the number of rounds of 
nondeterministic protocols because ncc(j) = nCCl (j) for every Boolean function 
f. Hromkovic and Schnitger [HrS96] proved that this equality must be payed for 
the increase of the number of advice bits. They showed that (k + I)-round (de­
terministic) communication complexity may be even much more powerful that 
k-round public nondeterministic communication complexity with a restricted 
number of advice variables. 

One of the most intensively investigated directions in communication com­
plexity is the comparison of different communication complexity classes. This is 
connected with the central studies in complexity theory dealing with the com­
parison of the power of determinism, non determinism, randomness, etc. (con­
sider, for instance, P versus NP, DLOG versus NLOG, P versus R, etc.). Most 
of these principal questions have been open for a long period of time. Papadim­
itriou and Sipser [PS82] proposed to consider the classes COMM(0(10g2 n)) and 
NCOMM(O(log2 n)) as analogs of P and NP and to investigate the power of 
nondeterminism, randomness, etc., according to communication complexity. So, 
they solved the analog ofP versus NP problem by showing COMM(0(10g2 n)) <;; 
NCOMM(O(log2n)) in [PS82] (LLl E NCOMM(O(log2n)) but cc(hn(LLl)) is 
linear). A lot of further questions, open for time complexity classes, were 
solved for communication complexity classes by Babai, Frankl, and Simon 
[BFS86a, BFS86b], Damm, Krause, Meinel and Waack [DKMW92], Lam and 
Ruzzo [LaR8I]' and Lovasz [L089]. 

Another important direction in the study of communication complexity is 
the investigation of the comunication complexity of concrete computing prob­
lems. Some results of this kind can be found for instance by Lovasz [L089], 
Lovasz and Saks [LS88], Meinel [Me92], and Papadimitriou and Sipser [PS84a]. 
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An interesting fundamental question in the theory of computation is the 
direct-sum question: Can the cost of solving 1 independent instances of a prob­
lem simultaneously be smaller than the cost of independently solving the 1 prob­
lems, say, sequentially? Related to this question Karchmer, Raz and Wigderson 
[KRW91] introduced and investigated the amortized communication complexity 
as the communication complexity of simultaneously computing f on 1 instances, 
divided by l. Feder, Kushilevitz, Naor and Nisan [FKNN91]' and Karchmer, 
Kushilevitz, and Nisan [KKN92] showed that the amortized communication 
complexity of a function can be smaller than its communication complexity for 
deterministic and randomized protocols. 

Most of the communication complexity applications allow an additional 
restriction on communication protocols. Instead of the prefix-freeness property 
one requires that all messages submitted in the i-th round have the same length 
ri for any i. The theoretical properties of this model have been investigated by 
Hromkovic in [Hr85, Hr86b]. 

The protocol model presented here is often called the "two-party protocol" 
because we have only two communicating computers. There are several other 
approaches considering more complicated models consisting of a few computers 
communicating via given communication links creating a so-called "communi­
cation structure". There are a lot of papers dealing with such models and we are 
not able to give a complete overview of publications in this research direction. 
For some approaches that are mostly close to our protocol model the papers 
by Chandra, Furst, and Lipton [CFL83], Dolev and Feder [DF92]' and Tiwari 
[Ti87] can be consulted. 

Further interesting versions of communication complexity were introduced 
and investigated in [LTT92, Ya82, GMW87, Ya86, Kus92]. Lam, Tiwari, and 
Tompa [LTT92] have started to investigate communication protocols where both 
computers have limited work space. The communication complexity of concrete 
problems is measured according to some space bounds on protocols. In [Ya82] 
Yao introduced so-called private communication complexity", where a protocol 
(II, tP) has to compute a Boolean function f in a way such that no computer 
learns any additional information about the part of the input assigned to the 
other computer (in the information-theoretic sense), i.e., any other information 
than what follows from its part of the input and the function value f (a). Which 
Boolean functions can be computed by private protocols and with which com­
munication complexity were investigated by Goldreich, Micali and Wigderson 
[GMW87], Kushilevitz [Kus92], and Yao [Ya86]. 

A completely different task is the investigation of the relation between com­
munication complexity and other complexity measures of parallel and sequential 
computing. The rest of this book is devoted to this task. A nice survey on com­
munication complexity and their applications was also written by 8chmetzer 
and 8chnitger [8896]. 



3. Boolean Circuits 

3.1 Introduction 

This is the first chapter of this book to use the theoretical investigation of com­
munication complexity in Chapter 2 in order to give lower bounds for some 
realistic parallel computations. This chapter is devoted to the relation between 
communication complexity and the complexity measures of Boolean circuits. 
More precisely, we show which lower bounds can be derived on the complexity 
measures of Boolean circuits computing a Boolean function f if one knows a 
lower bound on the communication complexity of f. The complexity measures 
considered are the layout area of Boolean circuits, the combinational complexity 
(number of gates (processors)) of Boolean circuits, and the depth (computing 
time) of Boolean circuits. To derive lower bounds on layout area and combina­
tional complexity we use a standard application of communication complexity 
based on cutting a circuit into two parts and claiming that the circuit has to be 
large because of the necessary amount of information which must flow between 
these two circuit parts. To get a lower bound on the depth of Boolean circuits 
computing a specific function we need to introduce communication complexity 
of relations, which slightly differs from the communication complexity model 
investigated in Chapter 2. 

Chapter 3 is organized as follows. Section 3.2 introduces the standard mod­
els of Boolean circuits and defines their complexity measures. It also provides 
some classical, fundamental results about these complexity measures. Section 
3.3 presents the rules of the planar layout of Boolean circuits and shows that, for 
every Boolean function f, (cc(f))2 provides a direct lower bound on the area of 
all Boolean circuits computing f. Some nonlinear lower bounds on the volume 
of the three-dimensional layout of Boolean circuits are also derived. Section 3.4 
shows that we are able to obtain nonlinear lower bounds on Boolean circuits 
which have some "nice" recursive structures, but that communication com­
plexity is unable to provide nonlinear lower bounds on general combinational 
complexity. In Section 3.5 we show that communication complexity provides 
nontrivial lower bounds on the size of unbounded fan-in Boolean circuits, which 
are a powerful generalization of standard Boolean circuits. Finally, Section 3.6 
introduces a new communication game on our protocol model in order to provide 
a method for proving lower bounds on the depth of Boolean circuits. 
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3.2 Definitions and Fundamental Properties 

3.2.1 Introduction 

The aim of this section is to give the basic definitions connected with Boolean 
circuit computations and with the related complexity measures, and to provide 
some fundamental knowledge about Boolean circuit complexities. The section 
is organized as follows. Section 3.2.2 contains the formal definitions of the basic 
Boolean circuit models, and the definitions of complexity measures of Boolean 
circuit computations. Section 3.2.3 is devoted to some fundamental observations 
concerning the complexity measures defined in the previous section. Finally, 
Section 3.2.4 contains exercises presenting further basic results about Boolean 
circuits. 

3.2.2 Boolean Circuit Models 

Let us start with the basic Boolean circuit model, which is one of the oldest 
computing models of computer science. Informally, a Boolean circuit computing 
a Boolean function f : {O, l}n -+ {O, I} can be viewed as a directed, acyclic 
"labeled" graph with the following properties: 

(i) there are exactly n input nodes (sources) with indegree zero, each one 
of them labeled by one of the input variables (there is one-to-one corre­
spondence between these n nodes and the n input variables), 

(ii) each node of a non-zero indegree is called a gate (processor), it has inde­
gree either one or two, and it is labeled by a Boolean function of one or 
two variables, 

(iii) there is exactly one output node with outdegree zero. 

A Boolean circuit computes as follows. Each node with a non-zero degree is 
considered to be a processor which is active only once during the whole compu­
tation on given input. The directed edges (u, v) of the circuit are considered to 
be communication links transferring the output Boolean value of the processor 
u as an input value to the processor (successor) v. Each processor v labeled by 
Boolean function h waits until all its inputs (one or two) are available, and then 
it computes the Boolean value h(the inputs) = a , and sends this value a via all 
edges out coming from v to all its successors. Obviously, at the beginning only 
the nodes (processors) are active whose incoming edges are out coming from the 
input nodes. Later, each gate having its input values computes immediately the 
output which is submitted to all successors. Since the graph is acyclic, each 
processor works exactly once during the whole computation, and so the output 
processor computes unambiguously one output value, which is considered to be 
the output of the circuit for a given input. 
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Obviously, if one wants to have a Boolean circuit computing a problem P::' 
of n input variables and m output variables, then it is sufficient to consider m 
output nodes instead of one in the above stated informal definition. 

Now we give a formal definition of Boolean circuits. 

Definition 3.2.2.1 Let X = {Xl, ... ,xn } be a set of n Boolean variables, and 
let Bas = {hI, h2, ... , hb} ~ B~UBi be a set of Boolean functions of at most two 
variables. A straight-line Boolean program over the basis Bas and the 
variable set X is any sequence g1, g2, ... , gk in which each gj(j = 1, ... , k) is 
either 

(i) a Boolean variable from X, or 

(ii) a Boolean constant 0 or 1, or 

(iii) a pair (j, gm) for an f E Bi n Bas and a gm with m < j, or 

(iv) a triple (j, gr, gs) for an f E B~ n Bas and some gr, gs with 1 S r, s < j. 

The elements of the sequence g1, g2, ... ,gk over Bas and X which consists of a 
variable or of a Boolean constant are called source elements. The remaining 
elements are called gates (processors). For any gate gj = (j, gr, g.) [= (j, gm)] 
the elements gr, g. [the element gm] are [is] called the inputs [input 1 of gj. Each 
gate which is no input for any gate is called the output of the straight-line 
Boolean program. 

For each element gi of gl, . .. ,gk we define a Boolean function over X as 

Result (gi) = gi if gi is a source element, 
= f(Result(gm)) if gi = (j,gm), 
= !(Result(gr),Result(gs)) if gi = (j,gr,g.). 

The set of Boolean functions computed by gl, ... gk is 

{Result(gm) I for any m 

such that gm is an output of g1, ... ,gd· 

If IFun(gl, ... ,gk) I = 1 we say that gl, ... ,gk computes the Boolean 
function Result(gk). 

A straight-line Boolean program gl, ... ,gk over Bas and X is called semilec­
tive if for every X E X there exists at most one j E {1, ... ,k} such that gj = x. 
Let d 2: 2 be an integer. We say that gl, ... ,gk is d-multilective if for every 
x E X there exist k - d integers 1 S i 1, i 2 , ... ,ik- d S k such that X i= gir for 
every r E {1, 2, ... , k - d}. 

In what follows, straight-line Boolean programs denote always semilective 
straight-line Boolean programs. 
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We illustrate the above definition by the following example. Consider the 
Boolean function f over {XI, X2, X3, X4} defined by the following Boolean for­
mula: 

The following straight-line Boolean program over {V, /\, EB, r} computes 
f(xI, X2, X3, X4): 

gl = Xl Result (gl) = Xl 
g2 = X4 Result(g2) = X4 
g3 = (r, g2) Result(g3) = r(X4) 
g4 = X3 Result(g4) = X3 
g5 = X2 Result(g5) = X2 
g6 = 1 Result(g6) = 1 
g7 = (V,gI,g5) Result (g7) = Xl V X2 
gs = (r, g7) Result(gs) = r(XI V X2) 
gg = (EB, g6, g4) Result (gg) = 1 EB X3 

glO = (/\, gs, gg) Result(glO) = (r(XI V X2)) /\ (1 EB X3) 
gll = (/\, g3, g7) Result(gll) = r(X4) /\ (Xl V X2) 
gl2 = (V,glO,gll) Result(gI2) = f(xI, X2, X3, X4). 

Definition 3.2.2.2 Let X = {Xl, ... , xn} be a set of n Boolean variables, 
n E N, and let Bas = {hI, h2 ... , hb } S;; B~ U Bi be a set of Boolean functions. 
Let gI, g2, ... ,gk be a straight-line Boolean program over the basis Bas and the 
set X of variables. A Boolean circuit over Bas and X corresponding to 
A = 91, ... , 9k is an acyclic graph representation BGA = (V, E) of gl,···, gk 
described as follows: 

(ii) For every gate gi and for every input gj of gi, E contains the edge (gj, gi) 
leading from gj to gi. 

We note that the Boolean circuit representation of straight-line Boolean 
programs defined above contains some repetition of information. According to 
Definition 3.2.2.2 each gate is labeled by a gj = (1, gTl gs) [gj = (1, gr)] but it 
is sufficient to consider only the label f because the edges of BG A determine 
unambiguously which are the inputs of gj. Thus, in what follows we consider 
that each gate is labeled by one Boolean function from B~ U Bi. 

We observe that each straight-line Boolean program unambiguously deter­
mines one Boolean circuit. On the other hand there may exist several straight­
line Boolean programs corresponding to the same Boolean circuit. This is be­
cause we can permute the gates of a straight-line Boolean program without 
changing its meaning as long as we preserve the property that the inputs of 
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each gate gj are in the order before gj. For instance, the above straight-line 
Boolean program computing the function f(xl, X2, X3, X4) can be permuted to 
the straight-line Boolean program ql, q2, ... , q12 

ql Xl 

q2 X2 

q3 X3 

q4 X4 

qs (V,ql,q2) 

q6 1 

q7 (EB, q6, q3) 

qg (r, q4) 

qg (r, qs) 

qlQ (1\, qg, qs) 

ql1 (1\, qg, q7) 

q12 (V, qlQ, ql1), 

which corresponds to the same Boolean circuit (see Figure 3.1). 

Fig. 3.1. A Boolean circuit computing the following Boolean function of four variables 
j{Xl,X2,X3,X4) = (r(Xl V X2) 1\ (1 EEl X3)) V (r(X4) 1\ (Xl V X2)) 

Thus, a straight-line Boolean program is unambiguously given by a Boolean 
circuit and some ordering of the nodes of the circuit. Obviously, this ordering 
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VI, V2, ... , Vm must preserve the property that if there is a directed edge (Vi, Vj) 

in the circuit, then i < j. Any order of nodes of a Boolean circuit having this 
properties is called topological in what follows. 

Usually, the combinational complexity of a Boolean circuit is considered to 
be its number of gates (i.e., the number of operations executed). Here, we shall 
prefer to define combinational complexity of a Boolean circuit as its number 
of nodes because this will simplify some of our later considerations. We may 
do so because for any Boolean function f of n variables the difference between 
the number of nodes of a Boolean circuit B computing f and the number of 
gates of B can be at most n + 2, and we shall mostly deal with the asymptotic 
complexity of f. 

Definition 3.2.2.3 Let X = {Xl, ... ,Xn } be a set of n Boolean variables, 
n E N, and let Bas = {hI, h2, ... , hb} ~ B~ U Bi be a set of Boolean functions. 
Let B be a Boolean circuit corresponding to a straight-line Boolean program 
A = gl,g2, ... ,gk over X and Bas. The combinational complexity of B, 
denoted CC(B), is k (the length of A). The depth of B, denoted D(B), is 
the length (the number of edges) of the longest path in B. 
The combinational complexity of a Boolean function f E B~ according 
to a basis Bas is 

min{CC(B) I B is a Boolean circuit over Bas and X, 
and B computes J}. 

The combinational complexity of f is 

for H = B~ U Bi. The depth complexity of f according to a basis Bas is 

DBas(f) = min{D(B) I B is a Boolean circuit over Bas and X and B 
computes J}. 

The depth complexity of f is 

for H = B~ U Bi. 

These definitions of complexity measures of Boolean circuits can be easily 
extended to work for computing problems (sets of Boolean functions) instead 
for one-output problems (Boolean functions). Because this extension is straight­
forward (each straight-line program has exactly the same number of outputs as 
there are computed Boolean functions), and we shall mostly deal with one­
output problems in what follows, we omit the formal definitions of complexity 
measures for many-output problems here. 
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We observe that Boolean circuits viewed as acyclic graphs have their inde­
gree bounded by 2, and the outdegree is bounded by nO constant independent 
of n (a gate gi may be the input for all gates gj with j > i). This is because 
each gate is a very simple processor computing a Boolean function of at most 
two variables, and each partial result is available for all following gates. But we 
are still interested in Boolean circuits corresponding to graphs with unbounded 
indegree. Obviously, allowing gates computing arbitrary Boolean functions is a 
nOnsense because in this case the combinational complexity of every Boolean 
function would be 1. So, only some restricted sets of functions are considered 
as candidates for bases. Here, we shall mostly consider Bi and the set of com­
mutative and associative Boolean functions of two variables as the kernel for 
gate operations. The reason for this is the fact that commutative and associa­
tive functions like V, 1\, EB, == are well understood independently of the number 
of variables over which they are applied. So, we define the unbounded fan-in 
Boolean circuits as follows. 

Definition 3.2.2.4 Let X = {XI, ... ,xn } be a set of n Boolean variables, and 
let Bas be a (possibly infinite) set of Boolean functions. An unbounded fan-in 
straight-line Boolean program over the basis Bas and the variable set 
X is any sequence gl, g2, ... , gk in which each gj (j = 1, ... , k) is either 

(i) a Boolean variable from X, or 

(ii) a Boolean constant 0 or 1, or 

(iii) a tuple (I, gill" .. ,gd for some r-ary f E Bas, and {i1, ... , iT} C 

{I, 2, ... ,j -I}, iT -j. is for r -j. s. 

The elements of the sequence gl, g2,' .. ,gk consisting of a variable or of a 
Boolean constant are called source elements. The remaining elements are 
called gates. If gj = (I, gip ... , gi r ), then gim is called an input of gj for every 
m E {I, ... ,r}. Each gate which is no input for any gate is called an output. 
For each element gi of gl, ... , gk we define a Boolean function over X as 

gi if gi is a source element, 
f (Resul t (% ), Result (gi2 ), ... , Result (gd ) 
if gi = (I, gil' ... ,gir )' 

Let giJ' ... ,gjm be all outputs of the unbounded fan-in straiht-line Boolean 
program gl, g2,' .. ,gk' Then 

is the set of Boolean functions computed by 91,92, •.. , 9k 
If IFun(gI,"" gk)1 = 1 then we say 91, ... , 9k computes the Boolean func­
tion Result(9k). 
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Definition 3.2.2.5 Let X = {Xl, ... , xn} be a set of n Boolean variables, n E N, 
and let Bas be a set of Boolean functions. Let gl, g2, ... , gk be an unbounded fan­
in straight-line Boolean program over the basis Bas and the variable set X. An 
unbounded fan-in Boolean circuit over Bas and X corresponding to 
A = Yl, ••• ,Yk is an acyclic graph representation BC A = (V, E) of gl, ... , gk 
described as follows: 

(ii) E = {(gi, gj) E V X V I gi is an input of gj}. 

The combinational complexity of BGA , denoted CC(BGA ), is the number 
of gates of gl, ... , gk· The depth of BGA , denoted D(BGA ), is the length of 
the longest directed path in BC A. 

In what follows we shall mainly consider the following infinite bases. For 
every!:::,. E {V,A,E9,=} ~ Bi and every r E N, we define gf(Xl,X2, ... ,Xr ) = 
X1£::,.X2£::,.··· !:::,.xr · We set F = Bt U {gf I for every!:::,. E {V, A, E9, =} and every 
positive integer r}. 

Definition 3.2.2.6 Let X = {Xl, ... , Xn} be a set of n Boolean variables, 
n E N, and let Bas be a set of Boolean functions. The unbounded fan-in 
combinational complexity of a Boolean function fEB; according 
to a basis Bas is 

unfi-CCBas (f) min{CC(B) I B is an unbounded fan-in Boolean 
circuit over Bas and X computing J}. 

The unbounded fan-in combinational complexity of f is 

unfi-CC(f) = unfi-CCF(f). 

The unbounded fan-in depth complexity of f according to a basis Bas 
is 

unfi-DBas(f) min{D(B) I B is an unbounded fan-in Boolean 
circuit over Bas and X which computes J}. 

The unbounded fan-in depth complexity of f is 

unfi-D(f) = unfi-Dp(j). 

Let B1 and B2 be two Boolean circuits. In what follows we say that Bl and 
B2 are equivalent if they compute the same function. 
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3.2.3 Fundamental Observations 

In the previous section we have introduced basic complexity measures of Boolean 
circuits. In some sense we have a lot of them because we have parameterized 
these measures according to different bases. The first fundamental observation 
is that, studying asymptotic behavior of these measures for Boolean circuits, it 
is not essential which complete base is considered. 

Observation 3.2.3.1 Let Sand R be two complete bases, S, R ~ B~ U B~. 
Then there exists a constant const(S, R) depending only on Sand R such that 

CCR(f) ~ const(S, R) . CCs(f) 

for any Boolean function f E U~O B~. 

Proof. Let f E B2 for some n E N, and X be the set of input variables of f. Let 
Bl = glo ... ,gm be a straight-line Boolean program over S and X computing f. 
Since R is a complete base, each function of S can be computed by a straight­
line Boolean program over Rand X. Let const(S, R) be the maximal length 
of these straight-line Boolean programs over Rand X. Thus, if gr = (h,gi,gj) 
for some h E S, i, j < r, then we can exchange gr for the straight-line Boolean 
program over R and X computing h on the arguments gi and gj. Obviously, in 
this way we get a straight-line Boolean program B2 over R and X computing 
f, and the length of B2 is at most const(S, R) . m = const(S, R) . CCs(Bd. 0 

The next observation deals with the question what happens if one adds a 
natural restriction on Boolean circuits requiring the outdegree bounded by 2 
(and so the degree bounded by 4). We show that this restriction is not essential 
for the study of the asymptotic combinational complexity of concrete functions. 

Observation 3.2.3.2 Let X be a set of Boolean variables. Let S be a base 
containing the identity function. For each Boolean circuit B over S and X, there 
exists an equivalent Boolean circuit B' over S and X with outdegree bounded by 
2 and with 

CCs(B') ~ 6· CCs(B). 

Proof. Let gi = (h, gr, g8) be a gate of B with out degree k ~ 3. Then we 
exchange the edges outcoming from gi by a a binary tree with k leaves. The 
internal nodes (gates) of the tree realize the identity function, and the root of 
the tree is gi, and the edges are directed from the root to the leaves (see Figure 
3.2). 

Obviously, if we exchange all gates with degree at least 3 by the trees with 
the identity gates described above, we get a new Boolean circuit B' equivalent 
to B. To estimate CC(B') we first observe that the number of edges in B is at 
most 2· CC(B) because each gate of B has indegree bounded by 2. Secondly, we 
observe that the binary tree replacing the k edges leading from gi has at most 
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Fig. 3.2. The simulation of an unbounded fan-out gate by a circuit with outdegree 
bounded by 2. 
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2k internal edges leading to the identity gates. Thus, B' has at most 6· CC(B) 
edges, i.e., CC(B') ::::: 6· CC(B). 0 

In Section 2.1.1 we have defined Boolean formulas as formulas over the base 
Bas = {T, V, A, Ee, =, =}}. We define, for any Boolean formula F, the com­
plexity (length) of F as a nonnegative integer L(F) equal to the number 
of the occurrences of Boolean operations in F. For instance, L(F1) = 5 for 
f1 = (T(xt} V X2) =} (X3 V T(X2))' The formula complexity of a Boolean 
function f, is 

L(f) = min{L(F) I F(a) = f(a) for every input a}. 

The following fact is obvious. 

Observation 3.2.3.3 For every Boolean function f E B'2 

n + L(J) ~ CCBas(J) ~ CC(J). 

The rest of this subsection is devoted to estimating the value 

ShCC(n) = max{CC(J) If E B~}, 

called Shannon's function of combinational complexity. Obviously, the 
number ShCC( n) is the combinational complexity of the hardest function of B'2, 
i.e., the minimal combinational complexity sufficient to compute any Boolean 
function of B'2. Despite the fact that there exist very fine estimates of ShCC(n) 
in the literature, we give only some rough estimate of ShCC(n) which are suf­
ficient for our purposes and do not require any hard technical consideration. 

We start with an upper bound on ShCC(n). 

Definition 3.2.3.4 Let Xn = {Xl,." ,xn} be a set of Boolean variables. We 
denote by x~ the variable Xi and by x? the formula xf for any i E {I, ... , n}. 
Let {i1 , ... ,ir } be a subset of{l, ... ,n}. For each vector (al ... ,ar ) E {O,lY 
the formula Xftl A X~2 ••. A x?rr is an elementary conjunction over X n, and 
the formula Xftl V X~2 V ... V x?rr is an elementary disjunction over X n. 

Lemma 3.2.3.5 For any n E N, 

ShCC(n) ::::: n· 2n+1. 

Proof. Let f be a Boolean function of B'2 and Xn = {Xl, ... , xn} be the 
Boolean variables over which the functions in B'2 are defined. Let N 1 (J) be the 
set of inputs which satisfies f. We observe that, for each a = (a1, ... , an) E 

{O, l}n, Fa = /\7=1 Xfi corresponds to a Boolean function hover Xn with 
N l (h) = {a}. Thus the following formula 
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corresponds to f (Fj(f3) = f(f3) for every f3 E {O, l}n). Since L(Fj) ~ IN1(J)I· 
L(x~ !\ xg!\ ... !\ x~) ~ 2n. (2n -1) we get CC(J) ~ n· 2n+l. 0 

Now we give a lower bound on Shannon's function of combinational com­
plexity by using a simple "counting argument". The idea of the counting ar­
gument is based on the fact that for two different Boolean functions one must 
have two different straight-line Boolean programs. Since the number of differ­
ent Boolean functions of n variables is 22n, we need 2 2n different straight-line 
Boolean programs (circuits) to compute all functions of B2. What remains is to 
show how complex straight-line programs must be taken to have the possibility 
to get 22n different ones. 

Lemma 3.2.3.6 For any n E N, 

ShCC(n) ~ 2n - 2 In. 

Proof. We binary code each straight-line Boolean program in the following way. 
Let B = 91, ... ,9k be a straight-line Boolean program over X = {Xl, ... ,Xn } 

and Bi U Bi. Without loss of generality we assume k ~ n. We shall code 
each 9i as a Cod(9i) E {O, 1}1 for l = 2d + 6, d = fIOg2 k 1 as follows. 
If 9i (i E {l, ... ,k}) is a Boolean variable for some j E {1, ... ,n}, then 
Cod(9i) = OOBINd" 1 (j)OdH. If 9i is a Boolean constant a E {O, I}, then 
Cod(9i) = lla02d+3 . In what follows, for each h E Bi, let Cod(h) be a code of 
h from {O,I}. If 9i = (h,9r) for some h E Bi and 1 ~ r < i, then Cod(9i) = 
0ICod(h)OOOBINd"1(r)Od. Obviously, we can also find a coding of functions of 
Bi, such that Cod (h) E {O, 1}4 for each h E Bi. Thus, if 9i = (h, 9n 9.) for some 
h E Bi, 1 ~ r, s < i, then Cod(9i) = lOCod(h)BINd"l (r)BINd"l (s). Finally, we 
set Cod(B) = OklCod(91)Cod(92) ... Cod(9k). So, we have unambiguously as­
signed a Cod(B) of length k+ 1 +k·l = k+ 1 +k(2 flog2 k 1 +6) ~ k(2 flog2 k 1 +8) 
to each straight-line Boolean program of length k. Since two different straight­
line programs have two different codes we get that one must have at least 22n 

different codes to be able to code all straight-line Boolean programs computing 
all functions of B2. Since the codes are binary words we obtain that this is 
possible only if the number of different words of length at most k· (flog2 k 1 + 8) 
is greater than 22n. Following this we have 

which implies k ~ 2n - 2 In. o 
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3.2.4 Exercises 

Exercise 3.2.4.1 Write a straight-line Boolean program corresponding to the 
Boolean circuit in Fig. 3.1 and differing from the two straight-line programs for 
this circuit presented in Section 3.2.2. 

Exercise 3.2.4.2 Design a Boolean circuit equivalent to the Boolean circuit in 
Fig. 3.1, but having fewer gates than the circuit in Fig. 3.1. 

Exercise 3.2.4.3 Prove that for each Boolean function f, there exists an un­
bounded fan-in Boolean circuit B f over F computing f with D(B f) ~ 3. 

Exercise 3.2.4.4 Prove, that for each Boolean function f E B~ there exists a 
Boolean circuit B't over B~ U B~ computing f with D(B't) ~ n + log2 n. 

Exercise 3.2.4.5 Find the smallest constant k such that 

CC(J) ~ k . CC{II,V,n(J) 

for any Boolean function f. 

Exercise 3.2.4.6 * Search for the smallest possible constant t such that 

CC B, (f) ~ t . CC B2 (f) 

for any complete bases Bl and B 2 . 

Exercise 3.2.4.7 • Prove 

2n 
ShCC{II,v,n(n) = -;. (1 + 0(1)). 

Exercise 3.2.4.8 * Let f E B~ be a linear Boolean function. Then 

CC{II,V,n(f) ~ 4n - 4. 

Exercise 3.2.4.9 * Prove that, for any sufficiently large n, there exists a linear 
Boolean function hn E B~ such that 

Exercise 3.2.4.10 Design a Boolean circuit computing the sum of two integers 
a and b, binary coded on the length n (i.e., the input is of length 2n and the 
output of length n + 1). 
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3.3 Lower Bounds on the Area of Boolean Circuits 

3.3.1 Introduction 

The main aim of this section is to show that communication complexity can 
be used to get quadratic lower bounds on the layout area of Boolean circuits. 
Note that no other technique before has brought any nonlinear lower bound on 
the area complexity of Boolean functions. This lower bound technique is the 
starting point for us to attack the fundamental problem concerning the proof 
of a nonlinear lower bound on combinational complexity in Section 3.4. It is 
one of the simplest standard applications of communication complexity based 
on a division of a circuit into two parts in such a way that each part contains 
approximately half the inputs. Then the communication complexity cc(f) of a 
Boolean function f gives a lower bound on the number of edges leading between 
these two parts. This fact can be used to get a lower bound on the area of any 
Boolean circuit computing f. 

This section is organized as follows. Section 3.3.2 defines the layout of 
Boolean circuits as well as the Boolean circuit area complexity of Boolean 
functions. Section 3.3.3 presents the main assertion of the section - the re­
lation between communication complexity and Boolean circuit area. Section 
3.3.4 compares two kinds of layouts of Boolean circuits in the plane. Section 
3.3.5 is devoted to the three-dimensional layout of Boolean circuits and its re­
lation to communication complexity. After that, as usual, exercises and open 
problems are formulated. 

3.3.2 Definitions 

Considering the approaches in the study of circuits, we see that layout area of the 
circuit is a more important complexity measure from the practical point of view 
than combinational complexity. The main reason for the above claim is that the 
layout area exactly corresponds to the size of the chip produced, and the fact 
that the cost of production and the unreliability of the chip grow exponentially 
with the size (layout area) of the chip. [To see this, consider a technological 
process producing reliable chips of size A with probability p, 0 < p < 1 (for 
instance, if p = 1/2 then approximately every second chip produced by this 
technology can be used and the rest must be scrapped). Then to produce a 
chip of the same kind but twice as large as before the probability of reliable 
production is decreased to p2 (if p = 1/2, then only every 4th chip produced is 
reliable). Thus, if one wants to produce a chip of size k· A, then the probability 
of producing a reliable chip is decreased to pk.J 

Above we have seen the reasons to investigate the area complexity of circuits 
but before starting to do so we need a precise definition of area complexity, 
which strongly depends on the layout rules for Boolean circuits. The layout 
rules described in the following definitions follow the technological (electrical) 
requirements that: 
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(i) the distance between any two physical links (switches) laid in parallel is 
at least A (a physical constant assuring that the electrical stream in one 
switch has no essential influence On the voltage of another switch) 

(ii) the distance between any two processors in the layout is at least A. 

Note that we can restrict our study to Boolean circuits with the degree bounded 
by 4 as already mentioned in Section 3.2.2. 

Definition 3.3.2.1 Let G = (V, E) be a directed graph of degree at most 4. A 
grid-graph G of G = (V, E) is a layout of G into the two-dimensional lattice 
with the following properties: 

1. Each square of the lattice has some of the following contents: 

(a) a vertex of V [see Figure 3.3a] 

(b) a straightforward part of a line going in the horizontal or in the 
vertical direction (this line is a part of the layout of an edge of the 
graph) [see Figure 3.3b] 

(c) a broken line coming in the lattice square in one of two vertical (hor­
izontal) directions and coming out in one of two horizontal (vertical) 
directions [see Figure 3.3c] 

(d) a crossing of two lines, one going in the horizontal direction, the 
other one in the vertical directions (this depicts the crossing of two 
edges of E in the layout) [see Figure 3.3d] 

(e) the empty content. 

2. If one square of the lattice contains a node of V, then none of the 8 
neighboring squares of this square contains a node of V. 

The area complexity of G, A(G), is the area of the minimal rectangle 
Rect( G) comprising all nonempty squares of the lattice. 

An example of the Rect(G) of a grid-graph G of the complete binary tree 
of depth 4 with edge direction from the leaves to the root is depicted in Figure 
3.4. The area complexity of this grid-graph is 12 . 12 = 144. 

Definition 3.3.2.2 Let G = (V, E) be a directed graph of degree at most 4. 
The layout area of G is A(G)= min{A(G) I G is a grid-graph of G}. Let B 
be a Boolean circuit with both in degree and outdegree bounded by 2. The area 
complexity of B is AC(B)= A(B). 

For any Boolean function f, the area complexity of f is 

AC(f) = min{AC(B) I B computes n. 
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(c) (d) 

Fig. 3.3. Possible contents of the lattice squares of a grid-graph 

Observation 3.3.2.3 For every Boolean function f E B2, n E ]\>I, 

AC(J) :<:; 16· (CC(J))2. 

Proof. Let B be a Boolean circuit of m nodes and e edges. We consider an 
(e + 2) x 4m lattice. We lay all nodes of B into the second row of the lattice 
in such a way that, for each square X containing a node of B, X does not lie 
on the border of the lattice and, for any two squares Y and Z containing nodes 
of B, the distance between X and Z is at least 3 (see Figure 3.5). For each 
square of the lattice containing a node v of B, we define the country of v, C (v), 
as the part of the second row of the lattice involving the square X containing 
v, the left neighbor of X, and the two next squares laying to the right from 
X. Now, the edges are laid as follows. A number n(e) of {3, 4, ... , e + 2} is 
assigned to each edge e of B in such a way that two different edges have two 
different numbers. An edge (u, v) is laid as a line first going from u vertically 
via one of the four columns containing an element of C(v) to the n((u, v))-th 
row, then going horizontally via the n((u, v))-th row of the lattice to a column 
Z containing an element of C(u), and finally going to v via the column Z. Since 
e :<:; 2m in Boolean circuits of degree 4, we get the assertion of Observation 
3.3.2.3. 0 

Figure 3.5 illustrates the layout of the Boolean circuit computing the func­
tion (Xl V X2) 1\ Xl. We see that one row and two columns are reserved for the 
layout of each edge. 

A typical requirement on circuits in practice is that the inputs and outputs 
(input ports and output ports) lie on the border of the circuit layout. Since the 
area complexity of circuits with inputs and outputs on the border of the layout 
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Fig. 3.4. A grid-graph 

may essentially differ from the area complexity defined above, we also define 
this special area complexity measure. 

Definition 3.3.2.4 Let G = (V, E) be a directed graph of degree at most 4, and 
let U be a subset of V. The b-Iayout area of G according to U is 

bA(G, U) = min{A(G) I G is a grid-graph of G containing all nodes 

of U on the border of the minimal rectangle comprising G}. 

Let B be a Boolean circuit with both in degree and outdegree bounded by 2, 
with the set of input nodes X, and with the set of output nodes Y. The b-area 
complexity of B is 

bAC(B) = bA(B,X U Y). 

For any Boolean function f, the b-area complexity of f is 

bAC(f) = min{bAC(B) I B computes j}. 

3.3.3 Lower Bounds on the Area Complexity Measures 

The aim of this subsection is to show which lower bounds on the area complexity 
measures are provided by communication complexity. In this case we consider 
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Fig. 3.5. A grid-graph of a Boolean circuit computing the Boolean function 
!(XbX2) = (Xl VX2) 1\ Xl 

a typical use of communication complexity based on the fact that the number 
of communication bits flowing via the edges dividing a circuit into two parts 
must be at least as large as the communication complexity according to the 
partition of input variables corresponding to the cut of the circuit. Since each 
edge of a Boolean circuit transfers only one bit during the whole computation 
on an input assignment, the communication complexity provides a lower bound 
on the number of edges of the above mentioned circuit division. Formalizing 
this idea in what follows we show how this results in lower bounds on the area 
complexities of Boolean circuits. 

Definition 3.3.3.1 Let G = (V, E) be a directed graph (Boolean circuit). 
(E', Vi, V;) is called a cut of G if E' ~ E, VI U V; = V, Vi n V2 = 0 and 
E' = En (Vi x V; U V2 X VI). A vertex-cut of G is any triple (V', UI , U2 ) 

such that V' ~ V, V' n UI = V' n U2 = UI n U2 = 0, V = V' U UI U U2 and 
En ((UI x U2 ) U (U2 x UI )) = 0. 

Note that is some cases an edge-cut (E', Vi, V;) of a graph G can be given 
by the set E' (or by the sets VI, V;) only. Similarly to describe a vertex-cut 
(V', UI , U2 ) it may be sufficient to give V' only. 

Definition 3.3.3.2 Let G = (V, E) be a directed graph with a degree bounded by 
4. Let G be a grid-graph of G, and let Rect(G) be the minimal lattice rectangle 
comprising G. A cut-line of Rect( G) is any continuous line w laying on the 
edges of the lattice with disjoint endpoints laid on the border of Rect( G) [see 
Figure 3.6 for an example]. The length of w is the number of lattice edges of 
w. E(w) is the set of all edges of E crossing the line w (i.e., all edges of E 
crossing the edges of the lattice which are parts of w). Let Vb V2 be subsets of 
V such that E(w) = En (VI x V2 U V2 x Vd, VI U V2 = V and VI n V2 = 0. If 
there are several possibilities to choose VI and V; with the above properties we 
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fix them unambiguosly as sets of vertices corresponding to the two components 
of the grid-graph G' given by the line w. Then (E(w), V1, "2) is called the cut 
of G induced by the line w. 

Lemma 3.3.3.3 Let G = (V, E) be a Boolean circuit (a directed graph of a 
degree at most 4), and let V' be a non empty subset of V. Let G be a grid-graph 
of G, and let Rect(G) have size a x b, a ~ b. Then there exists a cut-line w of 
Rect( G) such that 

(i) the length of w is at most b + 1, and 

(ii) the cut (E(w), Vb V2 ) ofG induced by w fulfills 

-1:::; !V1 n V/I-!V2 n V'I:::; 1. 

Proof. We give an algorithm constructing a cut-line with the properties (i) and 
(ii). The line will be unambiguously defined by the sets Sl and S2 of lattice 
squares produced by the algorithm. At the beginning Sl = 0 and S2 contains 
all squares of Rect(G). In the first step the algorithm puts the square of the 
top-left corner of Rect(G) from S2 to Sl. If Sl does not contain at least f!V'1/21 
nodes of V', then the algorithm continues by moving one square of S2 to Sl. 
Obviously, this can be done in such a way that the line between Sl and S2 
involves at most one single jog and so its length is at most b + 1. (The squares 
are first chosen from the first column top down, then from the second column 
top down, etc.) The algorithm halts when Sl contains f!V/1/21 nodes of V'. 0 

Fig. 3.6. A cut-line of the lOx7 lattice of length 20 

Now we are prepared to formulate the lower bounds on area complexities. 
To do it, we use the general form based on s-communication complexity. 

Theorem 3.3.3.4 Let f be a Boolean function. Then 

AC(J) ~ (scc(J) - 1)2. 
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Proof. Let X be the set of input variables of j, and let Z ~ X be such that 
scc(j) = cc(j, (Z)). We have to prove that every circuit B computing j has 
AC( B) ~ (cc(j, (Z)) - 1)2. We do it by contradiction. Let S = (V, E) be 
a circuit computing j with AC(S) < (cc(j, (Z)) - 1)2. This means that there 
exists a grid-graph S of S with Rect(S) of size a x b < (cc(j, (Z) ) _1)2. Without 
loss of generality we assume a ~ b, which implies b < cc(j, (Z)) -1. Let Z' ~ V 
denote the set of input nodes corresponding to the variables from Z. Applying 
Lemma 3.3.3.3 we find a cut-line w of Rect(S) such that 

(i) the length of w is at most b + 1 < cc(j, (Z)), and 

(ii) the cut (E(w), VI, V2 ) of S induced by w fulfills 

-1 :s: IVI n Z'I- IV; n Z'I :s: 1. 

Now we describe a communication protocol D computing j with communi­
cation complexity at most b+ 1, which will be a contradiction. First, we observe 
that the partition of input nodes of Z' into VI n Z' and V; n Z' corresponds 
to a balanced partition of the set of input variables X according to Z. Thus, 
following Figure 3.7 we can consider the part of S left from w as the first (left) 
computer of D and the additional part of S (the part right from w) as the sec­
ond computer of D. Secondly, the number d of edges of S crossing the cut-line 
w is at most b + 1, and each edge of S transfers exactly one value during the 
whole computation on one input assignment. 

It is now sufficient to realize that one can unambiguously assign a time­
value t E 1'\1 to each edge e of S corresponding to the time in which e transfers 
a Boolean value. (If this is not clear, consider the following assignment on the 
nodes of S. Each input node obtains the time-value 1, and each gate obtains 
the time-value 1 +maximum of the values of its input nodes. Each directed edge 
(u, v) of S gets the time-value of the node u.) Thus, D sends in the first round 
the Boolean values of all edges leading from the left part of S to the right part of 
S and having time-values equal to 1. In the second round D does it for the edges 
crossing w from right to left and having time-value 1. Generally, the (2k -1)-th 
round and the 2k-th round of D is used to transfer the Boolean values of edges 
with the time-value k. The rounds corresponding to an empty set of edges are 
omitted. The exact formal description of D is left to the reader as an exercise. 

So we have constructed a protocol D with cc(D) = d :s: b + 1 < cc(j, (Z)) 
which contradicts the existence of S. 0 

Corollary 3.3.3.5 Let j be a Boolean function. Then 

AC(j) ~ (cc(j) - I? 

Theorem 3.3.3.6 Let j be a Boolean function on n variables. Then 

bAC(j) ~ (n + 1) . (scc(j) - 1)/2. 
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a 

Fig. 3.7. A cut-line of the length b + 1 

Proof. Let X = {Xl, ... ,xn } be the set of input variables of f, and let Z ~ X be 
such that scc(J) = cc(J, (Z)). Let S be an arbitrary Boolean circuit computing 
f, and let the size of Rect(S) be a x b for some grid-graph S of S. Let Z' denote 
the set of input nodes corresponding to the variables from Z. Without loss of 
generality, we can assume that a 2 (n + 1)/2 (at least (n + 1)/4 input and 
output nodes are laid on one of the four borders of Rect(S)). Using Lemma 
3.3.3.3 we can find a cut-line w of Rect(S) with the following properties: 

(i) w is perpendicular to the side of the length a, 

(ii) the length of w is b + 1, and 

(iii) the cut (E(w), Vi, V2 ) of S induced by w fulfills 

-1 s; 1V1 n Z'I- 1V2 - Z'I s; 1. 

Similarly as in the proof of Theorem 3.3.3.4 one can prove b 2 scc(J) - 1 which 
completes the proof because a x b 2 (n + 1) . (scc(J) - 1)/2. 0 

Corollary 3.3.3.7 Let f be a Boolean function of n variables. Then 

bAC(J) 2 (n + 1) . (cc(J) - 1)/2. 

Above we have shown that communication complexity can provide quadratic 
lower bounds on the area complexity of Boolean circuits. So all functions with 
linear communication complexity have at least quadratic area complexity. We 
gave several examples of such Boolean functions in Chapter 1. Here, we present 
an example of a function having quadratic area complexity and linear communi­
cation complexity. So the lower bound provided by communication complexity 
is asymptotically optimal in this case. 
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Example 3.3.3.8 We consider the language 

Lchoice = {WZUV E {O, l}* Ilwl = Izl = Ivl = lui = 2m, mEN, 
w = WIW2'" wm , Z = Zlz2." Zm; 

if U = Ul1u2, V = rl1r2, #1(UI) = #l(rl), 
lUll = j -1 and hi = i -1 for some i,j E N, 

then Wj = z;}. 

In this language the subwords U and v decide which positions of subwords 
wand z have to be equal. In Theorem 2.6.3.1 we have shown scc(hn(Lchoice)) 2 
niB. Thus AC(hn(Lchoice)) = Q(n2 ). 

1 

Fig. 3.8. A scheme for the construction of a Boolean circuit computing the Boolean 
function hn(Lchoice) 

Now we show that this quadratic lower bound is asymptotically optimal. Let 
n = Bm. We construct a Boolean circuit S computing hn(Lchoice) in the following 
way. S consists of components (small circuits of constant size independent on 
n), Kij and Dj , for i, j E {I, 2, ... , 2m}, as depicted in Figure 3.B. 

Each component IKijl has 7 inputs QI,Q2,Q3,Q4,Q5,q6,q7 and 7 outputs 
Pl,P2,P3,P4,P5,P6,P7 (see Figure 3.9) that are defined as follows: 
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4 4 

5 5 
Kij 

Ui 6 6 

Wi 7 7 

Fig. 3.9. The component Kij of the circuit of Figure 3.8 responsible for the potential 
comparison of Wi and Zj 

Pi qi for i E {1,2,6, 7} 

Pj (q2 V q3 V q4 V q6) 1\ qj for j E {3,4}, 

P5 ( (ql == q7) V q2 V q3 V q4 V q6) 1\ q5 

Informally, Kij copies the values ql = Zj, q2 = Vj, q3 = 1, q4 = 1, q5 = 
1, q6 = Ui, q7 = Wi on the outputs Pl,P2,P3,P4,P5,P6,P7, respectively, until the 
situation does appear in which we have to compare Wi and Zj. This situation 
appears iff 1 = q2 = q3 = q4 = q6· In this case P5 = (ql == q7) = (Zj == Wi) and 
P3 = P4 = O. 

