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This note answers the following question of 
Jean-Eric Pin. Let 2 be a finite alphabet and let 
L G 2’ be a regular language, recognized by an 
NFA (non-deterministic finite automaton) or a DFA 
(deterministic finite automaton> with n states. How 
many states are sufficient (and necessary in the worst 
case) for an NFA, respectively a DFA, if it is 
to recognize Z* Y= Z* - Z* .L? (In general, 
2” - X = x denotes the complement of a set X in 

C*, and X. Y or XY denotes concatenation.) We 
show an upper bound of 2”- ’ states for a complete 
DFA recognizing E, if L has an n-state DFA. We 
also show that this upper bound is optimal, even if 
NFAs are used to recognize E. If Z. has an n-state 
NFA then fi has an NFA with < 2*+’ + 1 states, 
and this bound is close to optimal. 

In spite of its complicated appearance fl has a 
rather simple description: 

fi = { w E 2 * 1 every suffix of w belongs to L} . 
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(Recall that the empty word and w itself are also 
suffixes of w.) 

Note that this expression implies that !$?= fl if 
L does not contain the empty word. 

Connection with Temporal Logic. The motivation 
of Pin’s question comes from the word model of 
Propositional Temporal Logic; for terminology and 
further references see [5]. Here the set of all models 
of a formula cp (over a fixed alphabet Z) is a formal 
language L( cp) c I: * , which has the non-trivial prop- 
erty of being regular and aperiodic. Some of the 
temporal operators used in this logic are 0 (“next”) 

and 0 (“eventually”, or “at some moment in the 
future”); there are also the usual boolean operations 
-, A, V . A natural dual to the “eventually” opera- 
tor is the “foreuer” (or, “always in the future”) 
operator 0, defined to be -O- (“not eventually 
not”). If only 0, 0 (or 01, and the boolean opera- 
tions are used, one obtains the Restricted Proposi- 
tional Temporal Logic (RPTL). One of the main 
results in [5] is that a language Z_. c Z* is the set of 
models of a formula in RPTL if and only if the 
syntactic semigroup of L is “locally 34rivial” (see 
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[5] for the definition). Formulas and their models are 
related as follows (as is easy to check): 

Thus Z,(Ucp)=L(T~)=Z* *L(q). In other 
words, in this paper we study the state-complexity of 
the “forever” operator. 

For more information on NFAs and complete 
DFAs, see [6]; a DFA is “complete” if the next state 
is always defined. We will also use AFAs (altemat- 
ing finite automata), because of their obvious ties to 
Logic (see [4,3,8,9] for the definition of AFA; we 
will follow [3]). 

Theorem 1 (Upper bounds). (a) Zf L C ,If* is recog- 
nized by an AFA (or, in particular, by an NFA or 

a DFA) with n states, then fl is recognized by an 

AFA with < n + 1 states, and (flt>r,, is recog- 

nized by a DFA with Q 2”” ’ states. Hence E is 
recognized by an NFA with Q 2”+ ’ + 1 states. 

(b) If L is recognized by a DFA (complete or not) 

with n states, then fl is recognized by a complete 
DFA with < 2”- ’ states. 

Theorem 2 (Lower bounds). (a> For every n > 2 
there exists a 34etter alphabet 2 and a language L 
(c_ S* ) which is recognized by a complete DFA 
with n states, but such that every NFA (hence every 

DFA) recognizing s has at least 2”- ’ states. 
(b) For every n > 2 there exists a 2-letter alpha- 

bet _Z and a language L (C .Z* > which is recognized 
by a complete DFA with n states, and which is 
expressible in RPTL (in fact, L is the complement of 
a finite language, so it can be expressed in RPTL 
without using 0); however, every complete DFA 
recognizing %?? (or .Z* . z> has at least 2”- ’ 
states. 

Theorem 2 implies that for complete DFAs the 
upper bound 2 “- ’ of Theorem I(b) is optimal; for 
NFAs, the upper bound in Theorem l(a) is almost 
optimal. 

Proof of Theorem l(a). Suppose L _C _Z* is recog- 
nized by an AFA A, with n states, and with initial 

boolean function f,. Then L is also recognized by an 
AFA A, with n states and with initial boolean 
function fi (one only has to negate the initial boolean 
function: fi = f,>. From this one obtains an AFA A, 
with n + 1 states, recognizing 2 * . z (one adds a 
new start state s and introduces the transitions s . a 

= {s} U {start states of A,}, for each a E 2; the new 
initial boolean function is f3 = s V f,>. Finally, we 

obtain an AFA A, recognizing %?? by negating the 
initial boolean function of A,: f4 = s V fi; the num- 
ber of states of A 4 is n + 1. 

