

Information Processing Letters 58 (1996) 185-188

Information Processing Letters

The state complexity of $\Sigma^* \overline{L}$ and its connection with temporal logic

Jean-Camille Birget 1

Department of Computer Science and Engineering, University of Nebraska, Ferguson Hall, Lincoln, NE 68588-0115, USA

Received 25 October 1995, revised 8 February 1996 Communicated by L. Boasson

Keywords: Formal languages; Finite automata; State complexity; Temporal logic

This note answers the following question of Jean-Eric Pin. Let Σ be a finite alphabet and let $L \subseteq \Sigma^*$ be a regular language, recognized by an NFA (non-deterministic finite automaton) or a DFA (deterministic finite automaton) with n states. How many states are sufficient (and necessary in the worst case) for an NFA, respectively a DFA, if it is to recognize $\overline{\Sigma^* \cdot \overline{L}} = \Sigma^* - \Sigma^* \cdot \overline{L}$? (In general, $\Sigma^* - X = \overline{X}$ denotes the complement of a set X in Σ^* , and $X \cdot Y$ or XY denotes concatenation.) We show an upper bound of 2^{n-1} states for a complete DFA recognizing $\overline{\Sigma^* L}$, if L has an n-state DFA. We also show that this upper bound is optimal, even if NFAs are used to recognize $\sum^* \overline{L}$. If L has an n-state NFA then $\overline{\Sigma^*L}$ has an NFA with $\leq 2^{n+1} + 1$ states. and this bound is close to optimal.

In spite of its complicated appearance $\overline{\Sigma^*L}$ has a rather simple description:

 $\overline{\Sigma^* L} = \{ w \in \Sigma^* \mid \text{every suffix of } w \text{ belongs to } L \}.$

(Recall that the empty word and w itself are also suffixes of w.)

Note that this expression implies that $\overline{\Sigma^* L} = \emptyset$ if L does not contain the empty word.

Connection with Temporal Logic. The motivation of Pin's question comes from the word model of Propositional Temporal Logic; for terminology and further references see [5]. Here the set of all models of a formula φ (over a fixed alphabet Σ) is a formal language $L(\varphi) \subseteq \Sigma^*$, which has the non-trivial property of being regular and aperiodic. Some of the temporal operators used in this logic are O ("next") and \diamondsuit ("eventually", or "at some moment in the future"); there are also the usual boolean operations $\overline{}$, \wedge , \vee . A natural dual to the "eventually" operator is the "forever" (or, "always in the future") operator □, defined to be ¯◊¯ ("not eventually not"). If only \bigcirc , \diamondsuit (or \square), and the boolean operations are used, one obtains the Restricted Propositional Temporal Logic (RPTL). One of the main results in [5] is that a language $L \subseteq \Sigma^*$ is the set of models of a formula in RPTL if and only if the syntactic semigroup of L is "locally \mathcal{L} -trivial" (see

Supported in part by NSF grant DMS-9203981. Email: birget@cse.unl.edu.

[5] for the definition). Formulas and their models are related as follows (as is easy to check):

$$L(\overline{\varphi}) = \overline{L(\varphi)}, \qquad L(\varphi \wedge \psi) = L(\varphi) \cap L(\psi),$$

$$L(\varphi \vee \psi) = L(\varphi) \cup L(\psi), \qquad L(\bigcirc \varphi) = \Sigma \cdot L(\varphi),$$

$$L(\diamondsuit) \varphi) = \Sigma^* \cdot L(\varphi).$$

Thus $L(\Box \varphi) = L(\overline{\Diamond \overline{\varphi}}) = \overline{\Sigma^* \cdot L(\varphi)}$. In other words, in this paper we study the state-complexity of the "forever" operator.

For more information on NFAs and complete DFAs, see [6]; a DFA is "complete" if the next state is always defined. We will also use AFAs (alternating finite automata), because of their obvious ties to Logic (see [4,3,8,9] for the definition of AFA; we will follow [3]).