The component D i , for i = 1,2, ... , 2n computes the conjunction of its 
inputs. The left input of Di (see Figure 3.9) is P5 of the component K i,2m' 

It can easily be seen that S computes hn(Lchoice) for n = 8m. Since each 
component Kij(Di) can be realized by using a constant (independent of n) 
number of gates, the circuit S has bAC(S) :0:::: d· n2 for a constant d. 0 

3.3.4 A Comparison of two Area Complexity Measures 

In the previous subsections the area complexity measures of Boolean circuits 
(AC(J) and bAC(J)) were defined and some relations between communication 
complexity and these measures were established. We observe that for a Boolean 
function f with a sublinear communication complexity we obtain larger lower 
bounds for bAC(J) (namely n·cc(J)) than for AC(J). A natural question arises: 
How much may bAC(J) differ from AC(J) for a specific function? In this section 
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we show that for every Boolean function f 

bAC(f) :::; 2AC(f) + 12 . n . VAC(f). 

This result is achieved by giving a general construction bringing the input pro­
cessors onto the border of the layout. Then we show that this construction is 
optimal in the sense that there exists a sequence of Boolean functions {gn};:"=l 
with 

O(n) and 

Q(n3/ 2 ). 

Lemma 3.3.4.1 For every Boolean function f : {O, l}n -+ {O, I}, 

bAC(f) :::; 2AC(f) + 12· n· VAC(f) = O(AC(f) + nVAC(f)). 

Proof. Let f : {O, l}n -+ {O, I} be an arbitrary Boolean function of n variables, 
n E N, and let 8 be a Boolean circuit computing f. Let S be a grid-graph of 
8 with Rect(S) of a size a x b, a :::: b, a, bEN. It is sufficient to construct a 
grid-graph 8' of a circuit equivalent to 8 with all inputs and the output on the 
border of the layout and with the size of Rect(S) at most 2ab + 12 . n . b. 

r- 1\ h r+ 1\ 0+-n 
I I X3 I 
r 0+- X2 ! 
I 1\ 

V r-- -.J 

- X2 L n 
J v + 
r 1\ I--~ 

Fig. 3.10. A grid-graph that does not have the inputs on its border 

Now we show how to construct 8' from S. Assume b > 2 because in the 
opposite case S has already the required properties. Let r1, r2, ... , ra denote 
the rows of Rect(S) from down to up and 81,82, ... ,8b denote the columns of 
Rect(S) from the left to the right. We add two new rows r -1 and ro at the 
bottom of Rect(S). The idea is to lay all inputs and the output in the row 
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r -1' Now we sequentially lay the inputs one after the other in the row r -1' Let 
x be an input which still does not lie in r -1' We distinguish two possibilities 
according to the position of x in the lattice. Let x lie on the intersection of a 
row rj and a column Si for some j E {I, ... , a}, i E {I, ... , b}. 

- 1\ h i 1\ I+- h 
I I X3 I 
r ..- X2 ! 
L r--- r- 1\ 

V I+- -.J 

"- Xl L h 
L.-r--- I V 

+ 
r r--- r- 1\ r- -.J 

Fig. 3.11. Inserting columns and rows in the grid-graph of Figure 3.10 

(i) Let x be the only input lying in the column Si and let there be no edge 
horizontally out coming from x to the left in the row rj. Then, we insert 
one new column Sx1 between the column Si-1 and the column Si into 
the lattice (see Figures 3.10 and 3.11 for the variable X3). After this we 
reorganize the circuit and its layout as follows (see Figure 3.12 for X3): 

a. we lay the input x on the intersection of r -1 and Sx1, 

b. we put a gate computing the identity function on the intersection of 
rj and Si instead of x, 

c. we lay an edge leading from x on the intersection of r -1 and Sx1 to 
the identity gate on the intersection of rj and Si, and finally 

d. we horizontally connect all horizontal links (edges) cut by inserting 
the column Sx1 into the lattice. 

Obviously, the new circuit computes the same function f as the previous 
one and the lattice has grown about a + 2 squares in this construction. 

(ii) Let x be not the only input in the column Si or let there be an edge 
horizontally leading from the left side of the square containing x in the 
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Fig. 3.12. A grid-graph equivalent to the grid-graph of Figure 3.10 and having all 
inputs on its border 

row rj. Then (for each X in the column) we insert three new columns 
Sxl, Sx2, Sx3 between the column S;-l and the column S; into the lattice 
(see Figures 3.10 and 3.11 for the variables Xl and X2). After this we make 
the following changes (see Figure 3.12 for the variables Xl and X2): 

a. we lay the input X on the intersection of r -1 and Sx2, 

b. we put a gate computing the identity function on the interconnection 
of rj and S; instead of x, 

c. we put a gate computing the identity function on the interconnection 
of rj and Sx2, 

d. we lay an edge vertically leading from X on the intersection of r -1 

and Sx2 to the identity gate on the intersection of rj and Sx2, 

e. we lay an edge horizontally leading from the identity gate on the 
intersection of rj and Sx2 to the identity gate on the intersection of 
rj and S;, 

f. if there was an edge horizontally leading from the left side of the 
square (originally containing x) on the intersection of rj and S;, then 
we add an edge horizontally leading from the right to the left into 
the square on the intersection of rj and Sxb and finally 

g. we horizontally connect all horizontal links (edges) cut by inserting 
the columns Sxl, Sx2, Sx3 into the lattice. 

Obviously, the new circuit computes the same function f as the previous 
one and the lattice has grown about 3· (a+2) squares in this construction. 
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Now it remains to bring the output node y into the row X-l. This can be 
done in almost the same way as for the input in case 2. The only two differences 
are: 

a. we leave the original output gate in position and lay the new output gate 
computing the identity function on the intersection of the row r -1 and 
the column Sy2, 

b. the edge leading between these two nodes has the same layout as in the 
input case above but the opposite direction (from the original output gate 
to the new output gate). 

We observe that the new grid-graph S' of the new circuit equivalent to S 
has Rect(S') of size at most (a+3(n+l))·(b+2)::; ab+2a+3(n+1)·(b+2)::; 
2 . ab + 12nb. 0 

To show that the construction of Lemma 3.3.4.1 cannot be asymptotically 
improved we consider the Boolean functions 

(A (Xi,l == Xi,2 == ... == xi,m)) V (A (Xl,j == X2,j == ... == xm,j)) 
,=1 )=1 

for any n = m2 , mEN. Note that gn is very similar to the function hn(Ro U Co) 
considered in Theorem 2.4.4.5. 

Lemma 3.3.4.2 For any n = m 2 , m = 2k, kEN: 

(i) AC(gn) ::; 36n, and 

(ii) bAC(gn) ::::: (n3/ 2 - 2n + n l / 2 - 2)/8. 

Proof. First we prove the upper bound (i). The scheme in Figure 3.13 shows 
how to construct a Boolean circuit S computing gn with Rect(S) of size 6n x 6n 
(to get a precise layout from this scheme one has to insert one column between 
any two columns and one row between any two rows of this scheme, and to 
connect the processors in an appropriate way). 

Now we prove the lower bound (ii). First we show that cc(gn) ::::: m/2 for 
any n = m2, mEN. Let X = u~lR; = Ui=lCj , where Ri = {Xi,1,Xi,2, ... ,Xi,m} 
for j = 1, ... , m and Cj = {Xl,j, X2,j, ... , Xm,j} for j = 1, ... , m. We call R; the 
i-th row of X and we call Cj the j-th column of X for any i, j E {l, ... ,m}. Let 
II be an arbitrary balanced partition of X. We distinguish the following three 
possibilities according to II: 

(1) ::ir,s E {1, ... ,m} such that R,. <:;;; IlL and Rs <:;;; IIR (each of the two 
computers contains at least one complete row of X) 
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Fig. 3.13. A schema of a grid-graph computing the Boolean function 9n 

(2) Vi E {1, ... , m}: R; nIh i= 0 (the first computer has at least one variable 
from each row of X) 

(3) Vj E {1, ... , m}: Rj n Ih i= 0 (the second computer has at least one 
variable from each row of X) 

Obviously, the cases (1), (2), and (3) cover all possible partitions from 
Bal(X). Now we deal with (1), (2), (3) separately. 

1. (1) implies that, for every k E {l, ... , m}, Ck n Ih i= 0 and Ck n IIR i= 0, 
i.e., the variables of each column are divided between IlL and IIR . We 
define 

A(II) = {w : X ~ {O, 1} 1 W(Xl,j) = W(X2,j) = ... = w(xm,j) 

f or all j = 1, ... , m, and W i= In, W i= on} 

We observe that A(II) is a I-fooling set for gn and II because for every c¥ = 
C¥1,1,C¥1,2, ... ,CXl,m,···,C¥m,1,C¥m,2,···,CXm,m E A(II), A~l(C¥i,l == CXi,2 == 
... == C¥i,m) = 0, NJ'=l(CXl,j == C¥2,j == ... == C¥m,j) = 1, and the matrix 
M(g~, II) for g~(Xl,l, ... , xm,m) = A'J!=l (Xl,j == X2,j == ... == Xm,j) contains 
exactly 2m ones corresponding to the 2m - 2 inputs in A(II), and to 
the inputs In and on. Thus for all II E Bal(X) with the property (1) 
cc(gn, II) ;:::: fiOg2 1 A(II) Il ;:::: m for m ;:::: 3. 
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2. (2) implies that Ih contains at least one variable from each row (i.e., 
there is no row completely contained in IIR)' Since II is balanced, there 
exists a set of positive integers SJI = {iI, i2, ... , i d } ~ {I, ... , m} such 
that d> m/2, and, for every l E SJI, Rl n IIR -I- 0. We observe that 

A(II) = {w : X ---+ {O, I} I W(XI,l) = W(XI,2) = '" = W(XI,m) 

for every l E S JI, W -I- 1 n, W -I- On and 

W(Xj,l) = W(Xj,2) = ... = w(Xj,m) = 1 

for every j E {I, 2, ... ,m} - SJI} 

is a I-fooling set for gn and II. Since IA(II)I ~ 2d_2 we obtain cc(gn, II) ~ 
flOg2(2 m / 2 - 2)1 ~ m/2 for m ~ 3 and II E Bal(X) with the property (2). 

3. The property (3) is symmetric to the property (2) and so this case can be 
solved in the same way as the second one. 

Thus we have proved cc(gn, II) ~ m/2 for every II E Bal(X) which implies 
cc(gn) ~ m/2. Following Theorem 3.3.3.6 we obtain 

bAC(gn) ~ (n + 1) . (m/2 - 1)/4 = (n3/ 2 - 2n + n 1/ 2 - 2)/8. 

o 

3.3.5 Three-Dimensional Layout 

In this section we consider the layout of Boolean circuits in a three-dimensional 
lattice. The results of this section are more of theoretical than of practical 
interest because all three-dimensional layouts in practice have the size of the 
third dimension bounded by a constant. Thus, the assertions above for the two­
dimensional layout are more closely related to the three-dimensional layout with 
a bound on the size of the third dimension than the assertions of this section. 

The aim of this section is to show which lower bounds are provided for 
the space complexity of Boolean circuits by our communication complexity ap­
proach. The assertions presented here are straightforward extensions of the pla­
nar case. We start with the definitions of the three-dimensional layout and of 
the space complexity of Boolean functions. 

Definition 3.3.5.1 Let G = (V, E) be a directed graph with degree bounded by 
6. A three-dimensional grid-graph G of G is a layout of G in the three­
dimensional lattice with the following properties: 

(i) The degree of G is bounded by 6. 

(ii) Each cube of the three-dimensional lattice has some of the following con­
tents: 

(a) a vertex of V; 
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(b) one broken line entering the cube through a wall and exiting through 
one of the neighboring walls; 

(c) at most three lines, each entering in the cube in a direction that 
is perpendicular to the input directions of other lines, and exiting 
through the non-neighboring wall to its input wall; 

(d) the empty content. 

(iii) If one cube of the lattice contains a node of V, then none of the 26 neigh­
boring cubes of this cube contains a node of V. 

The space complexity of G, S(G), is the area of the minimal rect­
angular parallelepiped Rect3(G) containing all nonempty squares of the three­
dimensional lattice. 

Definition 3.3.5.2 Let G = (V, E) be a directed graph with degree bounded by 
4. The three-dimensional layout space of G is 

S( G) = min{S( G) I G is a three-dimensional grid-graph of G}. 

Let B be a Boolean circuit with both indegree and outdegree bounded by 2. 
The space complexity of B is SC(B)= S(B). For any Boolean function f, 
the space complexity of f is 

SC(f) = min{SC(B) I B computes f}. 

Now we give analogous definitions for the three-dimensional layout with the 
input and output nodes on the outside walls of the layout. 

Definition 3.3.5.3 Let G = (V, E) be a directed graph with degree bounded by 
4, and let U be a subset of V. The three-dimensional b-Iayout space of G 
according to U is 

bS(G, U) = min{S(G) I G is a three-dimensional grid-graph of G which 

contains the nodes of U on the six outside walls of Rect3(G)}. 

Let B be a Boolean circuit with both indegree and outdegree bounded by 2, with 
the set of input nodes X, and with the set of output nodes Y. The b-space 
complexity of B is bSC(B)= bS(B). For any Boolean function f, the b­
space complexity of f is 

bSC(f) = min{bSC(B) I B computes f}. 

Observation 3.3.5.4 For any Boolean function f 

(i) SC(f) :s; bSC(f) 
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(ii) SC(f) ~ AC(f), and 

(iii) bSC(f) ~ bAC(f). 

Now we show some relations between the communication complexity of a 
Boolean function f and the space complexity measures of f. 

Theorem 3.3.5.5 For any Boolean function f 

SC(f) ~ (scc(f))3/2//8. 

Proof. Let X be the set of input variables of f, and let Y ~ X be such that 
scc(f) = cc(f, (Y)). Let R be a Boolean circuit computing f, and let R be a 
three-dimensional grid-graph of R with Rect3(R) of size a x b x c. Now it is 
sufficient to show that 

(a· b· C)2 ~ (scc(f)? /8. 

Let W of dimensions u x v, u, v ~ 2 be an arbitrary wall of Rect3(R). It is 
easy to find a plane L with at most one stair (in the same way as a line with a 
single jog was found in Lemma 3.3.3.3 for the two-dimensional case) such that 

(i) L is parallel to W, 

(ii) the area of L is at most uv + u + v ~ (u + 1) . (v + 1) ~ 2uv (u + v is for 
the part of the stair perpendicular to W), 

(iii) L defines a cut of R into two parts with the property that at least llYl/2 J 
input variables from Y enter each of these two parts. 

Consequently, 2uv 2: cc(f, (Y)) = scc(f). Since we have obtained this in­
equality for arbitrary sizes u, v of PR , we have 

(1) 2ab 2: scc(f), 

(2) 2ac ~ scc(f), 

(3) 2bc ~ scc(f). 

Multiplying expressions (1), (2), and (3), we obtain 

which completes the proof of Theorem 3.3.5.5. D 

Theorem 3.3.5.6 Let f : {D, l}n -+ {D, I} be a Boolean function of n variables, 
n E N. Then 

bSC(f) 2: vn+1. scc(f)/V24. 



182 3. Boolean Circuits 

Proof. Let X be the set of input variables of f, and let Y ~ X be such that 
scc(f) = cc(f, (Y)). Let R be an arbitrary Boolean circuit computing f, and 
let the size of Rect3 (5) be a x b x c, a 2 b 2 c, for some three-dimensional 
grid-graph 5 of S. It suffices to show a2b2c2 2 (n + 1) . (scc(f))2/24. Since 5 
can have at most 2ab + 2ac + 2bc ~ 6ab input and output vertices on its walls, 
we obtain 

(4) 6ab 2 n + l. 

Obviously, (2) and (3) from the proof of Theorem 3.3.5.5 hold. Multiplying 
expressions (2), (3), and (4), we obtain 

o 

Corollary 3.3.5.7 Let f : {O, l}n -+ {O, I} be a,Booleanfunction ofn variables, 
n E N. Then 

(i) SC(f) 2 (cc(f))3/2 lv's, and 

(ii) bSC(f) 2 VnTI· cc(f) I J24. 

Thus, using communication complexity one can obtain il(n3/2) lower bounds 
on the space complexity of Boolean functions. 

Corollary 3.3.5.8 Let f = {fi}~l be a sequence of Boolean functions, where 
fi : {O, l}i -+ {O, I}. Ifscc(fn) = il(n), then 

SC(fn) = il(n3/2). 

3.3.6 Exercises 

Exercise 3.3.6.1 * Let T'f be a complete binary tree of depth k. Estimate A(Tf) 
for any kEN. 

Exercise 3.3.6.2 • Let T'f = (Vb Ek) be a complete binary tree of depth k. Let 
Uk ~ Vk be the set of all leaves of T'f. Estimate bA(T'f, Uk) for any n E N. 

Exercise 3.3.6.3 • Prove that each planar graph of r nodes with the degree at 
most 4 can be laid out in a lattice of area O(r . (log r )2). 

Exercise 3.3.6.4 Prove an extended version of Theorem 3.3.3.4 considering 
computing problems instead of Boolean functions. 
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Exercise 3.3.6.5 Prove the following extension of Theorem 3.3.3.6: "For every 
computing problem P: of n inputs and m outputs, n, mEN, 

bAC(P~) ~ (n+m)· (scc(P~) -1)/4." 

Exercise 3.3.6.6 Improve the constants in the assertion of Lemma 3.3.4.1. 

Exercise 3.3.6.7 Use the scheme in Figure 3.13 to give a detailed description 
of the layout of the circuit S computing gn with A(S) :::; 36n2. 

Exercise 3.3.6.8 Give a precise formal description of the protocol D simulating 
the communication flowing between the two parts of the circuit S given by the 
cut (E(w), Vi, V2) in the proof of Theorem 3.3.3.4. 

Exercise 3.3.6.9 Let f be a Boolean function, and let X be the set of input 
variables of f. Let S = (V, E) be a Boolean circuit of depth k computing f, and 
let (E', Vb "2) be a cut of S with the property -1 :::; !Vl n XI- !V2 n XI :::; l. 
Prove that there exists a (k + 1) -rounds protocol D computing f within the 
communication complexity IE'I. Note that the protocol from the proof of Theorem 
3.3.3.4 uses 2k rounds. 

Exercise 3.3.6.10 Give a precise description of the Boolean circuits and their 
grid-graphs corresponding to the components Kij and D j for i, j E {I, 2, ... , 2m} 
from Example 3.3.3.8. 

Exercise 3.3.6.11 Let Tl = (Vk, Ek) be a complete binary tree of depth k. Let 
Uk C Vk be the set of all leaves of Tl- Estimate bS(Tl, Uk) and S(Tf) for any 
kEN. 

Exercise 3.3.6.12 • We define the Shannon's functions of the area complexity 
of Boolean functions as ShAC(n)= max{AC(J) I f E B2} and ShbAC(n)= 
max{bAC(J) If E B~}. Give some estimate ofShAC(n) and ShbAC(n). 

Exercise 3.3.6.13 • We define the Shannon's function of the space complexity 
of Boolean functions as ShSC(n)= max{SC(J) I f E Bn and ShbSC(n)= 
max{bSC(J) I f E B~}. Give some estimate ofShSC(n) and ShbSC(n). 

Exercise 3.3.6.14 • Prove bAC(p,n = Q(n2n) and bAC(p,;n) = O(n2n), 
where p,;n is the computing problem containing all 2n elementary conjunctions 
of n variables. 

Exercise 3.3.6.15 • Prove bAC(P;;') = Q(n22n) and bAC(P;;') = O(n22n) 
for m = 22n , where p;;' is the computing problem containing all 22n Boolean 
functions of n variables. 
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Exercise 3.3.6.16 * Prove bAC(pi:+1 ) = .o(n2 ) and bAC(pi:+1) = O(n2 ), 

where pi:+l is the computing problem corresponding to the multiplication of two 
binary integers of length n. 

Exercise 3.3.6.17 Prove, for some sequence Un}~=l of symmetric Boolean 
functions fn : {O,I}n -+ {O, I}, bAC(Jn) = O(nlogn) and bAC(Jn) = 
.o(n log n). 

Exercise 3.3.6.18 ** Prove, that for any directed graph G = (V, E) of degree 
bounded by 4, A(G) :::; c· (S(G))3/2 for some constant c independent on G. Show 
the optimality of this simulation result by finding a sequence Un}~l of Boolean 
functions such that fn E B2 and bAC(Jn) = .o((bSC(Jn))3/2). 

Exercise 3.3.6.19 Prove for any Boolean function f : {O, I}n -+ {O, I}, 

SC(J) ~ (scc(J) - 1 )4/3 

and 
bSC(J) = .o((n + 1?/3 . (scc(J)?/3). 

[Hint: Exercise 3.3.6.18 provides AC(J) :::; c(SC(J))3/2, and also bAC(J) < 
c(bSC(J))3/2 for any Boolean function fJ. 

3.3.7 Problems 

Problem 3.3.7.1 *. Prove an asymptotically higher lower bound than .o(n2 ) 

on AC(Jn) or bAC(Jn) for a sequence of Boolean functions Un}~=l. Note that 
according to the assertion of Observation 3.3.2.3 such a super-quadratic lower 
bound implies a nonlinear lower bound on CC(Jn). 

Problem 3.3.7.2 * Use k-rounds communication complexity to find a Boolean 
function f with the following properties: 

(i) the area complexity of any circuit of depth k computing f is 'large', and 

(ii) there exists a circuit of depth k + 1 computing f in a 'small' area. 

[Hint: Consider Exercise 3.3.6.9 to get a lower bound technique for results of 
kind (i)]. 

Problem 3.3.7.3 * Consider Problem 3.3.7.2 for the space complexity (three­
dimensional layout). 

Problem 3.3.7.4 Either find a Boolean function f with a large difference be­
tween SC(J) and bSC(J) or prove that such a Boolean function does not exist. A 
general strategy getting the input vertices on the walls of the three-dimensional 
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layout, and a concrete sequence of Boolean functions proving the optimality of 
this general strategy would give a complete solution of this problem. Note that 
Section 3.3.4 provides such a solution for the two-dimensional layout. 

Problem 3.3.7.5 • Theorem 3.3.5.6 and Exercise 3.3.6.19 provide 

bSC(J) ~ max{ v'n"+1. scc(J)/v24, (n + 1)2/3(scc(J))2/3/d} 

for any Boolean function f : {O, l}n -+ {O, I}, where d is a constant independent 
of f and n. This means that there may exist functiQns for which Theorem 3.3.5.6 
provides better lower bounds than Exercise 3.3.6.19, and conversively there may 
exist functions for which Exercise 3.3.6.19 provides better lower bounds than 
Theorem 3.3.5.6. Try to find a lower bound technique on the complexity measure 
bSC(J) which generalizes the approaches compared above. 

3.4 Topology of Circuits and Lower Bounds 

3.4.1 Introduction 

In this section we extend the idea of Section 3.3 by proving a nonlinear lower 
bound on the number of gates of Boolean circuits without any extremely dense 
connection between two arbitrary parts of the circuit. Section 3.4 is organized 
as follows. Section 3.4.2 gives the graph-theoretical basis formalizing the notion 
of "extreme density" involved here. In Section 3.4.3 we show that the communi­
cation complexity of f provides a direct lower bound on some tradeoff between 
the density of the circuit computing f and the number of gates of this circuit. In 
Section 3.4.4 we show the existence of Boolean circuits with such high density 
that the communication complexity approach cannot help to prove nonlinear 
lower bounds on their size. Finally, in Section 3.4.5 we use the lower bound proof 
technique of Section 3.4.3 to prove Q(n2 ) lower bounds on the combinational 
complexity of planar Boolean circuits computing specific Boolean functions. 

3.4.2 Separators 

In this section we define some graph-theoretical (topological) restrictions on 
Boolean circuits in order to be able to prove nonlinear lower bounds on the 
combinational complexity of such restricted circuits. We start with separators 
enabling some recursive partitioning of graphs. Note that the following defi­
nitions have the same meaning independently of whether directed graphs or 
undirected graphs are considered. 

Definition 3.4.2.1 Let G = (V, E,) be a directed graph of n nodes, n E N. 

Let s : N -+ N be a function. We say that G has an s(n) vertex-separator if 
either it has only one node, or one can find a set V' ~ V, lV'l ::; s(lVl), such 
that there exist Vb 112 ~ V with the following properties: 
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(i) V' U Vi U V2 = V, V' n Vi = 0, Vi n \12 = 0, V' n \12 = 0, 

(ii) E ~ Vi X Vi U v2 X \12 U Vi X V' U V' X Vi U V' X V' U V' X \12 U V2 X V' 
(i.e., the set of edges adjacent to the nodes in V' involves a cut of G), 

(iii) IV' U Vii ~ IVI/3 and /V' U V21 ~ IVI/3, 

(iv) the directed graphs G i = (Vb Ed and G2 = (\12, E2) with Ei = En(Vi X Vi) 
for i = 1,2 have an s(n) vertex-separator. 

We say that G has a strong s(n) vertex-separator ifG has only one node, 
or one can find a set V' ~ V with the properties (i), (ii), and 

(vi) the directed graphs Gi = (Vi, E i ) and G2 = (V2, E2) with E; = En(Vi X Vi) 
for i = 1,2 have an strong s(n) vertex-separator. 

We observe that an s(n) vertex-separator of a graph G enables us by an 
appropriate distribution of V' between Vi and V2 to partition G into two graphs 
G~ and G~, each of size at least one third of G. If this vertex-separator is strong, 
then we can obtain G~ and G~ of sizes differing at most by l. 

Now we define edge-separators. 

Definition 3.4.2.2 Let G = (V, E) be a directed graph of n nodes, n E N. Let 
s : N --t N be a function. We say that G has an s(n) edge-separator if either 
it has only one node, or one can find a cut (E', Vi, V2) of G such that 

(i) IE'I ~ s(/VI), 

(ii) IViI ~ /V1/3 for i = 1,2, and 

(iii) the directed graphs Gi = (Vi, E i ) and G2 = (\12, E2) with Ei = En(Vi X Vi) 
for i = 1,2 have an s(n) edge-separator. 

We say that G has a strong s(n) edge-separator if either it has only one 
node, or one can find a cut (E', Vi, \12) of G such that (i), and 

(iv) IViI ~ l/V1/2J for i = 1,2, 
(v) the directedgraphsG i = (Vi,Ei ) andG2 = (V2,E2) withE; = En(VixVi) 

for i = 1,2 have a strong s(n) edge-separator 

hold. 
We say that a cut (E', Vi, V2) of G is an s(n) bisection of G if (i) and (ii) 
hold. We say that a cut (E', Vb \12) of G is a strong s(n) bisection of G if 
(i) and (iv) hold. 

Observation 3.4.2.3 If G has a (strong) s(n) edge-separator for some s : N --t 
N, then G has a (strong) s(n) bisection. 
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Now we give two examples illustrating separators for two special classes of 
graphs. 

Example 3.4.2.4 We consider the family {Gmxm}~=l of two-dimensional grids 
(lattices) G mxm of size m x m (see Figure 3.14 for the G lOxlO). We observe that 
G mxm of n = m2 nodes has a strong Vn = m edge-separator if m = 2k for 
some kEN, and a strong Vn + 1 edge-separator for other m. To see this in 
Figure 3.14, we first divide G mxm in the middle in order to get two G mxm/ 2 

grids. G mxm/ 2 can be divided into two Gm/2xm/2 by removing m/2 :S Jm2/2 
nodes. So, after two recursive separations we again get squared grids Gm/2xm/2 

and the recursive separation can continue as described above. One can easily 
observe that the bisection of G mxm is at least Vn = m, and so, following 
Observation 3.4.2.3, each s(n) edge-separator of G mxm fulfills s(n) ~ Vn. 0 

Fig. 3.14. The application of an edge-separator for the grid of size 10 x 10 

Example 3.4.2.5 We show that any binary tree (acyclic graph of degree at 
most 3) has a 1 edge-separator. 

Let T = (V, E) be a binary tree of n nodes, n ~ 2. Obviously, each edge of 
E is a cut of T. The following procedure will find an edge representing a cut 
fulfilling the property (ii) of Definition 3.4.2.2. At the beginning the procedure 
picks an arbitrary edge (u,v) E E. This divides T into Tu and Tv, where Tu 
is the tree with the root u and Tv is the tree with the root v. If both Tu and 
Tv have at least n/3 nodes each, then we are ready. Without loss of generality 
we assume Tu has more than l2n/3 J nodes. If u has degree one in Tu then the 
procedure picks the only edge (u, r) adjacent to u in Tu and considers this edge 
(u, r) instead of (u, v) as a cut of T. If (u, r) and (u, s) are the two edges adjacent 
to u in Tu and the subtree Tr with the root r has at least as many nodes as the 
subtree Ts with the root s, then the procedure considers (u, r) instead of (u, v) 
as a cut of T. Tr has at least l n/3 J nodes because Tu has at least f2n/31 nodes, 
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and Tu is the largest subtree of the two subtrees of Tu. Thus, if Tr has fewer 
than r2n/31 nodes, {( u, r)} is a cut of T with the required properties. If Tr has 
more than 2n/3 nodes the procedure continues as described above. 

This procedure must finish with a cut having the required properties because 
the largest part of the two parts of T is always decreased in one step (the change 
of the candidating edge) but never decreased by more than n/3 nodes (i.e., the 
largest part is never exchanged by a part with fewer than In/3J nodes). 

We illustrate this procedure on the tree depicted in Figure 3.15. Let us pick 
the edge (a, b) as the first candidate for the cut. Then the tree Ta contains 
two nodes and the tree n contains 9 nodes. Obviously, this cut {(a, b)} is not 
balanced enough. Since b has only one son d in n we consider the edge (d, b) as 
the candidate for a cut of T. Now, Td contains 8 nodes, which is still too much. 
The subtree Te of Td has two nodes and the subtree Tf of Td has five nodes. 
According to the procedure described above we pick the edge (d, I). Since Tf 
has 5 nodes we have found a bisection {d, J} of T. 0 

a 

1\ l ' 
/~ 

e f 

/ /\ 
g h 

/\ 
u v 

Fig. 3.15. The search for the bisection of a binary tree 

Observation 3.4.2.6 Let G be a directed graph of degree bounded by a constant 
dEN. Let s : N -+ N be a function. If G has a (strong) s(n) vertex-separator, 
then G has a (strong) d· s(n) edge-separator. 

Following Observation 3.4.2.6 we see that if we are interested in the asymp­
totic behavior of separators of some Boolean circuits (whose degree is bounded 
by 4), then it does not matter whether we consider vertex-separators or edge-
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separators. In the case of unbounded fan-in Boolean circuits we have to take 
account of the kind of separators we consider. 

Next we deal with the question, how much strong separators may differ from 
separators of the same graph G. 

Let, for any function s : N --+ N, 

[toga/ 2 n 1 
rs(n) = L s«2/3)i. n). 

i=O 

We want to show that if G has a s(n) edge-separator then it has a strong 
rs(n) edge-separator. To do this we need the following definition and technical 
lemma. 

Definition 3.4.2.7 Let G be a graph having an s( n) edge-separator for some 
s : N --+ N. Let the recursive partitioning of G according to s divide G into Go 
and G I . Let Gi be partitioned into Gi,o and Gi,l, etc., Gi" i2, ... ,ik be partitioned 
into Gi" i2, ... ,ikoO and Gi" i2, ... ,ik,l, until we get graphs of one node. The partition 
tree of this recursive partition is a binary tree (V, E), where 

V = {G, Go, GI, Goo, GOl , G lO , Gll , GOal,"'} 

and 

{(G· . G· . 0) (G· . G· . 1) I '1,···,'11:' 't1,···,'I,1I:,' tl"",'k' '1,···,'11:, 

if Gi" ... ,ikoO and Gi" ... ,ik,l are nodes of V}. 

To illustrate Definition 3.4.2.7 we give a partition tree of the tree G = (V, E) 
in Figure 3.15 according to 1 edge-separators. Instead of writing Gi1, ... ,ik we write 
the set of nodes of Gi1, ... ,ik directly in Figure 3.16. 

Note that each internal node of the partition tree corresponds to a graph of 
at least two vertices and so it has exactly two sons. Each leaf of the partition 
tree corresponds to a graph of one node. The depth of the partition tree of 
a graph G = (V, E) according to an s(n) edge-separator is at most log3/21V1 
because each of the graphs Gi" i2, ... ,ikoO and Gi" i2, ... ,ik,1 has at most 2/3 of the 
nodes of Gi" ... ,ik' We observe that the vertex Gi1, ... ,ik = (V;" ... ,ik' Ei" ... ,ik) of the 
partition tree corresponds to the cut of Gi" ... ,ik into Gi1, ... ,ik,0 and Gi" ... ,ik,l, and 
the cardinality of this cut is bounded by S(/V;" ... ,ik I) ::; s(1V1 . (2/3)k). Thus, 
each vertex of depth k in the partition tree corresponds to a graph of size at 
most (2/3)k IVI. Finally we observe that each path of the partition tree from 
the root to a leaf corresponds to a sequence of partitions corresponding to the 
nodes of the path, and that the number of all edges of the cuts corresponding 
to the partitions of this path is bounded by rs (n). 

N ow we prove the following helpful lemma. 

Lemma 3.4.2.8 Let G = (V, E) be a graph of n nodes, n E N, and let t E 
N,O ::; t < n. Let G have an s(n) edge-separator for a function s : N --+ N. Then 
there exists a cut (E', VI, "2) such that 
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{ a, b,c,d,e,f,g,h,j, u, v } 

/ 
{f,g,h,u,v} 

/~ 
{h,u,v} 

/\ 
{u} {h,u} 

/\ 
{h} {v} 

I'~ 
{f} {g} 

~ 
{ a,b,c,d,e,j} 

/~ 
{a,c} 

/\ 
{a} {c} 

{b,d,e,j} 
/~ 

{b,d} {e~} 

/\ ! \ 
{b} {d} {e} {j} 

Fig. 3.16. The partition tree of the recursive partition of the tree in Figure 3.15 

(i) IE'I ::::: rs(n) 

(ii) 1V11 = t and 1"'21 = n - t. 

Moreover the graphs Hi = (Vi, Ei) with Ei = En (Vi x Vi) are unions of graphs 
corresponding to the nodes of the partition tree of G according to the s( n) edge­
separator. 

Proof. Let T be a partition tree of G according to s(n). We prove the assertion 
of Lemma 3.4.2.8 by an induction on the depth of T. 

First, if the depth is 0 then G has only one node, i.e., t = o. 
For the induction, let the left and right children of the root have nl and n2 

nodes respectively. We distinguish three cases according to the relations between 
nl, n2, and t. 

If nl < t take G1 on the left side and the rest G2 on the right side. Thus to 
get t nodes on the left side and n - t ones on the right side one has to partition 
G2 into t - nl nodes and n2 - (t - nl) nodes. But the partition tree for G2 
has its depth smaller than the partition tree for G. So we can USe the induction 
hypothesis to get the required separation of G2 by a cut of at most r s(n2) edges. 
Since the cut partitioning G into G1 and G2 has at most s(n) edges we obtain 
the required cut (E', V1 , V2 ) of G with 

IE'I ::::: s(n) + r S (n2) ::::: s(n) + rs Gn) = rs(n). 

If nl > t, but n2 ::::: t, changing the roles of G1 and G2 we have the same 
case as described above. 
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Finally, if nl and n2 are both greater than t take G I on the left side and G2 
on the right side. To complete the partition we still need to give nl - t nodes of 
G I to the right side. According to the induction we can do this by choosing at 
most Ts(nd edges of G I . So we have again obtained the required cut of G by 
removing at most s(n) + Ts(nl) :s:: Ts(n) edges. 0 

Now we are prepared to give the relation between separators and strong 
separators. 

Lemma 3.4.2.9 Let s : N -+ N be a function, and let G be a graph having an 
s(n) edge-separator. Then G has a strong Ts(n) edge-separator. 

Proof. Lemma 3.4.2.8 shows that we can partition G having an s(n) edge­
separator into two graphs GI = (VI, EI) and G2 = (V2' E2) with IIVII- 1V211 :s:: 1 
by removing at most Ts(n) edges. Moreover, this partition has the property 
that, for i = 1,2, Gi is a union of graphs corresponding to the vertices of the 
partition tree of G according to the s(n) edge-separator. Clearly, to halve Gi , 

it is sufficient to cut only one of the graphs constituting Gi into two parts with 
prescribed sizes. But according to Lemma 3.4.2.8 we can do this by removing at 
most Ts(IViI) edges from Gi . Moreover, the obtained quarter-graphs are again 
unions of graphs corresponding to the nodes of the partition tree of G. Thus, 
this procedure can continue recursively and we have proved that G has a strong 
Ts (n) edge-separator. 0 

The following corollaries show that usually s(n) does not differ too much 
from Ts(n). 

Corollary 3.4.2.10 Let s(n) = lna J for an a, 0 < a :s:: 1. If a graph G has an 
s(n) edge-separator, then G has a strong O(s(n)) = O(na) edge-separator. 

Proof. 

o 

Corollary 3.4.2.11 Lets(n) = llog2nJ. Ifa graph G has ans(n) edge­
separator, then G has a strong O((log2 n)2) edge-separator. 

Proof. 
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r1og3/21 

log2 n· rlog3/2 n 1 + L i ·log2(2/3) 
;=1 

r1og3/21 

log2 n . POg3/2 n 1 + log2(3/2)· L i 
;=1 

log2 n . POg3/2 n 1 + log2(3/2) . rlog3/2 n 1 . (POg3/2 n 1 + 1)/2 

O((lOg2 n?) 

o 

3.4.3 Lower Bounds on Boolean Circuits with a Sublinear Separator 

Here we want to show nonlinear lower bounds on the combinational complexity 
of Boolean circuits having a sublinear vertex-separator. The informal idea is 
a simple extension of the idea leading to nonlinear lower bounds on the area 
complexity of Boolean circuits in Section 3.4.2. Here we use the separators of a 
Boolean circuit computing a function f to find a cut of the circuit corresponding 
to an almost balanced partition of the input nodes (variables). Similarly as in 
Section 3.4.2 the cardinality of this cut must be at least acc(j). If we can show 
that the cardinality of this cut is sublinear for circuits with sublinear separators 
we obtain that circuits with sublinear separators require a nonlinear number of 
gates to compute a Boolean function with linear communication complexity. 

To formalize this idea we start by partitioning the input vertices for Boolean 
circuits with vertex-separators. 

Definition 3.4.3.1 Let G = (V, E) be a directed graph (circuit). (U, VI, Y;) is 
called a vertex-cut of G if U U VI U V2 = V, U n Vi = U n V2 = VI n V2 = 0 
and E ~ VI X VI U V2 X Y; U U x U U VI X U U U x Vi U V2 X U U U X V2 • 

Let X be a subset of V. We say that the vertex-cut (U, Vb Y;) is almost 
balanced according to X if there exists a partition of U into UI and U2 

(UI U U2 = U, UI n U2 = 0) such that 

IX n (Vi U Udl ;::: IXI/3 and IX n (Y; U U2 )1 ;::: IXI/3. 

We say that (U, Vb V2 ) is balanced according to X if there exists a 
partition of U into UI and U2 such that 

Lemma 3.4.3.2 Let S = (V,E) be a Boolean circuit (directed graph). Let X 
be a subset of V, and let IXI = n, IVI = m, n, mEN. Let s, h : N --+ N be 
functions such that sCm) = m/h(m). If S has a strong sCm) vertex-separator, 
then there exists an almost balanced vertex-cut (U, VI, V2 ) of G such that 
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(i) (U, VI, V2 ) is almost balanced according to X, and 

Proof. Since 8 has a strong m/h(m) vertex-separator we can find a vertex-cut 
of 8 partitioning 8 into two parts 81 and 82, each of at most r m/21 nodes. If 
none of 81 and 82 contains more than 2 r n/31 vertices of X, then we are ready. 
Without loss of generality we assume 81 contains more than 2n/3 vertices of X. 
We halve 81 by a cut of the cardinality at most !!.}/h(m/2) nodes and then we 
continue always halving the component containing at least 2 r n/31 nodes of X. 
Obviously, this recursive procedure consists of at most 10g2(m/n) steps because 
m/21og2(m/n)+l = n . m/2m = n/2 and no component of at most n/2 nodes of 
8 can involve more than n/2 nodes of X. We observe that if a component 8' 
contains more than 2 r n/31 nodes of X and 8' is partitioned into 81 and 82, 
none of them containing more than 2 r n/31 nodes of X, then one of 81 and 82 
must contain at least rn/31 nodes of X. Since in the i-th recursive partition 
step we have a cut of at most (m/2i- 1)/h(m/2i- l ) = m· (2i- 1 • h(m/2i- l ))-1 
nodes the proof is completed. 0 

Now we show that Zs(m, n) = o(m) if s(m) = o(m) and n is polynomially 
related to m. 

Proposition 3.4.3.3 Let s, h : N --t N be functions such that s(m) = m/h(m), 
h is unbounded and h(m) = O((log2 m)k) for a positive integer k. Then, for any 
n, mEN, m:::; n d for a positive constant d independent of nand m, 

Zs(m, n) = O(m/h(m)) = O(s(m)). 

Proof. Independently of the properties of the function h the following always 
hold: 

log2(m/n) 
Zs(m,n) m· L (2ih(m/2i))-1 

i=O 
log2(m/n) 

< m· (h(m/21og2(m/n)t1. L Ti 
i=O 

< 2· m/(h(m/(m/n))) = 2m/h(n). 

Since n ~ m l / d and h(m) = o ((lOg2 m)k) we have 

1 
h(n) ~ h(ml / d ) = (d)k . Q((log2 m)k) = Q((log2 m)k) = Q(h(m)) 

for any constant k independent of m. o 
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Lemma 3.4.3.4 Let s, h : N --t N be such functions that s(m) = m/h(m) 
o(m). Then, for any n, mEN, m:::; n d for a positive constant d independent of 
nand m, 

Zs(m, n) = o(m). 

Proof. If h(m) = o (log2 m), then the sublinearity of Zs(m, n) follows from 
Proposition 3.4.3.3. If h(m) = D(log2 m) we also get Zs(m, n) = o(m) because 
ZSl (m, n) ~ ZS2 (m, n) for any functions Sl and S2 such that Sl (m) ~ s2(m). 0 

Lemma 3.4.3.4 shows that an almost balanced separation of the input nodes 
of a circuit with a sublinear separator is always possible by removing only a 
sublinear number of nodes. The following assertion shows that we can say much 
more about Zs (m, n) if s is a "nice" function. 

Proposition 3.4.3.5 Let s(m) = k . m b for some constants k ~ 0, 0 < b < 1. 
Then 

Zs(m, n) = O(mb) = O(s(m)). 

Proof. Since s(m) = k . m/m1- b we have 

iog2(m/n) 

Zs(m, n) = km· L (i(m/2i)1-bt 1 

i=O 
iog2 m 

< k· mb L 1/2ib . 
i=O 

Since there exists a positive integer c with the property l/c:::; b:::; l/(c+ 1) we 
obtain 

iog2 m 

L 1/2ib < 
i=O i=O 

iog2 miog2 m 

< L L 1/2c[i(1/c)J+j 

j=O i=O 
iog2 m 

< c· L 1/2i:::; 2c :::; 2/b. 
i=O 

Thus 

o 

Now we are prepared to generally formulate the lower bound results pro­
vided by communication complexity for Boolean circuits with sublinear separa­
tors. 
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Theorem 3.4.3.6 Let, for any n E N, Sn be a Boolean circuit computing a 
Boolean function fn : {o,l}n -+ {O, I}. Let Sn have a strong s(m) verlex­
separator for a function s: N -+ N. Then 

Proof. Applying Lemma 3.4.3.2 we can find an almost balanced vertex-cut of 
Sn according to the set of input nodes of Sn with the cardinality bounded by 
Zs(CC(Sn), n). Since each node of Sn has degree bounded by 4, we have a cut 
containing at most 4 . Zs(CC(Sn), n) edges of Sn and partitioning the input 
variables in an almost balanced way. By the same argument as in Section 3.3 
we see that the number of edges of this cut must be at least as large as the 
a-communication complexity of fn- 0 

We observe that for acc(fn) growing asymptotically faster according to n 
than Zs(CC(Sn), n) we get a nonlinear lower bound on CC(Sn). Surely we get a 
nonlinear lower bound if acc(fn) = S2(n) and s(m) = o(m) because Zs(m, n) = 
o(m) in this case (see Lemma 3.4.3.4). Some special lower bounds for some 
special separators follow. 

Theorem 3.4.3.7 Let s, h : N -+ N be monotone functions such that s(m) = 
m/h(m) = o(m) and h(m) = O((log2 m)k) for a positive integer k. Let, for any 
n E N, Sn be a Boolean circuit computing a Boolean function fn : {O, l}n -+ 
{O, I}. If Sn has a strong s(m) vertex-separator, then 

CC(Sn) = S2(acc(fn) . h(n)). 

Proof. We may assume CC(Sn) ~ n2 because in the opposite case the 
lower bound is already proved. According to Proposition 3.4.3.3 we have 
Zs(CC(Sn), n) = O(CC(Sn)/h(CC(Sn))). Inserting this in the claim of The­
orem 3.4.3.6 we get the assertion of Theorem 3.4.3.7. 0 

Theorem 3.4.3.8 Let s(m) = k· mb for some constants k ~ 0, ° < b < l. 
Let, for any n E N, Sn be a Boolean circuit computing a Boolean function 
fn : {O,l}n -+ {O, I} with acc(fn) = S2(n). If Sn has a strong s(m) vertex­
separator, then 

Proof. According to Proposition 3.4.3.5 we have Zs(CC(Sn), n) = O((CC(Sn))b). 
Applying Theorem 3.4.3.6 we obtain (CC(Sn))b = S2(n). Thus CC(Sn) 
D(n1/ b). 0 
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3.4.4 Circuit Structures for Which Communication Complexity 
Does Not Help 

In Section 3.4.3 we have shown that communication complexity is able to pro­
vide nonlinear lower bounds on combinational complexity of circuits with sub­
linear separators. A very natural question is whether there exist Boolean circuits 
(graphs of degree at most 4) without sublinear separators (i.e., whether com­
munication complexity can provide nonlinear lower bounds on combinational 
complexity or not). In this section we show that there are graphs with bounded 
degree which do not have any sublinear separator. Moreover, we show that there 
exists a sequence of Boolean functions {In}:;O=l' fn : {O, l}n -+ {O, I} such that 
CC(Jn) = O(n) and acc(Jn) = .Q(n). This means that 

(i) for any n E N, there is a Boolean circuit having no sublinear separator 
and computing fn with O(n) gates, and 

(ii) any Boolean circuit having a sublinear separator needs nonlinear number 
of gates to compute fn. 

