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Abstract 

In this note, we prove a simple theorem that provides a lower bound on the size of nondeterministic finite automata 
which accept a given regular language. 
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We measure the size of an automaton by count- 

ing the number of states it contains. Given a regular 
language L, the well-known Myhill-Nerode theorem 
(e.g., [4, Theorem 3.91) provides an efficient way to 
determine the smallest deterministic finite automaton 
(DFA) that accepts L. The smallest DFA for a given 
language is unique, up to the naming of the states. 

Unfortunately, no such general method is known for 
the case of nondeterministic finite automata (NFAs) . 
For one thing, the smallest NFA is not necessarily 
unique; for an example, see [ 1 ] or [ 5, Fig. 3, p. 1671. 
Furthermore, it is unlikely any such general method 
will be tractably computable, since it is known 16, 
Theorem 3.21 that the following decision problem is 
PSPACE-complete: 
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Instance: A DFA M and an integer k. 

Question: Is there an NFA with 6 k states accepting 

L(M)? 

As Jiang, McDowell and Ravikumar remark [ 51: 

While the standard argument based on the 
Myhill-Nerode equivalence relation RL yields 
good lower bounds on the size of DFAs, no such 
methods are known for proving lower bounds 
on the size of NFAs. 

In this note we prove a remarkably simple theorem, 
based on communication complexity, that gives such 
a lower bound. Although the lower bound provided by 
our theorem is not always tight, it gives good results 
in many cases. We emphasize that the goal of this 
note is not to provide techniques for actually finding a 
nondeterministic automaton of minimum size; for this 
problem, see, for example, [7,8,1,9]. 

We assume the reader is familiar with the standard 
notation for language theory, as provided in [ 41, 

Theorem 1. Let L & 2* be a regular language, and 
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Fig. 1. An NFA accepting .Ls. 

suppose there exists a set of pairs P = {(xi, wj) ) 1 < 

i < n} such that 
(a) xiwi E L for 1 < i 6 n; 
(b) xjwi $ Lfor 1 < i, j 6 n, and i # j. 

Then any NFA accepting L has at least n states. 

Proof. Let M = (Q, Z,6, qo, F) be any NFA accept- 
ing L, and consider the set of states S = 6(qo, xi). 
Since Xiwi E L, there must be a state pi E S such that 
6(pi, wi) n F is nonempty. In other words, there ex- 
ists a state ri E F with ri E 6(pi, Wi). We claim pi $ 
S(qo,xi) forallj # i.Forifpi E S(qa,xj),thenri E 
S(pi,Wi) G S(qc,xjwi), SO XjWi E L, a contradic- 
tion. It follows that each set 6( qo, Xi) contains a state 
pi which is not contained in any other set S(q0, xj) 
with j # i. Hence M has at least n states. 0 

In appIying this theorem to any particular language 
L, it is of course necessary to choose the pairs (Xi, Wi) 
appropriately. We do not know an infallible algorithm 
for optimally making these choices, but the following 
heuristic seems to work well. Construct an NFA ac- 
cepting L, and for each state q in this NFA let xq be 
the shortest string such that 6(qo, xq) = q, and let wq 
be the shortest string such that S(q, ws) E F. Then 
choose the set P to be some appropriate subset of the 
pairs {(x4, wq) I 4 E Q). 

We now give three examples of the application of 
this theorem. 

Example 2. Let Lk = (0’1’2’ 1 0 6 i < k}. In 
Theorem 1 we can take as our set of pairs P = 
{(oili, ii-jz’) 1 0 < j < i < k}. Let (x.w) = 
(()ilj, li-izi) and (x’, w’) = (@‘l-f, li’-j’2i’) be two 

Fig. 2. An NFA accepting Ad. 

such distinct pairs. Then clearly xw E L, but xw’ = 
0’li’+j-f2i’ cannot be in L unless i = i’ and j = j’. 
It follows that there are at least ]P] = k( k + 1) /2 
states in any NFA that accepts Lk. In fact, Lk can 
be accepted by an NFA with k( k + 1) /2 + 1 states. 
Rather than give a formal proof, we illustrate the 
construction for k = 5 in Fig. 1. 

Example 3. Let wR denote the reverse of the string 
w, and consider the language 

At = {W E (o+ l)k 1 W = WR} 

of palindromes of length k over a binary alphabet. In 
Theorem 1 we may take 

P = {(x, 0k-2’x’xR) I 1x1 < k/2} 

u { ( xok+I ,xR) I 1x1 < (k - U/2). 

It follows that the smallest NFA accepting Ak has at 
least 2Lk121+l +2L(k+1)/2J -2 states. In fact, this bound 
is tight, as can be easily proved by actually construct- 
ing an NFA with the given number of states that ac- 
cepts Ak. Rather than give a formal proof, we illustrate 
the construction for k = 4 in Fig. 2. 

While Theorem 1 is often useful for obtaining lower 
bounds (see [ 2,3] ) , the lower bound provided is not 
always tight. In fact, the lower bound provided by 
Theorem 1 may be arbitrarily bad compared to the true 
bound. Consider the following example. 

Example 4. Define 

Hk = (ok)+. 
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The reader can easily verify that the hypothesis of 
Theorem 1 cannot be fulfilled for this language if n > 

2. However, the smallest NFA for Hk must have at least 
?og, (k+ 1) states. To see this, observe that the smallest 

DFA accepting any regular language L # _X* must 

have at least one more state than the length of a shortest 
string not in Z,. Hence the smallest DFA accepting 

Hk must have at least k + I states. By the standard 

subset construction, the smallest NFA accepting Hk 
must have at least log,( k + I ) states. 
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