Theorem 1 (Upper bounds). (a) If $L \subseteq \Sigma^*$ is recognized by an AFA (or, in particular, by an NFA or a DFA) with n states, then $\overline{\Sigma^*L}$ is recognized by an AFA with $\leq n+1$ states, and $(\overline{\Sigma^*L})^{\text{tev}}$ is recognized by a DFA with $\leq 2^{n+1}$ states. Hence $\overline{\Sigma^*L}$ is recognized by an NFA with $\leq 2^{n+1}+1$ states.

(b) If L is recognized by a DFA (complete or not) with n states, then $\overline{\Sigma^* \overline{L}}$ is recognized by a complete DFA with $\leq 2^{n-1}$ states.

Theorem 2 (Lower bounds). (a) For every $n \ge 2$ there exists a 3-letter alphabet Σ and a language L ($\subseteq \Sigma^*$) which is recognized by a complete DFA with n states, but such that every NFA (hence every DFA) recognizing $\Sigma^* \overline{L}$ has at least 2^{n-1} states.

(b) For every $n \ge 2$ there exists a 2-letter alphabet Σ and a language $L \subseteq \Sigma^*$ which is recognized by a complete DFA with n states, and which is expressible in RPTL (in fact, L is the complement of a finite language, so it can be expressed in RPTL without using \bigcirc ; however, every complete DFA recognizing $\Sigma^*\overline{L}$ (or $\Sigma^*\cdot\overline{L}$) has at least 2^{n-1} states.

Theorem 2 implies that for complete DFAs the upper bound 2^{n-1} of Theorem 1(b) is optimal; for NFAs, the upper bound in Theorem 1(a) is almost optimal.

Proof of Theorem 1(a). Suppose $L \subseteq \Sigma^*$ is recognized by an AFA A_1 with n states, and with initial

boolean function f_1 . Then \overline{L} is also recognized by an AFA A_2 with n states and with initial boolean function f_2 (one only has to negate the initial boolean function: $f_2 = \overline{f_1}$). From this one obtains an AFA A_3 with n+1 states, recognizing $\Sigma^* \cdot \overline{L}$ (one adds a new start state s and introduces the transitions $s \cdot a = \{s\} \cup \{\text{start states of } A_2\}$, for each $a \in \Sigma$; the new initial boolean function is $f_3 = \underline{s} \vee f_2$). Finally, we obtain an AFA A_4 recognizing $\overline{\Sigma^*L}$ by negating the initial boolean function of A_3 : $f_4 = \overline{s} \vee f_2$; the number of states of A_4 is n+1.

We obtain an NFA with $2^{n+1} + 1$ states for $\overline{\Sigma^* L}$ by applying the following theorem of Kozen (see [7,4]) to the AFA A_4 : If a language R is recognized by an AFA with m states, then R^{rev} (the reverse of R) is recognized by a complete DFA with 2^m states.

Thus $(\overline{\Sigma^*L})^{\text{rev}}$ has a complete DFA with 2^{n+1} states. By reversing this DFA (i.e., reversing the direction of every arrow, and exchanging accept and start states) we obtain an NFA with $2^{n+1} + 1$ states, recognizing $\overline{\Sigma^*L}$. (An additional state had to be added to the NFA since the DFA could have had many accept states, which would yield an NFA with many start states; but we want an NFA to have only one start state; this is a classical construction.)