This result is not only of theoretical interest. Usually the circuit architec­
tures have O(m/logm) separators and typically the graphs without sublinear 
separators are random graphs of bounded degree. Thus, the sequence of func­
tions {fn}:;O=l is theoretically easy but not necessarily easy to compute. If one 
wants to design a circuit for fn, then one has to produce either a circuit with 
nice "regular" structure but with a nonlinear number of gates, or to search for 
an optimal circuit for fn with a structure close to random graphs of degree 4. 

We start by showing the existence of graphs with degree bounded by 3 and 
without sublinear separators. 

Definition 3.4.4.1 Let m and d be positive integers, and let c > 0 be a real 
number. An (m, d, c)-magnifier is a graph G = (V, E) having the following 
three properties: 

(i) IVI = m, 

(ii) the degree of G is bounded by d, and 

(iii) for each X <;;; V with IXI :s: m/2, there are at least c· IXI edges between 
the vertices in X and the vertices in V - X. 

Observation 3.4.4.2 Let d be a positive integer, and let c > 0 be a real number. 
Let {Gm};;'.'=l be a sequence of graphs where Gm is an (m, d, c)-magnifier for 
every mEN - {O}. Let s : N -+ N be such a function that, for every mEN, Gm 

has a strong s(m) edge-separator. Then 

s(m) = .Q(m). 



3.4 Topology of Circuits and Lower Bounds 197 

Proof. According to the property (iii) of Definition 3.4.4.1, for every m E 
N - {O}, every bisection of the (m, d, c)-magnifier Gm has size at least c· m/2. 

o 

To show that the lower bound method of Section 3.4.3 based on communi­
cation complexity cannot help to obtain a nonlinear lower bound on the combi­
national complexity of concrete Boolean functions it is sufficient to prove for all 
mEN - {O} the existence of (m, 4, c)-magnifiers for some positive real number 
c. In what follows we show even that there exist magnifiers of degree bounded 
by 3. Note that there is no magnifier of degree bounded by 2 because connected 
graphs of degree at most two are either cycles or paths. 

Definition 3.4.4.3 Let m be a positive integer, and let Perm denote the set of 
all permutations of m elements. 

Let A <:;;; Perm. We define the permutation graph of A as G A = (V, E), 
where 

We observe that the degree of the permutation graph G A of a permutation 
set A is bounded by IAI. 

The following result shows that if one randomly chooses a set of three 
permutations then the corresponding permutation graph is with a very high 
probability a magnifier. The proof of the next theorem is left as an advanced 
combinatorial exercise to the reader. 

Theorem 3.4.4.4 There exists a positive real number c such that for any m E 
N - {O} almost all permutation graphs of sets A <:;;; Perm with IAI = 3 are 
(m, 3, c)-magnifiers. 

Now we construct a sequence of Boolean functions F = {fn}~=l such that 
CC(Jn) = O(n) and cc(Jn) = D(n). Thus, F can be computed with a linear 
number of gates but any sequence of circuits with a sublinear separator requires 
a nonlinear number of gates to compute f. 

We can assume that there are a positive constant c and a sequence {G21 }l~3 

of graphs Gn = (Vn' En) with the following three properties: 

(i) G21 is a 3-regular graph, 

(ii) lV2d = 2l, 

(iiif for each X <:;;; V2lJ IXI :::; I there are at least c· IXI edges between the 
vertices in X and the vertices in V21 - X. 
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The existence of {G21}~3 directly follows from Theorem 3.4.4.4. We note 
that there even exists an algorithm constructing Gn for every given even n :2: 6. 
But we omit the proof of this fact here. In what follows we also use without any 
proof (the proof is left as an exercise to the reader) the fact that each 3-regular 
graph with at least six vertices is 3-colorable (the vertices can be colored by 
three colors in such a way that for every edge (u, v) of the graph the vertices u 
and v are colored by different colors). 

Now we construct a Boolean function fn : {O,l}n -+ {O, I} from Gn = 
(Vn, En) for any n E N, n:2: 6. The construction is done in the following four 
steps. 

1. Denote the n vertices from Gn = (Vn' En) by n variables in an arbitrary 
way. 

2. Color the vertices of Gn using 3 colors 1,2,3 by giving a function h 
Vn -+ {I, 2, 3} with the property h(r) i- h(s) for each (r, s) E En. 

3. For all i,j E {I, 2, 3}, i < j, define 

fn(i,j) = 1\ (u V v), 
(u,vlEEi,j 

where 
Ei,j = {(u, v) I (u, v) E En /\ h(u) = Z /\ h(v) =}l 

4. Define 

in(l, 2)(xI, ... , Xn) V in(l, 3) (Xl, ... , Xn) 

V fn(2, 3) (Xl, ... , Xn). 

Note that in is a monotone function. Because Gn is defined only for even n :2: 
6, we have defined fn for even n only. But one can extend the definition for odd n 
in several distinct ways, for instance, fn+l(XI, ... ,Xn+l) = fn(XI, ... ,xn)VXn+l' 

Theorem 3.4.4.5 CC(fn) = O(n) and acc(fn) = Q(n). 

Proof. First we prove CC(fn) = O(n). Since the number of vertices in Gn is 
n and the degree of Gn is bounded by 3, we have that the number of edges in 
Gn is at most 3n/2. Thus, the function fn expressed as the formula fn(l, 2) V 
fn(1,3) V fn(2, 3) has a linear size (i.e., it contains at most a linear number of 
symbols). Consequently, there is a Boolean circuit with a linear number of gates 
computing fn-

To prove acc(fn) = Q(n) we use the fooling set method. Here, we pre­
fer to describe how to construct the fooling sets rather than to give a formal 
description of them. 

Let IIn be an arbitrary almost balanced partition of X = {Xl, X2, ... ,Xn} = 
Vn. Let En(IIn) = En n (IIL,x X IIR,x). Obviously, property (iii) of Gn implies 
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that En(lIn) ~ c· Ln/3J. Now we can assume there are i, j E {I, 2, 3}, i =1= j, such 
that the number d(n) of edges (Xrll x s,), ... , (Xrd(n) , XSd(n)) leading between lIL,x 
and lIR,x and colored in such a way that h(xr,) = h(xr2 ) = ... = h(xrd(n)) = Z 
and h(xs,) = h(XS2) = ... = h(xSd(n)) = J is at least c· L n/3 J /6. Thus we can 
write 

den) 

in(i,j) = 1\ (Xrk V XSk ) I\i~(i,j), 
k=l 

where i~ (i, j) = !\(u,V)EE:,i (u V v) for E~,j = Ei,j - {(Xrll XS,), ... (xrd(n) ' XSd(n))}' 

Set AL = (xrll""Xrd(n)) E (lIL,x)d(n) and AR = (xSl'""XSd(n)) E 
(lIR,x )d(n). Let set(AL) ~ lIL,x (set(AR) ~ lIR,x) be the set of all dis­
tinct variables in the vector AL (AR)' Let XL ~ set(AL) and X R ~ set(AR) 
be subsets of the set of input variables such that for all x, Z E XL, for all 
y, w E X R, ((x, y) E En(lIn) n (XL x X R) /\ (Z, w) E En(lIn) n (XL x X R)) 
implies that (x, w) f. En(lIn)n(XL xXR) and (z, y) f. En(lIn)n(XL xXR). [i.e., 
XL and X R are chosen in such a way that the subgraph spanned by XL U X R 
consists of "independent" edges.] Taking XL and X R as large as possible we 
have 

b(n) = IXLI = IXRI ~ d(n)/13 ~ c· Ln/3J/78. 
To see this, consider the situation when by constructing XL and X R one adds 
one edge (Zl' Z2) to XL X X R . Then, to secure the above property, one has to 
remove from set(AL) x set(AR) all (at most 12) edges connected with all (at 
most 4) vertices adjacent to Zl and Z2. 

Let XL = {XU" ... , XUb(n)} and X R = {XV" ... , XVb(n)}' 

Thus we can write 

ben) 

in(i,j) = 1\ (X Uk V XVk ) I\in(i,j) I\i~(i,j), 
k=l 

for some conjunction of elementary disjunctions in(i, j). 
We describe the construction of the I-fooling set A(lIn' in) for lIn and in 

as a subset of {O, I} n in the following stages: 

(1) Choose four variables Yb Y2, Y3, Y4 from X such that Yl = Y2 = Y3 = Y4 = 0 
implies in(k,l) = 0 for each (k,l) =1= (i,j), k,l E {1,2,3}, k < land 
Yl = Y2 = Y3 = Y4 = 0 does not imply in(i,j) = O. Fix the zero values of 
Yl, Y2, Y3, Y4 in all words in A(lIn, in). 

(2) Fix the value 1 for all variables in X' = X - (XL U X R U {Yb Y2, Y3, Y4}). 

(3) The variables in XLUXR may have both values 0 and 1 with the following 
restriction: 

for all k E {I, ... ,b(n)} if X Uk = 1(0) then X Vk = 0(1). 
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Now we show that A(IIn' in) is a fooling set for IIn and in. Stage (1) 
ensures that in(a) = in(i,j)(a) for all a E A(IIn' in). Stage (2) secures that 
i~(i,j)(a) = 1 and In(i,j)(a) = 1 for all a E A(IIn' in), which implies 

b(n) 

in(a) = 1\ (aUk V aVk) for each 0'.= 0'.10'.2··· an E A(IIn' in). 
k=l 

From this fact and stage (3) we have that for all distinct a = 0'.1 ... an, f3 = 
f31 ... f3n E A(IIn' in) either 

b(n) 

1 = in(a) =1= in (II;; 1 (aIIn,L, f3IIn,R)) = 1\ (aUk V f3vk) = 0 
k=l 

or 
b(n) 

1 = in(a) =1= in (II;; 1 (f3IIn,L, aIIn,R)) = 1\ (f3Uk V aVk) = o. 
k=l 

Thus, A(IIn' in) is a fooling set. 
Now we estimate the cardinality of A(IIn, in). Since b(n) :2: c ·In/3J/78 we 

have 

Thus acc(Jn) = .Q(n). o 

Thus, we have shown that {In}~=6 has linear combinational complexity 
but because of linear communication complexity and Theorem 3.4.3.6, every 
sequence of Boolean circuits with a sublinear separator computing {fn}~=6 has a 
nonlinear number of gates. This also implies that the Boolean circuit constructed 
in the proof of Theorem 3.4.4.5 to compute in with a linear number of gates 
does not have any sublinear separator. 

3.4.5 Planar Boolean Circuits 

A Boolean circuit S = (V, E) is called planar if (V, E) considered as a graph 
is planar. The aim of this section is to prove that any planar Boolean circuit 
computing a Boolean function i has to have .Q((acc(J))2) gates. Note that 
we cannot reduce this task to obtaining .Q((CC(J))2) on the area complexity 
of Boolean circuits (Theorem 3.3.3.4) because we do not have any technique 
enabling us to lay a planar graph of m nodes into an O(m) area. But according 
to Theorem 3.4.3.6 and Proposition 3.4.3.5 it suffices to prove that every planar 
graph G = (V, E) has a 4 . V2 . /iVI vertex-separator. To do it in this way we 
first show that each planar graph has a special representation form, and than 
we use this form to prove the existence of an O(.;m) vertex-separator. 

Definition 3.4.5.1 Let G = (V, E) be a graph. A planar representation of 
G, denoted Pl(G), is a picture in the plane with the iollowing properties: 
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(i) every node v of G is depicted as a point p( v) of the plane labeled by the 
name of the node v, any two distinct nodes of G are depicted as two 
distinct points of the plane, 

(ii) every edge (u, v) E E is depicted as a curve c( u, v) connecting points p( u) 
and p(v), 

(iii) for every two different edges (UI,Vl),(U2,V2) E E, I{UI,VI,U2,V2}1 = 4 
implies that C(UI, Vl) and C(U2, V2) do not have any common point (i.e., 
do not cross each other), 

(iv) for every two edges (u, v), (u, w) E E, v =f. w implies that c(u, v) and 
c( u, w) have exactly one common point p( u). 

Each graph having a planar representation is called planar. 

To give an example, Figure 3.17 contains a planar representation of the 
graph G = ({VI, V2, ... , V13}, {( Vl, V2), (Vl, V3), (Vl, V4), (Vl, V13), (V2, V6), (V3, V4), 
(V3,V5), (V3,V7), (V3,Vn), (V4,V5), (V4,VS), (V5,VlO), (V5,V13), (V6,V9), (V7,V9), 
(VS,V12), (VlO, V12), (Vn,V12)}. 

Fig. 3.17. A planar representation of a planar graph 

Definition 3.4.5.2 Let G = (V, E) be a connected planar graph, and let Vl be a 
node ofG. Let V = Uf==o V; for some kEN, where V; = {w E V I distG(vl, w) = 
i} for i = 1, ... , k and Vk =f. 0. For every i E {a, 1, ... , k}, V; is called the i-th 
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ring of G. A concentric representation of G with the orIgm VI is a 
planar representation of a graph G' = (V', E') having the following properties: 

(i) V ~ V', the nodes of V are called the original nodes and the nodes of 
V' - V are called dummy nodes, 

(ii) Vi ~ Vi' = {x E V' I distGI(vI, x) = i} for all i = 0,1, ... , k, V' = U~=o Vi'. 
The set Vi' is called the i-th ring of G'. 

(iii) For every edge (u, w) E E', either u and ware from the same ring or 
u E Vi', w E V; and Ii - i I = 1. 

(iv) For every ring Vi' (i = 1, ... , k), the nodes of Vi' can be ordered in 
a sequence Xl, X2,' .. ,Xl such that E' contains the set of edges F4 = 
{(Xl, X2), (X2' X3)}, ... , (Xl-I, Xl), (Xl, Xl)' Every element of F4 is called a 
ring edge of the i-th ring. The curves c(xI, X2), C(X2' X3), . .. ,C(XI-l, Xl)' 
C(XI' Xl) of the planar representation of G' represent a closed curve called 
the i-th circle of G'. All nodes of U;~~ V; and all curves realizing the 
edges leading between the nodes of U;~~ V; as well as the curves realizing 
the edges (u, w), u E Vi'-l and wE Vi' lay inside the area bounded by the i­
th circle. All nodes of U~=i+l V;, all curves realizing the edges between the 
nodes of U~=i+l V;, the curves realizing the edges (x, y), X E Vi', Y E Vi~l' 
as well as the curves realizing the edges (Xl, Yl), XI, Yl E Vi' lay outside 
the area bounded by the i-th circle. 

(v) For every edge (v, w) E E there exists a path Pv,w = v, UI, U2,"" uz, w in 
G' such that 

- 'UI, U2, ... ,Uz are dummy nodes for an integer z :::: 0, and 

either all edges (v, Ul), (Ul, U2), ... , (uz, w) of the path Pv,w are ring 
edges or all edges of the path Pv,w are non-ring edges. 

The main idea of the above definition is to find a special planar representa­
tion of a planar graph G with property (iv), i.e., 

(1) to have a circle containing exactly the nodes with the same distance to 
the origin for every possible distance, 

(2) the inside area of the i-th circle properly contains the inside area of the 
(i - 1 )-st circle and contains all curves realizing the edges between these 
two circles (rings) too, and 

(3) all curves realizing the non-ring edges between the nodes of the i-th ring 
lay in the outside area of the i-th circle. 

To achieve such a planar realization it is allowed to add some dummy nodes 
and ring edges to the given graph G. Informally, this can be achieved in the 
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following way. One takes a spanning tree of G (a tree which is a subgraph of G 
and contains all nodes of G) with the root VI obtained by the breath-first-search 
(i.e., the distances of every node w to VI in the spanning tree is the same as 
distc(vI, w)). Considering a reasonable planar representation of the spanning 
tree one can add ring edges whose planar realization results in the circles of 
nodes with the same distance to the origin. After this it remains to find a 
planar realization of the edges of G which are not the edges of the spanning 
tree. These rest edges connect either two nodes of the same ring or two nodes of 
two neighboring rings. (The existence of an edge of G between V; and Vi with 
Ii - il 2: 2 contradicts the definition of rings as sets of nodes with the same 
distances to the origin.) Let (v, w) be such an edge with v E V;+l, W E V;. First 
we look for a possibility to find a curve lying in the outside area of the i-th 
circle and in the inside area of the (i + l)-th circle and crossing no curve of 
the current planar picture. If it is possible we do it. If it is impossible we are 
allowed to use a curve for the realization of (u, w) which crosses only the ring 
edges of G. The common points of c( u, v) and ring edges define new dummy 
nodes added to G. It is possible to find such a curve c(u, w) due to the planarity 
of G (more details are given in the proof of the following lemma). For the edges 
between the nodes of the same circle (ring) a curve lying outside this circle is 
constructed in the above way too. 

Figure 3.18 gives a concentric representation of the planar graph of Fig­
ure 3.17 with the origin VI. We observe that the rings are V~ = {VI}, V{ = 
{V2,V3,V4,VI3}, V~ = {U2,V6,V7,Us,Vn,Vs,Vs}, V; = {U3,V9,U4,UI,VlO,VI2}, and 
Ul, U2, U3, U4, Us are the dummy nodes. The ring edges are depicted by the dashed 
lines. The planar realization of two edges (vn, V12) and (V3, V4) requires us to 
cross the dummy edges. To realize the connection between Vn and VI2 we cross 
the third circle in the dummy node UI and lay two curves c(vu, UI) and C(UI, VI2). 

To realize the connection between V3 and V4 we have to cross the second circle 
twice and the third circle twice. The realization of the original edge (V3, V4) 

is now the realization of the path V4, U2, U3, U4, Us, V3, all of whose inner nodes 
are dummy nodes. The planar realization of the edges (vn, V12) and (V3, V4) is 
possible without crossing another non-ring edge as it is shown in the planar 
realization of the graph in Figure 3.17. In fact we did nothing more than depict 
the edges (Vn,VI2) and (V3,V4) in almost the same way as in Figure 3.17. 

We now show formally that each planar graph has a concentric representa­
tion. 

Lemma 3.4.5.3 For any connected planar graph G = (V, E) and any node 
VI E V there exists a concentric representation of G with the origin VI. 

Proof. Let G = (V, E), V; = {w I dist(vl,w) = i} for i = O,l, ... ,k and 
V = Uf=o V;. The construction is done by induction on the distance d from 
the origin. First we take the origin and show how to build the first circle. Let 
us consider a planar realization PI(G) of the graph G. The node Vl has IVll 
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Fig. 3.1S. A concentric representation of the planar graph in Figure 3.17 

neighboring nodes there. Each neighbor of the origin can have edges leaving in 
various directions. However, because of the planarity of G there is surely room 
to connect the nodes of the first ring inside any other edges leaving those nodes. 
The introduced edges are the ring edges forming the first circle (see Figure 3.20 
for an example; the dashed lines are the ring edges of the first circle). If there 
already was an edge of G between two consecutive nodes of the first circle, we 
remove it because the concentric representation must have the property that the 
edges connecting the consecutive codes of the circle be inside any other edges 
leaving either node. Now, we observe that for the first circle all the properties 
(i), (ii), (iii), (iv), (v) of Definition 3.4.5.2 are fulfilled. (Note that if we wish we 
can distort the plane so that the circle even forms a convex polygon). Thus, we 
have a planar representation Pl1 of G (with some additional ring edges) whose 
first ring satisfies the conditions of concentric representation. 

For the induction we assume that we have a planar representation Pld of G, 
where the first d rings satisfy the conditions of a concentric representation. Note 
that the edges outside the d-th ring go to the nodes of the d-th ring or to the 
nodes of Vd+1• We consecutively build the (d + 1)-th circle in the following way. 
We take a node v of the d-th ring. This node has zero or more edges emanating 
from it outside the d-th ring. Some of these edges lead to nodes rl, ... rz of the 
(d + l)-th ring, the rest lead to other nodes of the d-th ring. Order the nodes 
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x······ ..... . . ... 

Fig. 3.19. The process of building a new circle of a planar representation of a planar 
graph 

TI, ... T z of the (d + 1 )-th ring in the order they are connected to v in the planar 
representation Pld. Now take a neighboring node W of v in the d-th circle and 
order the nodes WI, W2, . .. , Wa of the (d+ l)-th ring connected to w. Continuing 
in this way we obtain an order Tl> ... Tz , WI, ... , Wa, ... of all nodes of Yd+!. 

Using this order we form the (d + l)-th circle by adding the ring edges to Pld 

in the same way as in the first step of the induction. We remove edges of the 
original graph that are duplicated by ring edges. If an original edge of G crosses 
a new ring edge in some point, then we put a new dummy node on this point. 
An example of this process is depicted in Figure 3.19. Note that every edge 
from the d-th ring (circle) to the d-th ring (circle) that passes outside any node 
of the (d + l)-th circle has two cuts with the ring edges of the (d + l)-th circle 

Fig. 3.20. The first circle of a planar representation of a planar graph 
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(edge (v, x) in Figure 3.19) and each edge from the d-th ring to the (d + 1)-th 
ring going around nodes of the (d + l)-th ring in the current planar realization 
crosses exactly one ring edge of the (d+ l)-th circle (edge (r2, x) in Figure 3.19). 
No other dummy nodes than the ones described above are introduced. From the 
above construction we see that each dummy node on the (d + l)-th circle has 
one edge going to a node on the d-th circle (it does not matter whether this is 
a node of ltd or a dummy node of the d-th circle). One can easily observe that 
we have obtained a planar representation Pld+I of G whose first d + 1 circles 
satisfy the conditions of Definition 3.4.5.2. This concludes the induction as well 
as the proof of Lemma 3.4.5.3. 0 

Observation 3.4.5.4 Let G = (V, E) be a planar graph, and let G' = (V', E') be 
the concentric representation ofG described above. If (w, v) E E, then, according 
to condition (v) of Definition 3.4.5.2, the connection (w, v) is realized in G' as 
a path Pw,v = w, UI, ... , Ud, v, where d is a nonnegative integer (possibly zero) 
and UI, ... , Ud are dummy nodes. Moreover, if (w, u) connects the nodes of two 
consecutive rings of G, then either d = 0 or d is odd and Pw,v contains no ring 
edge ofG' . 

Observation 3.4.5.5 Let G = (V, E) be a planar graph, and let G' = (V', E') 
be the concentric representation of G described above. Let (VI, V2) and (WI, W2) 
be two different edges of G. Let, for d 2:: 1, VI, UI, U2, ... , Ud, V2 be the realization 
of (VI, V2) in G', and let, for r 2:: 1, WI, ZI, Z2,"" Zr, W2 be the realization of 
(WI, W2) in G' . Then either 

(i) {UI,U2,'" ,Ud} n {Zl,Z2,'" ,zr} = 0 

or 

(ii) !{UI, ... ,Ud}n{ZI, ... ,zr}! E {1,2} and exactly one of the paths VI,UI,U2, 
... , Ud, V2 and WI, ZI, Z2,"" Zr, W2 consists of ring edges only. 

Proof. In the construction of the concentric representation G' of G we have in­
serted a dummy node on each intersection of one ring edge and a curve realizing 
some non-ring edge of G in a planar representation. Thus each dummy node U 

has exactly degree 4. Moreover, two of the edges adjacent to U are ring edges 
and two of the edges adjacent to U are non-ring edges. These non-ring edges are 
a part of exactly one path realizing a non-ring edge of Gin G' . 0 

Thus, for every dummy node U of G' we can unambiguously assign to U two 
pairs of vertices 

where VI, ZI, ... , Z., U, Zs+I,"" Zr, V2 is a path in G' , ZI,"" Zr are dummy nodes, 
and this path does not contain any ring edge of G', and 
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where WI, YI, ... 'YP' U, Yp+lJ ... ,Yk, W2 is a part of a circle of G' (i.e., it consists 
of ring edges only). 

Next we show that the existence of a small vertex-cut S' ~ V' disconnecting 
a concentric representation (V', E') of a planar graph G = (V, E) implies the 
existence of a small vertex-cut S ~ V of G. Thus, to find a small vertex-cut 
of a planar graph G it is sufficient to find a small vertex-cut of a concentric 
representation of G. 

Lemma 3.4.5.6 Let G = (V, E) be a planar graph, and let G' = (V', E') be 
the concentric representation of G fixed above. If there exists an almost bal­
anced vertex-cut S' of G' = (V', E') according to V, then there exists an almost 
balanced vertex-cut S ofG with cardinality lSI:::; 2IS'I· 

Proof. Let (S', V{, Vn be an almost balanced vertex-cut of G' = (V', E') accord­
ing to the set of original nodes V ~ V'. If S' does not contain any dummy node, 
then obviously S' is an almost balanced partition of G = (V, E) too. If S' con­
tains at least one dummy node, then we replace each dummy node of S' by two 
original nodes of G in the following way. If u E S' n V' - V, dumI (u) = (v, w), 
and dum2(u) = (x, y), then we replace u by v and x (note that it does not 
matter whether we take v [x] or W [y] from the pair (v, w) [(x, y)]). 

Clearly, S constructed from S' in the way described above defines a vertex­
cut (S, VI, V2) of G with cardinality lSI:::; 2· IS'I. Since VI ~ V{ and V2 ~ V~, 
and IV;' n VI :::; 2n/3 for i = 1,2, (S, VI, V2 ) is almost balanced. D 

Now we use the concentric representation of a planar graph G to find a small 
set of nodes of G whose removal disconnects G into two planar parts GI and G2 , 

each of which does not contain more than two thirds of the nodes of G. Since 
we again obtain planar graphs GI and G2 by this separation, we can continue 
to disconnect GI and G2 in the same way in order to show the existence of a 
small vertex-separator of G. 

Lemma 3.4.5.7 Let G = (V, E) be a planar graph of n nodes. Then there exists 
S ~ V such that 

(i) lSI:::; 4 . J2 . ,;n, and 

(ii) S is an almost balanced vertex-cut of G. 

Proof. Let G = (V, E) be a planar graph of n nodes, and let VI be a node of 
G. Let V = U7=o Vi, where Vi = {w I dista( VI, w) = i} are the rings of G for 
every i E {O, 1, ... , k}. For convenience we say that Vk +1 = 0 is the last ring of 
G. We say that a ring Vi is tight if IViI :::; J2. ,;n. We observe that Vo = {VI} 

and Vk+I are tight rings, i.e., there exist at least two tight rings in G. 
Now we distinguish two possibilities depending on the existence of two num­

bers i,j E {O, 1, ... , k + I}, it- j, such that 
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(a) Vi and ltj are tight rings, 

j-l 
(b) I U Vml::::; 2n/3, and 

m=i+l 

i-I k 
(c) I U v,. I + I U VsI::::; 2n/3. 

r=O s=j+l 

In what follows we handle these two possibilities separately. 

Fig. 3.21. The partition of a planar representation by removing two tight rings Vi 
andVj 

(1): We assume that there are two distinct i,j E {O, 1, ... , k + I} having 
the properties (a), (b), and (c). We see that every ring is a vertex-cut of G 
because there is no edge connecting two rings VI, and Vl2 with Ih - l21 ~ 2 
in G. Thus, the removal of two rings Vi and ltj divides G into three parts 
(see Figure 3.21). Because of the properties (a), (b), and (c), the vertex-cut 
(Vi u ltj, U!n~i+l Vm , u~~1 v,. u U~=j+l Vs) fulfills the conditions (i) and (ii) of 
Lemma 3.4.5.7. (Note we did not need to use the planarity of G to prove Lemma 
3.4.5.7 in case (1).) 

(2): Now we consider the opposite case, where no pair of tight rings fulfilling 
the conditions (a), (b), and (c) exists. This means that there exist two numbers 
l, dE {O, 1, ... , k + I}, l < d such that 

(a') VI and Vd are tight, 

(b') Vm is not tight for any m E {l + 1, l + 2, ... , d - I}, and 

d-l 
(c') 1 U Vml > 2n/3. 

m=I+1 
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Fig. 3.22. A partition of the middle part of a planar representation by removing 
nodes of two radii 

We observe that d -l :::; fo/V'i because I U~-;l+l Vml < nand IVml > V'i. fo 
for every m E {l + 1, ... , d - I}. 

Now we shall realize the following global strategy depicted in Figure 3.22. 
We consider a concentric representation G' = (V', E') of G according to the 
node Vl' We search for an almost balanced vertex-cut of G' according to V as 
follows. First we take the nodes of the l-th circle and of the d-th circle in order 
to divide G' into three parts (see Figure 3.22). We know that the middle part 
contains the set of the original nodes V = U~;I+1 Vm , and the cardinality of 
V is greater than 2n/3. Thus, we shall attempt to find a set S' dividing the 
middle part of G' along two "radii" into two parts (see Figure 3.22), none of 
them containing more than 2n/3 nodes of V. Then S' together with the nodes 
of the l-th circle and of the d-th circle divides G' into 4 parts, each of them 
containing at most 2n/3 original nodes of G. Obviously, we can combine these 
4 parts into two groups containing no more than 2n/3 vertices of Veach. To 
get an almost balanced vertex-cut of G we take Vi U Vd U S, where S ~ V, 
lSI:::; 2· IS'I, is constructed from S' by exchanging the dummy nodes of S' by 
the original nodes as described in the proof of Lemma 3.4.5.6. Note that we 
need not replace the dummy nodes of the l-th circle and of the d-th circle by 
any original node of G in the vertex-cut of G because to remove the rings Vi 
and Vd is sufficient for the first division step separating G into three parts. 

Thus, let G be the rest of the concentric representation G' after removing 
all nodes of all circles v,. for r E {O, 1, ... , l} U {d, d + 1, ... ,k}. 

In what follows a radius is a set of nodes {XI+l, ... Xd-l} of G such that 
Xi E V;' for every i E {l + 1, l + 2, ... , d - I}. An example of a radius are 
nodes of any path going from the (d - 1 )-st circle to the (l + 1 )-st circle and 
containing exactly one node of each circle of G (see, for instance, the set of 
nodes {V13, V5, VlO} in Figure 3.18). For any three different nodes v, W, and x 
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Fig. 3.23. The search for a candidate C3 beeing clockwise between the candidates C1 

andC2 

of the same circle, we say that v is clockwise before w according to x 
if one can go from v to wand from w to x via the circle in the clockwise 
direction. (For instance, VB is clockwise before U2, V6, V7, U5, and Vll according 
to V5 in Figure 3.18.) If v is clockwise before w according to x we also say that 
w is clockwise between v and x. Obviously, for any three different nodes 
w, v, and x of a circle, either w is clockwise between v and x or w is clockwise 
between x and v (for instance U3 is clockwise between V12 and Vg and Vll is 
clockwise between V6 and V5 in Figure 3.18). Let C1 = {X/+1,X/+2, ... Xd-1}, 

C2 = {Yl+l, Y/+2, ... Yd-d, C3 = {Wl+l, W/+2, ... wd-d be three radii such that 
C1 n C3 = C2 n C3 = 0 and, for every j E {l + l,l + 2, ... ,d - I}, Xj, Yj, 

and Wj are from Vi. We say that C2 is clockwise between C 1 and C 3 

if, for every j E {l + l,l + 2, ... ,d -I}, either Xj == Yj or Yj is clockwise 
between Xj and Wj in the j-th circle. (For instance, {U3, U2, V4} is clockwise 
between {V12, VB, V4} and {V3, U5, ud in Figure 3.18 and C3 is clockwise between 
C1 and C2 in Figure 3.23.) We say that two radii C1 and C2 do not cross 
each other if there exists a radius D, D n C1 = D n C2 = 0 such that either 
C2 is clockwise between C1 and D or C1 is clockwise between C2 and D. In the 
opposite case we say that C1 crosses C2. (The radii {V3, V7, Vg} and {V3, U5, U4} 

do not cross in Figure 3.18, but {V3, V5, VlO} crosses {U1, V5, V4}.) Finally, we say 
that two radii D1 and D2 are candidates for Sf (for the separation of G) iff 
D1 U D2 is a vertex-cut of G and D1 and D2 do not cross. If D1 and D2 are 
candidates, we define H(Dl, D 2) as the set of nodes lying clockwise between 
D1 and D2 (see Figure 3.23). We observe that any two candidates Cl, G 2 divide 
G into two components given by the node sets H(Gl, G 2) and H(G2, G 1). (For 
instance, the candidates {V4, VB, V12} and {V3, U5, U4} divide the tree outside the 
circles in Figure 3.18 into H( {V4, VB, V12}, {V3, U5, U4}) = {V2, U2, V6, V7, U3, Vg}, 

and H( {V3, U5, U4}, {V4, VB, V12}) = {VI3, Vn, V5, Ul, VlO}. Note that any two radii 
GI , G2 which do not cross have not to be candidates (a vertex-cut) because there 
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may be an edge connecting H(CI, C2 ) and H(C2 , C1) via a curve lying outside 
the last circle of V (for instance, C1 = {VI3, V5, VIO} and C2 = {V4, U2, U3} do not 
cross, but the edge (V12, Ul) connects H(C1, C2 ) and H(C2 , C1) and so C1 U C2 

is not a vertex-cut of the three outside circles of the graph of Figure 3.18.) 

......... ' H(v, u) / .............. . 

H(u ,v) \ :' H(u,v) 

(d - 1 )-st circle 

··············r············I············· 
.......... ................ .......... (l + 1 )-st circle 

Fig. 3.24. The search for two initial candidates, where the nodes v and u are free to 
the outside 

As we have already mentioned, to complete the proof of Lemma 3.4.5.7 it 
is sufficient to find two radii as in Figure 3.22 separating V into G1 = (VI, Ed 
and G2 = (V 2, E 2 ) such that lVi n VI ~ 2n/3 for i = 1,2. The rough strategy 
searching for these two radii works as follows. 

First, one finds two candidates separating G into two disconnected parts 
of arbitrary sizes. Then, step by step we replace one of the candidates for a 
new radius lying in the larger part (according to V) between the two current 
candidates (see Figure 3.23). This procedure halts when the two candidates 
separate G into VI and V2 with the above properties. Note that this procedure 
must stop because if one part H(CI, C2 ) of G between two candidates (radii) 
C1 and C2 is larger than 2n/3 and after one candidate has been replaced by a 
new candidate C3 in such a way that neither of the two parts H(C1, C3 ) and 
H(C3 , C2 ) of G (see Figure 3.23) contains more than 2n/3 nodes of V, then 
at least one of H(C1,C3 ) and H(C3,C2 ) must contain together with the two 

-- - ------ ----- -- ---- ---(d-1)-stcircle 
WI v W2 U 

clockwise direction 

Fig. 3.25. 



212 3. Boolean Circuits 

connected radii more than n/3 of nodes of V. Thus, the rest of G contains at 
most 2n/3 nodes of G. 

To find two initial candidates we look for an edge (v, u) between two nodes 
u and v of the last (d -1 )-st circle such that the curve realizing (v, u) flows from 
v to u in the clockwise direction and the clockwise distance from v to u is the 
largest for all pairs of nodes of the (d - 1 )-st circle connected via an edge lying 
outside the (d - 1 )-st circle (The edge (U3, U4) has this property for the third 
circle of the graph representation in Figure 3.18). We claim v and u are "free" 
to the outside, which means that we can draw a line from v(u) to a point at 
infinite distance that does not cross any edge of G (see Figure 3.24). 

Now we prove this claim. Let us assume v is not free to the outside; i.e., 
there is an edge (WI, W2) between some nodes WI and W2 on the (d - 1 )-st circle, 
where v is clockwise between WI and W2 and WI is clockwise before v according 
to W2. If W2 is clockwise between v and u, then the curves realizing the edges 
(v, u) and (WI, W2) intersect, which contradicts the planarity of G (see Figure 
3.25). If u is clockwise between v and W2, then this contradicts the maximality 
of (v, u) because the distance between WI and W2 on the circle is greater than 
the distance between v and u (see Figure 3.26). 

clockwise direction 

Fig. 3.26. 

Obviously, the same argument works to show that u is free to the outside. 
We note that if there is no non-ring edge outside the (d-1)-st circle, then every 
node of the (d - l)-st circle is free to the outside. In such a case we choose u 
and v arbitrarily. 

Now we choose one radius Pu starting in u and one radius Pv starting in 
v (see Figure 3.24). According to the definition of the concentric presentation, 
each node on a circle is directly connected to a node on the next lower ring. 
Thus starting from v(u) we find a path from v to a node on the (l + l)-st circle 
containing exactly one node of each circle of G. If there are several such paths 
from v to the (l + l)-st circle, it does not matter which one we choose. The only 
restriction we have is that Pv and Pu do not cross. Since we have nothing against 
the existence of common parts of Pv and Pu this restriction is no obstacle for 
the construction of Pv and Pu . 
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We observe that the initial radius Pv and Pu are candidates dividing G 
into H(Pu) Pv) and H(Pv) Pu) because v and u are free to the outside (no edge 
between H(Pu) Pv ) and H(Pv ) Pu) flows outside the last circle of G) and there 
exists no edge connecting the nodes of the (l + 1 )-st circle and running below 
the (l + 1 )-st circle. 

In fact it is not necessary that v and u are free to the outside. We say a 
node w of the outside circle of H(Pv) Pu) is free to outside according to 
H(Pu , Pv ) if w is free to outside after removing all edges leading between the 
nodes of the outside circle of H(Pu) Pv). We observe that two non-crossing radii 
Pu and Pv are candidates for 8' (Pu U Pv is a vertex-cut of G) if and only if v 
and u are free to outside according to H(Pu) Pv). 

If none of H(Pu) Pv ) and H(Pv ) Pu ) constructed above contains more than 
2n/3 nodes of V we are ready. Without loss of generality we assume H(Pv) P,..) 
contains more then 2n/3 nodes. The aim is to find a new radius P ~ H(Pv) Pu)U 
Pv U Pu such that Pv and P as well as P and Pu are candidates. If P differs from 
(is not identical with) Pv and from Pu) then H(Pv) P) and H(P) Pu) are smaller 
than H(Pv ) Pu). Since the number of nodes of G is finite) a finite number of 
steps is sufficient to find an "almost balanced" partition of G according to V. 

v~u 
I \ I 
I \ I 
I \ I 
I \ I 
I \ I 

Pv : Pw \ / Pu 
, \ I 
, \ I 
, \ I 

: y 

inner circle 

, I 

1 1 

• • outside circle 

Fig. 3.27. The search for a new radii Pw if the node w is free to the outside according 
to H(Pv)Pu) 

To complete the proof it remains to prove the existence of a radius P de­
scribed above. In what follows we distinguish the following two cases: 

(2.1) Let the part of the outside circle of H(Pv) Pu) (the part between v and u in 
the clockwise direction) contain at least three nodes. For the same reason 
as given in the initial search for u and v) there exists a node w on the 
outside circle that is free to the outside according to H(Pu) Pv). Consider a 
radius Pw as a path from w to the inside ring of H(Pv) Pu) lying clockwise 
between Pv and Pu in H(Pv) Pu). (Note that common parts between Pw 
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and Pu (Pv ) are allowed.) Then the pair Pv , Pw as well as the pair Pw , Pu 

are candidates (vertex-cuts of G.) 

(2.2) Let the part of the outside circle of H(Pv , Pu ) contain at most two 
nodes. This means that the outside circle of H(Pv , Pu ) contains only 
the nodes U and v, which may be even the same. Let Pv = V, Vb' .. ,q, 
Pu = U, Ul, ... , p, PV1 = Vb' .. ,q, and PU1 = Ub' .. ,p (see Figure 3.28), 
i.e., Pv = V, PV1 and Pu = U, PU1 ' We remove the nodes V and u from 
H(Pv , Pu ) and we remove the whole outside circle of G to get the sub­
graph Gl of G. Further, we commit u and V to S', i.e., we partially specify 
S'. First we observe that PV1 and PU1 are a vertex-cut ofGl , i.e., candidates 
for the separation of Gl . Secondly we observe that all paths (connections) 
leading between H(PV1 ' PU1 ) and the rest of G and having some part out­
side the circle containing Vl and Ul must contain either V or u. Using these 
facts we can conclude that {u, v} together with any candidates P', P" for 
the separation of Gl lying between PV1 and PU1 in H(Pvl> PV2 ) is a vertex­
cut of G, i.e., uP' and vP" are candidates for the separation of G. 

v 

q ~i ------------.... i P the inner circle 

Fig. 3.28. The reduction of the middle part if H(Pv , Pu ) contains at most two nodes 
in the outside circle 

Repeatedly using one of the steps (2.1) and (2.2) we achieve a required 
partition S' of G containing at most two nodes of any circle of G. So 
IS'I ::; 2· (d - h -1) ::; 2· fo/V2 = V2' fo, and lSI::; 21S'I ::; 2· V2fo· 
Since the vertex-cut achieved is S U Vd U Vh we obtain IS U Vd U Vhl ::; 
2 . V2fo + 2 . V2fo = 4 . V2fo· 

D 

Now we are able to formulate the well-known Planar Separator theorem. 
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Theorem 3.4.5.8 Every planar graph has a strong O(..;m) vertex-separator. 

Proof. Let G be a planar graph of m nodes. By Lemma 3.4.5.7 we can find an 
almost balanced vertex-cut of G of at most 4· v'2..;m nodes. Since the obtained 
components are planar too, we can use Lemma 3.4.5.7 recursively. Thus G has 
a 4 . v'2..;m vertex-separator. This implies by Corollary 3.4.2.10 that G has a 
strong O(..;m) vertex-separator. 0 

Corollary 3.4.5.9 Every planar graph of degree at most 4 has a strong O(..;m) 
edge-separator. 

Since we have shown that planar graphs have a strong O( Vm) vertex­
separator we can apply the lower bound method of Section 3.4.3 to get quadratic 
lower bounds on the combinational complexity of planar Boolean circuits com­
puting specific Boolean functions having linear communication complexity. 

Theorem 3.4.5.10 Let, for any nEW, Sn be a planar Boolean circuit comput­
ing a Boolean function fn: {O, l}n ---+ {O, I}. Then: 

Proof. Following Theorem 3.4.3.6 we see that each Boolean circuit having a 
strong s(m) vertex-separator fulfills 

Since Sn is planar we obtain from Theorem 3.4.5.8 that s(m) = O(..;m). By 
Proposition 3.4.3.5 Zs(m, n) = O(Vm) for s(m) = O(..;m). Thus CC(Sn) 
Q((acc(fn))2). 0 

Defining the combinational complexity of Boolean circuits we have always 
considered semilective Boolean circuits. The reason is that allowing multilec­
tivity of inputs cannot help to decrease the combinational complexity of any 
Boolean function. The situation may change rapidly if one restricts the Boolean 
circuit model in some way. This is also the case for planar Boolean circuit mod­
els. We do not want to deal with the comparison of the computational power 
of (semilective) planar Boolean circuits and the power of multilective planar 
Boolean circuits here. But we call attention to Exercises 3.4.6.12 and 3.4.6.13 
as well to Problems 3.4.7.2 and 3.4.7.3 dealing with this comparison problem. 

3.4.6 Exercises 

Exercise 3.4.6.1 Prove that every binary tree has a strong O(logn) edge­
separator. 
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Exercise 3.4.6.2 Prove that each graph having an 0(1) edge-separator has a 
strong 0(log2 n) edge-separator. 

Exercise 3.4.6.3 Estimate separators for two-dimensional grids (lattices) of a 
size a x b for arbitrary a, bEN. 

Exercise 3.4.6.4 Which separator (strong separator) has a d-dimensional grid 
of the size a x a x ... x a for any a E N? 

Exercise 3.4.6.5 For the tree in Figure 3.5 write a partition tree distinct from 
the partition tree in Figure 3.16. 

Exercise 3.4.6.6 Write a partition tree for the 2-dimensional grid of size 3 x 7. 

Exercise 3.4.6.7 Prove that any planar Boolean circuit of depth t must have 
Sl(n2 ) gates to compute a Boolean function of a linear (t - I)-round communi­
cation complexity. 

Exercise 3.4.6.8 Extend Theorem 3.4.3.6 for s-communication complexity. 

Exercise 3.4.6.9 * Search for a version of Theorem 3.4.3.6 working for un­
bounded fan-in Boolean circuits. 

Exercise 3.4.6.10 ** Construct, for some fixed constants d ~ 3 and c, a class 
of (m, d, c) magnifiers for any mEN - {O}. 

Exercise 3.4.6.11 * Prove that each 3-regular graph of at least six nodes is 
3-colorable. 

Exercise 3.4.6.12 * Find a nonnegative integer k ~ 2, and a sequence {In}~=l 
of Boolean functions, fn: {O, l}n ---+ {O, I}, such that one can compute {fn}~=l 
with k-multilective planar Boolean circuits much more efficiently than with 
(semilective) planar Boolean circuits. 

Exercise 3.4.6.13 ** Let k be a positive integer. Give a sequence of Boolean 
functions F = {In}~=17 fn: {O, l}n ---+ {O, I}, such that any sequence {Bn}~=l 
of k-multilective planar Boolean circuits computing F satisfies CC(Bn) = Sl(n· 
log2 n). 

Exercise 3.4.6.14 * Improve the result of Lemma 3.4.5.7 by showing that each 
planar graph has a 2 . v'2v'n vertex-separator. 



3.5 Lower Bounds on the Size of Unbounded Fan-in Circuits 217 

3.4.7 Problems 

Problem 3.4.7.1 ** Prove a nonlinear lower bound on the combinational 
complexity of some specific sequence {fn}~=l of Boolean functions with fn : 
{O, l}n -+ {O, I}. Almost all Boolean functions with a linear communication 
complexity are possible candidates for this result. Note that at present we do 
not have any nonlinear lower bound on any computing problem {P:}~=l' Pn : 
{O, l}n -+ {O, l}n for every n E N. Observe that according to the results of this 
section the main difficulty is in proving that random structures are not powerful 
enough to compute a specific function with a linear number of gates. 