We obtain an NFA with 2”+’ + 1 states for E 
by applying the following theorem of Kozen (see 
[7,4]) to the AFA A 4: If a language R is recognized 
by an AFA with m states, then RLPY (the reverse of 
R) is recognized by a complete DFA with 2” states. 

Thus (Z5reV has a complete DFA with 2”+ ’ 
states. By reversing this DFA (i.e., reversing the 
direction of every arrow, and exchanging accept and 
start states) we obtain an NFA with 2”+ ’ f 1 states, 
recognizing E. (An additional state had to be 
added to the NFA since the DFA could have had 
many accept states, which would yield an NFA with 
many start states; but we want an NFA to have only 
one start state; this is a classical construction.) Cl 

Proof of Theorem l(b). Let A = (Q. 2, . , qO, F) 
be a DFA recognizing L with I Q 1 = n. Recall that 
fl= {w E C * ( every suffix of w belongs to L}. 

Since E= fi if L does not contain the empty 
word, the claimed upper bound certainly holds in this 
case. Let us henceforth assume that q0 E F. The 
following complete DFA, inspired from the subset 
construction (see [6]), recognizes YE: 

B=({f-‘-‘(Q>I,,-‘}, -Z> 09 {qo), 

(PE9(Q)tq0’Pand SF)); 

here g(Q) denotes the power set of Q. The next-state 
function 0 is defined as follows for a E C: 

Poa={q,} UP.a=(q,) U{p.alpEP}. 

Proof that B recognizes E: B accepts w = 
a,a2... a, ifandonlyif{q,]~a,a,...a,={q,}U 
‘arp,*;;l, ;;roi I:; IGkE=(;, . . . ,;i CqI; affh holds if 

. . ,,..) . . . . a %I m-l 
E F (we already assumed q0 E F); this holds if and 
only if every suffix ak . . . a,_ I a, of w (and the 
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empty suffix as well, by assumption) belongs to L; 

this holds if and only if w E c*L. Cl 

Proof of Theorem 2(a). For every R z 1, let n = 
(l,..., n), and let F,, be the set of all total functions 
from n to n. For x E n and f~ F, we denote the 
image of x under f by (x>f; in this notation, 
functions compose from left to right, e.g., 
(XXf,f*fJ = (((x>f,)f&. 

We will pick F,, as our alphabet, and for rz > 2 
we consider the following language: 

L,= {WE(&)* l(l)& . ..f.+2, 

where w=(f ,,..., fk), k>O}. 

(The empty word is also in L,, when k = 0 in the 
above definition.) 

Then L, is recognized by the complete DFA 
A = (n, F,,, . , 1, n - {2)), where the next-state func- 
tion “ .” is defined by i .f= (i>f, for i E n and 
f~ F,,. So L, has an n-state complete DFA. 

The alphabet F,, has size n”, but we shall see 
later how one can modify the above example (without 
changing the main properties of the languages) so 
that the alphabet has size 3. 

Fact 1. The minimum complete DFA B of v has 
2”- ’ states. 

Proof. We consider the complete DFA B that was 
constructed in the proof of Theorem l(b), and we 
show that B is minimum for this example. Thus the 
minimum complete DFA for 

Here B=((PGnllEP), F,,, 0, (l), (PGnI 
1 E P and 2 E P)), where the next-state function 0 
is given by P~a=(l)U((i)a)iEP) when aeF, 
and P c n. Let us prove minimality of B. 

Claim 1 (Reachability from the start state (1)). 
For every P G n with 1 E P there exists up E (F,)” 
such that (l)o up = P. 

Proof of Claim 1. Let P = (1, p1 ,..., pk) cn 
with l<p,< ... <pk. We let u,=f,fi...fkE 
(F,)‘, where fi (for 1 Q i G k) is defined by: 
(I>fi = pi, and (xl& = x for x # 1. It is straightfor- 
ward to check that (l)of, = (1, p,), (1, p,)ofz = 

(1, p2, PA 11, p2, p,)of3 = (1, p3, p2, P,), etc., 

and(l)ou,=P. 

CZaim 2 (Co-reachability). For every P c n (with 
1 EP) there exists we.(F,,)* such that 2PPow 
(i.e., P 0 w is an accept state>. 

Proof of Claim 2. Simply pick w to be the 
constant function c, E F,, defined by (x)c, = 1 for 
all XEn. Then P~c,=(l)UP~c,=(l) (an ac- 
cept state of B). 

Claim 3 (Distinguishability of all the states). For 
every P,, P, cn with 1 E P,, 1 E P, and P, #P,, 
there exists w E (F,) * such that exactly one of 
P, 0 w and P, 0 w is an accept state. 