Proof of Theorem 1(b). Let $A = (Q, \Sigma, \cdot, q_0, F)$ be a DFA recognizing L with |Q| = n. Recall that $\overline{\Sigma^* \overline{L}} = \{ w \in \Sigma^* \mid \text{ every suffix of } w \text{ belongs to } L \}$. Since $\overline{\Sigma^* \overline{L}} = \emptyset$ if L does not contain the empty word, the claimed upper bound certainly holds in this case. Let us henceforth assume that $q_0 \in F$. The following complete DFA, inspired from the subset construction (see [6]), recognizes $\overline{\Sigma^* \overline{L}}$:

$$\begin{split} \pmb{B} &= \big(\big\{ P \in \mathscr{P}(Q) \mid q_0 \in P \big\}, \ \Sigma, \ \circ, \ \big\{ q_0 \big\}, \\ &\qquad \big\{ P \in \mathscr{P}(Q) \mid q_0 \in P \ \text{and} \ P \subseteq F \big\} \big); \end{split}$$

here $\mathcal{P}(Q)$ denotes the power set of Q. The next-state function \circ is defined as follows for $a \in \Sigma$:

$$P \circ a = \{q_0\} \cup P \cdot a = \{q_0\} \cup \{p \cdot a \mid p \in P\}.$$

Proof that **B** recognizes $\overline{\Sigma^*L}$: **B** accepts $w = a_1 a_2 \dots a_m$ if and only if $\{q_0\} \circ a_1 a_2 \dots a_m = \{q_0\} \cup \{q_0 \cdot a_k \dots a_{m-1} a_m \mid k=1,\dots,m\} \subseteq F$; this holds if and only if for all $k \in \{1,\dots,m\}$: $q_0 \cdot a_k \dots a_{m-1} a_m \in F$ (we already assumed $q_0 \in F$); this holds if and only if every suffix $a_k \dots a_{m-1} a_m$ of w (and the

empty suffix as well, by assumption) belongs to L; this holds if and only if $w \in \overline{\Sigma^* \overline{L}}$. \square

Proof of Theorem 2(a). For every $n \ge 1$, let $\mathbf{n} = \{1, \dots, n\}$, and let F_n be the set of all total functions from \mathbf{n} to \mathbf{n} . For $x \in \mathbf{n}$ and $f \in F_n$ we denote the image of x under f by (x)f; in this notation, functions compose from left to right, e.g., $(x)(f_1f_2f_3) = (((x)f_1)f_2)f_3$.

We will pick F_n as our alphabet, and for $n \ge 2$ we consider the following language:

$$L_n = \{ w \in (F_n)^* \mid (1) f_1 \dots f_k \neq 2,$$
where $w = (f_1, \dots, f_k), k \ge 0 \}.$

(The empty word is also in L_n , when k = 0 in the above definition.)

Then L_n is recognized by the complete DFA $A = (n, F_n, \cdot, 1, n - \{2\})$, where the next-state function "·" is defined by $i \cdot f = (i)f$, for $i \in n$ and $f \in F_n$. So L_n has an *n*-state complete DFA.

The alphabet F_n has size n^n , but we shall see later how one can modify the above example (without changing the main properties of the languages) so that the alphabet has size 3.

Fact 1. The minimum complete DFA **B** of $\overline{\Sigma}^* \overline{L_n}$ has 2^{n-1} states.

Proof. We consider the complete DFA **B** that was constructed in the proof of Theorem 1(b), and we show that **B** is minimum for this example. Thus the minimum complete DFA for $\overline{\Sigma^* L_n}$ has 2^{n-1} states.

Here $\mathbf{B} = (\{P \subseteq \mathbf{n} \mid 1 \in P\}, F_n, \circ, \{1\}, \{P \subseteq \mathbf{n} \mid 1 \in P \text{ and } 2 \notin P\})$, where the next-state function \circ is given by $P \circ a = \{1\} \cup \{(i)a \mid i \in P\}$ when $a \in F_n$ and $P \subseteq \mathbf{n}$. Let us prove minimality of \mathbf{B} .

Claim 1 (Reachability from the start state {1}). For every $P \subseteq \mathbf{n}$ with $1 \in P$ there exists $u_P \in (F_n)^*$ such that $\{1\} \circ u_P = P$.