Problem 3.4.7.2 * Prove a lower bound D(g(n}} on the combinational com­
plexity of multilective planar Boolean circuits computing a specific sequence of 
Boolean functions for a function g: N -+ N fulfilling lim nlogn/g(n} = o. 

n-+oo 

Problem 3.4.7.3 * Find for every positive integer k ~ 2 a sequence of Boolean 
functions Fk such that the combinational complexity of k-multilective planar 
Boolean circuits computing Fk grows asymptotically faster than the combina­
tional complexity of (k + l}-multilective planar Boolean circuits computing Fk. 

3.5 Lower Bounds on the Size of Unbounded Fan-in 
Circuits 

3.5.1 Introduction 

While Boolean circuits have to have at least linear size to compute Boolean 
functions depending on all their input variables, linear lower bounds on the 
size of unbounded fan-in Boolean circuits computing specific Boolean functions 
are not so obvious. The bases of unbounded fan-in circuits are infinite and 
so, for a given base, there are a lot of functions with constant combinational 
complexity. Here, we shall present a lower bound method providing nontrivial 
lower bounds on the sizes of unbounded fan-in circuits by different standard 
bases. The lower bounds achieved are in the best cases linear. Then we combine 
the above mentioned method with the method of Section 3.4 to get nonlinear 
lower bounds for unbounded fan-in circuits with sublinear separators. 

This section is organized as follows. Section 3.5.2 shows that the commu­
nication complexity of a Boolean function f divided by the maximum of some 
special communication complexities of functions of a base Bas provides a direct 
lower bound on the size of unbounded fan-in circuits over the base Bas. In Sec­
tion 3.5.3 this technique is extended to get nonlinear lower bounds on the sizes 
of unbounded fan-in Boolean circuits having sublinear separators. 
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3.5.2 Method of Communication Complexity of Infinite Bases 

The concept of the lower bound method presented here is an extension of the 
concepts of Sections 3.3 and 3.4 based on some cuts of Boolean circuits. The 
informal idea of this concept is as follows. 

Let S = (V, E) be an unbounded fan-in Boolean circuit over a base Bas, and 
let C be a vertex-cut of S dividing the input nodes of S in an almost balanced 
way. Let f be the Boolean function computed by S. The idea is to show that the 
cut provides an upper bound on acc(f) in some way. Clearly, the communication 
between the two parts of the circuits C1 and C2 divided by the cut C flows via 
the cut of C only (see Figure 3.29). A communication protocol can compute the 
function f in such a way that it computes the output values of all nodes in C 
in a topological order and gives these output values to both computers. In this 
way the left computer corresponding to C1 gets all Boolean values flowing via 
directed edges from C to C1 and the right computer corresponding to C2 gets all 
Boolean values flowing via directed edges from C to C2 • Thus, our protocol can 
always compute the output, and its communication complexity is the sum of the 
lengths of communication messages used to compute and spread the outputs of 
the nodes of C. Note that such a communication length used to compute the 
output of a gate g may differ from cc(g) or acc(g). The reason for this is that 
the partition of inputs of this gate given by the cut C do not have to be almost 
balanced or even balanced. To handle this we define unbalanced communication 
complexity of g, ucc(g), as maximum over all partitions of input variables. 

Fig. 3.29. The division of a circuit by removing the nodes of a vertex-cut C 

Definition 3.5.2.1 Let X be a set of input variables of a Boolean function 
g: {a, l}n -+ {a, I}. The unbalanced communication complexity of g is 

ucc(g) = max{cc(g, II) I II is a partition of X}. 
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Example 3.5.2.2 We illustrate Definition 3.5.2.1 by estimating the unbalanced 
communication complexity of g,/ (Xl, X2, ... ,Xr ) = Xl V X2 V ... V Xr for any 
r E N - {O}. Let Xr = {Xl, X2,"" X r}, and let II be an arbitrary partition of 
X r • Let llL,X = {XiI' ... ,Xiz } and llR,X = X - llL,X for some zEN. A protocol 
(ll, iJ» computing g,/ proceeds as follows. For any input a = al a2 ... a r E {O, 1 Y 
the first computer sends the communication bit ai, Vai2 V ... Vaiz to the second 
computer. After that the second computer knows already the result g,/ (a). So, 
we have shown that ucc(gn ::; 1 for every r E N - {O}. 0 

Definition 3.5.2.3 Let S = (V, E) be an unbounded fan-in Boolean circuit 
computing a Boolean function f. A gate-cut of S is any vertex-cut (U, Vi, V2 ) 

of the graph (V, E) such that U consists only of gates of S (i.e., U does not 
contain any input of S). The unbalanced communication complexity of 
the gate-cut (U, Vi, V2 ) is 

ucc(U, VI, V2 ) = L:(ucc(g) + 1). 
gEU 

Note that we add +1 to ucc(g) in the definition of ucc(U, Vi, Y;) because 
there exists a protocol which after the exchange of ucc(g) + 1 communication 
bits secures that both computers know the output of the gate g. 

Observation 3.5.2.4 Let S be an unbounded fan-in circuit computing a Boolean 
function f defined over a set of input variables X. Let II E Abal(X) and let a 
gate-cut (U, VI, Y;) be such that llL,X ~ VI and llR,X ~ V2 . Then 

Definition 3.5.2.5 Let Bas be a (possibly infinite) set of functions. We define 
the communication complexity of Bas as a function 

ucc(Bas,n) = max{ucc(g) I g E Bas n B~} + 1. 

In what follows we are mainly interested in bases whose communication 
complexity can be bounded by a constant. The next lemma claims that the fun­
damental infinite base F = Br U {gf I for every!:::,. E {V, /\, E9} and every r E 
N - {O}} has this property. 

Lemma 3.5.2.6 ucc(F, r) :<:; 2 for every r ~ 2. 

Proof. Obviously every Boolean function from Br has unbalanced communica­
tion complexity at most 1. In Example 3.5.2.2 we have shown that ucc(gn ::; 1 
for any positive integer r. Since E9 and /\ are commutative and associative opera­
tions, the same argument as that of Example 3.5.2.2 yields ucc(gf) :<:; 1 for every 



220 3. Boolean Circuits 

!:::,. E {V, /\, EB} and every positive integer r. Thus max{ucc(g) I g E FnB2} = 1 
for any positive integer r ~ 2. 0 

is 
Another intensively investigated base of unbounded fan-in Boolean circuits 

Threshold = {g~ I g~ : {O, l}m -+ {O, I} and g~(ala2 ... am) = 1 

iffal+a2+ ... +am~k, k,mEN-{O}, k~m} 

u{r}. 

Unbounded fan-in Boolean circuits over the base Threshold are called 
threshold circuits. 

Lemma 3.5.2.7 For every positive integer n ~ 2 

ucc(Threshold, r) ~ POg2 r 1 + 1. 

Proof. It is sufficient to show ucc(g~) ~ POg2 r 1 + 1 for any r, kEN, k ~ 
r, r ~ 2. Let r, k, k ~ r, r ~ 2 be two positive integers. Let d = flog2 r 1. Let 
Xr = {Xl, X2, ... , xr} be the set of input variables of the Boolean function g~. 
Let II be an arbitrary partition of Xn IIL,x = {XiI' ... ' Xi.} for some z ~ r. A 
one-way protocol (II, cI» computing g~ proceeds as follows. For any input a = 
ala2 ... a r E {O, 1 Y the first computer sends the following d communication 
bits BINil("L,J=l aij). Now the second computer has enough information to 
compute g~(a). 0 

We are now prepared to formulate the lower bound method on the combi­
national complexity of unbounded fan-in Boolean circuits. 

Theorem 3.5.2.8 Let S be an unbounded fan-in Boolean circuit over a base 
Bas computing a Boolean function f E B~ with the set X of input variables. 
Then 

3n 
CC(S) ~ max{cc(f, II) I II E Abal(X)}/ucc(Bas, 2)· 

Proof. Let S = (V, E). First we observe that we can assume the indegree of 
S is bounded by 3n/2 (if not, then S has at least n/2 gates and so CC(S) ~ 
n/2 ~ max{ cc(f, II) I II E Abal(X)}). 

Now it suffices to show CC(S) ~ cc(f, II)/ucc(Bas, 3;) for every II E 
Abal(X). Let II be an arbitrary almost balanced partition of X. Then, for every 
gate-cut (U, Vi, \12) of S = (V, E) with the property IIL,x ~ Vl and IIR,x ~ \12, 

ucc(U, Vi, \12) ~ cc(f, II) 

because in the opposite case one can construct a protocol (II, cI» computing 
f with cc((II,cI») < cc(f, II). Obviously CC(S) ~ lUI and ucc(U, Vi, \12) ~ 
lUI· ucc(Bas, 3;) (note that the indegree of gates of S is bounded by 3n/2). So 
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CC(S) 21UI 3n 
> UCC(U, VI, V2 )/ucc(Bas, 2) 

3n 
> cc(j,II)/ucc(Bas, 2). 

o 

Corollary 3.5.2.9 For any positive integer n, and for any Boolean function 
f E B~ defined over a set of input variables X, 

unfi-CC(j) 2 max{ cc(j, II) I II E Abal(X)} /2. 

Proof. The result follows from Theorem 3.5.2.8 and from Lemma 3.5.2.6 yielding 
ucc(F, r) :::; 2 for every positive integer r 2 2. 0 

Corollary 3.5.2.10 Let S be a threshold circuit computing a Boolean function 
f E B~ defined over a set of input variables X. Then 

CC(S) 2 max{ cc(j, II) I II E Abal(X)} / ilog2(3n)l 

Proof. The result is a direct consequence of Theorem 3.5.2.8 and of Lemma 
3.5.2.7 which claims ucc(Threshold, r) :::; ilog2 r 1 + 1 for any positive integer 
r 2 2. 0 

Concluding this subsection we call attention to the two following advan­
tages of the lower bound method introduced over the method used in Sections 
3.3 and 3.4. First, it is sufficient to obtain a lower bound on max{ cc(j, II) I 
II is a balanced partition} instead of proving a lower bound on acc(j) = 
min{cc(j,II) I II is a balanced partition}. As we already know, the main dif­
ficulty in the use of communication complexity is to prove a lower bound on 
cc(j, II) for all (almost) balanced partitions II. In most cases, to find a par­
tition II with a large cc(j, II) is much easier than to prove that cc(j, II) are 
large for all II. On the other hand, there are many Boolean functions f with 
small cc(j), but with large max{ cc(j, II) I II is a balanced partition of the set 
of input variables of j}. 

The second advantage of the lower bound method of this section is that 
this method does not relate the communication complexity of a vertex-cut of a 
circuit to the number of edges adjacent to the nodes of the cut as the method 
of Section 3.4 does. Obviously the number of edges adjacent to the gates of 
a gate-cut of an unbounded fan-in Boolean circuit may be much larger than 
the unbalanced communication complexity of the gate cut defined in Definition 
3.5.2.3. Whereas considering the communication between the two parts of the 
circuit as the sequence of bits flowing via the edges of the cut would provide 
in many cases very small lower bounds on the the size of the circuit, taking 
the unbalanced communication complexity of the gates of the cut provides for 
many bases even linear lower bounds. 
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3.5.3 Unbounded Fan-in Circuits with Sublinear Vertex-Separators 

The aim of this subsection is to show that the lower bound method of Section 
3.4.3 can be extended for unbounded fan-in Boolean circuits. More precisely, 
we show nonlinear lower bounds on the combinational complexity of unbounded 
fan-in Boolean circuits with sublinear vertex-separators and bounded commu­
nication complexity of their bases. 

Theorem 3.5.3.1 Let f be a Boolean function from B~ for some positive integer 
n. Let S be an unbounded fan-in Boolean circuit over a base Bas computing f. 
If S has a strong s(m) vertex-separator for a function s : !'I -+!'I, then 

ucc(Bas, n + CC(S)) . Zs(CC(S) , n) ~ acc(Jn). 

Proof. Let X be the set of input variables of f. Lemma 3.4.3.2 independently on 
the degree of the circuit claims that there exists an almost balanced vertex-cut 
(U, Vi, V2 ) of G such that 

(i) (U, Vb V2 ) is almost balanced according to X, and 

(ii) lUI ~ Zs(CC(S), n). 

Now it suffices to describe a protocol computing f within communication com­
plexity lUI· ucc(Bas, n + CC(S)). We consider the nodes in U in a topological 
order which gives the order in which communication bits flow between the two 
parts of the circuit S given by the vertex-cut (U, Vi, li2). If a node v E U is an 
input of S, then v is either in Vi or in V2 • In both cases we need to send only 
one bit containing the value of the variable assigned to v to the other part of 
the circuit. If a node g E U is a gate, then the communication of the optimal 
protocol computing g according to the partition of inputs of g given by the cut 
(U, Vi, V2 ) is realized. Note that the number of inputs of g is at most n+CC(S). 
As we already know, this means at most ucc(g) ~ ucc(Bas, n + CC(S)) - 1 bits. 
One additional bit is needed to secure that both parts of S know the result 
computed by the gate g. 0 

We illustrate the use of the lower bound method given in Theorem 3.5.3.1 
by formulating lower bounds for two specific bases. 

Theorem 3.5.3.2 Let f be a Boolean function from B~ for some positive integer 
n. Let S be an unbounded fan-in Boolean circuit over the base F computing f. 
If S has a strong s(m) vertex-separator for a function s : !'I -+!'I, then 

Zs(CC(S), n) ~ acc(J)/2. 

Proof. The result follows directly from Theorem 3.5.3.1 because ucc(F,r) < 
2 for every l' E !'I. 0 
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Corollary 3.5.3.3 Let s, h : N -t N be monotone functions such that s(m) = 
m/h(m) = o(m) and h(m) = O((log2 m)k) for a positive integer k. Let {fn}::"=l 
be a sequence of Boolean functions, f n : {O, l}n -t {O, I}, and let, for every 
n E N, Sn be an unbounded fan-in circuit over F computing fn. If, for every 
n E N, Sn has a strong s(m) vertex-separator, then 

CC(Sn) = D(acc(fn) . h(n)). 

Proof According to Proposition 3.4.3.3 we have 

Inserting this in the claim of Theorem 3.5.3.2 we obtain the result. 

Corollary 3.5.3.4 Let s(m) = k . m b for some constants k ~ 1, ° < b < 1. 
Let, for any positive integer n, Sn be an unbounded Boolean circuit over F 
computing a Boolean function fn : {a, l}n -t {a, I}. If acc(fn) = D(n) and, for 
every n E N - {O}, Sn has a strong s(m) vertex-separator, then 

Proof According to Proposition 3.4.3.5 we have the upper bound 

Applying Theorem 3.5.3.2 we obtain (CC(Sn))b = D(n). o 

We still formulate the lower bounds for threshold circuits. 

Theorem 3.5.3.5 Let, for every positive integer n, fn be a Boolean function 
from B'2. Let, for every positive integer n, Sn be a threshold circuit computing 
fn' and let Sn have a strong s(m) vertex-separator for some monotone function 
s : N -t N. Then 

(i) if s(m) = m/h(m) = o(m), h(m) = O((log2 m)k) for a positive integer k, 
and h is monotone, then 

(ii) if s(m) = k . m b for some constants k ~ 1, ° < b < 1, then 
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Proof. Theorem 3.5.3.1 claims 

ucc(Threshold, n + CC(Sn)) . Z.(CC(Sn) , n) ~ acc(fn), 

and Lemma 3.5.2.7 claims 

ucc(Threshold, r) :::; flog2 r 1 + 1 

for every positive integer r ~ 2. 
In case (i) we can assume that CC(Sn) :::; n 2 because in the oppo­

site case we already have a higher lower bound than the lower bound pro­
vided by (i). Thus ucc(Threshold, n + CC(Sn)) :::; ucc(Threshold, n + n 2 ) :::; 

3· POg2 n 1 + 3. Since according to Proposition 3.4.3.3 we have ZS(CC(Sn) , n) = 
O(CC(Sn)/h(CC(Sn))), we obtain (lOg2 n) . CC(Sn)/h(CC(Sn)) = D(acc(fn)). 
This directly implies CC(Sn) = D(acc(fn) . h(n)/ log2 n) because h(n) = 
8(h(CC(Sn))). 

For case (ii) we may assume CC(Sn) = O(n1/ b). Because of this we have 
ucc(Threshold, n + CC(Sn)) :::; ucc(Threshold, O(n1/ b)) = O(log2 n). Now it is 
sufficient to observe that ZS(CC(Sn) , n) = O((CC(Sn))b) according to Proposi­
tion 3.4.3.5. 0 

3.5.4 Exercises 

Exercise 3.5.4.1 Estimate the unbalanced communication complexity of the 
following languages: 

(i) L = {x E {O, 1}+ I #o(x) = #1 (x)}, 

(ii) Sm = {xy Ilxl = IYI, x, y E {O,l}+, BIN(x) < BIN(y)}, 

(iii) Eg = {w E {O, 1}* I w = uu}. 

Exercise 3.5.4.2 * Estimate ucc(Bas, n) for every n E N and the following 
bases Bas: 

(i) Bas is the set of all symmetric Boolean functions. 

(ii) Bas is the set of all monotone Boolean functions. 

Exercise 3.5.4.3 Give a formal proof of Observation 3.5.2.4 containing a for­
mal description of a protocol corresponding to the gate-cut (U, VI, V;). 

Exercise 3.5.4.4 Prove for unbounded fan-in Boolean circuits with the base of 
all symmetric functions a similar result as Corollary 3.5.2.10 gives for threshold 
circuits. 

Exercise 3.5.4.5 * Define unbalanced one-way communication complexity of 
gates and of bases. Then 
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(i) prove some versions of Theorem 3.5.2.8, Corollary 3.5.2.9, and Corollary 
3.5.2.10 using unbalanced one-way communication complexity of bases in­
stead of unbalanced communication complexity of bases. 

(ii) bound the number of rounds of a protocol communicating the messages 
of one-way protocols computing the gates of a gate-cut of an unbounded 
fan-in circuit S by twice the depth of S. 

(iii) use (i) and (ii) and k-rounds communication complexity to formulate lower 
bounds on the communication complexity of unbounded fan-in Boolean 
circuits with bounded depth. 

Exercise 3.5.4.6 Which lower bounds can one obtain for unbounded fan-in 
planar circuits? 

3.5.5 Problems 

Problem 3.5.5.1 Let, for arbitrary positive rational numbers 1'1,1'2, ... ,1' nand 
k, g~l,ra, ... ,rn : {O, l}n --+ {O, I} be a Boolean function defined as 

Estimate ucc(g~l,Ta, ... ,Tn) and ucc(Tr, n) for every n E N and the base of gen­
eralized threshold gates Tr = {g~l ,Ta , ... ,Tn I n E N, 1'1, 1'2, ... , l' n, k are positive 
rational numbers}. 

3.6 Lower Bounds on the Depth of Boolean Circuits 

3.6.1 Introduction 

This section differs from the previous ones of this chapter in the way commu­
nication complexity is used to get some lower bounds. In all previous sections 
we have used the communication complexity of a Boolean function f to get 
some lower bounds on the area of f or on the combinational complexity of f. 
Here, we do not know how to directly use (or whether it is even possible to use) 
cc(f) to get a lower bound on the depth complexity of f. What we are doing is 
making another use of the (communication) protocol model. For every Boolean 
function f, we define a specific relation R(f) depending on f and show that 
the communication complexity of computing R(f) by protocols is very strongly 
connected with D{v,/\,r}(f). Using another relation MR(f) we obtain a method 
for proving lower bounds on the depth of monotone Boolean circuits. 

This section is organized as follows. Section 3.6.2 contains the definition 
of monotone Boolean circuits and some fundamental observations about the 
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depth of (monotone) Boolean circuits. Section 3.6.3 gives the definition of the 
above mentioned relations R(J) and MR(J) for every Boolean function f, and 
introduces the communication complexity of R(J) and MR(J) respectively. The 
lower bound methods on the depth of Boolean circuits over the base {V, /\, r} 
and of monotone Boolean circuits are presented in Section 3.6.4. 

3.6.2 Monotone Boolean Circuits 

In this section we give the definitions of monotone Boolean functions and mono­
tone Boolean circuits. 

Definition 3.6.2.1 Let n be a positive integer, and let f E B'2. We say that f 
is monotone if for every a,f3 E {O, l}n, a ~ f3 implies f(a) ~ f(f3). 

Observation 3.6.2.2 Let X = {xr, ... , xn} be a set of Boolean variables, 
and let {ir,i2, ... ,ir } <;: {1, ... ,n} for some positive integer r ~ n. Then 
f(xl,."'xn) = Xi, /\ Xi2 /\ ... /\ Xir E B'2 is monotone and Nl(J) = {a E 
{O, l}n I a ~ (f3r, f32,' .. , f3n), where f3ij = 1 for j E {I, ... , r} and f3k = ° for 
k f- {iI, i 2 , ..• , ir }}. 

Definition 3.6.2.3 Let f E B'2 be a monotone Boolean function over X = 
{Xl, ... , xn} for some positive integer n. A vector a E {O, l}n is called a lower 
one of f if 

(i) f(a) = 1, 

(ii) for all f3 E {O, l}n, f3 ~ a implies f(f3) = 1, and 

(iii) for all 'Y E {O, l}n, 'Y < a implies fb) = 0. 

The set of all lower ones of f is denoted LowN1(f)= {a E {O,l}n I a is a 
lower one of f}. For any a = (ar, 0.2,"" an) E {O, l}n we define 8 1 (0)= {k I 
ak = I} and 8°(0)= {j I aj = O}. For any a = (ar, 0.2,"" an) E LowNl(f) 
we define 

f~(Xl' X2, ••• ,Xn ) = /\ Xi· 
iES'(a) 

For every a E LowNl(J), the set Sl(a) is called a minterm of f. Min(f) = 
{Sl(a) I a E LowNl(J)}. 

A vector W E {O, l}n is called an upper zero of f if 

(i) f(w) = 0, 

(ii) for all f3 E {O, l}n, f3:::::: w implies f(f3) = 0, and 

(iii) for all 'Y E {O, l}n, 'Y > w implies f('Y) = 1. 
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The set of all upper zeros of f is denoted UpN°(f)= {w E {O, l}n I w is an 
upper zero of j}. For every a E UpN°(J), the set SO(a) is called a maxterm 
of f. Max(f) = {SO(a) I a E UpN°(J)}. 

We observe that each monotone Boolean function f can be unambiguously 
defined by giving LowNl(J) or UpN°(J). 

Lemma 3.6.2.4 For every monotone Boolean function f E B"2 over an X = 
{Xl, ... ,Xn }, 

v 

Proof. Following Definition 3.6.2.3 we have 

u {,B E {O, l}n I,B:::: a}. 

Since Nl(J~) = {,B E {O, l}n I ,B :::: a}, the claim is proved. D 

Observation 3.6.2.5 Let f be a monotone Boolean function. For every Zl E 
Max(J) and every Z2 E Min(J), Zl n Z2 =f. 0. 

In what follows we define monotone Boolean circuits and we show that they 
compute exactly the monotone Boolean functions. 

Definition 3.6.2.6 Each straight-line Boolean program over the basis {V, /\} is 
called monotone. Each Boolean circuit over the basis {V, /\} is called mono­
tone. 

Lemma 3.6.2.7 For every Boolean function f, there is a monotone Boolean 
circuit computing f. 

Proof. Let f be a Boolean function over a set X = {Xl, ... ,Xn } of input 
variables. Lemma 3.6.2.4 claims that f can be written as 

f(Xl, ... ,xn ) = V f~(Xl' . .. ,xn ), 

aELowN'(f) 

where f~(Xl' ... ,xn ) = /\jES(a)Xj for every a E LowNl(J). Since this formula 
contains only disjunctions and conjunctions, the straightforward construction 
of a Boolean circuit computing f(Xl, ... ,xn ) results in a monotone circuit. D 

Lemma 3.6.2.8 Every Boolean function f computed by a monotone Boolean 
circuits is monotone. 

Proof. We prove this lemma by induction on the depth of the circuit. Obviously, 
a monotone Boolean circuit of depth 1 computes either Xl V X2 or Xl/\ X2, which 
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are monotone Boolean functions. Let every monotone Boolean circuit of depth 
d :S j compute a monotone Boolean function. We prove it for the depth j+1 too. 
Let S be a monotone Boolean circuit of depth j + 1 and let 9 be an output gate 
with the distance j + 1 to at least one input node. Let Xl, ... ,Xn be the inputs 
of S. We have to show that Result(g) is a monotone function. We distinguish 
two cases: 

(1) ifg = (V,h,h), then Result(g) = g(X1,""Xn) = h(X1, ... ,Xn) V 
h(x1, ... ,xn ). Since hand 12 are monotone according to the induction 
hypothesis, we obtain for every a, (3 E {O, l}n, a:S (3, 

g(a1, ... ,an) h (a1, . .. ,an) V h(a1,' .. ,an) 

< 11 ((31,' .. ,(3n) V 12((31,' .. ,(3n) 

g((31, ... , (3n). 

(2) if 9 = (1\, gl, g2), then Result(g) = g(Xl,"" xn) = gl (Xl, ... ,xn) 1\ 
g2(X1, . .. ,xn). Since gl and g2 are monotone according to the induction 
hypothesis, we obtain g( a) :S g((3) for every a, (3 E {O, l}n such that 
a :S (3. 

o 

So, one can consider monotone Boolean circuits as a computing model for 
the class of all monotone Boolean functions. This means that one can be in­
terested in some complexity measures of monotone Boolean functions defined 
according to this restricted circuit model. 

Definition 3.6.2.9 Let 1 be a monotone Boolean function. Then the mono­
tone combinational complexity of f is 

MCC(f) = {CC(B) I B is a monotone Boolean circuit computing n. 
The monotone depth complexity of f is 

MD(f) = {D(B) I B is a monotone Boolean circuit computing n. 

In what follows we define Boolean circuits over {V, 1\, r} with some restric­
tion on the use of the negation r. Contrary to the case of monotone Boolean 
circuits we will show that this restriction does not have any essential influence 
on the computational power of the Boolean circuit model. 

Definition 3.6.2.10 A Boolean circuit over the basis {V, 1\, r} is in the quasi­
monotone form (or quasimonotone) if the input of each gate containing r 
is a source element corresponding to an input variable (i.e., the outputs of nega­
tion gates are only negations of input variables). 
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For convenience, we make the following agreement. For any variable x, we 
consider F(x) as inputs. This means that the gate (F,x) is considered to have 
depth ° in quasimonotone Boolean circuits. 

Lemma 3.6.2.11 For each Boolean circuit S over the basis {V,!\, F}, there 
exists an equivalent Boolean circuit S' in quasimonotone form such that 

(i) D(S') = D(S), and 

(ii) CC(S') :::: 2· CC(S). 

Proof. Let S be a Boolean circuit computing a function f over the set of 
input variables {Xl,"" xn }. The idea is to construct a circuit S' containing for 
each gate 9 of S two gates gl and g2, where gl computes the same function as 
9 (Result(gl) = Result(g)) and g2 computes the negation of 9 (Result(gl) = 
F(Result(g)). We construct S' inductively according to the depth of the gates 
of S. If 9 is of depth 0, then 9 is an input variable x. In this case S' contains 
the gate (F, x). 

For any h of S of depth smaller than m :::: D(S), let S' contain hI and h2 

with Result(hl) = Result(h) and Result(h2) = F(Result(h)). Let 9 be of depth 
min S. If 9 = (F, h) for some h, then the depth of h in S is smaller than m. But 
this means that S' already contains hI and h2 with Result(hl) = Result(h) = 
F(Result(g)) and Result(h2) = F(Result(h)) = Result(g). 

If 9 = (V, hI> h2), then hI and h2 have the depth smaller then m, and 
Result(g) = Result(hl ) V Result(h2). Now, we add two gates gl = (V, hL hD 
and g2 = (!\, hi, h~) to S'. Obviously, Result(g) = Result(ht) V Result(hi) = 
Result(gl), and F(Result(g)) = F(Result(ht) V Result(hm = F(Result(hD)!\ 
F(Result(hi)) = Result(hi)!\ Result(h~) = Result(g2). 

If 9 = (!\, hI, h2 ), then we add the gates gl = (!\, ht, hD and g2 = (V, hi, hD 
to S'. Again, applying the de Morgan rules one obtains Resu1t(gl) = Resu1t(g) 
and Result(g2) = F(Result(g)). 0 

3.6.3 Communication Complexity of Relations 

In this section we define the communication complexity of relations. Let X, Y, Z 
be some sets, and let R ~ X x Y x Z be a relation. Informally, a protocol 
computing R is the usual two-party protocol consisting of two computers GJ 

and GIl' Initially GJ has an input x E X and GIl has an input y E Y. They 
communicate in order to compute an output z E Z such that (x, y, z) E R. We 
do not prescribe which z should be computed, but require only that (x, y, z) E R. 
In what follows we assume Z n {O, I} * = 0. 

Definition 3.6.3.1 Let X, Y, Z be some sets and let R ~ XxYxZ. A protocol 
computing the relation R is a function P with the following properties: 

(i) P: (X U Y) x U~o({O, l}*$)i -+ {O, l}+ U Z, 
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(ii) <.P has the prefix-freeness property, 

(iii) if"( = <.P(a, C1$C2$ ... $C2i$) E Z for some i E N, and C1 = <.P(a, A), C2 = 
<.P(,8, C1 $), ... , C2i = <.P(a, C1$C2$ ... $C2i-1 $) E {a, I} +, a E X [a E Yj, ,8 E 
Y [,8 E Xl, 
then (a,,8,,,() E R [(,8, a, "() E Rl, and<.P(,8,c1$C2$ ... $C2i$$) = ,,(, 

(iv) if"( = <.P(,8, C1$C2$ ... $C2i+1$) E Z for some i E N, and C1 = <.P(a, A), C2 = 
<.P(,8, C1$), ... , C2i+1 = <.P(,8, C1$C2$ ... $C2i$) E {a, 1}+, a E X [a E Yj, ,8 E 
Y [,8 E Xl, 
then (a,,8,,,() E R [(,8,a,,,() E Rl, and <.P(a,c1$c2$ . .. $C2i+1$$) = "(. 

In case (iii) the word D = C1 $C2$ ... $C2i$"( is called the computation of ~ on 
the inputs a and (3. The communication complexity of the computa­
tion D is cc(D) = ic1C2'" C2il. C1C2'" C2i is called the communication of ~ 
on the inputs a and {3. 
In case (iv) the word G = C1$C2$ ... $C2i+1$"( is called the computation of ~ 
on the inputs a and (3. The communication complexity of the compu­
tation C is cc( C) = IC1 C2 ... C2i+11. C1 C2 ... C2i+1 is called the communication 
of ~ on the inputs a and (3. 
The communication complexity of the protocol ~ is 

cc(~) = max{ cc(D) I D is a computation of <.P on some inputs 
(a,,8) E X x Y such that there exists"( with (a,,8, "() E R}. 

The communication complexity of the relation R is 

cc(R) = min{cc(4)) I <.P is a protocol computing R}. 

We observe that the protocols computing relations do not prescribe which 
of the two computers starts the communication, unlike protocols computing 
functions, where Gf starts the communication for every input. On the other 
hand, one additionally requires for protocols computing relations that after the 
communication both computers Gf and GIl know the output. 

In what follows we are interested in the two following relations depending 
on a given Boolean function f. 

Definition 3.6.3.2 Let n be a positive integer, d = flog2 n 1, and let f E B~. 
We define R(J) as the maximal relation on {o,l}n x {O,l}n x {1,2, ... ,n} 
fulfilling the following conditions: 

(i) R(f) ~ N1(f) x N°(f) x {1,2, ... ,n}, and 

(ii) if (a1a2 ... an, ,81,82' .. ,8n, i) E R(f), aj,,8j E {a, I} for j = 1, ... , n, then 
Q:i i= ,8i· 

Let f be a monotone Boolean function over a set of variables X. We define 
MR(J) as the maximal relation on 2x x 2x x X fulfilling the following condi­
tions: 
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(i) MR(J) S;;; Min(J) X Max(J) X X, and 

(ii) if (A, B, x) E MR(J), then x E An B. 

Example 3.6.3.3 We consider the parity function parn : {O,I}n -+ {O, I} 
defined by parn(al, a2,"" an) = alffia2ffi .. . ffian. We show that cc(R(parn)) :S 
2log2 n for n = 2k. A protocol iP computing R(parn) can be described as follows. 
Let a = al ... an E N1(parn) and 13 = 131'" f3n E N°(parn) be some inputs. 
Let n > 1. In the first two rounds G/ sends the bit Cl = parnj2(al ... an j2) to 
GIl and GIl sends the bit C2 = parn/2(f31 .. . f3n/2) to G/. If Cl =I C2, then both 
G/ and GIl know there is an i E {I, ... , n/2} such that ai =I f3i. If Cl = C2, 
then both G/ and GIl know there is an j E {n/2 + 1, ... , n} such that aj =I f3j. 
Thus, using two bits iP reduces the size of the problem by a factor of two. After 
2log2 n rounds of 2log2 n bits together both G/ and GIl know an index l such 
that al =I 131. 0 

3.6.4 Characterizations of Circuit Depth by the Communication 
Complexity of Relations 

Proving a superlogarithmic lower bound on D(J) of a specific Boolean function is 
one of the most important open problems of the modern complexity theory. This 
is not only because D(J) corresponds to nonuniform parallel time complexity 
for computing f. A superlogarithmic lower bound on D(J) for some f would 
mean that there is no formula of polynomial size computing f. Note that the 
highest known lower bound on the size of formulas computing a specific Boolean 
function is D(n5/ 2 ). 

In this section we show that cc(R(f)) can be used to estimate D{v,/\,r}(f) 
for any Boolean function and that cc(MR(f)) can help to estimate the depth 
of monotone Boolean circuits for every monotone Boolean function f. To prove 
D{V,A,r}(J) ~ cc(R(J)) we consider the following idea. Let S be a quasimono­
tone circuit computing f. Let 9 be the output gate of S with two inputs hi and 
h2· Let a = al ... an E N 1(J), 13 = 131' . ·f3n E N°(J). We show that using D(S) 
communication bits one can compute the path from 9 to some input Xi of S 
such that ai =I f3i' Since 1 = Result(g)(a) = f(a) =I f(f3) = Result(g)(f3) = 0, 
it is obvious that Result(hj)(a) =I Result(hj )(f3) for at least one j E {1,2}. 
Now, it is sufficient to observe that one communication bit suffices to estimate 
the gate hj whose outputs differ on inputs a and 13. The formalization of this 
idea is given in the next lemma. 

Lemma 3.6.4.1 Let f be a Boolean function. For every Boolean circuit S in 
the quasimonotone form computing f 

D(S) ::=:: cc(R(f)). 
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Proof. Let f be a function from {O,l}n -t {O, I}. We prove this lemma by 
induction on D(S). If D(S) = 0 then f(xl, ... ,xn ) is either Xi or r(Xi) for some 
i E {1,2, ... ,n}. In both cases i is always the correct output (i.e., (a,f3,i) E 
R(J) for all a E Nl(J) and f3 E N°(J)). Thus, cc(R(J)) = O. 

We assume Lemma 3.6.4.1 is true for every circuit with a depth smaller 
than m, mEN. Let S have the depth m. We distinguish two cases according 
to the output gate 9 of S. 

If 9 = (1\, hI, h2), then, for all a E Nl(J) and f3 E N°(J), 1 = f(a) = 
Result(g)(a) = Result(hd(a) 1\ Result (h2)(a) , and 0 = f(f3) = Result(g)(f3) = 
Result(hl )(f3) 1\ Result (h2) (f3). Clearly, Result(hd(f3) = 0 or Result(h2) (f3) = O. 
If Result(hl )(f3) = 0, then CII submits the bit 1 to C j • If Result(hd(f3) = 1 
(Result(h2)(f3) = 0), then CIl submits the bit 0 to Cj . We observe that if the 
bit submitted was 0, then 1 = Result(hl)(a) (i.e., a E Nl(Result(hl))) and 
0= Result(h l )(f3) (i.e., f3 E N°(Result(hl ))). Since hI is the gate of the depth 
smaller than m, the index i with ai -=I- f3i can be estimated in communication 
complexity smaller than m. Similarly, if the bit submitted was 0, then a E 

N l (Result(h2)) and f3 E N°(Result(h2)). Since the depth of h2 is smaller than 
m, the index i with (a, f3, i) E R(J) [(a, f3, i) E R(Result(h2))] can be computed 
within communication complexity m - 1. 

If 9 = (V, hI, h2 ) the situation is similar. In this case the sender is Cj • Cj 

submits 1(0) if Result(hd(a) = 1 (Result(hl)(a) -=I- 1). So, the submission of 
the bit 1 means a E Nl(Result(hd) and f3 E NO(Result(hl )). The submission 
of the bit 0 means a E N l (Result(h2)) and f3 E NO(Result(h2)). Since both hI 
and h2 have their depths smaller than m, the index i with (a, f3, i) E R(J) can 
be found by using at most m - 1 additional communication bits. 0 

Now, we prove a converse of Lemma 3.6.4.1. 

Lemma 3.6.4.2 Let Ao, Al ~ {o,l}n, Ao n Al -=I- 0, for an n E N. Then there 
exists a Boolean function f E B'2 with Ao ~ N°(J) and Al ~ Nl(J) such that 

D{V,A,n(J) ::; cc(R), 

where R ~ Al X Ao x {I, 2, ... , n} and (0'.1 ... an, f3l· .. f3n, i) E R if ai -=I- f3i. 

Proof. The proof is realized by induction on cc(R). If cc(R) = 0, then there 
exists an i E {I, ... , n} such that for every a = (0'.1 ... an) E Al and every 
f3 = (f3l ... f3n) E Ao, ai -=I- f3i· Obviously, for all (a~ ... a~), (a~ ... a~) E AI, 
a~ = a~/, and for all (f3~ ... f3~), (f3? .. f3~) E Ao, f3: = f3:'- If a~ = a~' = 1, 
then we take f(Xl, ... ,Xn) = Xi· If a; = a;' = 0 (f3: = f3:' = 1), then we 
consider f(Xl, ... , xn) = r(Xi). In both cases Al ~ Nl(J), Ao ~ N°(J), and 
the Boolean circuit computing f has depth 0 (Remember that we agreed that 
the gates (r, Xi) have depth 0). 

To prove the induction step, we distinguish two possibilities according to 
who starts the communication in the optimal protocol tP computing R. First, 
we consider CII sends the first bit Cl. Let Ao = AOl U Aoo, AOI n Aoo = 0, 
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and let GIl sends Cl = ° for inputs from Aoo, and 1 for inputs from A01 ' 

Now, we consider relations Ro = (Ai X Aoo x {I, 2, ... , n}) n Rand Rl 
(Ai x AOl x {I, 2, ... ,n}) n R. We see that 

cc(R) = 1 + max{ cc(Ro), cc(Rl )} 

(if not, then <P is not the optimal protocol for R). Since cc(Ro) < cc(R) and 
CC(Rl) < cc(R) we obtain by induction the existence of two functions ho and hi 
such that 

(i) Ai ~ Nl(hi) for i = 0, 1, 

(ii) Aoo ~ NO(ho) and AOl ~ NO(hd, and 

(iii) D{V,A,r}(hi ) :::; cc(R;) for i = 0,1. 

and 

Taking now f = ho 1\ hi we obtain 

Ai ~ Nl(ho) n Nl(hl) = Nl(f), 

Ao ~ Aoo U AOl ~ N°(ho) U N°(hl ) = N°(f), 

D{v,A,n(f) < 1 + max{D{V,A,n(ho), D{V,A,n(hd} 
< 1 + max{ cc(Ro), CC(Rl)} = cc(R). 

If GJ sends the first bit we consider a partition (AlO, All) of Ai such that GJ 

sends ° for inputs from AlO and GJ sends 1 for inputs from All' In this case we 
consider relations R~ = (Ali X Ao x {I, ... ,n}) n R for i = 0,1. Again, we have 

cc(R) = 1 + max{ cc(R~), cc(R~)}. 

By induction there exist fo and h such that 

(iv) Ao ~ N°(fi) for i = 0,1, 

(v) Ali ~ Nl(J;) for i = 0, 1, and 

(vi) D{V,A,r}(fi) :::; cc(RD for i = 0,1. 

Taking f = fo V h we obtain 

Ao ~ N°(fo) n N°(h) = N°(f), 

Ai ~ AlO U All ~ Nl(hl) U Nl(ho) = Nl(f), and 

D{V,A,r} (f) < 1 + max{D{V,A,r} (fo), D{V,A,r}(h)} 
< l+max{cc(R~),cc(R~)} =cc(R). 

o 
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Combining Lemma 3.6.4.1 and Lemma 3.6.4.2 we get the following result. 

Theorem 3.6.4.3 For every Boolean function f, 

D{V,A,n(J) = cc(R(J)). 

Thus, we have reduced the well-known open problem proving a superlog­
arithmic lower bound on the depth complexity of Boolean circuits to proving 
a lower bound on the communication complexity of relations. Unfortunately, 
nobody has been able to prove a superlogarithmic lower bound on R(J) for any 
Boolean function f. The situation changes if one considers the communication 
complexity of MR(J) for some monotone Boolean functions f. Here, one has 
proved several superlogarithmic lower bounds. The following claim shows that 
MR(J) can provide a lower bound on MD(J) and so we obtain a method for 
proving superlogarithmic (even linear) lower bounds on the depth complexity 
of monotone Boolean circuits. 

Theorem 3.6.4.4 For every monotone Boolean function f, 

MD(J) = cc(MR(J)) = cc(R(J)). 

Proof To prove cc(R(J)) ~ MD(J) one can use the proof of Lemma 3.6.4.1 
without any change because monotone circuits are a special case of quasimono­
tone circuits. On the other hand a protocol computing R(J) for a monotone func­
tion f gives for every a = (a1 ... an) E N1 (J) and every fJ = (fJo ... fJn) E N° (J) 
an output i with the property ai = 1 and fJi = o. Obviously, for every protocol 
with the above property the proof of Lemma 3.6.4.2 gives a monotone Boolean 
circuit. So, MD(J) = cc(R(J)). 

It remains to show cc(R(J)) = cc(MR(J)) for every monotone Boolean 
function f. Let a = (ab ... ' an) E N 1 (J) be considered as the characteristic 
vector of a subset Set(a) ~ {1, ... ,n}, and let fJ = (fJb· .. ,fJn) E N°(J) be 
considered as the characteristic vector of the complement Coset(fJ) of a subset 
Set(fJ) ~ {I, ... , n} (i.e., ai = 1 ¢:} i E Set(a), fJj = 0 ¢:} i E Coset(fJ)). If 
one interprets two inputs a E N 1(J) and fJ E N°(J) as Set(a) and Coset(fJ), 
then every protocol computing R(J) can be considered as protocol providing 
an element from Set(a) n Coset(fJ) for inputs Set (a) and Coset(fJ). Since f is 
monotone the protocol for inputs S1, S2 ~ {I, 2, ... , n} can always behave as 
if it got inputs S~ ~ Sb and S~ ~ S2, where S~ E Min(J) and S~ E Max(J). 
Thus, cc(R(J)) = cc(MR(J)). 0 

To illustrate the applications of the theorems above we show how Theorem 
3.6.4.3 can help to prove the 2log2 n lower bound on the depth D(J) of specific 
symmetric functions. Obviously, this provides n(n2 ) lower bound on the size of 
any formula over {r, 1\, v} computing these functions. 
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First, we give some helpful technical lemmas. We do so using the follow­
ing notation. Let f be a Boolean function, and let If> be a protocol comput­
ing R(f). For all inputs a E Nl(f), (3 E N°(f), CCI(~'O:,,8) [ccII(~,o:,,8)l 
denotes the sum of the lengths of all messages submitted from GJ to GIl 
[from GIl to GJ ] in the computation of If> on a and (3. We set cc(~, 0:,,8) = 
CCr(lf>,a,(3) + cCn(lf>, a, (3). For every a E Nl(f), N°(f,o:) = N°(f) n b I 
I differs from a exactly in one position}. Analoguously, for every (3 E N°(f), 
Nl(f,,8) = Nl(f) n {J I J differs from (3 exactly in one position}. We set 
N eig(f) = {(a, (3) I a E N 1 (f), (3 E NO (f), and a differs from (3 in exactly 
one position}. 

Lemma 3.6.4.5 Let f be a Boolean function, and let If> be a protocol computing 
R(f). For every a E N 1 (f) and every (3 E NO (f), 

(i) ~'YENO(f,a) cn(lf>, a, I) ~ IN°(f, a)l·log2IN°(f, a)1 and 

(ii) L.dEN1(f,(J) Cr (If>, J, (3) ~ IN1 (f, (3) I . log2 IN1 (f, (3) I· 

Proof. Because of the symmetry we prove (i) only. To obtain (i) it is sufficient 
to observe that, for any two different II, 12 E N°(f, a), GIl has to send different 
communications in the computations of If> on inputs (a, II) and (a, 12)' Let us 
assume the opposite. Since GJ reads a in computations of If> on both (a, II) 
and (a, 12) the submission of the same messages from GIl to GJ cause that the 
whole communications of If> on (a, II) and (a, 12) are the same. Since both GJ 

and GII know the result after the communication we even see that the whole 
computations on (a"l) and (a, 12) must be the same (1f>(,I,C) = If>(a,c$) = 
If>(a, c'$) = 1f>(r2, c') if c = c' E {O, 1, $}*). This means that If> gives the same 
output for inputs (a, II) and (a, 12)' But this is impossible because a differs 
from Ii in exactly one element for i = 1,2, and II i 12. 0 

Lemma 3.6.4.6 For every Boolean function f 

INeig(fW 
D{v,I\,r}(f) ~ log2 INl(f)I.IN0(f)1 

Proof. To show this result we prove, for every protocol If> computing R(f), 

Sum(f,~) = L. cc(lf>,a,(3) ~ INeig(f)I'log2INll~~~~(I~r(f)1 
(a,(J)ENmg(f) 

Let If> be a protocol computing R(f). Then 

L cc(lf>,a,f3) ~ L cr(lf>,a,(3) + cn(lf>, a, (3) 
(a,(J)ENeig(f) (a,(J)ENeig(f) 

> L L cn(lf>, a, I) 
aEN1(f) 'YEN0(f,a) 

+ L L cr(lf>, J, (3) . 
(JEN0(f) dEN1(f,(J) 
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Applying Lemma 3.6.4.5 we obtain 

Sum(f,4i) 2: L IN°(f,a)l·log2IN°(f,a)1 
fiEN1(f) 

+ L INl(f,,8)I·log2INl(f,,8)1 
f3EN°(f) 

> L 1 Neig(f)1 .1 (INeig(f)I) 
fiEN1(f) INl(f)1 og2 INl(f)1 

L 1 Neig(f) 1 .1 (INeig(f)I) 
+ f3ENO(f) IN°(f)1 og2 IN°(f)1 

. 1 Neig(f) 1 INeig(f)1 
> INelg(f)I· [log2 INl(f)1 + 10g2 IN0(f)11 

. INeig(f) 12 
INelg(f)I·log2 INI(f)I.IN0(f)I· 

o 

Now we apply Lemma 3.6.4.6 to get a lower bound on D{v,I\,r}(parn) for 
the parity function from Example 3.6.3.3. 

