
Information
Processing
Letters

Information Processing Letters 58 (I 996) 185- I88

The state compIexity of s*z and its connection
with temporal logic

Jean-Camille Birget ’

Department of Computer Science and Engineering, University of Nebraska, Ferguson Ha& Lincoln. NE 68588-0115. USA

Received 25 October 1995, revised 8 February 1996

Communicated by L. Boasson

Keywords: Formal languages; Finite automata; State complexity; Temporal logic

This note answers the following question of
Jean-Eric Pin. Let 2 be a finite alphabet and let
L G 2’ be a regular language, recognized by an
NFA (non-deterministic finite automaton) or a DFA
(deterministic finite automaton> with n states. How
many states are sufficient (and necessary in the worst
case) for an NFA, respectively a DFA, if it is
to recognize Z* Y= Z* - Z* .L? (In general,
2” - X = x denotes the complement of a set X in

C*, and X. Y or XY denotes concatenation.) We
show an upper bound of 2”- ’ states for a complete
DFA recognizing E, if L has an n-state DFA. We
also show that this upper bound is optimal, even if
NFAs are used to recognize E. If Z. has an n-state
NFA then fi has an NFA with < 2*+’ + 1 states,
and this bound is close to optimal.

In spite of its complicated appearance fl has a
rather simple description:

fi = { w E 2 * 1 every suffix of w belongs to L} .

’ Supported in part by NSF grant DMS-9203981.

Email: birget@cse.unl.edu.

(Recall that the empty word and w itself are also
suffixes of w.)

Note that this expression implies that !$?= fl if
L does not contain the empty word.

Connection with Temporal Logic. The motivation
of Pin’s question comes from the word model of
Propositional Temporal Logic; for terminology and
further references see [5]. Here the set of all models
of a formula cp (over a fixed alphabet Z) is a formal
language L(cp) c I: * , which has the non-trivial prop-
erty of being regular and aperiodic. Some of the
temporal operators used in this logic are 0 (“next”)

and 0 (“eventually”, or “at some moment in the
future”); there are also the usual boolean operations
-, A, V . A natural dual to the “eventually” opera-
tor is the “foreuer” (or, “always in the future”)
operator 0, defined to be -O- (“not eventually
not”). If only 0, 0 (or 01, and the boolean opera-
tions are used, one obtains the Restricted Proposi-
tional Temporal Logic (RPTL). One of the main
results in [5] is that a language Z_. c Z* is the set of
models of a formula in RPTL if and only if the
syntactic semigroup of L is “locally 34rivial” (see

0020-0190/96/$12.00 0 1996 Elsevier Science B.V. All rights reserved

PII SOO20-0190(96)00044-O

186 J.-C. Bit-get / Information Processing Letters 58 I1 996) 185-l 88

[5] for the definition). Formulas and their models are
related as follows (as is easy to check):

Thus Z,(Ucp)=L(T~)=Z* *L(q). In other
words, in this paper we study the state-complexity of
the “forever” operator.

For more information on NFAs and complete
DFAs, see [6]; a DFA is “complete” if the next state
is always defined. We will also use AFAs (altemat-
ing finite automata), because of their obvious ties to
Logic (see [4,3,8,9] for the definition of AFA; we
will follow [3]).

Theorem 1 (Upper bounds). (a) Zf L C ,If* is recog-
nized by an AFA (or, in particular, by an NFA or

a DFA) with n states, then fl is recognized by an

AFA with < n + 1 states, and (flt>r,, is recog-

nized by a DFA with Q 2”” ’ states. Hence E is
recognized by an NFA with Q 2”+ ’ + 1 states.

(b) If L is recognized by a DFA (complete or not)

with n states, then fl is recognized by a complete
DFA with < 2”- ’ states.

Theorem 2 (Lower bounds). (a> For every n > 2
there exists a 34etter alphabet 2 and a language L
(c_ S*) which is recognized by a complete DFA
with n states, but such that every NFA (hence every

DFA) recognizing s has at least 2”- ’ states.
(b) For every n > 2 there exists a 2-letter alpha-

bet _Z and a language L (C .Z* > which is recognized
by a complete DFA with n states, and which is
expressible in RPTL (in fact, L is the complement of
a finite language, so it can be expressed in RPTL
without using 0); however, every complete DFA
recognizing %?? (or .Z* . z> has at least 2”- ’
states.

Theorem 2 implies that for complete DFAs the
upper bound 2 “- ’ of Theorem I(b) is optimal; for
NFAs, the upper bound in Theorem l(a) is almost
optimal.