Proof of Claim 1. Let $P = \{1, p_1, ..., p_k\} \subseteq \mathbf{n}$ with $1 < p_1 < \cdots < p_k$. We let $u_P = f_1 f_2 \dots f_k \in (F_n)^*$, where f_i (for $1 \le i \le k$) is defined by: $(1)f_i = p_i$, and $(x)f_i = x$ for $x \ne 1$. It is straightforward to check that $\{1\} \circ f_1 = \{1, p_1\}, \{1, p_1\} \circ f_2 = \{1, p_2, p_1\}, \{1, p_2, p_1\} \circ f_3 = \{1, p_3, p_2, p_1\}, \text{ etc.,}$ and $\{1\} \circ u_P = P$.

Claim 2 (Co-reachability). For every $P \subseteq \mathbf{n}$ (with $1 \in P$) there exists $w \in (F_n)^*$ such that $2 \notin P \circ w$ (i.e., $P \circ w$ is an accept state).

Proof of Claim 2. Simply pick w to be the constant function $c_1 \in F_n$ defined by $(x)c_1 = 1$ for all $x \in \mathbf{n}$. Then $P \circ c_1 = \{1\} \cup P \cdot c_1 = \{1\}$ (an accept state of **B**).

Claim 3 (Distinguishability of all the states). For every P_1 , $P_2 \subseteq \mathbf{n}$ with $1 \in P_1$, $1 \in P_2$ and $P_1 \neq P_2$, there exists $w \in (F_n)^*$ such that exactly one of $P_1 \circ w$ and $P_2 \circ w$ is an accept state.

Proof of Claim 3. Since $P_1 \neq P_2$, either $P_1 - P_2 \neq \emptyset$ or $P_2 - P_1 \neq \emptyset$. Let $q \in P_1 - P_2$, if $P_1 - P_2 \neq \emptyset$ (if $P_2 - P_1 \neq \emptyset$ the proof is similar). Let w be the function $f \in F_n$ defined by (q)f = 2, and (x)f = 1 for $x \neq q$. Then $P_1 \circ w = \{1, 2\}$, and $P_2 \circ w = \{1\}$, so $P_1 \circ w$ is not an accept state but $P_2 \circ w$ is an accept state.

This completes the proof of Fact 1. \Box

Fact 2. Every NFA recognizing $\overline{\Sigma^* \overline{L}_n}$ has $\geqslant 2^{n-1}$ states.

The following lemma from [1,2] is a convenient tool for proving lower bounds on the number of states of NFAs. (See [1] for a proof.)

Lemma. Let $R \subseteq \Sigma^*$ be a regular language, and let X be a finite set. Assume that with every $x \in X$ one can associate words u_x and $v_x \in \Sigma^*$ such that

 $(1) (\forall x \in X) u_x v_x \in R,$

(2) $(\forall x, y \in \hat{X} \text{ with } x \neq y) \quad u_x v_y \notin R \quad \text{or} \quad u_y v_x \notin R.$

Then every NFA recognizing R has $\geqslant |X|$ states.

Proof of Fact 2. We apply the lemma. For X we take the set $X = \{P \subseteq \mathbf{n} \mid 1 \in P\}$. Then $|X| = 2^{n-1}$. With every $P \in X$ we associate two words u_P , $v_P \in (F_n)^*$ as follows: u_P is the word defined in the proof of Fact 1, Claim 1 (Reachability from $\{1\}$); and v_P is the function in F_n defined as follows (for any q): $(q)v_P = 1$ if $q \in P$, and $(q)v_P = 2$ if $q \notin P$ (so v_P is just a one-letter word.)

Then we have:

(1) $u_p v_p \in \overline{\Sigma}^* \overline{L}_n$: Indeed, $\{1\} \circ u_p v_p = P \circ v_p$, by the proof of Claim 1. Moreover, $P \circ v_p = \{1\}$, so $u_p v_p$ is accepted by the DFA **B** of $\overline{\Sigma}^* \overline{L}_n$.