Theorem 3.6.4.7 For every positive integer n, 

Proof. We observe that N 1 (parn) contains all inputs with an odd number of 
l's and that N°(parn) contains all inputs with an even number of l's. So, for 
every a,,8 E {a, l}n differing in exactly one element, (a,,8) E (N1(f) x N°(f))u 
(N°(f) X N1(f)). Thus, Neig(parn) = n· 2n - 1. 

Applying Lemma 3.6.4.6 we obtain 

1 Neig(parn) 12 n222n- 2 

D{v,I\,r}(parn) 2: log2( INl(parn)I'INO(parn)l) 2: log2( 22n - 2 ) = 2 ·log2 n . 

o 

3.6.5 Exercises 

Exercise 3.6.5.1 Conctruct a monotone circuit computing 

(i) the Boolean convolution, 

(ii) Boolean matrix product, and 

(iii) threshold functions. 
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Exercise 3.6.5.2 •• Prove an exponential lower bound on the size of monotone 
Boolean circuits recognizing a specific language. 

Exercise 3.6.5.3 • Give some estimation on the number of monotone Boolean 
functions of n variables. 

Exercise 3.6.5.4 Give some lower and upper bounds on cc(MR(f)) for 

(i) the threshold functions, 

(ii) the Boolean convolution. 

Exercise 3.6.5.5 •• Prove a superlogarithmic lower bound on MD(hn(L)) for 
a concrete language L. 

3.6.6 Research Problems 

Problem 3.6.6.1 •• Prove a superlogarithmic lower bound on D(hn(L)) for a 
language L. 

Problem 3.6.6.2' Prove a linear boundD{v,A,n(hn(L)) 2: d·nfor a constant 
d> 2 and a specific language L. 

3.7 Bibliographical Remarks 

Boolean circuits are one of the oldest computing models considered in theoretical 
computer science. The complexity aspects of Boolean circuits have been studied 
already in 1949 by Shannon [Sh49]. Up till now there were published hundreds 
of papers dealing with this computing model from the complexity theory point 
of view. Because of this we do not try to give any survey on this topic. We 
mention only results and references directly connected to the topic of Chapter 
3. For more information excelent monographs and surveys by Boppana and 
Sipser [BS90], Dunne [Du88], Nigmatulin [Ni83], Savage [Sa76], and Wegener 
[We87] may be consulted. 

The first result on Boolean circuits was devoted to Shannon's function 
ShCC(n) of combinational complexity. The first estimations on ShCC(n) are 
due Shannon [Sh49]. Probably the main contribution on this topic is the method 
of Lupanov [Lu58]. An excellent and exhaustive survey on the estimations on 
Shannon's functions of basic Boolean complexity measures was given by Nig­
matulin [Ni83]. 

The area complexity of Boolean circuits was already introduced and studied 
in 1967 by Kravcov [Kr67]. Albrecht [AI78] and Kravcov [Kr67] obtained Shan­
non's characterizations of the area complexity of almost all Boolean functions of 
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n variables. Kramer and van Leeuwen [KL83] proved that any Boolean function 
of n variables can be realized in area O(2n). Skalikova [Sk76] considered a circuit 
layout where all inputs lay on the border in the fixed order Xl, X2, ••• , X n . For 
this model she proved: 

- lower bound S7(n2n) and upper bound O(n2n) on the area complexity of 
Boolean circuits computing all 2n elementary conjuction of n variables, 

- lower bound S7(n22n) and upper bound O(n22n) on the area of Boolean 
circuits computing all 22n Boolean functions of n variables, 

- lower bound S7(n2) and upper bound O(n2) on the area of Boolean circuits 
computing the multiplication of two binary integers of length n, and 

- lower bound S7( n log2 n) and upper bound O( n log2 n) on the area of 
Boolean circuits computing some specific symmetric Boolean functions. 

The lower bound S7(n3/ 2) on the area complexity of Boolean circuits comput­
ing a specific Boolean function in this layout model was obtained by Skalikova 
in [Sk82]. The highest lower bound S7(n2) on the general layout model consid­
ered in Section 3.3 was established by Lozkin et al. in [LRSH88]. The general 
lower bound method on the area complexity presented in Section 3.3.3 (Theo­
rems 3.3.3.4 and 3.3.3.6) is based on the paper by Hromkovic, Lozkin, Rybko, 
Sapozenko and Skalikova [HLR92]. The comparison of the two area layout mod­
els in Section 3.3.4 is due to Hromkovic and Suster [HrSu90]. 

The three-dimensional layout of Boolean circuits was considered by Skalikova 
[Sk76]. She proved in a constructive way that each circuit laid out in space D 
can be laid out in area D3/2, and that there is no better area layout of Boolean 
circuits in the three-dimensional lattice. The general method for proving lower 
bounds on the three-dimensional layout of Boolean circuits (Section 3.3.5) is 
due to [HLR92]. This method provides the highest known lower bound S7(n3/ 2) 
on the space complexity of a specific Boolean function (Corollary 3.3.5.8). 

One of the most challenging problems in complexity theory is to prove a 
nonlinear lower bound on the combinational complexity of a specific Boolean 
function. The highest known lower bounds are only linear ones (for the base of 
all Boolean functions of two variables given in Blum [Bl84], Harper and Savage 
[HSa73], Harper, Hsieh, and Savage [HHS75], Kloss and Malyshev [KMa65], 
Paul [Pa77] , Schnorr [Sc80], and Stockmeyer [St76], for some special complete 
bases given in Gorelik [Gor73], Red.kin [Re81], Schnorr [Sc74], and Soprunenko 
[S065]) despite the fact mentioned above that almost all Boolean functions of 
n variables require S7(2n In) combinational complexity [Sh49, Lu58]. Nonlinear 
lower bounds have been proved only for Boolean circuits with some additional 
restrictions. Harper and Savage [HSa73] proved a S7(n log2 n) lower bound on the 
size of so-called "synchronized" Boolean circuits computing a specific Boolean 
function. They also proved a S7(n2) lower bound on the combinational complex­
ity of planar Boolean circuits computing a collection of n Boolean functions 
of n variables. The first S7(n2 ) lower bound on the number of gates of the 
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planar Boolean circuits computing a specific Boolean function was obtained in­
dependently by Hromkovic [Hr91) and Tunin [Tu89). (Note that the fact that 
almost all Boolean functions of n variables require 2n - 3 - n/4 planar combina­
tional complexity was proved by McColl [Mc85b].) In Section 3.4 we presented 
a generalization of the previous proof ideas showing how communication com­
plexity can provide lower bounds on Boolean circuits with sublinear separators. 
The results presented are based on the ideas and proofs formulated by Gubas, 
Hromkovic, and Waczulik in [Hr91, GHW92). The existence of bounded-degree 
graphs without sublinear separators called magnifiers (see Theorem 3.4.4.4) was 
shown (even in a constructive way) by several authors (see, for instance Alon 
[Al86], Alon and Milman [AM85], and Gaber and Galil [GG81]). The results 
of Section 3.4.4 showing that magnifiers may have more computational power 
than Boolean circuits with sublinear separators are due to Tunin [Tu89) and 
Gubas, Hromkovic, and Waczulik [GHW92]. The quadratic lower bounds on the 
planar Boolean circuits are based on the Planar Separator theorem of Lipton 
and Tarjan [LT79, LT80). In Section 3.4.5 (Theorem 3.4.5.8) we have presented 
a weaker version of this theorem in order to provide a detailed, structural proof 
suitable for teaching purposes. 

The idea of using communication complexity to prove lower bounds on 
the number of gates of unbounded fan-in Boolean circuits is due to Hromkovic 
[Hr85). In this paper communication complexity was used to prove lower bounds 
on the number of gates of unbounded fan-in Boolean circuits over a base consist­
ing of associative and commutative functions. The general approach presented 
in Section 3.5 is based on the following fact. If a function f with high commu­
nication complexity is computed by elements each having small communication 
complexity, then many of these elements are required in order to compute f. 
Arguments along this line were used in varying levels of explicitness in Al­
lender [A1l89), Goldmann, Hastad, and Razborov [GHR92]' Hromkovic [Hr91], 
Hastad and Goldmann [HG91), Hofmeister, Honberg, and Koling [HHK91]' Ha­
jnal, Maas, Pudlak, Szegedy, and Turan [HMPST87), Nisan [Nis93], Smolensky 
[Sm90], and Siu and Bruck [SB91]. The lower bounds on unbounded fan-in 
Boolean circuits with sublinear vertex-separators presented in Section 3.5.3 are 
based on a combination of the ideas of Hromkovic [Hr91) and of Section 3.5.2. 

Despite the fact that we are unable to prove nonlinear lower bounds on 
the combinational complexity of specific Boolean functions, 10 years ago a big 
success was achieved at least by proving lower bounds on the number of gates 
of monotone Boolean circuits. Andreev [An85] and Razborov [Ra85 , Ra85a] in­
dependently developed two methods for proving exponential lower bounds for 
monotone combinational complexity. Their lower bounds were even improved 
by Alon and Boppana [AB87]. Though the mentioned results of Andreev and 
Razborov give superlogarithmic depth lower bounds for monotone circuits com­
puting certain functions, the depth lower bound is always logarithmic in the 
size bound. So these techniques apply to size rather than to depth. The first 
method for proving superlogarithmic lower bounds on the depth of monotone 
circuits (independently of their sizes) was developed by Karchmer and Wigder-
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son [KWi88]. The concept of the characterization of the depth complexity of 
Boolean circuits by the communication complexity of relations (Section 3.6) was 
taken from [KWi88]. The method for proving the highest known lower bound 
2log2 n on the depth of Boolean circuits over base {v, 1\, r} (Lemma 3.6.4.6) 
is also from [KWi88]. Lemma 3.6.4.6 is in fact a version of the well-known the­
orem of Chrapchenko [Ch71, Ch71a, Ch71b] providing quadratic lower bounds 
on the length of Boolean formulas computing some specific symmetric Boolean 
function over the base {V, 1\, r}. Thus communication complexity is even use­
ful for proving one of the highest lower bounds on the size of formulas. Note 
that the quadratic lower bound is the highest known for formulas over some 
special complete base. For the base over all Boolean functions of two vari­
ables, the nonlinear lower bounds have been established by Hodes and Specker 
method [HoS68] (extended and exhaustively analysed by Pudlak [Pu84a]), by 
the method of Fischer, Meyer and Paterson [FMP82], and by the method of 
Nechiporuk [Ne66]. The highest lower bound st(n2 / log2 n) was established in 
Paul [Pa77] by applying Nechiporuk's method for indirect addressing. 

But the main contribution of the characterization of circuit depth by the 
communication complexity of relations is in proving superlogarithmic lower 
bounds on the monotone depth of specific monotone Boolean functions. The 
first superlogarithmic st(log2 n)2 lower bound was presented by Karchmer and 
Wigderson [KWi88]. Futher lower bounds were achieved by Karchmer, Raz, and 
Wigderson [KRW91], and Raz and Wigderson [RW89, RW90]. The main con­
tribution is the linear lower bound on the depth of monotone circuits [RW90] 
for the matching problem. This result was achieved by reducing the problem of 
proving a superlogarithmic lower bound on cc(MR(f)) to the problem of prov­
ing a superlogarithmic lower bound on the Monte Carlo complexity of set dis­
jointness. The latter lower bound was proved by Kalyanasundaram and Schnit­
ger [KS87]. The lower bound proof of [KS87] was later simplified by Razborov 
[Ra90]. This last result of Razborov and Wigderson [RW90] provides an expo­
nentiallower bound on the length of monotone formulas computing the match­
ing problem. A survey about the communication complexity of relations was 
given by Wigderson in [Wi91]. 
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4.1 Introduction 

In this chapter we apply communication complexity to obtain methods for prov­
ing lower bounds on the complexity measures of VLSI circuits. A VLSI circuit 
is a more powerful computing model than the Boolean circuit model. While 
the gates (processors) of VLSI circuits are as simple as the gates of Boolean 
circuits, the communication structure (the graph describing the connections 
between processors) of VLSI circuits may contain cycles. This requires that 
a computation of a VLSI circuit be considered as an alternating sequence of 
synchronized steps Gl , Db G2, D2 ... ' where Gi are communication steps and 
Di are working steps. In every communication step each directed edge (Pl,P2) 
(communication link) transfers a binary value as the output of the processor Pl 
to the processor P2. In every working step each node (processor) of the VLSI 
circuit computes outputs according to the values of its inputs. This contrasts 
to the Boolean circuits, where each processor and each directed edge were at 
most once active in the whole computation on an input. The main complexity 
measures of the VLSI circuit model are layout area A and time T (the number 
of working steps). Since many computing problems may be solved with small 
area A if one allows a large time T and with small T if one allows relatively 
large A, one prefers to consider tradeoffs of complexity measures like A·T, A·T2 

in order to objectify the measurement of the hardness of computing problems. 
In this chapter we show that communication complexity may be used to get 
lower bounds on A and AT2. Similarly as for Boolean circuits, we can obtain 
more powerful lower bounds if we consider VLSI circuits with some restrictions 
on their topology. We shall show that considering some topological restrictions 
we can even obtain some lower bounds on the powerful interconnection network 
computations. The main difference between interconnection networks and VLSI 
circuits is that interconnection networks may consist of powerful processors with 
large local memories. 

This chapter is organized as follows. Section 4.2 provides the definitions of 
basic VLSI circuit models as well as the definitions of VLSI complexity mea­
sures. In Section 4.3 the methods for proving lower bounds on VLSI complexity 
measures are presented. We show there that one-way communication complex­
ity provides lower bounds on the number of processors of VLSI circuits (and so 
on the layout area too) and that communication complexity squared is a lower 
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bound on AT2 complexity. Several further lower bounds on some restricted 
models of VLSI circuits are given too. In Section 4.4 a model of interconnection 
networks is introduced as a powerful generalization of the VLSI circuit model. 
We show there that the approach based on communication complexity is still 
powerful enough to provide some kinds of lower bounds for interconnection net­
works. In Section 4.5 we deal with another generalization of the basic VLSI 
circuit model. Here we allow a so-called "multiplicity" of input variables which 
means that we allow each input value to enter the circuit several times via dif­
ferent input processors (places). We show that by defining a slightly modified 
communication complexity measure we are still able to prove some nontrivial 
lower bounds on A and AT2 complexity measures of multilective VLSI circuits. 
As usual, the last section is devoted to bibliographical remarks. 

4.2 Definitions 

4.2.1 Introduction 

The aim of Section 4.2 is to give the basic definitions connected with VLSI 
circuit computations and with the related complexity measures. This section is 
organized as follows. Section 4.2.1 presents the basic VLSI circuit models. In 
Section 4.2.2 the fundamental complexity measures of VLSI computations are 
defined. Section 4.2.3 defines the basic models of probabilistic VLSI computa­
tions, and Section 4.2.4 contains exercises supporting the understanding of the 
definitions given in Section 4.2. 

4.2.2 A VLSI circuit Model 

Very-large-scale integrated (VLSI) circuits are built from conducting materials 
laid down on a wafer, usually of silicon. There are several technologies for pro­
ducing VLSI chips. They differ in the kinds of materials used as well as in the 
way theses materials are collected and deposited. Fortunately, the differences 
between distinct technologies can be bounded by constant factors in area and 
time complexity measures. Thus, the lower bounds proved on the VLSI circuit 
model defined below work within a constant factor for all VLSI technologies. 

Like the Boolean circuit, the VLSI circuit can be described as a directed 
graph whose nodes correspond to simple processors without any memory, and 
the edges correspond to wires (communication links) transporting Boolean val­
ues. But the directed graph representing a VLSI circuit need not be acyclic. 
Moreover, we mostly build VLSI circuits with many cycles because the proces­
sors of VLSI circuits work in every synchronized step of the computation of an 
input, in contrast to Boolean circuits, where each processor has worked only 
once during the whole computation on an input. The last main difference be­
tween Boolean circuits and VLSI circuits is that a pair (processor, step number) 
is assigned to each input variable of the problem computed. Two different pairs 
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must be assigned to two different variables. This means that one input processor 
may serve for several different input variables incoming in the VLSI circuit, but 
in different time units. The formal definition of a VLSI circuit follows. 

Definition 4.2.2.1 Let X = {Xl>"" xn}, Y = {Yi,"" Ym} be sets oj Boolean 
variables, n, mEN - {OJ. A general program over the set of input vari­
ables X and the set of output variables Y is any set S = {gi, g2,· .. , gk} 
in which each 9 is either 

(i) a nonempty set oj pairs {(XiI' ti), ... , (Xir, tr)} Jor some positive integer 
r, tj E N, ti < t2 < ... < tT> and ij E {I, ... , n} Jor j = 1, ... , r or, 

(ii) a tuple (gj!>" .. ,9jz,{(Yip t i ), ... ,(Yis,ts)},J), where 1 :::; 1 :::; 3, s is a 
positive integer, tj E N, ti < t2 < ... < t., ij E {I, ... , m} Jor j = 
I, ... ,s, and f is a BooleanfunctionJrom {O,l}l to {O,I}, or, 

(iii) a tuple (gip'" ,gib' h), where 1 :::; b:::; 3, i j E {I, ... , k} Jor j = 1, ... ,b, 
and h is a Boolean Junction Jrom {O, I}b to {O, I}. 

An element 9 = {(Xipti)"",(Xir,tr)} E S (1 :::; i :::; k) of type (i) is 
called an input processor. tb is called the input time unit of the vari­
able Xib in the processor 9 for b = 1, ... , r. We also say that Xib en­
ters S via the input processor 9 in the time unit tb. An element 
9 = (gjp ... , gjl' {(Yip ti)"'" (Yis,ts)}, J) E S of type (ii) is called an out­
put processor. The number l is called the indegree of 9 and gjp ... ,9jz are 
called the internal inputs of g. For l = 1, ... , s we say that S computes Yil 

in the output processor 9 in time tl· An element 9 = (gil"'" gib' h) E S 
oj type (iii) is called the (internal) processor. Further, we say that 9 real­
izes the function it and that an indegree of 9 is b. The elements gil, ... , gik 
are called the internal inputs of g. The out degree of an element gE S is 
the number oj occurrences oj 9 as an internal input in all elements oj S. The 
degree of 9 is the sum of the outdegree oj 9 and the indegree oj g. For every 
X E X we define the set 

Ins(X) = {(g, t) g is an input processor of S, tEN, 

and X enters S via the processor 9 

in time t}. 

For every Y E Y we define the set 

Outs(y) = {(h, t) I h is an output processor oj S, tEN, 

and S computes Y in the output 

processor h in time t}. 

We say that a general program S is consistent iJ IOuts(Y)1 = 1 Jor every 
y E Y, and no output processor is an internal input of any element of S. A 
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consistent general program S is called a (semilective) VLSI program if each 
processor has its degree bounded by 4 and I Ins (x) I = 1 for every x EX. 

Any pair (gi, gj), i, j E {I, ... ,k}, is called a wire of S if gi is an internal 
input of gj. For every input processor g we say that g has an input edge eg, 
and for every output processor h we say that h has an output edge eh. The 
output and input edges are also called the external edges of S. Let Es denote 
the set of all wires and external edges of S. 

Now, to make precise how a VLSI program S computes we give the definition 
of a computation of S on an input string as a sequence of configurations, where a 
configuration unambiguously describes which Boolean values are communicated 
via wires and external edges of S in a time unit t. 

Definition 4.2.2.2 Let S = gl, g2, ... , gk be a VLSI program over the set of in­
put variables X = {Xl, ... , xn} and the set of output variables Y = {YI, ... , Ym}. 
Let a: X -+ {O, I} be an input assignment. Let Es be the set of wires and edges 
of S. For every tEN we define the t-th configuration of S according to 
a, Cf as a function from Es to {O, I} inductively as follows: 

(i) For every external input edge eg of an input processor g = {(XiI, t l ), ... , 

(Xir' tr)}: 

Cf(eg) = ° if t ¢ {tl, t2,.··, t r }, 

Cf(eg)=aij if t=tjforsomejE{I, ... ,r}, 

(ii) for every wire and every external output edge h E Es , 

Cg(h) = 0, 

(iii) for every wire (gd, gj) E Es , where gd = (gill···' gib' I) is a non-input 
processor of S 

For every wire (gd, gj)' where gd is an input processor 

For every external output edge hg of an output processor g = (gil' ... , gjl' 

{(YiI' t l ), ... , (Yis' ts)}, I), 

Cf(hg) = f( Cf-l ((9it , g)), C~l ( (gjz, g)), ... ,Cf-l ((gjl' g))). 

The infinite sequence C = cg, Cf, Cf, ... is called the computation of S on 
a. The transition from Cf to C~l is called a step of C. For every output 
processor g = (gjll ... , gjl' {(Yill t l ), ... , (Yis ' t s )}, I) and for Vb E {I, ... , s} we 
say that S computes the output value C:=(eg ) for Yib according to the 
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input assignment o. For every input assignment a E {O,l}n, we say that 8 
computes the output 8(0)= f3ll 132,"" 13m if, for every i = 1, ... , m , S 
computes f3i for Yi according to a. 

We say that 8 computes a computing problem p~= {it,···, fT}, 
k {O, l}n -+ {O, I} for i = 1, ... , r, if, for every a E {O,l}n, Sea) = 
it (a)h(a) .. . fT(a). lfr = 1 we say that 8 computes the Boolean function 

h· 

Example 4.2.2.3 We illustrate the above definitions on an example of a specific 
VLSI program S computing two Boolean functions it (Xl, ... , Xn, Zl,' .. ,zn) = 
(Xl /\ Zl) V (X2 /\ Z2) V (X3 /\ Z3) and h(xl,' .. ,Xn, Zl, ... ,zn) = Vf=l (Xi /\ Zi) for a 
positive integer n. We set S = {gl,g2,g3,g4} over X = {Xl, ... ,Xn,Zll""Zn} 
and Y = {Yb Y2}, where 

gl {(Xl, 0), (X2' 1), (X3, 2), ... , (xn' n - I)} is an input processor, 

g2 {(Zl' 0), (Z2' 1), (Z3, 2), ... , (zn, n - I)} is an input processor, 

g3 (gb g2, /\), and 

g4 (g3, g4, {(Yl, 5), (Y2, n + 2)}, V). 

Figure 4.1 provides a visual description of S. 
To illustrate the notion of a "computation" of a VLSI circuit we describe 

the first four configurations of S working on some input a'Y = al ... an "11 ... "In. 

cg1(e91 ) = ab Cg1(e92 ) = "Ill Cg1(gllg3) = Cg1(g2,g3) = Cg1(g3,g4) = 
Cg1(94, g4) = Cg1(egJ = O. 

Cf1 (eg1 ) = a2, Cf1(eg2 ) = "12, Cf1 (gb g3) = all Cf1(g2' g3) = "II, 
Cf1(g3,g4) = Cg1(gl,g3) /\ Cg1(g2,g3) = 0/\0 = 0, Cf1(94,g4) 
0, Cf1(eg.) = O. 

C~1(e9l) = a3, C~1(e92) = "13, C~1(gl' g3) = a2, C~1(g2' g3) = "12, 
C~1(g3' g4) = al /\ "Ill C~1(94, g4) = C~1(e94) = O. 

Cf1(eg1 ) = a4, Cf1(eg2 ) = "14, Cf1(gl,g3) = a3, Cf1(g2,g3) = "13, 
Cf1 (g3, g4) = a2 /\ "12, Cf1 (g4, g4) = al /\ "II = Cf1 (eg4 )· 

One can easily observe that, for every i = 1,2, ... , n, the only external 
output edge eg4 of S contains in time unit i + 2 exactly the value V}=l (aj /\ 'Yj) 
for the input assignment ala2 ... a n 'Yl'Y2'" "In- For every i > n the output edge 
contains V']=l (aj /\ 'Yj). Thus, if one changes g4 of S for gl = (g3, gl, {(y, n + 2 + 
j)}, V), then S computes the Boolean function Vf=l (Xi /\ Zi) for every positive 
integer j. 0 

Definition 4.2.2.4 Let S = {gll g2, ... ,gk} be a VLSI program over the set of 
input variables X and the set of output variables Y. A VLSI circuit over X 
and Y corresponding to 8 is a directed graph G s = ({gll g2, ... , gk}, E s). 
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Fig. 4.1. A VLSI circuit with the input variables XI, X2, ••• , X n , ZI, Z2, .. • , Zn 

Note that the representation of a VLSI program by the corresponding VLSI 
circuit Gs contains some repetition of information. According to Definition 
4.2.2.4 each internal processor of Gs is labeled by some g = (gill"" gib' f), but 
it is sufficient to consider the label f only because the edges (gil' g), ... , (gib' g) E 
Es unambiguously determine which are the inputs of g. We observe that the 
VLSI circuit on Figure 4.1 is such a concise description of the VLSI program 
from Example 4.2.2.3. 

Similarly as for Boolean circuits, we have to deal with the planar realization 
of VLSI circuits via the embedding into a two-dimensional grid. We observe that 
each VLSI circuit G s is a directed graph of degree at most 4, and so G s can be 
laid into the grid as described in Definition 3.3.2.1. 

Definition 4.2.2.5 Let S be a VLSI program, and let Gs be the corresponding 
VLSI circuit. Any grid-graph G of G s is called a VLSI chip. We also say that 
the VLSI chip G is the layout of the VLSI circuit G, and that the VLSI 
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chip G realizes the VLSI program S. A VLSI chip G is a b-Iayout of 
Gs if the grid-graph G contains all input and output processors of G s on the 
border of the smallest rectangle involving G. 

To see some examples of grid-graphs one may review for Figures 3.4, 3.5, 
and 3.10 in Chapter 3. 

4.2.3 Complexity Measures 

The two main complexity measures investigated for the VLSI circuits are layout 
area and time. This contrasts to Boolean circuits, where the main complexity 
measure studied is the number of gates (combinational complexity). The rea­
son for this difference is a more practical point of view on VLSI circuits and 
chips than on Boolean circuits, which represent one of the most important the­
oretical models of computing in complexity theory. The complexity theory of 
VLSI circuits has been developed so as to have strong relevance to real parallel 
computations on VLSI chips. 

In this section we define the three following VLSI complexity measures: 

• parallel complexity as the number of processors, 

• time complexity as the minimal time after which all output values have 
appeared on the external output edges, and 

• area complexity as the layout area of the circuit. 

Definition 4.2.3.1 Let S = gl, g2, ... , gk be a VLSI program over some X and 
Y. Let G s be the VLSI circuit corresponding to S . We say that the parallel 
complexity of the VLSI program S, P(S), is the cardinality of S (i.e., 
P(S) = k). We also say that the parallel complexity of the VLSI circuit 
G s is P(Gs )= k = the number of vertices ofGs . For every computing problem 
F we define the parallel complexity of F as 

P(F) = min{P(S) I S is a VLSI program computing F}. 

If F = {J} for a Boolean function f we say that the parallel complexity of 
the Boolean function f is P(f)= P(F). 

We observe that the VLSI circuit in Figure 4.1 has parallel complexity of 4. 

Definition 4.2.3.2 Let S = gl, g2, ... , gk be a VLSI program over a set of input 
variables X = {Xl, ... ,Xn } and a set of output variables Y = {Yl, ... ,Ym}, 
k,n,m E N - {O}. Let OutS(Yi) = {(gj"ti )} for i = 1,2, ... ,m. The time 
complexity of S is defined as 



248 4. VLSI Circuits and Interconnection Networks 

Let Gs be the VLSI circuit corresponding to S. We also say that the time 
complexity of G s is T(Gs )= T(S). 

For every computing problem F we define the time complexity of F as 

T(F) = min{T(S) I S is a VLSI program computing F}. 

If F = {J} for a Boolean function f we say that the time complexity of the 
Boolean function! is T(!}= T(F). 

We observe that the VLSI program from Example 4.2.2.3 has the time 
complexity n + 2. Thus, the time complexity of a VLSI program (circuit) Sis 
the first time unit up to which the values of all output variables have appeared 
on the external output edges of S. 

Now we define four area complexity measures. Outside the general one we 
consider three versions defined by the following two restrictions arising from 
some requirements of chip technologies: 

(a) all input and output processors are on the border of the VLSI chip, and/or 

(b) the lengths of the sides of the VLSI chip are approximately the same (i.e., 
the smallest rectangle containing the chip is a square). 

Definition 4.2.3.3 Let S = {gll g2, ... ,gd be a VLSI program, and let G s 
be the corresponding VLSI circuit. For any grid-graph Gs of Gs , the area of 
the VLSI chip G s , A(Gs }, is the area of the minimal rectangle Rect(Gs } 
comprising all nonempty squares of the lattice. The balanced area of G s , 
sAC G s ), is the area of the minimal squared rectangle comprising all nonempty 
squares of the lattice. The area of the VLSI program S (VLSI circuit G s) 
zs 

A(S} = A(Gs } = min{A(G) I G realizes S}. 

The balanced area of S is 

sACS) = min{sA(G) I G realizes S}. 

For every computing problem F we define the VLSI area complexity of F 
as 

A(F) = min{A(S) I S computes F}. 

The balanced VLSI area complexity of F is 

sA(F} = min{sA(S) I S computes F}. 

If F = {J} for a Boolean function f, we say that the VLSI area complexity 
of ! is A(!)= A(F), and that the balanced VLSI area complexity of! is 
sA(!)= sA(F). The b-area (border-area) of the VLSI program S (VLSI 
circuit G s ) is 

bA(S) = bA(Gs ) = min{A(G) I G is a b-Iayout of Gs }. 
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For every computing problem F we define the VLSI b-area complexity of F 
as 

bA(F) = min{bA(S) I S computes F}. 

If F = {j} for a Boolean function f, we say that the VLSI b-area complexity 
of f is bA(f)= bA(F). The sb-area of the VLSI program S is 

sbA(S) = min{sA(G) I G is a b-layout of Gs }. 

For every computing problem F the VLSI sb-area complexity of F is 

sbA(F) = min{sbA(S) I S computes F}. 

If F = {j} for a Boolean function f, we say that the VLSI sb-area complex­
ity of f is sbA(f)= sbA(F). 

Note that the VLSI circuit of Fig. 4.1 can fit in a 4 x 5 grid with area 20. 

Observation 4.2.3.4 For every Boolean function f E B'2, n E N, 

A(J) :::; 16· (P(J)? 

Proof. The proof is exactly the same as the proof of Observation 3.3.2.3 giving 
a layout of every graph of m nodes, e edges and degree 4 into an (e + 2) x 4m 
lattice. 0 

A typical case of the study of the VLSI complexity measures of a specific 
problem F is that if one minimizes A(F), then T(F) is growing, and if one 
minimizes T(F), A(F) is growing. Obviously, from the practical point of view 
we are interested in minimizing both T(F) and A(F), which generally seems 
to be impossible. To give a clear framework, what and how much should be 
minimized, one considers tradeoffs of area complexity and time complexity. The 
two mainly considered complexity tradeoffs for VLSI circuits are area· time and 
area· time squared. 

Definition 4.2.3.5 Let F = {JI, ... , fm} be a computing problem. The AT 
(area-time) complexity of F is 

AT(F) = min{A(S) . T(S) I S is a VLSI program computing F}. 

If F = {j} we say that the AT complexity of the Boolean function f is 
AT(f)= AT(F). 

The AT2 (area.time squared) complexity of F is 

AT2(F) = min{A(S) . (T(S)? I S is a VLSI program computing F}. 

If F = {J} we say that the AT2 complexity of the Boolean function f is 
AT2(f)= AT2(F). 
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Observation 4.2.3.6 Let {fn}::"=l' fn: {a, I}n ~ {a, I}, be a sequence of 
Boolean functions. Then 

Proof. We know that CC(fn) is the number of Boolean operations (functions 
from Bi U Bn needed to compute fn. For every VLSI program S, A(S) is the 
upper bound on the number of operations from Bi U B~ U B5 U Bl realized in 
one time unit by S. So, the number of operations executed in the first T(S) 
steps of the computation of S is bounded by A(S) . T(S). Since the operations 
of VLSI circuits are not much more complex than those of Boolean circuits, 
A(S) . T(S) ~ d· CC(fn) for a suitable constant d independent on n. 0 

4.2.4 Probabilistic Models 

In this section we define two basic models of probabilistic VLSI circuits: 

• one-sided-error Monte Carlo VLSI circuits, and 

• two-sided-error Monte Carlo VLSI circuits. 

Informally, we do it by considering the input of a VLSI circuit S as an input 
consisting of the following two parts: 

• the input of a Boolean function f computed by S, and 

• a random input. 

If S computes the right outputs for at least 2/3 of all random inputs, we speak 
about two-sided-error Monte Carlo VLSI circuits (recall two-sided-error Monte 
Carlo communication complexity from Section 2.5.5). If S computes the output 
f (0'.) = ° for every 0'. E f'fl (f) independently of the random input part, and if S 
computes 1 = f((3) for at least half of the random inputs for any (3 E ]\JI (f), we 
speak about one-sided-error Monte Carlo probabilistic circuits. 

Definition 4.2.4.1 Let S be a VLSI program over a set X of input variables 
and a set Y = {y} of ouput variables. Let X = Xl U X2, Xl n X 2 = 0, 
where Xl = {Xl, ... , xn}, and X 2 = {Zl, ... , zr} for some positive integers n 
and r. We say that S is a one-sided-error r-VLSI program computing a 
Boolean function f : {O, I}n ~ {O, I} if the following conditions hold: 

(i) For every 0'. E ]\JI (f), there exist at least 2r - 1 input assignments (3: X 2 ~ 
{a, I} such that S(O'.,(3) = 1 (= f(O'.)). 

(ii) For every "f E f'fl (f) and every input assignment J: X 2 ~ {O, I}, S(,,(, (3) = 
o (= f("()). 
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In this case we also say that the VLSI circuits G s corresponding to S is a 
one-sided-error r-VLSI circuit computing f. The set X 2 is called the set 
of random variables of S (G s) . 

Definition 4.2.4.2 Let S be a VLSI program over a set X of input variables 
and a set Y = {Yb ... , Ym} of output variables. Let Xl U X 2, Xl n X2 = 0, 
where Xl = {Xl, ... , xn}, and X 2 = {Zl, ... , zr}. We say that S is a two-
sided-error r-VLSI program computing a problem F= {iI, f2, ... , fm} 
with the set of input variables Xl and the set of output variables Y if 

(iii) for every a: Xl -+ {O, I} there are at least r2r+I/31 input assignments 
{3: X 2 -+ {O, I} such that 

S(a{3) = F(a) = iI(a)h(a) ... fm(a). 

We also say that the VLSI circuit G s corresponding to S is a two-sided­
error r-VLSI circuit computing f. The set X 2 is called the set of random 
variables of S (Gs ). 

To see an example of probabilistic VLSI circuits consider the VLSI program 
S of Example 4.2.2.3 (Figure 4.1). Let us say that Zb Z2, ... , Zn are random 
variables and Xl, X2, ... ,Xr are the "standard" input variables. Then, one can 
easily observe that S is a one-sided-error Monte Carlo r-VLSI circuit computing 
the Boolean function 

4.2.5 Exercises 

Exercise 4.2.5.1 Consider the language L = {a E {0,1}+ I #o(a) = #l(a)}. 
Show A(hr(L)) = 0(log2 n). 

Exercise 4.2.5.2 Let Ro = {lWIW2 ... Wm I mEN, Wi E {o}m u {l}m for 
i = 1, ... ,m}. Construct a VLSI circuit computing hn(Ro) with area O(vIn) 
and in time O(vIn). Does there exist a VLSI circuit computing hn(Ro) in a 
constant area? 

Exercise 4.2.5.3 Prove that, for every regular language L, A(hn(L)) = 0(1). 

Exercise 4.2.5.4 Find a class .c of languages properly containing the class of 
all regular languages and having the property A(hn(L)) = 0(1) for every L E .c. 

Exercise 4.2.5.5 Find a time optimal VLSI circuit computing the function 
fn(xI, ... ,Xn , Zl, ... ,zn) = V~=l (Xi 1\ Zi) from Example 4.2.2.3. Prove that 
AT(jn) = D(n). 
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Exercise 4.2.5.6 • Define the Shannon function ShP(n) for the parallel com­
plexity of VLSI circuits and prove some lower and upper bounds on ShP(n). 

Exercise 4.2.5.7 • Prove that, for every linear Boolean function fn: {O, l}n -+ 
{O, I}, P(jn) = O(log2 n). 

Exercise 4.2.5.8 Design an area optimal VLSI circuit computing the sum of 
two integers a and b, each one binary coded on the length n (i.e., the input is 
of the length 2n and the output of the length n + 1). 

Exercise 4.2.5.9 • Design a time optimal VLSI circuit computing the sum of 
two integers a and b, each one binary coded on the length n. 

4.3 Lower Bounds on VLSI Complexity Measures 

4.3.1 Introduction 

The aim of this section is to show how one can apply the communication com­
plexity approach to get lower bounds on fundamental VLSI complexity mea­
sures. Section 4.3 is organized as follows. In Section 4.3.2 we show that the 
one-way communication complexity aCCl (j) of a Boolean function f provides 
a direct lower bound on the number of processors of VLSI circuits computing 
f. In Section 4.3.3 it is proved that the communication complexity cc(j) of a 
Boolean function f provides a lower bound on AT complexity of any circuit 
computing j, and that (acc(f))2 is a lower bound on the AT2 complexity mea­
sure. Similarly as for Boolean circuits in Section 3.4, we give in Section 4.3.4 
some special lower bounds on circuits with some topological restrictions. 

4.3.2 Lower Bounds on Area Complexity 

In this section we show that already the simplest communication complexity 
measure, one-way communication complexity, provides direct lower bounds on 
the parallel complexity of VLSI circuits, hence on the area complexity too. The 
idea of the use of one-way communication complexity differs from the previous 
approaches cutting a circuit into two parts and measuring the amount of infor­
mation exchanged between these two parts. Here, we consider the VLSI circuit 
as a memory saving Boolean values on its wires. Thus, for a VLSI circuit Gs 
computing a problem F, one can say that {Cf(e) I e is a wire of G} is the 
information (message) transferred from the time unit t to the time unit t+ 1 by 
the circuit G s working on some input 0:. This implies that if one finds a time 
unit t such that the number nt of input values entering Gs in the first t steps of 
Gs fulfills ~n ~ nt ~ ~n (n is the number of input variables), then the number 
of wires of G s must be at least aCCl (F). Using this idea we obtain the following 
result. 
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Theorem 4.3.2.1 For any computing problem F 

A(F) ~ P(F) ~ accl(F). 

Proof. The fact A(F) ~ P(F) is obvious and so it is sufficient to prove P(F) ~ 
aCCl (F). Let X = {XI, ... , xn} be the set of input variables of F, and let S (G s) 
be a VLSI program (circuit) computing F. In what follows we distinguish two 
cases according to the existence of a time unit d in which Gs reads at least 
f n/31 variables. 

(1) Let there be a time unit d such that the set In(d) = {x E X I Ins(x) = 
{(g, d)} for some 9 from S} has the cardinality at least f n/3l Then Gs has 
at least f n/31 input processors. Thus P(F) ~ f n/31. Because aCCl (F') ::; 
f n/31 for every problem F' of n input variables we have P(F) ~ accl(F). 

(2) Let, for every dEN, IIn(d)1 < fn/3l Then there exists a time unit t such 
that 

t 

fn/31 ::; 2: IIn(i)1 < 2· fn/31· 
i=O 

Since the wires outcoming from the same processor of G transfer the 
same value in any step of the computation, the information stored by the 
VLSI circuit Gs in the step from the t-th configuration into the (t + 1)­
st configuration can be coded as a binary message of length l equal to 
the number of internal processors of Gs . Since the time unit t defines an 
almost balanced partition II of X, one can construct a one-way protocol 
(II, <J» computing F within communication complexity l. (For each input 
a the first computer submits the message coding the content of Cf(e) for 
all wires e.) Thus the number of internal processors of G s must be at least 
accl(F). 0 

Note that this lower bound approach can be easily extended to probabilistic 
circuits because of the following two reasons: 

• part (1) of the proof of Theorem 4.3.2.1 is independent of whether Sis 
deterministic or probabilistic, and 

• if S is Monte Carlo probabilistic, then the one-way protocol constructed 
in (2) is also Monte Carlo probabilistic. 

Thus we omit the formulation of this straightforward extension. We call also 
attention to the fact that Theorem 4.3.2.1 can be generalized to the following 
result. 

Theorem 4.3.2.2 For any computing problem F 
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Since the proof of Theorem 4.3.2.2 is a straightforward extension of the proof 
of Theorem 4.3.2.1 we leave it as a simple exercise to the reader. We recall the 
fact that to prove lower bounds on the one-way communication complexity of 
specific problems is usually much easier that to do it for the general two-way 
communication complexity model. So, we have obtained a simply applicable 
technique for the estimation of area complexity of computing problems. 

4.3.3 Lower Bounds on Tradeoffs of Area and Time 

In this section we give lower bound methods on the complexity measures AT 
and AT2 of VLSI circuits. We start with AT complexity. For AT complexity the 
method is based on the simple fact that a VLSI circuit has to read all "essential" 
input variables before computing all output values. 

Theorem 4.3.3.1 Let f E B~ be a Boolean function essentially depending on 
m input variables. Then 

AT(f) ~ PT(f) ~ m ~ cc(f). 

Proof. The inequalities AT(f) ~ PT(f) and m ~ cc(f) are obvious. Now we 
prove PT(f) ~ m. Let S be a VLSI program computing f. Since f essentially 
depends on m input variables, all these m input variables of f must be read 
by S before the time unit T(S). Since the number of input processors of S is 
bounded by P(S), S can read at most P(S) input values in one configuration 
(step). Thus, T(S) . P(S) 2: m. 0 

Corollary 4.3.3.2 Let f E B~ be a Boolean function essentially depending on 
all its input variables. Then 

AT(f) ~ n. 

Next we show that one can obtain a stronger lower bound if the squared 
layout area with input (output) processors on the border is required. 

Theorem 4.3.3.3 Let S be a VLSI program computing a Boolean function 
f E B~ depending on all its n input variables. Then 

sbA(S) . (T(S))2 ~ n2/16. 

Proof. Let the chip Os be a squared b-Iayout of the VLSI circuit Gs corre­
sponding to S. Then the area of Rect(Os) is m x m = m2 for some positive 
integer m. Since Os is a squared b-Iayout of Gs the number of input variables 
read by S in one time unit is bounded by 4 . m. Thus 4 . m . T(S) ~ n, i.e., 
16· m 2 . (T(S))2 ~ n2. 0 



4.3 Lower Bounds on VLSI Complexity Measures 255 

In what follows we realize the standard application of communication com­
plexity by cutting the VLSI circuit into two parts and measuring how many bits 
can be exchanged between these two parts of the circuit in some time restricted 
computation. This is very similar to the lower bound technique for proving lower 
bounds on area complexity of Boolean circuits. The two main differences are 
that in the VLSI case we cannot remove time from consideration because each 
edge is active in each time unit and that we need almost balanced communica­
tion complexity instead of communication complexity because there are input 
processors reading several input variables. 

Theorem 4.3.3.4 For every computing problem F essentially depending on all 
its input variables 

Proof. Let X be the set of input variables of F, and let Z C;;;; X be such that 
sacc(F) = acc(F, (Z)). We have to prove that AT2(F) :::: (acc(F, (Z)))2. 

Let S be a VLSI program computing F, and let Gs be the corresponding 
VLSI circuit. We shall distinguish two cases depending on the fact whether S 
contains an input processor reading at least r1ZI/31 input variables from Z. 

(1) Let S have an input processor g = {(Xi" td, ... , (Xik' tk)} such that IZ n 
{Xi" ... ,Xik}1 :::: rIZI/3l- Since I{tl , ... , tdl = k we have T(S) :::: r!ZI/3l­
Thus A(S) . (T(S))2 :::: (T(SW :::: IZI2/9. Since acc(F, (Z)) ::; r!ZI/31 we 
obtain A(S) . (T(S))2 :::: (sacc(F))2. 

(2) Let no input processor of S read more than lIZI/3 J input variables from 
Z. Let as be a grid-graph of Gs (a VLSI chip realizing S). Let Rect(Gs) 
be of the size a x b, a :::: b, for some positive integers a and b. One can 
simply observe that there is a cut-line w of Rect(Gs ) (see Figure 3.7) such 
that 

(i) the length of w is at most b + 1, and 

(ii) the cut (E(w), Vb liz) of Gs induced by w fulfills the property that 
the number of input variables from Z read by the input processors 
from Vl (V2) is at least r!ZI/31 and at most 2IZI/3. 

Thus w defines an almost balanced partition II of X according to Z. The 
line w crosses at most b+ 1 wires of Gs. This means that at most b+ 1 bits 
are exchanged in one configuration of S between these two parts of Gs . If 
S computes in time T(S), then at most (b + 1) . T(S) bits are exchanged 
between Vl and V2 until all outputs are computed. Thus one can construct 
a protocol D = (II,1» computing F within communication complexity 
cc(D) = (b+ 1)· T(S). This implies (b+ 1) ·T(S) :::: acc(F, (Z)) = sacc(F). 
Since a :::: b we have 4· A(S) . (T(S))2 :::: (2a) . (2b) . (T(S))2 :::: (a + 1) . 
(b + 1) . (T(S))2 :::: (b + 1)2 . (T(S))2 :::: (sacc(F)? 0 
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Now we show that considering b-Iayout of VLSI circuits one can obtain still 
stronger lower bounds than Theorem 4.3.3.4 provides. 