Proof of Claim 3. Since P, # P,, either P, - P, 
f # or P, - P, # 8. Let q E P, - P,, if P, -P, # 
fl (if P, - P, # 8 the proof is similar). Let w be the 
function f~ F, defined by (q)f= 2, and (x)f= 1 
for x f q. Then P, 0 w = (1, 2), and P, 0 w = (l), so 
P, 0 w is not an accept state but P, 0 w is an accept 
state. 

This completes the proof of Fact 1. 0 

Fact 2. Every NFA recognizing c*L, has > 2”-’ 
states. 

The following lemma from [1,2] is a convenient 
tool for proving lower bounds on the number of 
states of NFAs. (See [l] for a proof.) 

Lemma. Let R c 2 * be a regular language, and let 
X be a finite set. Assume that with every x E X one 
can associate words u, and v, E z‘ * such that 
(1) (tlx E X> u,v, E R, 
(2) (Vx,y E X with x f y> u,vY G R or 

uyv, I R. 
Then every NFA recognizing R has > I X 1 states. 

Proof of Fact 2. We apply the lemma. For X we 
taketheset X=(Pcn)lEP).ThenlXI=2”-‘. 
With every P E X we associate two words up, up E 
(F,) * as follows: up is the word defined in the proof 
of Fact 1, Claim 1 (Reachability from (1)); and up is 
the function in F,, defined as follows (for any q): 
(q)vr = 1 if q E P, and (q)vr = 2 if q 6Z P (so up 
is just a one-letter word.) 

Then we have: 
(1) upvpEE Indeed, (l}o upup= PO up, by 

the proof of Claim 1. Moreover, P 0 up = (l), so 
upup is accepted by the DFA B of ;. 
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(2) upus CE q or usup e m if P # S: Indeed, 
if P-S#@ then ~l]~u,v,=P~v,={1,2] 
(which is a non-accept state of B, as it contains 
2), so upvs_E 2 *q similarly, if S - P # $ then 
usup E 2 * 

(2)y=l,and(x)y=xfor2~x~n. 
Next, we replace the alphabet F, by {(Y, /3, y]. and 
we replace L, by the language L, f~ (a, p, y] * . 
Since { CY, j3, y} generates F,, one can check that all 
the properties that we proved about L, still hold. 
q 

Proof of Theorem 2(h). We let z, be the finite 
language a(a, b)“-*, for n 2 2. The alphabet is 
.Z= {a, b]. Then Z:‘L, = Z *uS”-~. It is well 
known that the minimum complete DFA for this 
language (as well as for the complement) has exactly 
2”-’ states (as observed by Paterson, quoted in 
[lOI). 

Note that for z,, = a(a, b)“- 2, the languages 
_Z *z,, and z are both accepted by NFAs with n 

states (for 2 *Z_ this is a well-known exercise. see 
[6]; for-its comp;kment, observe that z = Z: i ‘- 2 
U 2 * b_Z ‘- 2, which directly yields an NFA with 
2n - 2 states; many of these states can be identified 
in pairs). 0 

References 

[l] J.C. Birget, Intersection and union of regular languages, and 
state-complexity, Inform. Process. Lett. 43 (1992) 185- 190. 

[2] J.C. Birget, Partial orders on words, minimal elements of 
regular languages, and state-complexity, Theoret. Comput. 
Sci. 119 (1993) 267-291. 

[3] J. Btzozowski and E. Leiss. On equations for regular lan- 
guages, finite automata, and sequential networks, Theoret. 
Comput. Sci. 10 (1980) 19-35. 

[4] A. Chandra, D. Kozen and L. Stockmeyer, Alternation, J. 
ACM 28 (1981) 114-133. 

[5] J. Cohen, D. Penin and J.-E. Pin, On the expressive power of 
temporal logic, J. Comput. System Sci. 46 (1993) 271-294. 

[6] J. Hopcroft and J. Ullman, Introduction to Automata, Lan- 
guages and Computation (Addison-Wesley, Reading, MA, 
19791. 

[7] D. Kozen, On parallelism in Turing machines, in: Proc. Ann. 
Symp. on Founaiuions of Computer Science (1976) 89-97. 

[8] E. Leiss, Succinct representation of regular languages by 
boolean automata, Theoret. Comput. Sci. 13 ( 198 1) 323-330. 

[9] E. Leiss, Succinct representation of regular languages by 
boolean automata, Part II, Theoret. Comput. Sci. 38 (1985) 
133-136. 

[lo] A.R. Meyer and M.J. Fischer, Economy of description by 
automata, grammars, and formal systems, in: Proc. 12th 
IEEE Ann. Symp. on Switching atul Automata Theory (1971) 
188-191. 