Proof of Theorem l(a). Suppose L _C _Z* is recog-
nized by an AFA A, with n states, and with initial

boolean function f,. Then L is also recognized by an
AFA A, with n states and with initial boolean
function fi (one only has to negate the initial boolean
function: fi = f,>. From this one obtains an AFA A,
with n + 1 states, recognizing 2 * . z (one adds a
new start state s and introduces the transitions s . a

= {s} U {start states of A,}, for each a E 2; the new
initial boolean function is f3 = s V f,>. Finally, we

obtain an AFA A, recognizing %?? by negating the
initial boolean function of A,: f4 = s V fi; the num-
ber of states of A 4 is n + 1.

We obtain an NFA with 2”+’ + 1 states for E
by applying the following theorem of Kozen (see
[7,4]) to the AFA A 4: If a language R is recognized
by an AFA with m states, then RLPY (the reverse of
R) is recognized by a complete DFA with 2” states.

Thus (Z5reV has a complete DFA with 2”+ ’
states. By reversing this DFA (i.e., reversing the
direction of every arrow, and exchanging accept and
start states) we obtain an NFA with 2”+ ’ f 1 states,
recognizing E. (An additional state had to be
added to the NFA since the DFA could have had
many accept states, which would yield an NFA with
many start states; but we want an NFA to have only
one start state; this is a classical construction.) Cl

Proof of Theorem l(b). Let A = (Q. 2, . , qO, F)
be a DFA recognizing L with I Q 1 = n. Recall that
fl= {w E C * (every suffix of w belongs to L}.

Since E= fi if L does not contain the empty
word, the claimed upper bound certainly holds in this
case. Let us henceforth assume that q0 E F. The
following complete DFA, inspired from the subset
construction (see [6]), recognizes YE:

B=({f-‘-‘(Q>I,,-‘}, -Z> 09 {qo),

(PE9(Q)tq0’Pand SF));

here g(Q) denotes the power set of Q. The next-state
function 0 is defined as follows for a E C:

Poa={q,} UP.a=(q,) U{p.alpEP}.

Proof that B recognizes E: B accepts w =
a,a2... a, ifandonlyif{q,]~a,a,...a,={q,}U
‘arp,*;;l, ;;roi I:; IGkE=(;, . . . ,;i CqI; affh holds if

. . ,,..) a %I m-l
E F (we already assumed q0 E F); this holds if and
only if every suffix ak . . . a,_ I a, of w (and the

J.-C. Birget/lnformution Processing Letters 58 (1996) 185-188 187

empty suffix as well, by assumption) belongs to L;

this holds if and only if w E c*L. Cl

Proof of Theorem 2(a). For every R z 1, let n =
(l,..., n), and let F,, be the set of all total functions
from n to n. For x E n and f~ F, we denote the
image of x under f by (x>f; in this notation,
functions compose from left to right, e.g.,
(XXf,f*fJ = (((x>f,)f&.

We will pick F,, as our alphabet, and for rz > 2
we consider the following language:

L,= {WE(&)* l(l)& . ..f.+2,

where w=(f ,,..., fk), k>O}.

(The empty word is also in L,, when k = 0 in the
above definition.)

Then L, is recognized by the complete DFA
A = (n, F,,, . , 1, n - {2)), where the next-state func-
tion “ .” is defined by i .f= (i>f, for i E n and
f~ F,,. So L, has an n-state complete DFA.

The alphabet F,, has size n”, but we shall see
later how one can modify the above example (without
changing the main properties of the languages) so
that the alphabet has size 3.

Fact 1. The minimum complete DFA B of v has
2”- ’ states.

Proof. We consider the complete DFA B that was
constructed in the proof of Theorem l(b), and we
show that B is minimum for this example. Thus the
minimum complete DFA for

Here B=((PGnllEP), F,,, 0, (l), (PGnI
1 E P and 2 E P)), where the next-state function 0
is given by P~a=(l)U((i)a)iEP) when aeF,
and P c n. Let us prove minimality of B.

Claim 1 (Reachability from the start state (1)).
For every P G n with 1 E P there exists up E (F,)”
such that (l)o up = P.

Proof of Claim 1. Let P = (1, p1 ,..., pk) cn
with l<p,< ... <pk. We let u,=f,fi...fkE
(F,)‘, where fi (for 1 Q i G k) is defined by:
(I>fi = pi, and (xl& = x for x # 1. It is straightfor-
ward to check that (l)of, = (1, p,), (1, p,)ofz =

(1, p2, PA 11, p2, p,)of3 = (1, p3, p2, P,), etc.,

and(l)ou,=P.

CZaim 2 (Co-reachability). For every P c n (with
1 EP) there exists we.(F,,)* such that 2PPow
(i.e., P 0 w is an accept state>.

Proof of Claim 2. Simply pick w to be the
constant function c, E F,, defined by (x)c, = 1 for
all XEn. Then P~c,=(l)UP~c,=(l) (an ac-
cept state of B).