Theorem 4.3.3.5 For every computing problem F essentially depending on all 
its n input variables 

bA(F) . (T(F)? 2 n· sacc(F)/6. 

Proof. Let X, Z, S, and Gs have the same meaning as in the proof of Theorem 
4.3.3.5. We separately handle the same two cases as in that proof. 

In the case (1) we have proved T(S) 2 r1ZI/31 2 sacc(F). On the other 
hand Theorem 4.3.3.1 provides A(S)·T(S) 2 n. SO, A(S)·(T(SW 2 n·sacc(F). 

In the case (2) we have proved (b+ 1)· T(S) 2 sacc(F), where a 2 b are the 
sizes of Rect(Gs ). Since Gs is a b-Iayout of Gs the number of input processors 
is at most 2a + 2b < 4a. To read all inputs 4a· T(S) 2 n must hold. Thus we 
obtain 

4a· (b + 1) . (T(S)? 2 n· sacc(F) 

which implies 
6· bA(S) . (T(S))2 2 n· sacc(F). 

o 

In what follows we show that the lower bound of Theorem 4.3.3.4 holds for 
the AT2 of probabilistic VLSI circuits according to probabilistic communication 
complexity too. As a consequence we obtain that the almost balanced nondeter­
ministic communication complexity squared is a lower bound on A(S)· (T(S))2 
of any one-sided-error Monte Carlo VLSI circuit computing f. We denote by 
r-1MCacc(J) (r-2MCacc(J)) the version of r-1MCcc(J) (r-2MCcc(J)) commu­
nication complexity according to the almost balanced partitions of the set of 
input variables of f. 

Lemma 4.3.3.6 Let f E B"2 be a Boolean function essentially depending on all 
its n input variables. Then, for every one-sided-error [two-sided-errorJ Monte 
Carlo r- VLSI program S computing f 

A(S) . (T(S)? 2 (r-1MCacc(J)? /4 [(r-2MCacc(J)? /4], and 

bA(S) . (T(S))2 2 n· r-1MCacc(J)/6 [n· r-2MCacc(J)/6]. 

Proof. The proof is the same as the proof of Theorems 4.3.3.4 and 4.3.3.5. 
Instead of constructing a deterministic protocol communicating the bits ex­
changed between the two parts of the deterministic VLSI circuit one constructs 
a one-sid ed-error (two-sided-error) Monte Carlo r-protocol communicating the 
bits flowing across the line w in the Monte Carlo r-VLSI circuit. Note that the 
protocols constructed have private random source. 0 
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Theorem 4.3.3.7 Let f E B?J: be a Boolean function essentially depending 
on all its input variables. Then, for every one-sided-error Monte Carlo r- VLSI 
program S computing f, 

A(S) . (T(S»2 > (ancc(f»2/4 and 

bA(S) . (T(S)? > n· ancc(f)/6. 

Proof. These lower bounds follow directly from Lemma 4.3.3.6 and from the 
fact that ancc(h) :::; r-1MCacc(h) for any Boolean function h and any positive 
integer r. Note that this is really true because of the privacy of random sources 
of the protocols constructed in Lemma 4.3.3.6. 0 

Since we are able to investigate the nondeterministic communication com­
plexity for many problems Theorem 4.3.3.7 provides a powerful method for 
proving lower bounds on one-sided-error Monte Carlo VLSI computations. The 
above stated lower bound methods help also to compare the computational pow­
ers of deterministic and probabilistic circuits as well as to study the influence 
of the layout restrictions on the increase of the computational resources (time, 
area) of specific computing problems. An example showing that one-sided-error 
VLSI circuits computing a specific problem can be more efficient than determin­
istic VLSI circuits is formulated in Exercise 4.3.5.9. We omit such examples in 
the text because they require a lot of technicalities in the construction of VLSI 
circuits, and contribute no novelty in the lower bound proofs representing the 
main topic of the book. But, in order to have an analogy to the results of Sec­
tion 3.3.4 comparing the two layouts of Boolean circuits, we give the following 
lemma. 

Lemma 4.3.3.8 Let F be a computing problem computed by a VLSI circuit S 
with m input processors. Then there exists a VLSI circuit S computing F such 
that 

(i) bA(S) :::; d· (A(S) + mJ A(S») and 

(ii) T(S) :::; d· T(S). 

for a constant d independent on F and S. 

Proof. Let S be a VLSI circuit computing F, and let k be a positive integer. One 
can construct an equivalent VLSI circuit S' such that no processor outputs 1 in 
the k-th step, T(S') :::; c.T(S) and A(S') :::; c·A(S) for a constant c independent 
of Sand F. This circuit S' has the property that if somebody sends all input 
values to S' with the same delay k, then S' computes the right outputs with the 
delay k. Due to this we can use the construction of Lemma 3.3.4.1 to obtain a b­
layout ofa VLSI circuit S equivalent to S' with bA(S) :::; 2.A(S')+12m)A(S') 
and T(S) :::; T(S') + 2. 0 
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Corollary 4.3.3.9 There is a positive integer d such that for every Boolean 
function f 

Corollary 4.3.3.10 There is a positive integer d' such that for every Boolean 
function f 

bA(f) . (T(f)? s d' . (AT2(f)) 3/2. 

To show that the construction of Lemma 4.3.3.8 is effective for both area 
and time complexity measures we consider the Boolean function 

gn(Xl,l, Xl,2,"" Xl,m, X2,1, X2,2,"" X2,m,···, Xm,l, Xm,2,"" Xm,m) = 
m m 

1\ (Xi,l == Xi,2 == ... == Xi,m) V 1\ (Xl,j == X2,j == ... == Xm,j) 
i=l j=l 

for any n = m2 , mEN, m :::=: 2. 

Theorem 4.3.3.11 For every n = m 2, m = 2k, kEN - {O}: 

(i) bA(gn) . (T(gn))2 = D( n3/ 2), 

and 

Proof. In part (ii) of Lemma 3.3.4.2 we proved that cc(gn) = D(.,fii). It is 
straightforward to obtain accl(gn) = D(.,fii). Since gn depends on all its n 
input variables applying Theorem 4.3.3.5 yields bA(f) . (T(f))2 = D(n3/2). 

Now we describe a construction of a VLSI circuit Sn computing gn with 
A(Sn) = O(n(logn)2) and T(Sn) = o (lOg2 n). Sn is very similar to the Boolean 
circuit for gn in Figure 3.13 of Section 3.3.4. The placement of input processors 
of Sn is the same as in Figure 3.13. The only difference is that the equality 
of all elements in one row (column) is checked via a binary tree of processors. 
Similarly the .,fii conjunctions of the values produced by the columns (rows) 
roots are again computed with a binary tree of processors (note that we have 
no cycle in Sn). Since a binary tree of m = .,fii nodes can be laid in the 
area O(.,fii . log2.,fii) = O(.,fii . log2 n), Sn has a squared layout of size d . 
.,fii . log2 n x d . .,fii . log2 n for some suitable constant d. On the other hand 
T(Sn) = 2· pog2(2 . .,fii)l + 1 s log2 n + 3. 0 

4.3.4 VLSI circuits with Special Communication Structures 

Here we show that communication complexity provides still stronger lower 
bounds than those presented in Sections 4.3.2 and 4.3.3 for VLSI circuits with 
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Fig. 4.2. One-dimensional systolic array of m processors 

fixed, special communication structure. The presented lower bounds can help 
to prove the optimality of VLSI algorithms based on special communication 
structures like arrays of processors, complete binary trees, etc. 

There are several practical reasons to use special communication structures 
as the basis for special VLSI models. If the structure is regular, then its hardware 
production as well as the verification of its correctness is much cheaper than the 
production of chips based On irregular communication structures. Moreover, if 
they are also modular (one can simply connect two or more of them in order 
to get the same communication structure of more processors) then interest in 
their use increases. 

First, we consider the simplest parallel architecture - one-dimensional grids 
called also one-dimensional arrays. Because of their simplicity one-dimensional 
arrays have been widely used in many applications. Here we prove that already 
one-way communication complexity can provide lower bounds On their A and 
T complexities. 

Definition 4.3.4.1 A VLSI circuit G = (V, E) of m non-input processors 
PI, P2, ... ,Pm is called a one-dimensional array (of m processors) if there ex­
ists a permutation (iI, i2, ... , i m ) such that the set of all wires between two non­
input processors of G is a subset of {(Pik' Pik+,) , (Pik+1l Pik) I k = 1,2, ... , m -I}. 

In what follows we always assume that a one-dimensional array of m pro­
cessors has m non-input processors PI,P2,'" ,Pm and {(Pi,Pi+I), (Pi+r,Pi) Ii = 
1,2, ... , m - I} is the set covering all wires between Pr,P2,'" ,Pm' Thus, the 
inner communication structure of one-dimensional arrays is bounded by the 
bidirectional path depicted in Figure 4.2. Note that each of the processors 
PI,P2,'" ,Pm may be connected with at most two input processors. 

An example of a one-dimensional array of m processors is the VLSI circuit 
(program) G = (V, E) over the set of input variables {Xl, ... , X m, Zr, ... , zm} 
and the set of output variables {y}, where 

• gi = {(xi,i -I)} for i = 1, ... ,m, 

• hi = {(z;,i -I)} for i = 1, ... ,m, 
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• Pm = (gm, hm,Pm-1, {y, m + I}, J). 

We observe that G computes the Boolean function 

m 

g(Xl> ... , Xm, Zl, ... , zm) = 1\ (Xi V z;). 
i==l 

Theorem 4.3.4.2 Let F = {!I, ... , fm} be a computing problem, k {a, l}n -+ 
{O, I} for every i = {I, ... , m}. Let there exist a j E {I, ... , m} such that 
fJ essentially depends on all its input variables, and let every fi essentially 
depend on at least one input variable. Then, for everyone-dimensional array S 
computing F 

(i) A(S) ~ P(S) ~ acc1(F) and 

(ii) T(S) ~ aCCl (F) /18. 

Proof. The property (i) is proved in Theorem 4.3.2.1 for every VLSI circuit. 
To prove (ii) it suffices to show T(S) ~ P(S)/6 for everyone-dimensional array 
S computing F. Without loss of generality we may assume that S does not 
contain any "dummy" processors (a "dummy" processor is a processor at a 
distance larger than T(S) from any output processor, i.e., a processor never 
influencing any output value). 

Let P be a processor of S producing the output value of fJ E F. Since fJ 
depends on all n input variables of F, all input processors are at a distance 
at most T(S) from p. Since every fi E F essentially depends on at least one 
input variable, all output processors are at a distance at most 2T(S) from p 
(if not, all input processors are at a distance greater than T(S) from a given 
output processor, and so the outputs of this processor do not depend on any 
input variable). From the same reason we can conclude that all processors of 
S are at a distance at most 3T(S) from p (each processor at a distance from p 
larger than 3T(S) would be a dummy processor). Thus, we have P(S) ~ 6·T(S) 
because there are at most 2 . d processors at a distance at most d from p. 0 

Corollary 4.3.4.3 For everyone-dimensional array computing a problem F 
fulfilling the assumption of Theorem 4.3·4.2, 

The lower bounds of Theorem 4.3.4.2 can be used to show that a one­
dimensional array is not a suitable parallel architecture for solving some comput­
ing problems with large one-way communication complexity and possibly small 
communication complexity. Another possible application of Theorem 4.3.4.2 is 
to give proofs of the optimality of some one-dimensional array algorithms for 
specific computing problems. The following example illustrates such an appli­
cation. 
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Example 4.3.4.4 Let F2n = {fin' fin' ... ,f~}, m = 2n - 2, where 

f~n(xo, Xl,"" Xn-1, Zo, Zl,···, Zn-l) = ( L (Xj 1\ Zk)) mod 2 
~+k=i O::oj,k::on-l 

for i = 0,1, ... , 2n - 2. The computing problem F2n is called the convolution 
and it is used, for instance, to compute the coefficients of the multiplication 
of two polynomials or to compute the greatest common divisor of two num­
bers. In the literature there are several one-dimensional arrays computing the 
convolution in linear time with a linear number of processors. Here we show 
that these parallel VLSI algorithms are area and time optimal in the class of 
one-dimensional array algorithms. By proving accl(F2n) = D(n) we even ob­
tain that anyone-dimensional array Sn computing F2n with A(Sn) = O(n) and 
T(Sn) = O(n) is area optimal in the class of all VLSI algorithms and time 
optimal in the class of all one-dimensional array algorithms. 

To prove accl(F2n) ~ n/24 for any positive integer n we observe that it 
is sufficient to prove that for each II E Abal(X), X = {Xl, ... , X n , Z1, ... , zn}, 
there exists k E {1, ... , r} such that accl (J;n' II) ~ n/24 (note that each com­
munication protocol for F2n is also a protocol for #n for any k E {O, 1, ... , 2n-
2} ). 

To prove for every II E Abal(k) the existence of a k E {O, 1, ... , 2n - 2} 
with high accl (#n, II) we define so-called separated pairs. Let II = (IlL, IlR) be 
an arbitrary almost balanced partition of X. We denote A = {Xo, Xl,"" Xn-l} 
and B = {zo, Zl, ... , zn-d. For any i,j E {O, ... , n-1} the pair (Xi, Zj) is called 
a separated pair according to II if (Xi, Zj) E SIl, where 

SII = (A n IlL) x (B n IlR) U (A n IlR) x (B n IlL)' 

We call S II the set of separated pairs according to II. For any k E 
{O, ... , n - 2} we say that a pair (Xi, Zj) E Sil is a separated pair of f~n 
according to II if i + j = k (i.e., if Xi 1\ Zj is a term of the formula represen­
tation of f;n)' Let S~ = ((XT) zs) E Sil I s + r = k}. 

We show that, for every k E {O, 1, ... , 2n - 2}, accl(J;n, II) 2: ISjIl. Let 
SjI = {(Xi!,Zh),(Xi21 Zh),""(Xim,Zjm)}' The one-way fooling set A(J;n,Il) 
for #n and II can be constructed as a set of input assignments a E {O, 1 } ilL -+ 
{O, 1}, where a( u) = ° for u E IlL - {Xi!, ... ,Xim, Zjp ... ,Zjm} and a( v) E {O, 1} 
may be chosen arbitrarily if v E IlL n {Xiw .. ,Xim,Zjw .. ,Zjm}' Obviously 
IA(#n, II) I 2: 2m = 2Is~l. If a,/3 E A(#n' II), and a i- /3, then we may assume 
there is awE {Xis, zJJ for an s E {1, ... ,m} such that a(w) i- /3(w). Without 
loss of generality we assume w = Xis' Then, for the following input assignment 
T IlR -+ {0,1} with ,(Zj.) = 1 and ,(v') = ° for all v' E IlR - {Zj.} , we see 
that f;n(Il-l(a, ,)) i- f;n (Il- l (/3, ,)). 

Thus it is sufficient to show that for every II E Abal(X) there is a k E 
{O, 1, ... , 2n - 2} such that ISjIl 2: n/24. We observe that Sil = U~~02 Sh and 
that shns1 = 0 for any i i- j, i, j E {O, 1, ... , 2n-2}. Thus ISill = 2:~~o2IShl. 
To prove the existence of an integer k E {O, 1, ... , 2n - 2} with ISjIl 2: n/24 it 
is sufficient to prove ISill 2: n 2/12. 
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Remember Srr = (Anlh) x (BnIlR)U(AnIlR) x (BnIlL). We see that there 
exists at least one pair of sets (D, H) E {(A, IlL)' (A, IlR), (B, IlL), (B, IlR)} 
such that ID n HI :2:: n/2 (if such a pair does not exist, then IXI < 2n, and we 
have the contradiction). Without loss of generality we suppose IA n IlL I :2:: n/2. 
Now we estimate the size of B n IlR . From the facts 

IlR (A n IlR) U (B n IlR), and 

IIlRI IA n IlRI + IB n IlRI :2:: 2n/3 

we get 
IB n IlRI :2:: 2n/3 - IA n IlRI :2:: 2n/3 - n/2 = n/6. 

It is evident that (An IlL) x (BnIlR) ~ Srr and so ISrrl :2:: IAnIlLI·IBnIlRI :2:: 
(n/2) . (n/6) :2:: n2 /12. 0 

The main argument of the proof of Theorem 4.3.4.2 is in fact based on a 
more general idea combining communication complexity with a large radius of 
the circuit in a lower bound argument. Using it we obtain the following assertion. 

Theorem 4.3.4.5 Let F = {Jr, ... , fm} be a computing problem for some 
positive integer m. Let there exist a j E {I, ... , m} such that Ii essentially 
depends on all its input variables, and let every fi essentially depend on at least 
one input variable. Then, for every VLSI circuit S computing F and containing 
no dummy processor, 

(i) P(S) :2:: acc! (F), and 

(ii) T(S) :2:: radius(S)/3. 

Proof. The fact (i) is a special case of the assertion of Theorem 4.3.2.1. In the 
proof of Theorem 4.3.4.2 we have proved that S contains a processor p with a 
distance at most 3T(S) to any other processor. Thus radius(S) ~ 3T(S). 0 

One can find a lot of applications of Theorem 4.3.4.5 whose precise for­
mulation is omitted here. For instance, an interesting consequence follows for 
VLSI circuits with the communication structure of two-dimensional grids (two­
dimensional arrays). If a Boolean function f E B~ depending on all its input 
variables has linear one-way a-communication complexity, then P(J) is linear 
and T(S) = Q( yn) for any two-dimensional array. This follows from the fact 
that any two-dimensional grid of m2 = P(J) nodes has radius at least m/2. 

Another approach for proving high lower bounds for VLSI circuits with 
special communication structures is based on graph separators. This helps for 
instance for balanced trees which have small radius and so Theorem 4.3.4.5 
provides only trivial lower bounds on their time complexity. Since the approach 
based on graph separators provides even lower bounds for interconnection net­
works (which are a powerful generalization of VLSI circuits), we leave the pre­
sentation of this approach to the next section devoted to lower bounds for 
interconnection networks. 
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4.3.5 Exercises 

Exercise 4.3.5.1 • Let F be a sorting problem defined as follows. The input 
consists of m numbers, each number binary coded as a word of length flog2 m 1 
(i. e., the input length is n = m . pog2 m 1). The output has to contain these m 
numbers in a sorted order. Prove 

A(F) = D(m). 

Exercise 4.3.5.2 Prove that there is a context-free language L with A(hn(L)) = 
D(n). 

Exercise 4.3.5.3 Give a formal proof of Theorem 4·3.2.2. 

Exercise 4.3.5.4 Give an algorithm which, for every VLSI-chip G s realizing a 
VLSI program S, constructs a chip G~ whose minimal rectangle Rect{~) is a 
square. 

Exercise 4.3.5.5 Give an algorithm which, for every VLSI-chip Gs realizing a 
VLSI program S, constructs a chip G~ containing all input and output proces­
sors on the border ofRect(G~). 

Exercise 4.3.5.6 Extend the result of Theorem 4.3.3.1 for computing problems. 
(Do not forget to take the number of output variables into account too.) 

Exercise 4.3.5.7 Give a formal description of a VLSI circuit Sn computing 
the Boolean function gn from Theorem 4.3.3.11 with AT2(Sn) = O(n{log2 n)4). 

Exercise 4.3.5.8 Define the three-dimensional layout of VLSI circuits in the 
same way as was done for the three-dimensional layout of Boolean circuits in 
Chapter 3. Give a version of Theorem 4.3.3.4 for the three-dimensional layout. 

Exercise 4.3.5.9 Prove that the one-way almost balanced nondeterministic 
communication complexity of a Boolean function f provides a lower bound on 
the area of any one-sided-error Monte Carlo VLSI circuit computing f. 

Exercise 4.3.5.10 • Consider the language Lshift from Section 2.5.6 as a can­
didate for showing that one-sided-error Monte Carlo VLSI circuits may be more 
powerful than deterministic VLSI circuits. Prove that 

(ii) there exists an one-sided-error Monte Carlo (log2 nf-VLSI circuit S such 
that T(hn{Lshift)) = O((log2n)d) and A(hn{Lshift)) = O{n{log2n)k) for 
some positive integers k, d. 
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Exercise 4.3.5.11 Extend Theorem 4.3.4.2 by exchanging accl(F) forsaccl(F). 

Exercise 4.3.5.12 Prove a version of Theorem 4.3.4.2 for computing prob­
lems with a weaker assumption according to the essential dependence on input 
variables. 

Exercise 4.3.5.13 In Example 4.3.4.4 we have proved accl(F;n) ~ n/24. Im­
prove this result by finding a constant d < 24 for which aCCl (F;n) ~ n/ d. 

Exercise 4.3.5.14 Let f be a Boolean function with acc(j) = D(n). Prove that 
every VLSI circuit computing f with tree communication structure has AT2 
complexity in D(n3 ). 

4.3.6 Problems 

Problem 4.3.6.1 * We use one-way communication complexity to obtain lower 
bounds on the area complexity of VLSI circuits despite the fact that this lower 
bound method has nothing to do with the layout of VLSI circuits. Find another 
method yielding good lower bounds on A(F) also in cases when A(F) essentially 
differs from P(F). 

Problem 4.3.6.2 Find a language L such that A(hn(L)) is not in O(P(hn(L))). 

Problem 4.3.6.3 Either improve the result of Lemma 4.3.3.8 or prove the 
asymptotic optimality of the construction of Lemma 4.3.3.8 according to AT2 
complexity. 

4.4 Interconnection Networks 

4.4.1 Introduction 

Interconnection networks can be considered as a generalization of VLSI circuits. 
The main point is that instead of simple processors without memory the inter­
connection networks have processors that may have the power of a sequential 
computer. This means that we assume that each processor of a network has a 
memory of unbounded size and that it may compute very complex operations 
in one step. The aim of this section is to show that if the input data are dis­
tributed between the network processors and the architecture of the network 
has not-too-Iarge separators (this is often the case for parallel architectures used 
in the practice), then we still can apply communication complexity to get non­
trivial lower bounds on the time complexity and on the number of processors 
of interconnection networks. 
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This section is organized as follows. Section 4.4.2 contains a description 
of the interconnection network model considered here. The lower bounds are 
formulated in Section 4.4.3. As usual, the last sections contain exercises and 
research problems. 

4.4.2 A Model of Interconnection Networks 

In this section we briefly describe the model of interconnection networks con­
sidered here. We omit the exact complex definition and give instead an informal 
description which is sufficient for our purposes. 

An interconnection network, shortly network, S can be viewed as an 
undirected graph G = (V, E). Each node of G is a register machine (a se­
quential computer) which has a local memory containing a potentially infinite 
number of memory registers. Each register can contain a finite word over the 
alphabet {O, 1}. Each register machine R has a read-only input tape with 
random access, i.e., in any step R may decide to read the content of an arbitrary 
position of the input tape. The content of any position of the input tape is from 
{O, 1}. There is no restriction on the number of accesses to one position of the 
input tape during the computation of S. Each register machine of S contains 
also a write-only output tape, where one binary value may be written in one 
computation step. 

A computation of S can be described as a sequence of steps, each step 
consisting of the computational part and of the communicational part. In one 
step each register machine R may: 

1. read one position of the input tape (which position is read is decided 
(precomputed) by R, i.e., there is no prescribed input time unit for the 
input variables as with VLSI circuits), 

2. execute a program (sequence of arithmetic and logic operations) over the 
input bit read and the data stored in the local memory, 

3. write a word over the alphabet {O, 1} on the output tape, and 

4. send one bit via any edge adjacent to R to the neighbouring register 
machines. 

Let F be a computing problem over the set of input variables X and over 
the set of output variables Y. Let S with the communication structure (V, E), 
V = {Rl' R2 , ... Rp}, be a network. If S has to compute F we assume that X 
is partitioned into p pairwise disjoint sets X(R 1 ), ... ,X(Rp) (some of the sets 
may be empty), and that each register machine Ri obtains exactly the values 
of the variables in X(Pi ) on the first IX(Pi)1 positions of its input tape for 
i = 1, ... ,po Similarly, we assume that Y is partitioned into p pairwise disjoint 
sets Y(R1 ), ... , Y(Rp) which means that R;. computes the output values of the 
variables in Y (R;.) for every i = 1, ... ,p. Informally, S computes F if, for every 
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given input a distributed between the register machines in the way described 
above, the outputs on the output tapes of S correspond to the result F{a). 

We consider two complexity measures for networks. The parallel complex­
ity of a network, PC(S), is the number of register machines of S. The time 
complexity of S, PT(S), is the minimal number of steps of S after which all 
output values are written on the output tapes. The parallel complexity of a 
computing problem F is 

PC(F) = min{PC(S) I S computes F}. 

The parallel time complexity of a computing problem F is 

PT(F) = min{PT(S) I S computes F}. 

We observe that networks are more powerful than VLSI circuits. One reg­
ister machine can solve any computing problem alone. Thus, we cannot prove 
any lower bounds on the number of nodes of networks as we did for parallel 
complexity of VLSI circuits in Section 4.3.2. So we shall try to obtain some 
lower bounds on the tradeoffs of time complexity and the number of processors 
(register machines) in the following section. 

Finally, we note that our model may seem to be out of proportion regarding 
the relation between the computational part and the communicational part of 
one step because we allow a lot of work with the local memory in one step 
but only the transmission of one bit via the links (edges) of the network. Since 
we are interested in asymptotic lower bounds it does not matter whether one 
allows the transmission of one bit via the links in one communication step or the 
transmission of a binary word of a fixed length. Further, we want to obtain lower 
bounds on the number of synchronized communication steps independently of 
the amount of local work done by the individual register machines. Obviously, 
such lower bounds also work if one restricts the number of operations done by 
the register machines in the computational part of one step. 

4.4.3 Separators and Lower Bounds 

The separators of the parallel architectures modeled by interconnection net­
works are usually smaller than those of the circuits. One-dimensional arrays 
(grids), trees, and tree-like communication structures were often used for par­
allel computers. All the structures mentioned above have polylogarithmic edge­
separators. The following lower bounds show the weakness of such architectures 
for computing problems with high communication complexity. 

Theorem 4.4.3.1 Let F = {fn}~=l be a computing problem, where fn is a 
Boolean function essentially depending on all its n input variables. Let acc(fn) = 
D(n), and let {Sn}~=l be a sequence of networks, where Sn computes fn for every 
positive integer n. Let Sn have a polylogarithmic edge-separator. Then: 
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(i) If PT(Sn) is a polylogarithmic function, then PC(Sn) = 2!1(nb ) for some 
constant b > o. 

(ii) If the degree of Sn is bounded by some constant k for every n E N, then 
PT(Sn) E D(nd) for some constant d > 0 (i.e., PT(Sn) grows more quickly 
than any polylogarithmic function independently of the number of proces­
sors of Sn}. 

Proof. For any n E N, let Sn compute in in time z· (log2 n)m for some constants 
z, m > 0, and let each Sn have a strong r . (log2 PC(Sn))i edge-separator for 
some constants r, j. Let acc(Jn) 2 kn for a constant k > O. First we show that 
there exists a positive constant d depending only on rand k such that 

(1) PT(Sn) . (log2 PC(Sn))i+l 2 d· n. 

To prove (1) we shall distinguish two cases (a) and (b). 

(a) Let there exist a processor R in Sn which has values of at least r n/31 
input variables on its input tape. Since in essentially depends on all its 
input variables, R has to read all values of its input tape before all output 
values are computed by Sn. So, PT(Sn) 2 n/3 which implies the validity 
of the equality (1) for d = 1/3. 

(b) Let each processor of Sn = (Vn, En) have at most l n/3 J input values on its 
input tape. Using a partition technique similar to that of Lemma 3.4.3.2 
we find a cut (E, V,;, V;) of (Vn, En) such that at least r n/31 of input 
variables are assigned to processors in V~ for i = 1,2. Moreover, \E\ :::; 
r . (log2(PC(Sn)))J+l because we make at most log2(PC(Sn)) partition 
steps and we remove at most r· (log2(PC(Sn)/2i - 1))i edges in the i-th 
step. This implies that at most 2 ·\E\ bits of information can flow between 
the two parts of Sn specified by the cut (E, V,;, V,n in one computing step. 
Since at least acc(Jn) bits must flow between these two parts during the 
whole computation on some input, we obtain 

Thus (1) holds for d = k/2r. The inequality (1) directly implies (i). More 
precisely, PC(Sn) = 2!1(nb

) for any constant b < 1/(j + 1). 
Now we prove the claim (ii) for bounded-degree networks. The idea of the 

proof of (ii) is based on the fact that no bounded-degree network can simulta­
neously use a large number of processors and compute in a short time. 

Let the degree of all processors of Sn be bounded by a constant k. Let R' be 
the processor of Sn computing the output. Obviously, every processor having 
an influence on the output value computed by R' has to have the distance to 
R' at most PT(Sn)' Since the degree of the network is bounded by a constant 
k there are at most kPT(Sn) processors with the distance at most PT(Sn) to R'. 
Thus, we may assume PC( Sn) :::; kPT(Sn). This together with (1) implies 
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Since acc(Pn) = S?(n), we obtain PT(Sn) = S?(n1/(j+2)). o 

It is an usual case that one tries to compute a function f very quickly, which 
means in polylogarithmic time. In fact, Theorem 4.4.3.1 shows that if f with 
a high communication complexity (acc(J) = S?(nf) for some € > 0 is enough) 
has to be computed by a parallel architecture with a polylogarithmic separator, 
then one can do it only with an exponential number of processors, which is 
unrealistic. Additionally, if the degree of the network is bounded by a constant, 
it is impossible to compute f in poly logarithmic time. We are unable to prove 
such strong results for topologies with higher communication facilities. But we 
are still able to prove nonlinear lower bounds on the number of processors if 
one requires a poly logarithmic computation time. 

Theorem 4.4.3.2 Let F = Un}~l be a sequence of Boolean functions, where 
fn:{o,l}n -+ {0,1} depends on all its input variables for n = 1,2, .... Let 
acc(Jn) = S?(n), and let {Sn}~l be a sequence of networks, where Sn computes 
fn in polylogarithmic time for every positive integer n. Let Sn have a strong 
c· nb edge-separator for some positive constants c, b < 1. Then, for every € > 0, 

Proof. Let acc(Jn) ~ dn for some constant d > o. Let, for every positive integer 
n, Sn compute in in time PT(Sn) ::; k· (log2 n)m for some constants k and m. 
Let Sn have a strong c . nb edge-separator for some constants c > 0, 0 < b < 1. 
Since every in depends on all its input variables, and PT(Sn) ::; k· (log2 n)m, 
no processor has assigned more than PT(Sn) ::; n/3 input variables. Using the 
same argument as in the proof above, we can find a cut (E, V,;, Vrn of Sn such 
that it determines an almost balanced partition of the set of input variables and 

iog2 (PC(Sn)) 

lEI::; L c· (PC(Sn)/2it 
i=O 

Thus lEI::; a· (PC(Sn))b for a suitable positive integer a. Since the number 
of bits flowing between V,; and V; in one computation step of Sn is at most 
2 ·IEI ::; 2a· (PC(Sn))b, we obtain 

(2) PT(Sn)· 2a(PC(Sn))b ~ acc(Jn) ~ dn. 

Since PT(Sn) ::; k· (log2 n)m, (2) implies 

for every constant € > O. o 
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Finally we present a result giving a general tradeoff between parallel time, 
parallel complexity, and separators of bounded-degree networks. The proof is 
based on the ideas already formulated in Theorems 4.4.3.1 and 4.4.3.2. 

Theorem 4.4.3.3 Let d be a positive integer, and let h: N -+ N be a mono­
tone function. Let F = {jn}~=l be a sequence of Boolean functions, and let 
fn: {O, l}n -+ {O, 1} depend on all its input variables for any n E N. Let {Sn}~=l 
be a sequence of d-degree bounded networks having a strong hedge-separator. 
Then 

Proof. As in the proof of previous theorems, we may assume that each processor 
of Sn has assigned at most l n/3 J input variables. Then, removing at most 

iog2 (PC(Sn)) 

2: h([PC(Sn)/2 j ]) :S h(PC(Sn)) ·log2(PC(Sn)) 
j=O 

edges, one can obtain a cut of Sn separating the input variables in an almost 
balanced way. Thus, as in the proofs of Theorems 4.4.3.1 and 4.4.3.2, we obtain 

Obviously, we may assume that Sn does not contain any "dummy" processor 
that never influences any output of Sn- This assumption implies that all proces­
sors of Sn have to be at a distance at most PT(Sn) from the processor producing 
the output. Thus, we have 

(2) dPT(Sn) 2: PC(Sn) 

because the degree of Sn is bounded by d. (1) and (2) give together 

which directly implies the result of Theorem 4.4.3.3. D 

We note that despite the fact that the lower bounds proved in Section 4.4.3 
seem to be much weaker than the lower bounds obtained for A and AT2 com­
plexity measures of Boolean circuits in Section 4.3, the results of the above 
theorems have also interesting applications. For instance, in Section 2.3.5 we 
have proved that there is a context-free language having a linear communication 
complexity. Thus Theorem 4.4.3.1 implies that one cannot recognize context-free 
languages in polylogarithmic time by tree-like architectures (by degree-bounded 
networks with polylogarithmic separators). Theorem 4.4.3.2 shows that even for 
powerful networks with relatively large n a , ° < a < 1, edge-separators (multi­
dimensional grids, for instance) one has to pay for the polylogarithmic time of 
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the recognition of context-free languages by a nonlinear number of processors. 
The general consequence of the results of this section is that the architecture 
with small bisections (separators) are not suitable for problems with large com­
munication complexity if one wants to compute very quickly. 

4.4.4 Exercises 

Exercise 4.4.4.1 Extend the lower bound results presented in Section 4.4.3 to 
s-communication complexity. 

Exercise 4.4.4.2 Prove other tradeoff between parallel time, parallel complexity, 
and separators of networks. 

Exercise 4.4.4.3 Prove versions of Theorems 4.4.3.1,4.4.3.2, and 4.4.3.3 with­
out the assumption that fn essentially depends on all its input variables. 

4.4.5 Problems 

Problem 4.4.5.1 Investigate simulations between distinct interconnection net­
works of the same size and use communication arguments to prove some lower 
bounds on the increase of computational resources of networks needed for such 
simulations. 

4.5 Multilective VLSI circuits 

4.5.1 Introduction and Definitions 

The VLSI circuit model introduced in Section 4.1 is semilective, which means 
that each input variable enters the circuit exactly once via one input processor. 
The model is also where- and when-determinate (oblivious) which means 
that the pair (input processor, time unit) is fixed for each variable indepen­
dently of the input assignments. A computing model is called where (when)­
indeterminate if the entry (the time unit) via (in) which the value of an input 
variable is read depends on the values of input variables read before. 

A circuit model is multilective if one allows any input variable to enter 
the circuit several times possibly via different input processors in different time 
units. In this section we want to show that multilectivity can bring an additional 
computational power to VLSI circuits, and to show that we can use the com­
munication protocol model in a special way to get lower bounds on multilective 
VLSI circuits. 

This section is organized as follows. Section 4.5.2 shows that the strong 
unclosure properties of communication complexity can be used to show large 
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differences between the computational power of (semilective) VLSI circuits and 
multilective VLSI circuits. In Section 4.5.3 we present an approach to prove 
lower bounds on A and AT2 of multilective VLSI circuits by using slighty modi­
fied communication protocols. As usual, we conclude with exercises and research 
problems. 

First, we give the formal definition of multilective VLSI circuits. 

Definition 4.5.1.1 Let k be a positive integer. We say that a general consistent 
program S over a set X of input variables and a set Y of output variables 
is a k-multilective VLSI program over X and Y if, for every x EX, 
1 ::; IIns(x)1 ::; k. A k-multilective VLSI program is called a multilective 
VLSI program for any k ~ 2. 

4.5.2 Multilectivity Versus Semilectivity 

In Section 2.3.4 we showed that there exist two languages L1 and L2 such that 
cc(hn (L1» = 0(1), cc(hn (L2» = 0(1), and cc(hn (L1 U L2» = D(n). The idea 
behind this was that CC(h1 (L1), II) was small exactly for those partitions II for 
which CC(h1 (L2), II) was large, and CC(h1 (L2), II') was small exactly for those 
partitions II' for which CC(h1(Lt}, II') was large. To show similar results for 
some VLSI complexity measures one can extend this idea by considering some 
Boolean functions which are easy if one chooses a suitable placement of input 
processors and/or some special order in which their input variables enter the 
VLSI circuit, but which are hard if this special input processors placement and 
this special order of reading the input values are not allowed. Thus, if two 
Boolean functions It and h have very different requirements on the way in 
which their inputs are read, then {It, f2} (or {It V h}) is probably hard. The 
following lemma shows such a specific example for the area complexity of VLSI 
circuits. For any n = m 2 , m E ]'\I, let 

m 

g~(Xl,l"'" Xl,m, X2,1,···, X2,m,···, Xm,l,"" xm,m) == 1\ (Xi,I == Xi,2'" == Xi,m) 
i=l 

and 
m 

g~(X1,1"'" X1,m, X2,1,"" X2,m,···, Xm,l,···, xm,m) = 1\ (X1,j == X2,j'" == Xm,j). 
j=l 

Lemma 4.5.2.1 For every positive integer n = m2, m E ]'\I, m ~ 2, the following 
three claims hold: 

(i) A(g~) = A(g~) = 0(1), 

(ii) A(g~ V g~) = D( v'n), and 

(iii) there exists a 2-multilective VLSI program S computing g~ V g~ with 
A(S) = 0(1). 
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Proof. To show (i) we give the idea how to construct a VLSI circuit 81 com­
puting g~ only (the exact technical description of 81 is left as an exercise to the 
reader). At the beginning 81 reads Xl,l, saves the value of Xl,l in a short cycle, 
and consecutively reading Xl,2, ... ,Xl,m checks whether the value of every vari­
able from {Xl,2, ... ,Xl,m} is equal to the value of Xl,l saved in the cycle. Then 
the values of Xl,m and X2,1 are read and compared. If the values are not equal 
then the value stored in the cycle is changed to its negation (else the value of the 
cycle is not changed). After that the values of X2,2, . .. ,X2,m are sequentially com­
pared with the value stored in the cycle. Generally, for every i E {2, ... ,m -I}, 
the values of Xi,m and of Xi+l,l are compared in order to save the value of Xi+1,l 
in the cycle and to consecutively check whether Xi+1,l == Xi+1,2 == ... == Xi+l,m. 

We observe that g~ can be obtained from g~ by permuting the names of the 
variables and so the same approach works to show A(9~) = 0(1). 

To prove the claim (ii) we recall the proof of Lemma 3.3.4.2 providing 
CC(9~ V 9~) ;::: vn/2. Note that this proof can be used without any change to 
obtain acc(g~ V 9~) ;::: vn/2. Since accl(J) ;::: acc(J) for any Boolean function 
/, Theorem 4.3.2.1 provides A(9~ V 9~) ;::: vn/2. 

To prove the claim (iii) it is sufficient to consider a VLSI program 8 as the 
union of the above designed VLSI programs 81 and 82 for 9~ and 9~ respectively 
with a new processor computing the disjunction of the values of the output 
processors of 81 and 82. Obviously A(8) = 0(1) because A(8i ) = 0(1) for 
i = 1,2. 8 is 2-multilective because each input variable enters 8 exactly twice 
via distinct input processors. 0 

We observe that the crucial point in the proof of Lemma 4.5.2.1 was in the 
fact that to compute g~ in 0(1) area requires reading the inputs in the sequence 
Xl,l, Xl,2,···, Xl,m,X2,1,···, X2,m,···, Xm,l, X m ,2,···, xm,m, while to compute g~ in 
0(1) area the inputs should be read in the order Xl,l, X2,1 ... ,Xm,l,Xl,2, ... ,Xm ,2, 

... ,Xl,m, X2,m, ... ,xm,m· Since these two orders of input variables are essentially 
different, there exists no sequence of input variables which is easy for both g~ 
and 9~. Thus, to compute {9~,9~} (or 9~ V 9~) is much harder than to compute 
one of these functions. 

Lemma 4.5.2.1 shows that already 2-multilectivity can bring an essential in­
crease of computational power to VLSI programs. If one wants to have a similar 
result for AT2 complexity instead of A, then one has to deal with the require­
ments on the placement of the input processors (variables) instead of the order 
in which the input variables are read. This means that two Boolean functions 
with essentially different requirements on the placement of input variables have 
to be found. To do this is left to the reader as an advanced exercise. 

4.5.3 Lower Bounds on Multilective VLSI programs 

To prove A(J) ;::: accl(J) in Section 4.3.2 we have found a time unit cor­
responding to an almost balanced partition of input variables into the set 
of input variables read before the time unit t and the set of input vari-
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abIes read after the time unit. Proving a lower bound on the area com­
plexity of r-multilective VLSI programs requires a deeper idea extending the 
simple approach mentioned above. The idea here is to find 2r time units 
t l , t2, ... ,t2r such that the set Xl of input variables read in time intervals 
[0, ttl, [h + 1, t3], [t4 + 1, t5 ], ... , [t2r- 2 + 1, t2r-tl and set X 2 of input variables 
read in time intervals [t l + 1, t2], [t3 + 1, t4], ... , [t2r- 1 + 1, t2rJ have "large" sub­
sets U = Xl - X 2 and V = X 2 - Xl. So, the configurations in the time units 
t l , t2, ... ,t2r can be considered as messages flowing between two computers G[ 
and Gn , where G[ has obtained the values of input variables of Xl and Gn 
has obtained the values of input variables of X 2 • Since Xl and X 2 need not to 
be disjoint we cannot speak about our standard protocol model with almost 
balanced partition of input variables. But we can speak about a protocol with 
an "overlapping" partition, where there are large sets U and V of input vari­
ables assigned to one of the computers G[ and Gn only. Thus, if we show the 
existence of the time units t l , t2, ... ,t2r with the above properties, then the 2r­
rounds communication complexity according to "overlapping" partitions will 
provide lower bounds on the area of r-multilective VLSI programs. To reach 
this we give the following combinatorial lemma. 

Lemma 4.5.3.1 Let n, m and r be positive integers, m ~ n/32r , r < ~ log2 n. 
Let X ;:2 {UI' U2, ... ,Un, v!, V2,' .. ,vn} be a set of at least 2n elements. Let 
W = Wo, WI"'" Wd be a sequence of subsets of X with the properties IWil ~ m 
for every i = 1, ... , d, and for every x E X, x belongs to at most r sets of W. 
Then there exists U ~ {UI,"" un} ,V ~ {VI, .. " vn}, bEN', and integers 
to = -1, t l , ... ,tb such that the following five conditions hold: 

(ii) b ~ 2r, ta E {1, ... , d} for a = 1,2, ... , b, and to < tl < ... < tb, 

(iii) ifun(U~i~ti+1 Wj) -I 0forsomei E {0, ... ,b-1}, then vn(U~~t.+1 Wj) = 
0, and 

(iv) ifVn(U~i~:'+1 Wj) -I 0forsomei E {0, ... ,b-1}, thenUn(U~~ti+1 Wj) = 
0, 

Proof. To construct U and V we inductively define sets Ui , Vi, and the integers 
ti for i = 0,1, ... , b in such a way that they satisfy the following properties: 
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(d) if Vi+1 n (U~~ti+1 Wj) -# 0 then Ui+1 n (U~~ti+1 Wj) = 0. 

At the beginning we set Uo = {Ub ... , un}, Va = {VI, ... , Vn}, and to = -1. We 
now describe the inductive step by determining Ui+b Vi+I, and ti+1 if Ui, Vi, 
and to, ... , ti with the properties (a), (b), (c), (d) are known. We distinguish 
two cases according to the sets Wti+1, Wti+2 ••• , Wd • 

(1) Let lUi n (U1=t;+1 Wj) I < IUi l/3 and IVi n (U1=t.+1 Wj) I < IViI/3. 

We set ti+1 = d, Ui+1 = Ui - (Ui n (U1=ti+1 Wj)), and Vi+1 = Vi -

(Vin (U1=ti+1 Wj)). Obviously all properties (a), (b), (c), and (d) hold 
for Ui+I. Further, we stop the process by setting b = i + 1. 

(2) Let lui n(u1=t.+1 Wj) I;::: IUi l/30r IVin(u1=t.+1 Wj) I;::: IViI/3. We choose 
ti+1 E {ti + 1, ti + 2, ... , d} as the smallest integer with the property 

lUi n (U~~ti+1 Wj) I ;::: IUi l/3 or IVi n (U~·~t.+1 Wj) I ;::: IViI/3. Without 

loss of generality we assume lUi n (u~·~t.+1 Wj) I ;::: IUi l/3 (the other case 
can be handled analogously). Since for every a E {I, ... , d}, IWal :::; m :::; 
n/32r :::; IUi l/3 (and similarly IWal :::; IViI/3), we have 

IUi l/3:::; lUi n (. tJ Wj) I:::; IUi l/3 + IWtH11 :::; 2 ·IUi l/3, 
J=ti+1 

and 

- (t'+1 W) d _IT (IT (tHl )) We set Ui+1 - Ui n Uj=ti+1 j an Vi+1 - Vi - Vi n Uj=t.+1 Wj . 
Clearly (a), (c), (d) hold for Vi+I, Ui+1, and ti+l, and the condition (b) 
follows from the above inequalities. 

If the process of the construction of Ui's and Vi's does not stop because of 
the case (1), we stop for i = 2r and set b = 2r. 

Now, the integers to, t l , ... , tb are determined, and we set U = Ub and 
V = Vb. Because of the property (b) of Ui's and V;'s, the condition (i) holds for 
U and V. Since U ~ Ui (V ~ Vi) for every i = 0, ... , b the conditions (c) and 
(d) imply (iii) and (iv). Obviously ti were chosen in such a way that (ii) holds. 