(2) $u_P v_S \notin \overline{\Sigma^* \overline{L}_n}$ or $u_S v_P \notin \overline{\Sigma^* \overline{L}_n}$ if $P \neq S$: Indeed, if $P - S \neq \emptyset$ then $\{1\} \circ u_P v_P = P \circ v_S = \{1, 2\}$ (which is a non-accept state of **B**, as it contains 2), so $u_P v_S \in \Sigma^* \overline{L}_n$ similarly, if $S - P \neq \emptyset$ then $u_S v_P \in \Sigma^* \overline{L}_n$.

This proves Fact 2. \square

Reducing the alphabet size to 3. It is a classical fact from semigroup theory that the set F_n of all total functions from $\bf n$ to $\bf n$ is generated, under functional composition, by just three functions. As generators one can use the three functions α , β , γ defined as follows:

- $(x)\alpha = x + 1 \mod n$ for all $x \in \mathbf{n}$;
- $(1)\beta = 2$, $(2)\beta = 1$, and $(x)\beta = x$ for $3 \le x \le n$;
- $(2)\gamma = 1$, and $(x)\gamma = x$ for $2 \le x \le n$.

Next, we replace the alphabet F_n by $\{\alpha, \beta, \gamma\}$, and we replace L_n by the language $L_n \cap \{\alpha, \beta, \gamma\}^*$. Since $\{\alpha, \beta, \gamma\}$ generates F_n one can check that all the properties that we proved about L_n still hold. \square

Proof of Theorem 2(b). We let \overline{L}_n be the finite language $a\{a, b\}^{n-2}$, for $n \ge 2$. The alphabet is $\Sigma = \{a, b\}$. Then $\Sigma^* \overline{L}_n = \Sigma^* a \Sigma^{n-2}$. It is well known that the minimum complete DFA for this language (as well as for the complement) has exactly 2^{n-1} states (as observed by Paterson, quoted in [10]).

Note that for $\overline{L}_n = a\{a, b\}^{n-2}$, the languages $\Sigma^* \overline{L}_n$ and $\overline{\Sigma^* \overline{L}_n}$ are both accepted by NFAs with n

states (for $\Sigma^*\overline{L}_n$ this is a well-known exercise, see [6]; for its complement, observe that $\overline{\Sigma^*\overline{L}_n} = \Sigma^{< n-2} \cup \Sigma^*b\Sigma^{n-2}$, which directly yields an NFA with 2n-2 states; many of these states can be identified in pairs). \square

References

- J.C. Birget, Intersection and union of regular languages, and state-complexity, *Inform. Process. Lett.* 43 (1992) 185-190.
- [2] J.C. Birget, Partial orders on words, minimal elements of regular languages, and state-complexity, *Theoret. Comput.* Sci. 119 (1993) 267-291.
- [3] J. Brzozowski and E. Leiss, On equations for regular languages, finite automata, and sequential networks, *Theoret. Comput. Sci.* 10 (1980) 19-35.
- [4] A. Chandra, D. Kozen and L. Stockmeyer, Alternation, J. ACM 28 (1981) 114-133.
- [5] J. Cohen, D. Perrin and J.-E. Pin, On the expressive power of temporal logic, J. Comput. System Sci. 46 (1993) 271-294.
- [6] J. Hopcroft and J. Ullman, Introduction to Automata, Languages and Computation (Addison-Wesley, Reading, MA, 1979).
- [7] D. Kozen, On parallelism in Turing machines, in: Proc. Ann. Symp. on Foundations of Computer Science (1976) 89-97.
- [8] E. Leiss, Succinct representation of regular languages by boolean automata, *Theoret. Comput. Sci.* 13 (1981) 323–330.
- [9] E. Leiss, Succinct representation of regular languages by boolean automata, Part II, *Theoret. Comput. Sci.* 38 (1985) 133-136.
- [10] A.R. Meyer and M.J. Fischer, Economy of description by automata, grammars, and formal systems, in: Proc. 12th IEEE Ann. Symp. on Switching and Automata Theory (1971) 188-191.