Claim 3 (Distinguishability of all the states). For
every P,, P, cn with 1 E P,, 1 E P, and P, #P,,
there exists w E (F,) * such that exactly one of
P, 0 w and P, 0 w is an accept state.

Proof of Claim 3. Since P, # P,, either P, - P,
f # or P, - P, # 8. Let q E P, - P,, if P, -P, #
fl (if P, - P, # 8 the proof is similar). Let w be the
function f~ F, defined by (q)f= 2, and (x)f= 1
for x f q. Then P, 0 w = (1, 2), and P, 0 w = (l), so
P, 0 w is not an accept state but P, 0 w is an accept
state.

This completes the proof of Fact 1. 0

Fact 2. Every NFA recognizing c*L, has > 2”-’
states.

The following lemma from [1,2] is a convenient
tool for proving lower bounds on the number of
states of NFAs. (See [l] for a proof.)

Lemma. Let R c 2 * be a regular language, and let
X be a finite set. Assume that with every x E X one
can associate words u, and v, E z‘ * such that
(1) (tlx E X> u,v, E R,
(2) (Vx,y E X with x f y> u,vY G R or

uyv, I R.
Then every NFA recognizing R has > I X 1 states.

Proof of Fact 2. We apply the lemma. For X we
taketheset X=(Pcn)lEP).ThenlXI=2”-‘.
With every P E X we associate two words up, up E
(F,) * as follows: up is the word defined in the proof
of Fact 1, Claim 1 (Reachability from (1)); and up is
the function in F,, defined as follows (for any q):
(q)vr = 1 if q E P, and (q)vr = 2 if q 6Z P (so up
is just a one-letter word.)

Then we have:
(1) upvpEE Indeed, (l}o upup= PO up, by

the proof of Claim 1. Moreover, P 0 up = (l), so
upup is accepted by the DFA B of ;.

188 J.-C. Birget/ Information Processing Letters 58 (1996) 185-188

(2) upus CE q or usup e m if P # S: Indeed,
if P-S#@ then ~l]~u,v,=P~v,={1,2]
(which is a non-accept state of B, as it contains
2), so upvs_E 2 *q similarly, if S - P # $ then
usup E 2 *

(2)y=l,and(x)y=xfor2~x~n.
Next, we replace the alphabet F, by {(Y, /3, y]. and
we replace L, by the language L, f~ (a, p, y] * .
Since { CY, j3, y} generates F,, one can check that all
the properties that we proved about L, still hold.
q

Proof of Theorem 2(h). We let z, be the finite
language a(a, b)“-*, for n 2 2. The alphabet is
.Z= {a, b]. Then Z:‘L, = Z *uS”-~. It is well
known that the minimum complete DFA for this
language (as well as for the complement) has exactly
2”-’ states (as observed by Paterson, quoted in
[lOI).

Note that for z,, = a(a, b)“- 2, the languages
_Z *z,, and z are both accepted by NFAs with n

states (for 2 *Z_ this is a well-known exercise. see
[6]; for-its comp;kment, observe that z = Z: i ‘- 2
U 2 * b_Z ‘- 2, which directly yields an NFA with
2n - 2 states; many of these states can be identified
in pairs). 0

References

[l] J.C. Birget, Intersection and union of regular languages, and
state-complexity, Inform. Process. Lett. 43 (1992) 185- 190.

[2] J.C. Birget, Partial orders on words, minimal elements of
regular languages, and state-complexity, Theoret. Comput.
Sci. 119 (1993) 267-291.

[3] J. Btzozowski and E. Leiss. On equations for regular lan-
guages, finite automata, and sequential networks, Theoret.
Comput. Sci. 10 (1980) 19-35.

[4] A. Chandra, D. Kozen and L. Stockmeyer, Alternation, J.
ACM 28 (1981) 114-133.

[5] J. Cohen, D. Penin and J.-E. Pin, On the expressive power of
temporal logic, J. Comput. System Sci. 46 (1993) 271-294.

[6] J. Hopcroft and J. Ullman, Introduction to Automata, Lan-
guages and Computation (Addison-Wesley, Reading, MA,
19791.

[7] D. Kozen, On parallelism in Turing machines, in: Proc. Ann.
Symp. on Founaiuions of Computer Science (1976) 89-97.

[8] E. Leiss, Succinct representation of regular languages by
boolean automata, Theoret. Comput. Sci. 13 (198 1) 323-330.

[9] E. Leiss, Succinct representation of regular languages by
boolean automata, Part II, Theoret. Comput. Sci. 38 (1985)
133-136.

[lo] A.R. Meyer and M.J. Fischer, Economy of description by
automata, grammars, and formal systems, in: Proc. 12th
IEEE Ann. Symp. on Switching atul Automata Theory (1971)
188-191.