It remains to show (v), i.e., that U1=tb+1 Wj does not contain any element 
of U and V. If the inductive process of the construction of U;'s and Vi's halts 
because of the case (1), then tb = d (i.e., U1=tb+1 Wj = 0) and (v) holds. If this 
does not happen, then b = 2r. Moreover, all t;'s (i = 1, ... , 2k) were chosen 
according to the case (2). Let p be the number of indexes e E {O, 1, ... , 2r -
I} such that Ue+1 was chosen as Ue n (U;~t~+1 Wj) and Ve+1 = Ve - (Ve n 
(U}~t~+1 Wj)). (Note that in this case every element of U occurs at least once 
in U}~t~+1 Wj .) Let q be the number of indexes h E {O, 1, ... , 2r - I} such that 

Vh +1 was chosen as Vh n (U~~~~+1 Wj) and Uh+1 = Uh - (Uh n (U~~~+1 Wj)). 
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(Note that in this case every element of if occurs at least once in U~~~+l Wj .) 

We know that p + q = b = 2r. Moreover, p :s; rand q :s; r because each element 
of X '2 U U V can occur in at most r distinct sets from W = WI, ... , Wd and 
each of the p (q) choices of Ue (Vh ) requires at least one occurrence of every 
element of U (V) in U~~t~+l Wj (U~:~~+l Wj ). Thus, p = rand q = r which 
means that no element from U U V can be in UJd-t WJ·. This completes the 

- 2k+l 

proof of Lemma 4.5.3.1. 0 

We want to use Lemma 4.5.3.1 to prove lower bounds on complexity mea­
sures of multilective VLSI programs. The first idea is to define the sets Wi as 
the set of input variables read by a multilective VLSI program S in the i-th 
configuration. If d = T(S), A(S) ::; m, and S is k-multilective, then all the 
assumptions of Lemma 4.5.3.1 are fulfilled. Then the sets U and V define an 
"overlapping" partition II = (IlL, IIR) of X with U ~ IlL and V ~ IIR. We 
observe that we can construct a k-rounds protocol (II, 8) computing the same 
function as S does and communicating the messages coding the trth configura­
tions of S for j = 1, ... , b. The trouble is that we cannot close our consideration 
at this point because we have never defined and investigated communication 
complexity measures over non-disjoint partitions of input variables. So, we now 
define a communication complexity measure suitable for proving lower bounds 
on multilective VLSI circuits. Note that we do not need to change our comput­
ing model (protocol) of two communicating computers, only to consider it for 
a broader class of partitions of input variables. 

Definition 4.5.3.2 Let f: {a, l}n ~ {a, I} be a Boolean function with a set of 
variables X = {Xl, ... ,Xn}. Let Uo ~ X, Vo ~ X, IUol = IVoI be two disjoint 
subsets of X. Let k be a positive integer. A pair II = (IlL, IIR) is called a 
(Uo, Yo, k}-overlapping partition of X if 

(i) IlL U IIR = X, 

(ii) there exist U ~ UOnIIL and V ~ VonIIR such that UnIIR = VnIIL = 0 
and lUI 2: IUol/32k , IVI 2: IVoI/32k . 

Par(X, Uo, Yo, k) denotes the set of all (Uo, Vo, k)-overlapping partitions of X. 
For every II E Par (X, Uo, Vo, k) we define the overlapping 2k-rounds 

communication complexity of J according to II as 

OCC2k(J, ll) = min{ cc(II, tJ» I (II, tJ» is a 2k-round protocol 

computing f for a communication function tJ>}. 

For all disjoint subsets Uo, Vo ~ X we define the overlapping 2k-rounds 
communication complexity of J according to Uo and Yo as 

OCC2k(J, Uo, Yo} = min{ OCC2k(J, II) I II E Par(X, Uo, Vo, k)}. 

Finally, the overlapping 2k-rounds communication complexity of J is 
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max{occ2k(f, Uo, Yo) I Uo ~ X, Vo ~ X, 

IUol = IVoI ~ IXI/8, UO n Vo = 0}. 

Observation 4.5.3.3 Let k be a positive integer. For every Boolean function 
f E BJ}:, n E N, 

Proo]. Let X, IX I = n, be the set of the input variables of j. For any choice of 
two disjoint subsets Uo and Vo of X, IUol ::; n/2 or IVoI ::; n/2. Without loss of 
generality one can assume IUol ::; n/2. Then there is an overlapping partition 
II = (IlL, IlR) E Par(X, Uo, Vo, k) such that there are sets U ~ Uo n IlR' 
V ~ Vo n IlL with lUI = n/(2 . 32k ), IlL = X - V, and IlR = X - U (i.e., 
IlLnIlR = X -(UUV)). Obviously there is a one-way protocol (II, p) computing 
f by submitting the values assigned to the variables in U from the first computer 
to the second computer. Thus OCC2k(f, Uo, Vo) ::; lUI = n/(2· 32k ). 0 

Before using OCC2k (f) to get lower bounds on k-multilective circuits we have 
to show that we are able to prove high lower bounds on OCC2k(hn (L)) for specific 
languages L. Rather than proving a lower bound on a specific language we give a 
strategy how to prove D(n/32k ) lower bounds for so called "shift languages". The 
shift languages have been considered as languages with linear communication 
complexity or with linear s-communication complexity in Chapter 2. They can 
be specified as follows. Let hn(L) be defined over the set of input variables 
X = X I UX2UX3 , where xinxj = 0 for i -=I- j, i,j E {1, 2, 3} and IXII ~ IXI/4, 
IX21 ~ IXI/4. We say that L is a shift language if the values of variables in 
X3 determine which pairs (u, v) E Xl X X 2 must have the same values (have to 
be compared). An example of such a language is Lchoice from Theorem 2.6.3.1. 
To prove OCC2k(hn (L)) ~ n/(4· 32k ) for a shift language L we choose Uo = Xl 
and Vo = X 2 . Now, it is sufficient to prove OCC2k(hn (L),XI,X2 ) ~ n/(4· 32k ), 

i.e., to prove occ2k(hn (L), II) ~ n/(4· 32k ) for every II E Par (X, XI, X2 , k). 
Let II = (IlL, IlR) be an arbitrary (XI, X 2 , k)-overlapping partition of X. 

Then there exists U ~ Xl n IlL and V ~ X 2 n IlR such that Un IlR = 
V n IlL = 0 and lUI ~ IXII/32k , IVI ~ IX21/32k . Since IXil ~ n/4 for i = 1,2 
we have lUI ~ n/(4 . 32k ) and IVI ~ n/(4 . 32k ). Now, we can take an input 
assignment of variables in X3 requiring u == v for d = n/(4· 32k ) different 
pairs (uI,vd,(U2,V2), ... (Ud,Vd) from U x V such that I{UI, ... ,Ud}1 = d and 
I{ VI, ... ,vd}1 = d. Applying the fooling set method or the rank method in the 
standard way we obtain OCC2k(f, II) ~ d = n/(4· 32k ). Thus, if k is a constant 
independent of n, then we have proved OCC2k(hn (L)) = D(n). 

In what follows we apply overlapping 2k-rounds communication complexity 
to get lower bounds on the area of k-multilective VLSI circuits. 
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Theorem 4.5.3.4 Let k and n' be positive integers, k < ~ 10g2 n' - 2. Let 
f E B~f be a Boolean function. Then, for every k-multilective VLSI program S 
computing f, 

A(S) ~ P(S) ~ OCC2k(J)/2k. 

Proof. Let X be the set of input variables of f, and let Uo, Vo be subsets of X 
such that OCC2k(J) = OCC2k(J, Uo, Vo). Note that IUol = lVol ~ IXI/8. Obviously 
it is sufficient to show that P(S) ~ OCC2k (J, Uo, Vo) /2k. 

Let IUol = lVol = n. We set X = Uo U Vo and Wi = {x E Uo U Vo I x 
is read by S in the i-th time unit} for i = 0,1, ... , T(S). We distinguish two 
possibilities according to the cardinalities of W;'s. 

(1) Let there exist a j E {O, 1, ... , T(S)} such that IWjl > m = n/32k . 
Then S has more than n/32k input processors and so P(S) ~ n/32k . 

Following Observation 4.5.3.3 we see OCC2k(J) ~ n/(2· 32k ) and so P(S) ~ 
OCC2k(J)/2 ~ OCC2k(J)/2k for every positive integer k. 

(2) Let, for every j E {O, 1, ... , T(S)}, IWjl ~ m = n/32k . We have k < 
~ 10g2 n because n ~ n' /8 and k < ~ 10g2 n' - 2. So X, Wo, Wi, W2 , ••• , 

WT(S), k, m, and n fulfill all assumptions of Lemma 4.5.3.1 which implies 
the existence of US;; Uo, V S;; Vo, bEN, to = -1, t l , ... ,tb E {I, ... , T(S)} 
satisfying the conditions (i), (ii), (iii), (iv) and (v) of Lemma 4.5.3.1. We 
use this to describe a b-round protocol D computing f. D = (II, cfJ), where 

(a) II = (IlL, IlR) for IlL = X - V and IlR = X - U, and 

(b) cfJ works as follows. Without loss of generality we assume U S;; 
U~;'to+l Wj (i.e., V n U~;'o Wj = 0). (If V S;; U~;'o Wj then we take 
IlL = X - U and IlR = X - V and the proof continues in the same 
way.) In the first round the first computer sends a word coding the 
tl-th configuration of S working on a given input. Generally, for all 
i = 1, ... , b - 1, if U S;; U~::Ii+l Wj, then the first computer sends 
a word coding the ti+rth configuration to the second computer. If 
V ~ U~~L+l Wj, then the second computer sends a word coding the 
ti+l-th configuration to the first computer. We observe that if the first 
(second) computer knows the ti-th configuration, and the values of all 
variables in X -V 2 U~::L+l Wj (all variables in X -U 2 U~i~Ii+l Wj), 
then it can unambiguously compute the ti+l-th configuration of Son 
the given input. 

In Section 4.3 we have already observed that one can code any configura­
tion of S as a word oflength P(S). Since the communication consists of ex­
actly b ~ 2k messages, D is a 2k-rounds protocol working within the com­
munication complexity b· P(S) ~ 2k· P(S). We observe that D communi­
cating as described above can compute f because (UUV) nuJi~~+l Wj = 0 
and every computer knowing the tb-th configuration C::, and the values 
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of variables in X - (U U V) ;2 UJ~~:+1 Wj of the input assignment a can 
compute f(a). Further, II E Par(X, Uo, Vo, k) which together with the 
above facts imply 

2k . P(S) ~ cc(D) ~ OCC2k(J, Uo, Vo). 
o 

We see that the idea of the proof of Theorem 4.5.3.4 was based on taking 
Wo, WI, ... , Wd as sets of variables read in the time units 0, 1, ... ,d respectively. 
To get a lower bound on the AT2 complexity of k-multilective VLSI programs 
it is sufficient to divide the corresponding VLSI circuit into some small areas 
and to choose Wi's as sets of variables read in these areas. The precise strategy 
is given in the proof of the following theorem. 

Theorem 4.5.3.5 Let k and n' be positive integers, k < ~ log2 n' - 2. Let 

fEB!):' be a Boolean function depending on all its n' variables. Then, for every 
k-multilective VLSI program S computing f, 

Proof. Let X be the set of input variables of f, and let Uo, Vo be such subsets of 
X that OCC2k(J) = OCC2k(J, Uo, Vo). We show A(S) . (T(S))2 ~ OCC2k(J, Uo, Vo). 

Let !Uo! = lVo! = n. We set X = Uo U Vo. Let Gs be the layout of S of the 
size a x d, a ~ d ~ 1. Let Po, PI, ... ,PP(S)-1 be the sequence of all processors of 
S lexicographically ordered according to its position in the layout Gs (i.e., the 
processor in the square (rl' SI) is before the processor on the position (r2' S2) if 
SI < S2 or [SI = S2 and rl < r2]). For every i E {O, 1, ... , P(S) - I} we define 
Wi as the set of variables from X read by the processor Pi during the first T(S) 
steps of the computation of S. Similarly as in the proof of Theorem 4.5.3.4 we 
distinguish two possibilities according to the cardinalities of Wi's. 

(1) Let there exist a j E {O, 1, ... , P(S) - I} such that !Wj ! > m = n/32k . 

Then T(S) ~ n/32k because Pj can read at most one input variable in one 
time unit. So, (T(S))2 ~ (n/32k )2. Since OCC2k(J) :::; n/(2·32k ) [Observation 
4.5.3.3], we have (T(S))2 ~ (OCC2k(J))2. 

(2) Let, for every j E {O, 1, ... , P(S) - I}, !Wjl :::; m = n/32k . Since X, Wo, 
WI"'" W p (S)-I, k, m, n fulfill all assumptions of Lemma 4.5.3.1, there ex­
ist U ~ Uo,v ~ Vo,b E N,to = -1,t1 , ••• ,tb E {O, ... ,P(S) -I} sat­
isfying conditions (i), (ii), (iii), (iv), and (v) of Lemma 4.5.3.1. Let, for 
i = 0,1, ... , b, 

ti+l 

Xi = U Wj' 
j=ti+1 
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We observe that one can partition the layout of S into b+l parts So, ... , Sb 
in such a way that Si contains the processors reading the input variables 
from Xi and the border between Si and Si+1 is of length at most d + 1 
[see Figure 4.3]. Now, we define an overlapping partition II = (IlL, IlR) 
with IlL = X - V and IlR = X - U. Corresponding to II we consider 
the partition of S into SL and SR, where SL is the union of such S:s that 
U ~ Xi (i.e., V n Xi = 0). The number of edges flowing between SL and 
SR is so bounded by (d + 1) . b :::; (d + 1) . 2k. This means that at most 
(d + 1) . 2k bits may flow between SL and SR in one time unit. We obtain 

(d + 1) . 2k . T(S) ~ OCC2k(f), 

and so 

o 

a 

J ) 

d 

r 
Fig. 4.3. A partition of the layout of a VLSI circuit 

4.5.4 Exercises 

Exercise 4.5.4.1 * Find a sequence F of Boolean functions such that the AT2 
complexity of F is large but F is easy for 2-multilective V LSI circuits. 

Exercise 4.5.4.2 Prove lower bounds and upper bounds on the overlapping 
communication complexity of the following languages: 

(a) L = {ww [w E {O,I}*}, 
(b)* L6. from Theorem 2.3.3.2, 
(c) LR from Theorem 2.3.5·4, 
(d) Lsm from Theorem 2.6.3.2, and 
(e) Ldcf from Theorem 2.6.3.3. 

Exercise 4.5.4.3 * Define one-way overlapping communication complexity and 
compare it with overlapping communication complexity. Find a Boolean function 
for which these two measures essentially differ. 
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Exercise 4.5.4.4 Prove an assertion about lower bounds on A(S) analogous 
to Theorem 4.5.3.4 if the k-multilective VLSI program S fulfills the additional 
condition that all input processors lie on the border of the layout of S. 

Exercise 4.5.4.5 Prove an assertion about lower bounds on A(S) . (T(S))2 
analogous to Theorem 4.5.3.5 if the layout of the k-multilective VLSI program 
S fulfills the additional condition that all input processors lie on the border of 
the layout of S. 

Exercise 4.5.4.6 Prove a theorem analogous to Theorem 4.5.3.5 for the 
three-dimensional layout of k-multilective VLSI programs and for the three­
dimensional layout with the input processors on the layout border. 

Exercise 4.5.4.7 * Prove, that for every constant k, there is a language Lk 
such that there is an exponential gap between occk(hn(Lk)) and OCCk+l(hn(Lk)). 

Exercise 4.5.4.8 Define Las Vegas and Monte Carlo versions of overlapping 
communication complexity and relate them to k-multilective probabilistic VLSI 
programs. 

4.5.5 Problems 

Problem 4.5.5.1 * Find another method providing lower bounds on A and AT2 
complexity measures of multilective VLSI circuits which may yield higher lower 
bounds than Theorem 4.5.3.4 and 4.5.3.5 for some concrete Boolean functions. 

Problem 4.5.5.2 * Find, for every k E 1\:1, a language Lk such that A(Lk)[A(Lk)· 
(T(Lk))2] is essentially larger for k-multilective VLSI programs than for (k + 1) 
-multilective VLSI programs. 

4.6 Bibliographical Remarks 

The fundamental reference on the design rules of VLSI circuits is Mead and 
Conway [MC80]. The basis for the formal mathematical model of VLSI circuits 
was given by Thompson [Th79, Th80], Brent and Kung [BK81]' where the basic 
complexity measures time and area were introduced and investigated. Bilardi, 
Pracchi, and Preparata [BPP81] and Chazelle and Monier [CM81] introduced 
the length of wires as a complexity measure influencing the resulting time com­
plexity of VLSI circuits. The notion of a VLSI program has been introduced 
in this book to achieve a formal description compatible with the description of 
Boolean circuits in Chapter 3. 

It is a lot of work designing VLSI circuits for distinct computing prob­
lems. Because we are interested in the lower bounds here we have omitted the 
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presentation of them. Some nice examples for fundamental problems like inte­
ger multiplication, matrix multiplication, and Fourier transforms can be found 
for instance by Abelson and Andreae [AASO], Brent and Kung [BKSO, BKSl], 
Preparata and Vuillemin [PVSO, PVSl], and Savage [SaS4]. 

The first ideas for proving lower bounds on the complexity measures ofVLSI 
circuits were presented by Vuillemin [VuSO] and Thompson [Th79, ThSO]. Lipton 
and Sedgewick [LS81] generalized the ideas of Vuillemin and Thompson and 
developed the fooling set technique as the basic method for proving lower bounds 
on VLSI computations. The more general approach used in this book is based on 
communication complexity introduced by Yao [YaSl]. The comparison results 
between the distinct layout models considered here are based on Hromkovic 
[Hr8Sb] and the ideas used already for the layouts of Boolean circuits in Chapter 
3. The three-dimensional layout of VLSI circuits was considered by Hromkovic 
[HrS8a], Leighton and Rosenberg [LRSl], and Rosenberg [RoSl]. 

The use of communication complexity for proving special lower bounds 
for VLSI circuits with some restrictions on their topology was considered in 
[Hr8Sb]. The presented example of lower bounds for one-dimensional arrays is 
from Hromkovic and Prochazka [HrPSS, HrP94]. The presented lower bounds 
on interconnection networks with powerful processors are due to Hromkovic 
[Hr92]. 

Multilective VLSI circuits were first considered by Kedem and Zorat [KZSl, 
KZSla]. In these papers and in [Sa84] effective multilective VLSI algorithms 
were designed. Lemma 4.5.2.1 showing that 2-multilective VLSI programs are 
more powerful than semilective VLSI programs have been proved by Gubas 
and Waczulfk [GWS7]. Savage [SaS4] and Yao [YaSl] developed the first lower 
bounds for such algorithms. The lower bounds methods presented here are 
based on the approaches used by Duris and Galil [DG93], Hromkovic, Krause, 
Meinel, and Waack [HKMW92], and Ullman [UlS4]. The presentation here con­
solidates these approaches by bounding them on the common combinatorial 
Lemma 4.5.3.1. 

For more information about VLSI circuits, especially about VLSI algorithms 
and VLSI design tools, one has to consult the excellent monographs of Golze 
[Go96], Lengauer [Le90, Le90a], and Ullman [UlS4]. 



5. Sequential Computations 

5.1 Introduction 

In the previous two chapters we have shown several applications of communi­
cation complexity for proving lower bounds on parallel complexity measures. In 
this chapter we have chosen some examples illustrating the power of communi­
cation complexity method for proving lower bounds on complexity of sequential 
computations. Since the central topic of this book is the relation between com­
munication complexity and parallel computing we do not try to give a complete 
overview of the relation between communication complexity and sequential com­
plexity measures. The main goal of this chapter is to extend and deepen our view 
on the nature of communication complexity and its applicability in complexity 
theory. 

The typical application of the communication complexity method in the 
previous chapters has been based on proving lower bounds on the amount of 
information which has to be exchanged between different processors of paral­
lel computing models considered. In sequential information processing one has 
only one processor and thus the idea above cannot work. But one should not 
be surprised by the fact that communication complexity can be applied to ob­
tain lower bound on sequential computations. In sequential computing models 
we have information flows between the input and the memory, between dis­
tinct parts of memory, between distinct parts of inputs, and between different 
time units of the sequential computation. All the well-known classical lower 
bound proof methods using entropy, Kolmogorov complexity, and the crossing 
sequence argument are in fact based on information-theoretic arguments, i.e., 
on some transfer of information during the computation. From this point of 
view communication complexity seems to be of the same nature as the meth­
ods mentioned above, and we show that in proving lower bounds it can be as 
successful as those methods. 

This chapter is organized as follows. Section 5.2 presents a stronger connec­
tion between one-way communication complexity and finite automata than the 
connection presented in Section 2.3.5. Section 5.3 relates communication com­
plexity to the time and space complexities of various Turing machine models. 
The results presented there show the connection between the crossing sequence 
argument for proving lower bounds and the communication complexity method. 
Section 5.4 is devoted to the relations between communication complexity and 
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the complexity measures of decision trees and branching programs. The biblio­
graphical remarks of Section 5.4 conclude the chapter. 

5.2 Finite Automata 

5.2.1 Introduction 

In this section we present a closer relation between one-way communication 
complexity and the number of states of finite automata than the one presented 
in the proof of Theorem 2.3.5.1 of Section 2.3.5. There we have seen that the 
one-way communication complexity of the Boolean function hn(L) for a regular 
language L provides a direct lower bound on the logarithm of the number of 
states of the minimal finite automaton recognizing L. This fact alone is not so 
important because one knows well-working lower bound methods for the size 
of the minimal finite automaton for a given language L. This size can be even 
computed in an algorithmic way. But this relation can be straightforwardly 
extended to the nondeterministic case. This is already of interest because we 
did not have any powerful general method for proving lower bounds on the 
size of the minimal nondeterministic automaton recognizing a regular language. 
Since we have good lower bound methods for nondeterministic communication 
complexity (for instance, I-fooling sets), we win general methods for proving 
lower bounds on the size of minimal nondeterministic finite automata. 

The considerations above show that, for every n E ]\f, the one-way commu­
nication complexity of hn(L) provides lower bounds on the size of the minimal 
automaton for L. It may happen that one has trouble finding a suitable n such 
that cCl(hn (L)) is close to two to the number of states of the minimal finite 
automaton for L, or even that such an n does not exists. A good example is 
that of regular languages over a one-letter alphabet, for which the one-way com­
munication complexity is zero or one. This trouble is caused by the fact that 
communication protocols are a nonuniform computing model (one uses an in­
finite number of them to recognize a language), whereas finite automata are a 
uniform (algorithmic) computing model. In order to establish a closer relation 
between communication complexity and finite automata, we introduce a uni­
form model of two-party communication protocols. We show that the number 
of distinct messages used by the optimal one-way uniform communication pro­
tocol recognizing a regular language L is equal to the number of states of the 
minimal finite automaton for L. The equality overcomes the trouble mentioned 
above and provides the possibility to generalize the use of the lower bound 
proof methods for communication complexity to prove lower bounds on the size 
of finite automata. 

Section 5.2 is organized as follows. Section 5.2.2 provides the basic defini­
tions of finite automata and related notions. Some basic well-known facts about 
finite automata are presented there, too. In Section 5.2.3 the relation between 
one-way (nondeterministic) communication complexity and the size of (nonde-
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terministic) finite automata is explicitly formulated. In Section 5.2.4 a uniform 
model of deterministic and nondeterministic communication protocols is de­
fined and applied to the size of finite automata. In the deterministic case we 
even show that, for every regular language L, the number of distinct messages 
of the optimal one-way uniform protocol for L is equal to the size of the mini­
mal automaton for L. Section 5.2.5 present some exercises, and some research 
problems are formulated in Section 5.2.6. 

5.2.2 Definitions 

Despite the fact that we assume that the reader is familiar with basic formal 
language notions like regular languages and finite automata we give a formal 
definition of finite automata in order to fix our notation. 

Definition 5.2.2.1 A finite automaton (FA) M is a 5-tuple (Q, E, 8, qo, F), 
where 

{i} Q is a finite set of states, each element p E Q is called a state, 

{ii} E is an input alphabet, 

{iii} 8 : Q x E -+ Q is a transition function, 

{iv} F ~ Q is a set of final states, each element q E F a final (accepting) 
state, 

{v} qo E Q is the initial state. 

We define JM : Q x E* -+ Q as 

1. JM(q,).) = q for every q E Q, and 

2. JM(q, wa) = 8(JM(q, w), a) for every wE E* and every a E E. 

A word x E E* is said to be accepted by M if JM(qo, x) E F. The language 
accepted by M, designated L(M), is the set {x I JM(qo,x) E F}. The size 
of M is s(M) = IQI. 

Definition 5.2.2.2 A nondeterministic finite automaton (NFA) is a 5-
tuple A = (Q, E, 8, qo, F), where 

{i} Q is a finite set of states, 

{ii} E is an input alphabet, 

(iii) 8 : Q x E -+ 2Q (2Q is the power set of Q) is a transition function, 

(iv) F ~ Q is a set of final states, 
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(v) qo E Q is the initial state. 

We define JA : Q x E* ---+ 2Q as 

1. 6A(q, A) = {q} for every q E Q, and 

2. 6A(q, wa) = {p I p E c5(r, a) for some r E JA(q, w)} for every q E Q and 
every a E E. 

A word x E E* is said to be accepted by A if JA(qo, x) n F =/; 0. The 
language accepted by A, L(A), is the set {x I 6A(qo,x)nF =/; 0}. The size 
of A is s(A) = IQI. 

Definition 5.2.2.3 A language L is called regular if there exists an FA M 
such that L = L(M). For every regular language L, 

s(L) = min{s(M) I M is an FA such that L(M) = L}, 

and 
ns(L) = min{s(A) I A is an NFA such that L(A) = L}. 

An FA B is called minimal for L if L(B) = Land s(L) = s(B). 

Definition 5.2.2.4 Let E be an alphabet and let L be a language over E. An 
equivalence relation R on E* is called right invariant if for all x, y E E*, 

x R y implies xz R yz for all z E E*. 

We associate with L a relation RL on E* defined as follows: 

X RL Y ¢} for each z either both or neither of xz and yz is in L. 

Observation 5.2.2.5 Let E be an alphabet. For every language Lover E, RL 
is a right invariant equivalence relation. 

In what follows we denote, for every equivalence relation R, the index of 
R (the number of equivalence classes) by i(R). 

Lemma 5.2.2.6 (A consequence of the Myhill-Nerode theorem). For every 
regular language L 

s(L) = i(RL). 

Proof. Let L be a regular language over an alphabet E. First we show i(RL) :::; 
s(L). Let M = (Q, E, 11, qo, F) be a minimal FA for L. We define a relation 
RM on E* as follows: 
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RM is a right invariant equivalence relation on E* because, for any z E E*, if 
8M(qo, x) = 8M(qo, y), then 8M (qo, xz) = 8M (8M(qo, x), z) = 8M (8M (qo, y), z) = 
8M(qo, yz) [that RM is reflexiv, symmetric and transitive is obvious]. 

The consequence is that xRMy implies xRLy, i.e., RM is a refinement of RL 
(every equivalence class of RM is entirely contained in some equivalence class 
or RL)' Thus i(RL) :::; i(RM) = s(L). 

Now, we prove s(L) :::; i(RL) by constructing an FA A = (QI, E, 8A, q~, FI) 
such that L(A) = Land s(A) = i(RL)' We set QI to be the finite set of the 
equivalence classes of RL and denote by [x] the element of QI containing x. We 
define 

for any x E E* and any a E E. This definition is consistent since RL is right 
invariant (if xRLy then xaRLya, i.e. [xa] = [ya]). We set q~ = [c] and FI = 
{[x] I x E L}. Thus L = L(A) and s(A) = IQ/I = i(RL)' 0 

5.2.3 One-Way Communication Complexity and Lower Bounds on 
the Size of Finite Automata 

In this short section we explicitly formulate the relations between one-way com­
munication complexity and nondeterministic communication complexity on one 
side and s(L) and ns(L) on the other. In the deterministic case this relation 
has been already mentioned in the proof of Theorem 2.3.5.1. In what follows 
Xn = {Xl,""Xn} and IIn = ({xl,x2, ... ,xfn/21},{xfn/21+1,""xn}) for every 
n E N. 

Theorem 5.2.3.1 For every regular language L over the alphabet {O, I} and 
every n E N, CCl (hn(L), IIn) :::; pog2(s(L) )1. 

Proof. Let A = (Q, E, 8, qo, F) be a minimal finite automaton accepting L. Let 
Q = {qO, ql, ... , qk-l} and d = flog2 k 1· For every n E N we construct a protocol 
Dn = (IIn,iPn) computing hn(L) as follows: 

(i) IIn = ({Xl,X2, ... ,xfn/21},{X[n/2l+1, ... ,Xn}), 

(ii) For every x E {O, 1}fn/21: cjjn(x,).) = BIN;tl(r), where qr = 8A (qo,x). 
For every y E {O, I} In/2J and every c E {O, 1 }d: 
cjjn(Y, c) = '( if 8A (qm, y) E F and m = BIN(c), 
cjjn(Y, c) = 0 if 8A (qm, y) cf. F and m = BIN(c). 

Obviously Dn computes hn(L) and cCl(hn(L), II) < cCl(Dn) d 
flog21 Q 11 = flog2(s(L))l 0 

This assertion is not of great interest because one knows effective methods 
to construct the minimal FA for a regular language L and so to estimate s(L). 
The basic idea is to take an arbitrary FA M = (Q, E, 8, qo, F) accepting Land 
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then to join any two states p and q of M if, for every z E E*, J M (p, z) E F {=:? 

JM(q, z) E F. Lemma 5.2.2.6 shows that the minimal FA for L is an FA A for 
which no pair of states can be joined from the above reason. 

For nondeterministic finite automata the situation is completely different. 
We do not know any efficient method for computing a minimal NFA for a given 
regular language L or for estimating ns (L). Nondeterministic communication 
complexity provides the first general method for proving lower bounds on ns(L) 
for regular languages. 

Theorem 5.2.3.2 For every regular language L over the alphabet {O, I} and 
every n E N, 

Proof. The proof is almost the same as the previous one. Let A = (Q, E, 8, qo, 
F) be a NFA accepting L = L(A). A nondeterministic protocol Dn = (lIn, Pn) 
with communication complexity flog21QIl can be constructed as follows. For 
every input x of GI, GI nondeterministically chooses one ofthe states of JA(qO, x) 
and sends its binary code to GIl. If GIl receives the code of a state p and y 
is the input of GIl, then GIl computes I (0) if and only if JA(p, y) n F =F 0 
(JA(p, y) n F = 0). 0 

We recall the fact that nCCl (j, II) = ncc(j, II) for every Boolean function f 
and every partition of their input variables II. Thus, one can use the methods 
for proving lower bounds on nondeterministic communication complexity from 
Section 2.5.3 to get lower bounds on ns(L} of a given regular language L. The 
cover method can estimate ncc(hn(L), II) precisely, but it is not constructive 
and so usually very hard to use. The most practical method seems to be the 
nfool method. To get a lower bound on ncc(hn(L), II), it is sufficient to construct 
a I-fooling set for hn(L) and lIn only. 

5.2.4 Uniform Protocols 

For several regular languages Theorems 5.2.3.1 and 5.2.3.2 can provide good 
lower bounds on s(L) and ns(L), repectively. But there are many cases where 
they cannot help to get reasonable lower bounds. For instance, for any regular 
language L having only a few words of any fixed length, cc(hn(L), lIn) is small 
but s(L) and ns(L) may be large. This drawback of our approach in the previous 
section is caused by the fact that the two-party protocols are a nonuniform 
computing model while finite automata are a uniform computing model. Here we 
overcome this trouble by defining one-way uniform protocols for the recognition 
of languages. 

As we have seen in Chapter 2, the most convenient representation of a 
Boolean function f to be computed by a protocol was the Boolean matrix 
M(j, II). To represent the computing problem of the recognition of a language, 
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we shall use a representation of this problem by an infinite two-dimensional 
Boolean matrix defined as follows. 

Definition 5.2.4.1 Let E = {ao, ... ,ak-d be an alphabet. For any two words 
x, y E E* we say that x is before y according to the canonical order for E* if 

(i) Ixl < Iyl or 

(ii) Ixl = IYI, x = ZX1X', Y = ZY2Y', where z,x',y' E E* and Xl = ai, Y2 = aj 

for some i < j ::::; k - 1. 

An example of the canonical order of words for the alphabet {O, 1, 2} is 
A, 0,1,2,00,01,02,10,11,12,20,21,22,000,001, .... 

Definition 5.2.4.2 Let E be an alphabet and let Wi, W2, W3, ... be the canonical 
order of words from E*. Let L <:;; E*. We define the infinite Boolean matrix 
M(L, lJ) = {aij};,j~l in such a way that aij = 1 ~ WiWj E L. 

One can observe that, for each word x E L, M(L, E) contains Ixl+l elements 
claiming x E L. So, this representation of L contains many repetitions. But 
this representation is suitable for our purposes because we shall require from a 
uniform protocol that it recognizes x E L for every partition of x into such Z 

and y that x = zy. 
Informally, we define a one-way uniform protocol as follows. As before, we 

consider a protocol consisting of two computers GJ and GIl, each one having a 
part of the input. Let the input of GJ be x, and let the input of GIl be y. GJ 

starts the computation by sending a binary message to GIl. GIl receiving the 
message decides whether xy E L or not. Obviously, we have to take care over 
consistency - if xy = UV, then the one-way uniform protocol may not take a 
different decision on xy than on uv. 

Definition 5.2.4.3 Let E be an alphabet and let L <:;; E*. A one-way uniform 
protocol over E is a pair D = (p, cp), where: 

(i) P : E* ---+ {O, 1}* is a function having the prefix freeness property, and 

(ii) cp: E* x {O, 1}* ---+ {O, I} is a function. 

We say D = (p, cp) accepts L, L(D) = L, if for all x, y E E* : 
cp(y,p(x)) = I ~ xy E L. 

The message complexity of the protocol D is I{p(x) I x E E*}I, de­
noted mc(D). Ifmc(D) is finite, we define the communication complexity 
of the protocol D as cc(D) = max{IP(x)1 I x E E*}. 

Using the same idea as in the proof of Theorem 5.2.3.1, we observe that for 
every regular language L, there is a uniform protocol D accepting L within a 
finite message complexity. 
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Lemma 5.2.4.4 Let L be a regular language over an alphabet E. Then there 
exists a uniform protocol D accepting L with mc(D) = s(L). 

Proof. Let A = (Q, E, 6, qo, F) be a minimal FA for L. For every x E E, GJ 

submits the code of the state JA(qo,x) to GIl. After this GIl having an input y 
computes I if and only if JA(JA(qO, x), y) E F. 

o 
In what follows we consider only uniform protocols with finite message com­

plexity. 

Definition 5.2.4.5 Let E be an alphabet and let L be a regular language over 
E. The message complexity of L is mc(L) = min{mc(D) I D is a one­
way uniform protocol accepting L }. The one-way uniform communication 
complexity of L is 

uccl(L) = min{cc(D) I D is a one-way uniform protocol accepting L}. 

Observation 5.2.4.6 For every regular language L 

Proof. For every uniform protocol using k messages one can encode the messages 
as binary strings of the same length POg2 k 1. 0 

Observation 5.2.4.7 For every regular language L S;;; E* and every n E N, 

Proof. Let, for every n E N, II n denote the partition 

({Xl,"" xrn/21}, {Xrn/2l+l,"" xn}). 

Since M(hn(L), IIn) is a submatrix of the matrix M(L, E), the assertion follows. 
o 

The main goal of this section is to obtain the following strong relation 
between one-way uniform protocols and finite automata. 

Theorem 5.2.4.8 For every regular language L, 

s(L) = mc(L). 

Proof. mc(L) ::; s(L) has been already shown in Lemma 5.2.4.4. To prove 
s(L) = mc(L) for every regular language L, we first show that mc(L) is equal 
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to the number of different rows of the matrix M(L, E), and then that s(L) 
is equal to the number of different rows of M(L, E), too. In Section 2.4.3 we 
have shown 2cc1 (f,li) is equal to the number of different rows of M(j, II). The 
idea of this proof is the same. Let D = (lfJ, 'P) be a one-way uniform protocol 
accepting a regular language L ~ 17*. Let x, y E 17* be two words such that 
the row corresponding to x in M(L, E) differs from the row corresponding to 
y in M(L, E). Obviously lfJ(x) i- lfJ(y) because there exists Z E 17* such that 
either (xz ~ Land yz E L) or (xz ELand yz ~ L). Thus, the number of 
different messages of D is at least the number of different rows of M(L, E). On 
the other hand one can construct a one-way uniform protocol D' = (lfJ, 'P') in 
such a way that lfJ' (x) = lfJ' (y) if and only if the rows of M (L, E) corresponding 
to the words x and yare equal. So, mc(L) is equal to the number of different 
rows of the matrix M(L, E). 

Now we observe that, for any FA M = (Q, 17, 5, qo, F) accepting L, 
JM(qo, x) i- JM(qo, y) if there exists a word Z such that xz ELand yz ~ L. 
In other words if the rows of M(L, E) corresponding to x and yare different, 
then JM(qO, x) is another state than JM(qO, y). Thus, IQI is at least the number 
of distinct rows of M(L, E). 

To show that s(L) is at most the number of different rows of M(L, E), 
it is sufficient to define a right invariant equivalence relation R on 17* such 
that i(R) is equal to the number of different rows of M(L, E). This can be 
simply done by saying xRy if and only if the rows of M(L, E) corresponding 
to x and yare the same. Obviously, R is reflexive, symmetric, and transitive. 
For every Z E 17*, xRy implies xzRyz because the rows corresponding to xz 
and yz must be equal. (Note that the infinite row for xz (yz) can be obtained 
by choosing those elements from the row x (y) which correspond to columns 
ZWl, ZW2, ZW3, ... , where WI> W2, W3, ... is the canonical order of the words in 
17*). 0 

Thus, Theorem 5.2.4.8 provides a new method for estimating s(L). Despite 
of the fact we have effective algorithms estimating s(L) (even constructing the 
minimal FA for L), Theorem 5.2.4.8 can be useful. We say this because, for 
some regular languages L, the use of Theorem 5.2.4.8 results in a very quick 
estimation of s(L) and in the process of computing s(L) we do not need to 
construct any FA for L. We illustrate it on the following example. Let Lk = 
{w E {0,1}* Ilwl mod k == O}. One can immediately observe that the k rows 
A, 0, 02 , .•. ,Ok-l of M(Lk' {O, I}) are different and that M(Lk' {O, I}) contains 
only such rows. Thus S(Lk) = k. The languages Lk are also a good example 
for the comparison of Theorem 5.2.3.1 and Theorem 5.2.4.8. Theorem 5.2.3.1 
does not provide any reasonable lower bound because cCl(hn(Lk),II) = 0 for 
all k, n E N, whereas Theorem 5.2.4.8 estimates S(Lk) = k in a simple way. The 
typical use of Theorem 5.2.4.8 for proving lower bounds on s(L) may look as 
follows. One chooses a "suitable" finite submatrix M' of M(L, E) and estimates 
the number of different rows of M'. Obviously, if M(L, E) has m different rows, 
then there exists a finite submatrix of M(L, E) having m different rows, too. 
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Thus, the crucial point in proving a good lower bound on s(L) is the choice 
of this finite submatrix. The principal advantage of this method over Theorem 
5.2.3.1 is that the submatrix chosen need not correspond to rows (columns) 
with the same input length, which is the case for the matrices M(hn(L), II). 

As we have already mentioned, the main open problem is to find an effective 
algorithm estimating ns(L) for any regular language L. We are not able to solve 
this problem here, but we can improve the lower bound method of Theorem 
5.2.3.2 in a similar way as we have improved the method of Theorem 5.2.3.1 in 
the deterministic case. 

Definition 5.2.4.9 Let E be an alphabet, and let L be a regular language over 
E. A one-way uniform nondeterministic protocol over E is a pair D = 
(fP, rp), where: 

(i) fP : E* -+ 2{O,1}' is a function fulfilling the following properties: 

(i. 1 ) fP has the "prefix freeness property" (i. e., if Z E fP( x) and u E fP(y) 
then neither u is a proper prefix of z nor z is a proper prefix of u}, 

(i.2) for every x E E*, fP(x) is a finite set, and 

(i.3) the set {fP(x) I x E E*} is finite; 

(ii) rp : E* x {a, 1}* -+ {Ci, I} is a function. 

A computation of D on a word x = XIX2 is a word u$r, where u E fP(xd 
and r = rp(X2, u). In what follows we call u$r a computation of D on the 
partition XI. X2 of the word X, too. A computation u$r is called accepting 
(rejecting) if r = I (0). The message complexity of the protocol D 
is nmc(D) = I{u E {O,l}* I u E fP(x) for some x E E*}I. We say D = 
(CP, I.p) accepts L, L (D) = L, if, for all x, y E E*, there exists an accepting 
computation of D on the partition x, y of the word xy {:} xy E L. 

The nondeterministic message complexity of L is 

nmc(L) = min{nmc(D) I D is a one-way uniform nondeterministic 
protocol accepting L}. 

The communication complexity of D is 

cc(D) = max{lull u E fP(x) for some x E E*}. 

The one-way uniform nondeterministic communication complexity of 
L is 

unccl(L) = min{cc(D) I D is a one-way uniform nondeterministic 
protocol accepting L}. 

As in Theorem 5.2.3.2, one can establish the following relation. 
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Theorem 5.2.4.10 For every regular language L 

nmc(L) :::; ns(L). 

Proof. It is sufficient to show that, for every NFA A = (Q,E,i5,qo,F), there 
exists a one-way uniform nondeterministic protocol D = (p, <p) such that 
L(A) = L(D) and nmc(D) = IQI. Let k = flog21QIl and let code: Q -+ {O, I}k 
be an injective function. Then D can be defined as follows: 

(i) Vx E E* 

(ii) Vy E E* 

p(x) = {code(p) I p E 8A (qo, x)}, and 

<p(y, code(p)) = I if 8A (p, y) n F =I- 0, 
<p(y, code(p)) = (} if 8A (p, y) n F = 0. 

o 

Now, as in the uniform deterministic case, to prove a lower bound on ns(L) 
one can choose a finite submatrix M' of M(L, E) and prove that M' possesses a 
large I-fooling set. The advantage of this approach over Theorem 5.2.4.2 is again 
in the fact that M need not to be a matrix whose columns (rows) correspond 
to words of the same length. To illustrate this advantage, consider again the 
language Lk ~ {O, I} * for any kEN. Let us consider the k x k submatrix 
M' of M(Lk, {O, I}) lying on the intersection of the rows 01, 02, ... , Ok and the 
columns A, 01, 02, ... , Ok-I. One can simply observe that this matrix M' has 
I's only on the diagonal from the lower-left corner to the upper-right corner. 
Thus we can say that the communication problem represented by M' possesses 
a "generalized" I-fooling set A = {(Ok,A),(Ok-1,01),(Ok-2,02), ... ,(0,Ok-I)}. 
Generalized means that A contains pairs (x, y) with xy E L instead of words 
xy E L as in Definition 2.2.2.14. If (Xl, X2) and (Yb Y2) are in a generalized 
I-fooling set, then XIX2 E L, YIY2 E L, and one of the words XIY2, YIX2 is not in 
L. So, a generalized fooling set may contain several partitions of the same word. 
For instance A contains k partitions of Ok. This is impossible for the standard 
definition of fooling sets because each input word may be at most once in a 
fooling set. Obviously, the generalized interpretation of the notion fooling set 
does not change anything on the fact that the cardinality of any fooling set for 
M(L, E) is a lower bound on nmc(L). 

Another method for proving lower bounds on nondeterministic communica­
tion complexity in Section 2.5.3 was the cover method. Using the same idea as in 
the proof of Theorem 2.5.3.5 one can show that nmc(L) is exactly cov(M(L, E)) 
- the size of the minimal cover of alII's of M(L, E) by I-monochromatic sub­
matrices (see Definition 2.5.3.4). Again, to apply this method one chooses a finite 
submatrix M' and then it remains to prove some lower bound on cov(M'). This 
method may work very well if it can be easily proved that M' does not contain 
any large I-monochromatic submatrix. 
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5.2.5 Exercises 

Exercise 5.2.5.1 Construct the minimal FA and the minimal NFA for any 
language Uk = {x E {O, l}* I #o(x) mod k == OJ. 

Exercise 5.2.5.2 Prove that every language L with a finite mc(L) is regular. 

Exercise 5.2.5.3 Construct a one-way uniform protocol D which does not ac­
cept any language. 

Exercise 5.2.5.4 Construct a one-way uniform protocol accepting: 

(i) Uk = {x E {O, l}* I #o(x) mod k == OJ, for any kEN; 

(ii) L1 = {xOOllOOy I xy E {O, l}*}; and 

(iii) L = {wcw I w E {O, l}*}. 

Exercise 5.2.5.5 Construct a one-way uniform nondeterministic protocol ac­
cepting: 

(i) Uk = {x E {O, l}* I #o(x) mod k == O} for any kEN; and 

(ii) L' = {xOllOylOOlz I x,y,z E {O, l}*}. 

Exercise 5.2.5.6 Find a regular language L such that there exists n E N such 
that log2(s(L)) = nccl(hn(L), lln) 

Exercise 5.2.5.7 Find an infinite sequence of regular languages Vb V2, ... , such 
that s(Vk) = k for all kEN, and cCl(hn(Vj), lln) ~ 1 for all n,j EN. 

Exercise 5.2.5.8 Find an infinite sequence Zb Z2, ... of regular languages such 
that, for any kEN, there exists an nk E N with 

Exercise 5.2.5.9 * Find, for every kEN, a regular language Lk with S(Lk) = 2k 
and ns(Lk) = k. 

Exercise 5.2.5.10 Give an infinite Boolean matrix that differs from any 
M(L, {O, I}) for any language L. 

Exercise 5.2.5.11 Prove that if a one-way uniform nondeterministic protocol 
D accepts a language L, then L is regular. 
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Exercise 5.2.5.12 Prove that everyone-way uniform protocol D accepting L = 
{wcw I w E {O, 1}*} has an infinite mc(D). 

Exercise 5.2.5.13 * Find an infinite sequence of regular languages Fl, F2 , ... 

such that CCl (hn(Fk), II n) = 2 for all n, kEN and mc(Fk) = 2k for every kEN. 

Exercise 5.2.5.14 Prove that for every regular language L, 

nmc(L) = Cov(M(L, 17L)). 

Exercise 5.2.5.15 Prove, that there is a regular language L such that nmc(L} 
essentially differs from the size of the minimal nondeterministic automaton for 
L. 

5.2.6 Research Problems 

Problem 5.2.6.1 * Find an efficient algorithm for an approximate estimation 
of ns(L} for any regular language L. 

5.3 Turing Machines 

5.3.1 Introduction 

This section is devoted to the complexity measures of Turing machine models 
and so to general sequential time and space complexity measures. Note that this 
is not for the first time we handle the time complexity measure in this book. 
The combinational complexity of Boolean circuits (the length of straight-line 
programs) is the number of elementary operations which have to be executed in 
order to compute a given Boolean function, and so it is a nonuniform sequential 
time complexity measure. From Chapter 3 we already know that nobody has 
been able to prove a super linear lower bound on the combinational complexity 
of a concrete Boolean function. The same situation appears for uniform time 
complexity considered as the number of elementary operations of general al­
gorithmic models of sequential computations. We do not have any superlinear 
lower bound on the time complexity of the recognition of a concrete language 
on multitape Turing machines or on register machines. On the other hand we 
know thousands of languages for which one even supposes the existence of su­
perpolynomiallower bounds. 

The lower bound proof methods using the crossing sequence argument or 
Kolmogorov complexity have been successful in proving some superlinear lower 
bounds on the time complexity of restricted models of sequential computations 
or on some time-space tradeoffs of general models of sequential computations. 
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In this section we show that one can use communication complexity in order to 
get this kind of lower bound too. 

Section 5.3 is organized as follows. In Section 5.3.2 it is shown that the non­
deterministic communication complexity squared provides a lower bound on the 
time complexity of the classical Thring machine consisting of one infinite tape 
only. In Section 5.3.3 we consider on-line and off-line multitape Turing machines. 
For on-line multitape Thring machines it is shown that one-way communication 
complexity provides lower bounds on the space complexity. For off-line mul­
titape Thring machines it is shown that the nondeterministic communication 
complexity squared provides lower bounds on some time-space tradeoff. Section 
5.3.4 involves some exercises and some open problems are formulated in Section 
5.3.5. 

In the whole Section 5.3 we assume that the reader is familiar with the basic 
Thring machine models and so we omit formal definitions of them. 

5.3.2 Time Complexity of Classical Turing Machines 

In this section we consider the original model of Turing machines, called simply 
Thring machines in what follows. A Turing machine, for short TM, consists of 
a finite state control, an infinite tape, and a read/write head. At the beginning 
of any computation of a TM A an input word is written on the tape, the head 
is positioned on the first symbol of the input word and the Turing machine A is 
in its initial state. In one computation step, A reads the tape symbol positioned 
under the head and (1) may change its state, (2) rewrites the symbol read, and 
(3) moves its head to the left or to the right. A accepts the input if it halts 
in an accepting state. If A halts in a rejecting state on an input w or if the 
computation of A on w is infinite, then w is not accepted by A. The language 
accepted by A is denoted by L(A). 

If x E L(A) ~ E*, then the time complexity of the computation of A 
on x, denoted TA(X), is the number of steps of this computation. The time 
complexity of A is the function T A : N ---t N defined as follows: 

A nondeterministic Turing machine, shortly NTM, is a nondeterministic 
version of the Thring machine described above. A nondeterministic TM B ac­
cepts an input x if there exists an accepting computation of B (a computation 
finishing in an accepting state of B) on x. The time complexity of the NTM 
B on x is the number of steps (the length) of the shortest accepting computa­
tion of B on x. The time complexity of B is a function T B : N ---t N defined 
as follows: 

In what follows we show the connection between the crossing sequence 
argument and communication complexity in order to prove quadratic lower 
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bounds on the time complexity of nondeterministic Turing machines. This clas­
sical crossing sequence argument is very close to the communication complex­
ity approach because communication complexity measures (in some sense) the 
amount of information which has to be exchanged between two parts of the in­
put in a Turing machine computation. In order to use it we first define crossing 
sequences. 

Definition 5.3.2.1 Let A be an NTM, and let x = X1X2'" xn, Xi E E for 
some alphabet E, be an input word. For every i, the position of the tape of A 
containing Xi at the beginning of the computation of A on X is called the i-th 
position of the tape. Let B be a finite computation of A on x. For every 
i E {I, 2, ... , n}, the i-th crossing sequence of the computation B on x, 
CS(B,i,x), is the sequence of states of A in which A moves its head either 
from the i-th position of the tape to the (i + 1) -st position of the tape or from the 
(i + 1) -st position of the tape to the i-th position of the tape in the computation 
Bon x. ICS(B,i,x)1 denotes the length of the sequence CS(B,i,x). 

Observation 5.3.2.2 Let A be an NTM and let x E L(A), Ixl = n. Then 

n 

TA(X) ~ min{L ICS(B,i,x)1 I B is an accepting computation of A onx}. 
i=l 

One can see that to prove a lower bound On TA(x), it is sufficient to prove 
that the sum of the lengths of crossing sequences of any accepting computation 
on x is large enough. We observe that a crossing sequence CS(B,i,x) may be 
viewed as the information exchanged between the input parts X1X2 . .. Xi and 
Xi+l ... Xn in the computation B. Any state coming into CS(B, i, x) due to the 
movement of the head to the right from the (i - l)-th position to the i-th 
position can be considered as a communication from C[ with the input Xl ... Xi 
to GIl with the input Xi+l ... X n . Similary, the states of CS(B, i, x) connected 
with the movement of the head from the (i + l)-th position to the i-th position 
may be considered as a communication from GIl to GI . Formalizing this idea 
we prove the following theorem. 

Theorem 5.3.2.3 Let L ~ {0,1}*. For any Xn = {Xl,X2,'" ,xn}, let IIn = 
({Xl, X2,···, X [n/21 }, {X[n/21,"" xn}). For each Turing machine A accepting L, 

Proof. Let A be a TM accepting L, and let Q be the set of states of A. For 
every n E N we consider the following. Let, for every x E L n {O, l}n, Bx be a 
computation of A on x such that TA(x) is the number of steps of Bx. Let Cn = 
ncc(hn(L), IIn), and let q = pog21QIl For every X E L n {O, l}n, let TA(X) :::; 
rncn for some positive real number rn (i.e., TA(n) :::; rnCn). Then, for every 
x E L n {O, 1 }n, 
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n rn/21 
Tn·cn~LICS(Bx,i,x)l~ L ICS(Bx,i,x)l· 

i=l i=rn/21-rCn /21 

Thus, for every x E L n {O, 1 }n, there exists an ix E {I, ... , n} such that 

CS(Bx, ix, x)1 ~ Tn/2. 
Now, we describe a one-way nondeterministic protocol Dn = (II n, (j)n) com­

puting hn(L) within communication complexity 

log2(en/2) + q. Tn /2 + cn /2 + l. 
Dn computes as follows. For every x E L n {O, l}n, GJ nondeterministically 

guesses an i E {r n/21 - r cn /21, ... , r n/21} and a sequence G of states. Then 
GJ checks whether G is a good candidate for the i-th crossing sequence from 
its (Xl ... Xi) point of view (i.e., GJ checks whether all odd elements of G are 
correct if the states on even positions in G are given). If yes, then GJ submits 
r n/21 - i, G, and xrn/21-rcn/21 ... xrn/21 to GIl. The length of this message is at 
most 

log2(cn /2) + q ·IGI + en/2 + l. 
Now, GIl checks whether the states on even positions of G are achievable if the 
states on odd positions of G are given. If yes, then clearly G is the i-th crossing 
sequence of a computation of A on x. GIl accepts if this computation finishes in 
an accepting state. Thus, for every X E L(A) n {O, l}n, there exists an accepting 
computation of Dn on x with the message of length 

log2(cn/2) + q. ICS(Bx, ix, x)1 + en/2 + 1 ~ log2(cn/2) + q. Tn/2 + en/2 + l. 
Since cc(Dn) 2: ncc(hn(L),IIn) = Cn , we obtain: 

log2(cn/2) + q. Tn /2 + en/2 + 1 ~ en 
q. Tn /2 + 1 ~ 1'" -log2(cn/2) 

T > £n. - £ . log2 r . n _ q q '-'1l 

Thus, 

o 

We have already mentioned that one has proved quadratic lower bounds on 
the time complexity of the recognition of concrete languages on Turing machines 
by the crossing sequence argument. To achieve these results some lower bounds 
on the lengths of the crossing sequences were proved, usually, by the fooling set 
method. So, one advantage of Theorem 5.3.2.3 over the previous approaches is 
its generality. We apply the lower bounds on nondeterministic communication 
complexity directly for all languages instead of writing a special lower bound 
proof for each specific language. Further, we do not depend so much on the 
fooling set method only, because we have a more general machinery to handle 
nondeterministic communication complexity than the pure application of the 
fooling set method. 
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5.3.3 Sequential Space and Time-Space Complexity 

In this section we consider very general models of sequential computations cov­
ering multi tape Turing machines and register machines. A sequential machine 
is a machine consisting of one input tape with one read-only head and an in­
finite memory. The infinite memory consists of cells containing binary values. 
In one step a sequential machine A reads one symbol from the input tape and, 
depending on the symbol read and the content of the memory, changes a finite 
part of the memory and moves the head on the input tape. A configuration 
of A is a triple C = (¢w$, i, 0:), where 

(i) w is the input word, 

(ii) i E {a, 1, ... , Iwl + I} is the position of the head on the input tape, and 

(iii) 0: E {a, 1}* is the content of the memory. 

For any configuration C = (¢x$, r, ,8), ,8 is called the internal configura­
tion of C. For any input w, the initial configuration of A on w (i.e., the 
configuration in which A starts the computation on w) is (¢w$, 1, >.). 
A computation of A on an input w is a finite sequence Co, C I , C2 , .•• , Ck of 
configurations of A such that 

(i) Co = (¢w$, 1, >'), and 

(ii) Ci is reachable from Ci - l in one step for i = 1,2, ... , k. 

Some of the configurations of A are accepting and A accepts an input word 
if an accepting configuration has been reached. For any sequential machine M, 
L(M) denotes the set of words accepted by M. 

We observe that sequential machines are a very general model of sequential 
computations. It is sufficient to specify the work with the memory by some 
restrictions and one obtains multitape (multidimensional) Turing machines or 
register machines. Moreover, the sequential machine model is non-uniform be­
cause one may change an arbitrarily large part of the memory in one simple 
computation step. Thus, lower bounds proved for our sequential machine model 
remain very largely valid. 

In what follows we shall also consider nondeterministic sequential ma­
chine as a nondeterministic version of sequential machines. 

Depending on the allowed direction of the head movement on the input tape 
we distinguish two versions of sequential machines. If the head may move to the 
right only we speak about an on-line sequential machine. If the head may 
move in both directions in the area between ¢ and $ we speak about an off-line 
sequential machine. 

Let A be a sequential machine, and let Co, C I , ... ,Ck be a computation 
on a word x: the time complexity of the computation of A on x is 
TA(x) = k. If x E L(A) and A is nondeterministic, then TA(x) = min{ICI- 1 I 
C is an accepting computation of A on x}. The time complexity of A is the 



300 5. Sequential Computations 

function TA : N -+ N defined by TA(n) = max{TA(x) I x E L(A) nEn} for any 
n E N. 

Let A be a sequential machine and let C = (~x$, 1, A), (~$, iI, al), ... , (~x$, 
i k , ak) be a computation of A on x. The space complexity of Cis Space(C) = 
max{ lai I I i = 1, ... , k}. If A is deterministic, then the space complex­
ity of the computation of A on x is SA(X) = Space(C). If A is non­
deterministic and x E L(A), then the space complexity of A on x is 
SA(X) = min{Space(C) I C is an accepting computation of A on x}. The 
space complexity of A is the function SA : N -+ N defined by SA(n) = 
max{SA(x) I x E L(A) n En} for any n E N. 

First, we show that one-way communication complexity provides lower 
bounds on the space complexity of on-line sequential machines. The argument 
for this claim is almost the same as in the case of finite automata. 

Theorem 5.3.3.1 For every language L over the alphabet {O, I}, and every 
on-line sequential machine A accepting L, 

for any n EN. 

Proof. The proof is almost the same as the proof of Theorem 5.2.3.1. One can 
construct a one-way protocol whose messages code the internal configurations 
of A after reading the first r n/2l bits of the input. 0 

The same argument as above yields the same result for the nondeterministic 
case. 

Theorem 5.3.3.2 For every language L over the alphabet {O, I}, and every 
on-line nondeterministic sequential machine M accepting L, 

for any n E N. 

The following result is an extension of Theorem 5.3.2.3 for sequential 
machines. It shows that nondeterministic communication complexity provides 
lower bounds on the tradeoff T . S of off-line sequential computations. 

Theorem 5.3.3.3 Let L ~ {0,1}*, and let A be an off-line nondeterministic 
sequential machine accepting L. Then 

Proof. The argument is the same as in the proof of Theorem 5.3.2.3. Instead 
of considering the crossing sequences as sequences of states we consider the 
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crossing sequences as sequences of internal configurations here. Thus, instead 
of q = rlog2(the number of states)l in the proof of Theorem 5.3.2.3 one has 
SA(n) for the inputs of the length n. Assuming TA(x) ::; rnCn (rn and Cn have 
the same meaning as in the proof of Theorem 5.3.2.3) one can construct a one­
way nondeterministic protocol Dn computing hn(L) within the communication 
complexity 

log2(cn /2) + SA(n) . rn/2 + cn/2 + 1. 

Since cc(Dn) 2: ncc(hn(L), lIn) = Cn, we obtain 

log2(cn /2) + SA(n) . rn/2 + cn/2 + 1 2: Cn 

Cn 2 
rn 2: SA(n) - SA(n) ·log2 Cn· 

Thus rn = Sl(cn/SA(n)) and so 

TA(n) . SA(n) = Sl(S:(n) . Cn · SA(n)) = Sl((Cn?). 

o 

5.3.4 Exercises 

Exercise 5.3.4.1 Explain why the proof of Theorem 5.3.2.3 does not work in 
the deterministic case. 

Exercise 5.3.4.2 * Prove TA(n) = Sl(n) for every nondeterministic Turing 
machine accepting the language {wwlw E {0,1}*} without using the communi­
cation complexity argument (Theorem 5.3.2.3). 

Exercise 5.3.4.3 For any language L ~ {O, I} *, let Linsert = {X2iy I xy E L, i E 

N}. Prove that every nondeterministic Turing machine M accepting Linsert ful­
fills 

Exercise 5.3.4.4 Generalize Theorem 5.3.2.3 by allowing lIn to be exchanged 
by an arbitrary almost balanced partition. 

Exercise 5.3.4.5 Give a formal description of the protocol mentioned in the 
proof of Theorem 5.3.3.1. Note that one cannot directly use the internal config­
urations as messages because of the prefix-freeness property. 

Exercise 5.3.4.6 Give a formal definition of crossing sequences of sequential 
machines, and give the full formal proof of Theorem 5.3.3.3. 
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Exercise 5.3.4.7 For any language L ~ {O, I}', let Linsert = {X2iy I xy E 
L, i EN}. Prove that every off-line nondeterministic sequential machine M 
accepting Linsert fulfills 

TM(n)· 8M(n) = Q(n· ncc(hn(L),IIn))· 

Exercise 5.3.4.8 • For any language L <;;; {O, I}', let Linsert = {X2iy I xy E 
L, i EN}. Prove that every deterministic Turing machine M accepting Linsert 
fulfills 

TM(n) = Q(n· cc(hn(L), IIn)). 

Note that the lower bound idea of Theorem 5.3.2.3 (Exercise 5.3.4.3) essentially 
uses nondeterminism and cannot be straightforwardly used to get lower bounds 
in the deterministic case. 

5.3.5 Research Problems 

Problem 5.3.5.1 Can Las Vegas (Monte Carlo) communication complexity 
be used to get a lower bound on the time complexity of probabilistic Turing 
machines? 

Problem 5.3.5.2 •• Prove a lower bound Q(n2 f(n)) for an unbounded function 
f on the time complexity of Turing machines accepting a specific language L E 
NP (NP is the class of languages accepted by nondeterministic polynomial time 
Turing machines). 

Problem 5.3.5.3 •• Prove a superlinear lower bound on the time complex­
ity of a general sequential machine model (multitape Turing machines, register 
machines) for the recognition of a specific languages L E NP. 

5.4 Decision Trees and Branching Programs 

5.4.1 Introduction 

Decision trees and branching programs are standard non-uniform computing 
models used to measure the time and space complexity of general sequential 
computations. In this section we show that communication complexity can be 
used to get lower bounds on the depth of these computing models and on 
the size of some restricted branching programs. This is of interest because the 
depth of decision trees (branching programs) corresponds to the sequential time 
complexity and the size of branching programs corresponds to the sequential 
space complexity. 
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This section is organized as follows. Section 5.4.2 is devoted to the definitions 
of decision trees, branching programs, and their complexity measures. Section 
5.4.3 relates communication complexity to the size of some models of branching 
programs. Section 5.4.4 relates communication complexity to the depth of deci­
sion trees. As usual, the last two sections are devoted to exercises and research 
problems. 

5.4.2 Definitions 

We start with the definition of decision trees and their complexities. 

Definition 5.4.2.1 Let X = {XI,""Xn } be a set of Boolean variables. A 
decision tree T over X is a labeled, directed, rooted, binary tree with the 
following properties: 

(i) the edges are directed from the root to the leaves, 

(ii) every internal node has outdegree two, 

(iii) every internal node v is labeled by a variable label( v) EX, and one of the 
edges outcoming from v is labeled by 1 and the other one by 0, 

(iv) every leaf is labeled by 0 or 1. 

The Boolean function iT: {a, l}n -t {a, I} computed by the decision tree 
T is defined such that, for every input a = aIa2'" an E {O,l}n, T computes 
the function value h(a) in the following way. The computation starts at the root 
ofT. If the computation has reached an internal node v, then the computation 
proceeds via the edge labeled by ai if label (v) = Xi. Once the computation reaches 
a leaf, the computation ends and fr (0:) is defined to be the label of that leaf. The 
depth of the decision tree T, depth(T), is the length of the longest path 
from the root to a leaf. The size of T, size(T), is the number of nodes of T. 

We observe that decision trees can simulate the computations of a very gen­
eral model of sequential machines on the inputs of a fixed length in the following 
sense. A node v of a decision tree corresponds to an internal configuration of the 
sequential machine and label( v) says which input variable is read in this config­
uration. Note that several different nodes of the decision tree may correspond to 
the same configuration of the sequential machine. So, one step of the sequential 
machine corresponds to the move from a node of the decision tree to one of its 
sons. We call attention to the fact that decision trees can simulate even more 
general sequential machines than the sequential machines considered in Section 
5.3. The machines of Section 5.3 have input tapes and after reading the value Xi 

they must read one of the values of Xi-I, Xi, or Xi+!' But the decision trees may 
read the input in an arbitrary order, which corresponds to sequential machines 
that may jump on the input tape (or with a random access to the input tape). 
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In what follows we define generalized decision trees that can evaluate a 
function defined on the input variables instead of reading a value of one input 
variable. This may correspond to very powerful sequential computations, where 
in one step a function over several input values may be evaluated. 

Definition 5.4.2.2 Let X = {X!,,", xn} be a set of Boolean variables, and let 
:F ~ {J If: {a, l}n -+ {a, I}}. A general decision tree over X and :F is 
a labeled, directed, rooted binary tree with the following properties: 

(i) the edges are directed from the root to the leaves, 

(ii) every internal node has outdegree two, 

(iii) every internal node is labeled by a function label( v) E :F and one of the 
edges outcoming from v is labeled by 1 and the other one by 0, 

(iv) every leaf is labeled by 0 or 1. 

The Boolean function iT: {a, l}n -+ {a, I} computed by the general de­
cision tree T is defined such that for every input a = ala2 ... an E {a, I }n, 
T computes the function value h(a) in the following way. The computa­
tion starts at the root of T. If the computation has reached an internal node 
v and label( v) = g then the computation proceeds via the edge labeled by 
g(al' a2,"" an). Once the computation reaches a leaf, the computation ends 
and h(a) is defined to be the label of that leaf. The depth of the general 
decision tree T, depth(T), is the length of the longest path from the root to 
a leaf. 

Now, we define the branching programs. Informally, one can obtain a 
branching program B from a decision tree T by joining the nodes of T with 
the same meaning (corresponding to the same configuration of sequential com­
putations) into one node. Thus, B is an acyclic graph if T does not contain 
any cyclic sequential computation. Since the number of nodes of the branch­
ing program B is exactly the number of configurations used in all sequential 
computations on inputs of the given length, branching programs are used to 
measure the space complexity of sequential computations. 

Definition 5.4.2.3 Let G = (V, E) be an acyclic, directed graph. A source of 
G is any node from V having in degree O. A sink of G is any node from V 
having outdegree O. 

Definition 5.4.2.4 Let X = {Xl, X2,"" xn} be a set of Boolean variables. A 
branching program B over X is a labeled, directed, acyclic graph with the 
following properties: 

(i) B has exactly one source, 

(ii) every non-sink (internal) node of B has outdegree two, 
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(iii) every non-sink node v is labeled by a variable label( v) EX, and one of the 
edges out coming from v is labeled by 1 and the other one by 0, 

(iv) every sink node is labeled by 0 or 1. 

The Boolean function IT: {O, l}n -t {O, I} computed by the branching 
program B is defined such that, for every input a = ala2 ... an E {O, l}n, the 
computation starts at the only source of B. If the computation has reached an 
internal node v, then the computation of B on a proceeds via the edge labeled 
byai if Xi = label(v). Once the computation reaches a sink of B, the computa­
tion ends and h(a) is defined to be the label of that sink. The depth of the 
branching program B, depth(B), is the length of the longest directed path 
in B. The size of B, size(B), is the number of nodes of B. The capacity of 
B is capacity(B)= flog2(size(B))l 
For any Boolean function f, 

size (f) = min{size(B) I B is a branching program computing j}, 

and 

capacity(f) = min{capacity(B) I B is a branching program computing j}. 

Observation 5.4.2.5 Let L be a language over the alphabet {O, I}. For every 
sequential machine A accepting L 

Proof. Every Sen) space-bounded sequential machine uses at most 2S(n) internal 
configurations in the computations on the inputs of the length n. Thus, it can 
be simulated by a branching program of n . 2S(n) nodes, where n indicates the 
position of the head on the input tape. 0 

In what follows we shall consider several restricted versions of branching 
programs corresponding to distinct sequential computing models. 

Definition 5.4.2.6 Let B be a branching program over a set of variables X. The 
i-th level of B, denoted leveli(B), is the set of all nodes of B with distance i 
from the root of B (The distance of a node v from the root X of B is the length 
of the shortest directed path from x to v). Let B have k + 1 levels. B is called 
leveled, if every edge of B goes from leve4(B) to leve4+1(B) for some ° ::::; i ::::; 
k - 1. If, for every m E {O, 1, ... , k}, all vertices of level",(B) are labeled by 
the same input variable, B is called oblivious. The width of the branching 
program B, denoted width(B), is the maximum of the cardinalities of the 
levels of B. 
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Oblivious branching programs simulate sequential computations for which 
a fixed order of reading the input variables is given. Examples are on-line ma­
chines, where the variables are read in the order Xl, X2, .... In the literature, 
any computing model is called oblivious if the order of input values read is the 
same for each input of given length (the order does not depend on the actual 
values read). Examples for the oblivious computing model are VLSI circuits. 

Definition 5.4.2.7 Let B be a branching program over a set of variables X. 
For any kEN, the branching program B is said to be k-time-only if for each 
variable X E X and each directed path P of B there are at most k nodes of P 
labeled by the variable x. 

Observation 5.4.2.8 Let kEN and X = {XI, ... , xn} be a set of Boolean 
variables. For any k-time-only branching program over B 

depth(B) ::; k . n. 

We note that I-time-only branching programs correspond to erasing ma­
chines. Erasing machines have one read-only tape on which they may jump. If 
the content of a position of the tape has been read, then it is erased and this 
position cannot be read any more. 

5.4.3 Capacity of Branching Programs 

One of the central problems in complexity theory is to prove that a specific 
language from NP is not in DLOGSPACE, i.e., that the language cannot be 
accepted by any off-line multitape Turing machine A with SA(n) = O(log2 n). 
One possibility to reach such a result is to prove a superpolynomiallower bound 
on the size of branching programs computing hn(L)'s for such a language L. 
Recently, we do not know any lower bound of this kind. The highest known 
lower bound on the size of branching programs grows slower than n2 . This 
situation changes if one considers one-time-only branching programs for which 
exponential lower bounds are known. In what follows we show that one-way 
communication complexity can help to obtain exponential lower bounds on the 
size of oblivious one-time-only branching programs. 

Theorem 5.4.3.1 Let f : {O, l}n -t {O, I} be a Boolean function ofn variables, 
n E N. For every oblivious l-time-only branching program B computing f 

width(B) ~ 2cc1 (1)-1. 

Proof. Since B is I-time-only one can consider that B consists of at most n 
levels levelo(B), levell(B), ... , leveln_l(B). Since B is oblivious we may assume, 
for every m E {O, ... ,n-I}, that all nodes oflevelm(B) are labeled by the same 



5.4 Decision Trees and Branching Programs 307 

variable Xim ' Now, one can construct a one-way protocol D = (II, p) computing 
f in the following way. II = ({ Xio, Xi" ... ,Xirn/21_J, {Xirn/21 ' ... ,Xin_J) and, 
for any input, CJ submits the code of the node of levelrn/21-I(B) in which the 
branching program is after reading the values of the input corresponding to the 
variables in IlL. So, D uses exactly Ilevelrn/21 (B) I different messages which can 
be coded in length flog211evelrn/21-I(B)1l in a prefix-free manner. 0 

Corollary 5.4.3.2 Let f be a Boolean function. For every oblivious 1-time-only 
branching program B computing f 

capacity(B) 2: CCI(f). 

Thus, Theorem 5.4.3.1 provides many exponential lower bounds on the size 
of 1-time-only oblivious branching programs computing specific Boolean func­
tions in a straightforward way. More elaborate techniques are used to prove 
exponential lower bounds on the size of (non-oblivious) 1-time-only branching 
programs. We do not see any possibility of using communication complexity to 
get these lower bounds. 

Interestingly we do not know any exponential lower bound on the size 
of 2-times-only branching programs. But exponential lower bounds have been 
achieved for oblivious k-times-only branching programs. Using a similar ap­
proach as for k-multilective VLSI circuits we show that such results can be 
achieved by using the communication complexity approach, too. 

Theorem 5.4.3.3 Let k and m be positive integers, k < ~ . 10g2 m - 2. Let 
f E B2'. For every oblivious k-times-only branching program B computing f 

capacity(B) 2: OCC2k(f)/2k. 

Proof. Let X = {Xl, ... , Xm} be the set of input variables of f, and let Uo, Vo 
be subsets of X such that OCC2k(f, Uo, Va) = OCC2k(f). Note that IUol = IVai 2: 
m/8. Let B be an oblivious k-time-only branching program computing f. It is 
sufficient to show that capacity(B) 2: OCC2k(f, Uo, Vo)/2k. 

Let IUol = IVol = n. We set X = Uo U Vo and Wi = {label(v) E X I v E 
leveli(B)} for i = 0,1, ... , depth(B). Since B is oblivious, IWil :::: 1 for every 
i E {O, 1, ... , depth(B)}. We observe that k :::: ~ 10g2 n because m 2: n/8 and 
k < ~ 10g2 m - 2. Since B is k-times-only, X, W o, WI, ... , Wdepth(B) , k, n, and 
the cardinalities of Wi'S fulfill the assumption of Lemma 4.5.3.1. Thus, there 
exist sets U <:;:; Un, V <:;:; Vo, and integers bEN, to = -1, t l , ... , tb E 
{I, 2, ... ,depth(B)} satisfying the conditions (i), (ii), (iii), (iv), and (v) of 
Lemma 4.5.3.1. Using this we describe a b-round protocol D = (II, p) computing 
f. We set II = (IlL, IlR) for Ih = X-V and IlR = X -U. P can be described as 
follows. Without loss of generality we assume U n (uj~to+1 Wj ) =1= 0. Then in the 
first round the left computer CJ sends a message coding the node v E leveltt (B) 
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reached by B working on the given input. Generally, for any i E {I, ... , b-1}, if 
Un(U~~ii+l Wj) -10, then CJ sends a message coding the node of the levelti+l (B) 
reached by B computing on the given input. If V n (U~~t+l Wj) -10, then Cu 
sends a message coding the node of the levelti+l (B) reached by the computation 
of B on the given input. We observe that if CJ (Cu ) knows the node reached 
in the ti-th level of B, and U~~ii+l Wj ~ Ih = X - V (U~~ii+l Wj ~ IlR = 
X - U), then CJ (Cu ) can determine the node reached in the ti+l-th level in 
the computation of B on the given input. 

Since b :::: 2k according to (ii) of Lemma 4.5.3.1, D is a 2k-round protocol. 
If one codes every non-sink node of B by another message, then D can be 
constructed in such a way that every message has the length flog2(size(B))1 = 
capacity(B). Since D is a 2k-round protocol, cc(D) :::: 2k· capacity(B). 0 

As we have mentioned in Section 4.5 we know languages with linear OCC2k(J). 
Due to Theorem 5.4.3.3 we see that each such language requires oblivious k­
times-only branching programs of exponential size. In the next theorem we 
strengthen this result further by removing the k-times-only property. More pre­
cisely, we exchange this property for a restriction on the depth of the branching 
program. 

Theorem 5.4.3.4 Let k and m be positive integers, k < ~ log2 m - 1. Let 
f E BJj' and X be the set of input variables of f. Let B be an oblivious branching 
program computing f. If depth(B) :::: k· m, then 

4k· capacity(B) 2: mini OCC4k(J, Ua, Va) I Ua ~ X, Va ~ X, 
lVol = Ivai = IXI/4, UO n va = 0}. 

Proof. Since the depth of B is bounded by k . m, there exists a set X ~ X, 
IXI 2: IXI/2 = m/2, such that each x E X is read at most 2k times in B. 
Taking any balanced partition (Ua, Va) of X one can complete the proof in the 
same way as in the proof of Theorem 5.4.3.3. 0 

Corollary 5.4.3.5 Let M be an oblivious sequential machine accepting a lan­
guage L. Let k(n) : N -+ N be a function with k(n) :::: ~ log2 n - 1 for any 
n E N. Let OCC4k(n) (hn(L), Ua, Va) = Q(n) for every Ua, va with Ua n va = 0 and 
IVai = Ivai = n/4. IfTM(n) :::: k(n) . n, then 

SM(n) = Q(n/k(n)). 

The last application of the combinatorial Lemma 4.5.3.1 presented here 
enables to exchange obliviousness from Theorem 5.4.3.4 for a restriction on the 
width of branching programs. 

Theorem 5.4.3.6 Let k, m, and d be positive integers, k < ~ log2 m - 2, 
d:::: m/8· 32k . Let f E BJj'. For every k-times only levelled branching program 
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B computing f with width (B) ::; d, 

capacity(B) ;::: OCC2k(f)/2k. 

Proof. The proof is almost the same as the proof of Theorem 5.4.3.6. The only 
one difference is that the cardinality of Wj = {label(v) E X I v E levelj(B)} is 
not 1 but restricted by d. This does not change anything on the fact that all 
assumption of Lemma 4.5.3.1 are fulfilled. 

o 
We observe that, for small constants k, Theorem 5.4.3.6 provides exponen­

tial lower bounds on the size of k-times-only branching programs with some 
linear restriction on their width. 

5.4.4 Lower Bounds on the Depth of Decision Trees 

It is obvious that for any Boolean function f E B~, n E N, one can construct a 
decision tree T (branching program) computing f with depth(T) ::; n. Thus, one 
cannot use decision trees to try to prove superlinear lower bounds on sequential 
computations. It seems to be much more interesting to prove lower bounds 
on the depth of general decision trees than on the basic decision tree model 
because, for general decision trees, sublinear lower bounds may be of interest, 
too. In what follows we show how communication complexity can be used to 
get lower bounds on the depth of decision trees. 

Theorem 5.4.4.1 Let X = {Xl, ... , Xn} be a set of Boolean variables, and 
let Bas ~ B~. Let T be a general decision tree over X and Bas computing a 
function f E B~. Then 

depth(T) > max{ cc(j, 11) I 11 E Abal(X)} . 
- ucc(Bas, n) 

Proof. Recall that ucc(g) = max{ cc(g, 11) I II is a partition of X} (Definition 
3.5.2.1) and that ucc(Bas, n) = max{ ucc(g) I 9 E Bas} + 1 (Definition 3.5.2.5). 
A protocol D simulating the computation of T on a given input a can be 
constructed in the following way. Let the root be labeled by a function 9 E Bas. 
Then D computes g(a) within communication complexity ucc(g) and uses one 
additional communication bit to secure that both G1 and GIl know the value 
g(a). Thus, both G1 and GIl know the next node (one of the sons of the root) 
of the computation of T on a. In every non-leaf node D proceeds in the same 
way as in the root. The result f(a) is the label of the leaf reached in this way. 
The communication complexity of D is at most depth(T) . ucc(Bas, n). 0 

Thus, for instance, for the class of functions Threshold we have proved in 
Section 3.5.2 ucc(Threshold, n) ::; [lOg2 n 1 + 1. This yields the lower bound 
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max{ cc(J, II) I II E Abal(X)} /WOg2 n 1 + 1) on the depth of any general 
decision tree over Threshold computing f. 

5.4.5 Exercises 

Exercise 5.4.5.1 Prove that for every f E B2, nEW, there is a decision tree 
(branching program)T computing f within depth n. 

Exercise 5.4.5.2 Prove that for every branching program there exists an equiv­
alent branching program having exactly two sinks. 

Exercise 5.4.5.3 Prove that almost all Boolean functions of n variables require 
the depth n to be computed on decision trees (branching programs). 

Exercise 5.4.5.4 Let B be a branching program computing a Boolean function 
f. Prove that CC(J) ~ 3· size(B). 

Exercise 5.4.5.5 Let B be a branching program computing a Boolean function 
f. Prove that D(J) ~ 2· depth(B). 

Exercise 5.4.5.6 Prove that for every f E B2, there is a branching program of 
size O(2n /n) computing f. 

Exercise 5.4.5.7 Prove that almost all functions from B2 have their optimal 
branching programs of size at least 2n /3n. 

Exercise 5.4.5.8 Prove that every Boolean function can be computed by a 1-
time-only branching program. 

Exercise 5.4.5.9 Prove that every Boolean function can be computed by a 
branching program of width 2. 

Exercise 5.4.5.10 Find a Boolean function f E B'2 having the following two 
properties: 

(i) f essentially depends on all its input variables, and 

(ii) there exists a branching program of depth flog2 n 1 + 1 computing f. 

Exercise 5.4.5.11 •• Consider the threshold function TJ: E B2 defined by 
TJ: (0'.1, ... ,an) = 1 iff 0'.1 + 0'.2 + ... an ~ k. Prove that there exists a k such that 
every branching program computing TJ: has size il( n . (log logn) / log log logn). 
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Exercise 5.4.5.12 Prove the following claim. Let f be a symmetric Boolean 
function computed by a l-time-only branching program B 1 . Then there exists an 
oblivious l-time-only branching program B2 such that 

(i) B2 computes f, and 

(ii) size(B2 ) ~ size(Bl)' 

Exercise 5.4.5.13 * Prove, for a specific language L, that every l-time-only 
branching program computing hn(L) has size 2!J(nl. 

Exercise 5.4.5.14 * Prove the following claim. Let L ~ {O,l}*. There is for 
some constant k a sequence of branching programs computing hn(L) with poly­
nomial size and width k if and only if there is a sequence of Boolean circuits 
computing hn(L) with polynomial size and depth O(log2 n). 

Exercise 5.4.5.15 Define nondeterministic branching programs and relate their 
complexity measures to nondeterministic communication complexity. 

5.4.6 Research Problems 

Problem 5.4.6.1 * Prove an exponential lower bound on the size of 2-times­
only branching programs computing a specific Boolean function. 

Problem 5.4.6.2 * Prove an exponential lower bound on the size of oblivious 
branching programs computing a specific Boolean function with depth n· f(n), 
where log2 n = o(f(n)). 

Problem 5.4.6.3 ** Prove a quadratic (or even an exponential) lower bound 
on the size of branching programs computing a specific Boolean function. 

Problem 5.4.6.4 ** Prove or disprove: 

(i) deterministic logarithmic space is a proper subset of nondeterministic log­
arithmic space, 

(ii) deterministic logarithmic space is a proper subset of deterministic polyno­
mial time. 

5.5 Bibliographical Remarks 

The simple relation between finite automata and communication complexity 
formulated in Theorem 5.2.3.1 comes from Hromkovic [Hr86c]. The one-way 
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uniform protocols have been introduced by Hromkovic and Schnitger [HrS96J, 
where Theorem 5.2.4.S has been proved too. The introduction of nondetermin­
istic uniform protocols and their relation to nondeterministic finite automata 
is a contribution of this book. The claim of Exercise 5.2.5.15 showing that the 
nondeterministic message complexity of a regular language L can essentially 
differ from the size of the minimal nondeterministic finite automaton for L has 
been recently established by Klauck and Schnitger[KIS96J. 

Time complexity as a complexity measure of off-line multitape 'lUring ma­
chines was introduced by Hartmanis and Stearns in [HS65J. One of the most 
challenging problems of complexity theory is to prove a superlinear lower bound 
on sequential time complexity. Unfortunately, we do not have any such result 
for powerful models of sequential computations like multi tape 'lUring machines 
or register machines. The strongest 'lUring machine model for which super lin­
ear lower bounds have been established is the one-tape 'lUring machine with 
an additional read-only two-way input tape (see Maas, Schnitger, Szemeredi 
and Tunin [MSS87, MSST90J). The crossing sequence argument for proving 
lower bounds was introduced by Cobham [C066], and used in many papers 
about lower bounds (see, for instance, some more advanced applications in 
Duris and Galil [DGS4], Duris, Galil, Paul, and Reischuk [DGPRS3], Hromkovic 
[HrS3, HrS5a, HrS5b, HrS9, Hr91b], Janiga [JaS1], and Rivest and Yao [RY7SJ). 
The quadratic lower bounds on the time complexity of classical nondeterminis­
tic 'lUring machines were presented by Freivalds [FrS4J, Maas [MaS4], and Ming 
Li [Li84J. The lower bound method based on communication complexity and 
presented in Section 5.3.2 was observed by Kalyanasundaram [KaS8], Dietzfel­
binger [Di93], and perhaps others too. Section 5.3.3 contains a straightforward 
extension of this idea. The communication complexity argument was further 
developed by Kalyanasundaram and Schnitger [KS92], and Paturi and Simon 
[PaSS3J to get lower bounds for probabilistic 'lUring machines. Recently, Diet­
zfelbinger [Di96] has proved the assertion of Exercise 5.3.4.S extending his idea 
from [Di93J about the use of deterministic communication complexity to get 
lower bounds on time complexity of (deterministic) 'lUring machines. 

Decision trees are a classical non-uniform model for the measurement of the 
time complexity of non-uniform programs using the operations "if then else" 
and "go to" (see the surveys by Bollobas [BoS4] and Kahn, Saks, and Sturte­
vant [KSSS4J). The main interest in the study of decision trees was not in the 
standard model testing the values of Boolean variables, but in different gener­
alized models testing the values of functions over integers, rationals, and reals 
(see, e.g., Dobkin and Lipton [DL7S, DL79], Dietzfelbinger and Maas [DMSS], 
Klein and Meyer auf der Heide [KMS3], Meyer auf der Heide [MadHS5], Snir 
[SnS2, SnS5], Yao [Ya77], and Yao and Rivest [YRSOJ). 

Branching programs may seem to be more interesting than decision trees 
because they simultaneously measure time and space of non-uniform sequential 
computations. This relation between branching programs and sequential com­
putations was proved by Cobham [C066J and Pudlak and Zak [PZS3J. More­
over, Wegener [WeS4] showed a closed relation between branching programs 
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and Boolean circuits (see Exercises 5.4.5.4 and 5.4.5.5). Branching program are 
also called binary decision diagrams and used as data structures for represent­
ing Boolean functions. They are used for symbolic Boolean manipulation, which 
has been successfuly applied to a wide variety of practical tasks, particulary in 
computer-aided VLSI design. A nice survey of these applications can be found 
in [Mi96]. We also call attention to the fact that branching programs can be 
viewed as a restricted version of the contact schemes (lI-schemes) intensively 
investigated already in the Russian-language literature for three decades. An 
exhaustive survey of the study of this computing model can be found in the 
nice monograph by Nigmatulin [Ni83]. 

Rivest and Vuillemin [RV76] proved that almost all Boolean functions of n 
variables require the maximal depth n to be computed by branching programs. 

The highest lower bounds Q( n2 / (log2 n )2) on the size of branching programs 
computing concrete Boolean functions can be achieved by applying the method 
of Nechiporuk [Ne66]. The highest lower bound on the size of branching pro­
grams computing a symmetric Boolean function (Exercise 5.4.5.10) was proved 
by Pudlak [Pu84]. 

1-time-only branching programs were introduced by Masek [M76]. Wegener 
[We84] proved that there is no difference between the size of 1-time-only branch­
ing programs and the size of oblivious 1-time-only branching programs for sym­
metric Boolean functions. Exponential lower bounds on the size of 1-time-only 
branching programs computing concrete sequences of Boolean functions have 
been developed by Ajtai, Babai, Hajnal, Koml6s, Pudlak, Szemeredi, and Turan 
[ABH86], Dunne [Du85], Kriegel and Waack [KW86], Wegener [We84a, We86], 
and Zak [Za84, Za86, Za95]. One of the main open problems connected with 
branching programs is to prove high lower bounds at least on the size of 2-times­
only branching programs. It is interesting that we do not have any lower bound 
on this 2-times-only restricted model of branching programs higher than the 
lower bounds on the size of the general model of branching programs [We87J. 
More information about the study of branching programs can be found in the 
excellent monograph by Wegener [We87]. 

The relation between communication complexity and k-times-only branch­
ing programs presented in Section 5.4.5 has been developed in this book. It 
is a simple extension of the ideas described in the papers by Hromkovic and 
Prochazka [HrP88], Hromkovic [Hr91a], and Hromkovic, Krause, Meinel, and 
Waack [HKMW92) relating the size of branching programs to the area of VLSI 
circuits. The results presented here can be simply extended to the nondetermin­
istic case (for the definition of nondeterministic branching programs see Meinel 
[Me87, Me88]). 

As we have already noted, Section 5 does not provide a complete survey of 
the relation between the communication protocol model and the complexity of 
sequential computing. From the research direction not involved in Section 5 we 
call attention to the following three applications of communication complexity. 

The study of the connections between randomness and computation is an 
important theme in contemporary theoretical computer science. This is because 
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randomized algorithms using a source of independent unbiased bits can be used 
to speed up the computations of important computing problems like optimiza­
tion problems, data encryption, etc. Yet whether or not a source of indepen­
dent unbiased bit can be constructed is an open problem. The major difficulty 
is that making any measurement disturbs the systems in such a way that the 
bit-sequence resulting from series of measurements might be correlated. Santha 
and Vazirani [SV86] defined semi-random sources and introduced a general 
mathematical framework for the study of imperfect and correlated sources of 
randomness coresponding to physical sources like Zener diodes and Geiger COUn­
ters. Vazirani [Va87] has used the communication protocol model to efficiently 
generate high quality random sequences (called quasi-random bit sequences) 
from two independent semi-random sources. Vazirani's new concept is strongly 
related to communication complexity theory. It led to a definition of strong 
communication complexity of a Boolean function and brought new impulses in 
the investigation of communication complexity. 

The second application we present is a relation between cryptography and 
the communication complexity of the following number-theoretic problem. Let 
the first computer GJ have a prime number x and the second computer GIl have 
a composite number y, where x, y < 2n. The protocol has to compute a prime 
number p, p < 2n, such that x ;f. y( mod)p (The existence of such a small prime 
p is guaranted by the prime number theorem and the Chinese remainder theo­
rem). We require that after the communication of the protocol both GJ and GIl 
know p. Let c{n) denote the communication complexity of this problem. Obvi­
ously c( n) :::; n + POg2 n l because the trivial protocol can work as follows. GJ 

submits its whole input (n bits) to GIl, which computes p and sends it (log2 n 
bits) back to GJ . The trivial lower bound is c(n) = Q(log2 n). At present, these 
trivial upper and lower bounds are the best known. What is important is that 
this communication problem encodes the computational difficulty of primality 
testing. Answering it is important for computational number theory (cryptog­
raphy, coding) as well as for complexity theory from the following reaSOn. If 
c(n) = o (10g2 n), then for every n there is a polynomial size (in n) Boolean 
formula deciding whether the n input bits code a prime integer. This would 
mean that primality can be tested highly efficiently, both sequentially and in 
parallel. If c(n) =I- o (10g2 n), the primality function has nO such formulas, and 
it would be the first explicit example of such a function. For more details about 
this problem one can consult Wigderson [Wi91]. 

The last application we would like to mention is the problem of whether 
the real time storage modification machine of Shonhage [Sho80] is more pow­
erful than the Kolmogorov-Uspenskii machine introduced by Kolmogorov and 
Uspenskii [KU63]. Both machines are powerful models of sequential computa­
tions with dynamically changing storage structures (for instance, Shoenhage's 
machine can compute integer multiplication in linear time). Kalyanasundaram 
and Schnitger have reduced this known open problem to a special communica­
tion problem On our two-party communication protocols in [KS92]. 
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These last examples of the application of communication complexity show 
that several open problems in complexity theory may be elucidated in terms 
of communication (information transfer). The elegance of the communication 
protocol model, and the existence of non-trivial machinery to handle it, give 
hope that the approach based on communication complexity will be one of the 
instrumental approaches for solving several of these open problems. Note that 
this book does not handle the multiparty protocol model, which has several in­
teresting applications too (see, for instance, Babai, Nisan, and Szegedy [BNS89] 
for the relation to time-space tradeoff's and branching programs). 
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