
Theoretical Computer Science 125 (1994) 315-328 

Elsevier 

315 

The state complexities of some basic 
operations on regular languages* 

Sheng Yu and Qingyu Zhuang 
Department of Computer Science, University of Western Ontario, London, Ont.. Canada N6A 5B7 

Kai Salomaa** 
Department of Mathematics, University of Turku, SF-20500 Turku. Finland 

Communicated by G. Rozenberg 

Received February 1992 

Abstract 

Yu, S., Q. Zhuang and K. Salomaa, The state complexities of some basic operations on regular 

languages, Theoretical Computer Science 125 (1994) 315-328. 

We consider the state complexities of some basic operations on regular languages. We show that the 

number of states that is sufficient and necessary in the worst case for a deterministic finite automaton 

(DFA) to accept the catenation of an m-state DFA language and an n-state DFA language is exactly 

m2”-2”-‘, for m,n> 1. The result of 2”-‘+2”-’ states is obtained for the star of an n-state DFA 
language, nz 1. State complexities for other basic operations and for regular languages over 

a one-letter alphabet are also studied. 

1. Introduction 

Motivated by the recently renewed interest in regular languages [4,7,8], we 
consider the following problems in quantifying the basic operations on DFAs. Let m, n 

be nonnegative integers and A and B be two arbitrary DFAs of m states and n states, 
respectively. (1) What is the exact number of states that is sufficient and necessary in 
the worst case for a DFA to accept the catenation of L(A) and L(B)? (2) What is the 
exact number of states that is sufficient and necessary in the worst case for a DFA to 
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accept (L(B))*? (3) The same question for other operations. It seems that these 

fundamental questions should have been answered long ago. Indeed, it has been 

shown in [S] that 2” is the tight upper bound on the number of states necessary for 

a DFA to accept the reversal of an n-state DFA language. Also in [6], it has been 

shown that 2” is the tight upper bound on the number of states necessary for a DFA to 

accept an n-state NFA language. However, the same question (exact bound) for 

catenation and star operations on regular languages remains open. In [8], it is shown 

that for any n > 0 there exists a %-state DFA language and an n-state DFA language 

such that any DFA accepting the catenation of the two languages needs at least 2”- ’ 

states. In [S], it is also shown that for any integer n>O there exists an n-state DFA 

A such that any DFA accepting (L(A))* needs at least 2”-’ states. In this paper, we 

improve the above results and obtain exact bounds. We show that m2”-2”-’ is the 

optimal upper bound for catenation for any m, II > 1. We also show that the answer to 

the same question for star operation is exactly 2”- 1 + 2”-‘. In our proofs, we use very 

small alphabets. However, for regular languages over a one-letter alphabet, we show 

that (n - 1)’ + 1 is the tight upper bound for star operation and mn for catenation. 

Other operations such as left quotient and right quotient, reversal, as well as union, 

intersection, etc. are also considered. 

A deterministic finite automaton (DFA) is denoted by a quintuple (Q, C, 6, qo, F) 

where Q is the finite set of states, C is the finite alphabet, 6 : Q x C+Q is the transition 

function, qoEQ is the start state, and F G Q is the set of final states. In this paper, all the 

DFAs are assumed to be complete DFAs. By a complete DFA we mean that there is 

a transition defined for each letter of the alphabet from each state. For any XEC*, we 

use # (x) to denote the length of x and #,(x) for some UEC to denote the number of 

appearances of a in x. The empty word is denoted by E. The transition function 6 of 

a DFA is extended to s^: Q x C *-+Q by setting 6^(q, E) = q and 8(q, ax) = 6^(6(q, a),~) for 

qEQ, UEC, and xeC*. In the following, we simply use 6 to denote s^ if there is no 

confusion. A nondeterministic finite automaton (NFA) is also denoted by a quintuple 

(Q, & ~1, qo, F) where ‘I c Q x Vu 1~)) x Q is a transition relation rather than a func- 

tion, and Q, C, qo, and F are defined similarly as in a DFA. For a set s, we use 1 s 1 to 

denote the cardinality of s. For background knowledge in automata theory, the reader 

may refer to [3, 91. 

2. State complexity of catenation of two regular languages 

In this section, we first give a general example which shows that for any ma 1 and 

IZ> 1 there exist an m-state DFA A and an n-state DFA B such that any DFA 

accepting L(A)L(B) needs at least m2” - 2”- ’ states. Then we show that for any pair of 

complete m-state DFA A and n-state DFA B defined on the same alphabet C, there 

exists a DFA with at most m2”-2”-’ states which accepts L(A)L(B). In the case of 

n = 1 and m 2 1, we show that m states are sufficient and necessary in the worst case for 

a DFA to accept L(A)L(B). 
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Theorem 2.1. For any integers m k 1 and n 2 2, there exist a DFA A of m states and a DFA 

B of n states such that any DFA accepting L(A)L(B) needs at least m2”-2”-’ states. 

Proof. We first consider the cases when m = 1 and n > 2. Let C = (a, b}. Since m = 1, 

A is a one-state DFA accepting C *. Choose B=( P, C, ds, po, FB) (Fig. 1) where 

P={Po, . . . . P.-I}, FB={P~-I), and dB(po, a)=po, ds(po, b)=p,, dB(pi, a)=pi+l, 
l<i<n-2, ~3~(p~_~, a)=pl, 6B(pi, b)=pi, 1 <i<n- 1. It is easy to see that 

L(A)L(B)=(wEC*~W=~~U, #.(v)=n-2mod(n-1)). 

Let (iI, . . . . i,_I)E{O, l}‘-l and denote 

w(il, . . . . in_1)=bilabi2...abin-1. 

Then, for everyje{O, . . . , n-2}, w(iI ,...,i,_,)a’~L(A)L(B)iffij+,=l.Thus,aDFA 

accepting L(A)L(B) needs at least 2”-’ states. 

Now we consider the cases when m 3 2 and n z 2. 

LetC={a,b,c}.DefineA=(Q,Z,6,,q,,F~)whereQ={q, ,..., qm_l};FA={q,_I}, 

for each i, O$i<m- 1, 

1 

qj, j=(i+l)modm, if X=a, 

6A(qir x)= 40 if X= b, 

4i if X =c. 

Define B=(P, C, &,po, FB) where P={p,, . . . . pnml}, FB={pn_l}, and for each i, 

O<i<n-1, 

pj, j=(i+l)modn, if X=b, 

if X=a, 

if X= c. 

b 

b 

Fig. 1. DFA B. 
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Fig. 2. DFA A 

Fig. 3. DFA B. 

The DFA A and B are shown in Figs. 2 and 3, respectively. The reader can verify 

that 

L@)={xyIx~(C*{b})*, y~{a,c}* and #,(y)=m-lmodm}, 

and 

L(B)n(a,b}*={x~{a, b}*J #,(x)=n-lmodn). 

Now we consider the catenation of L(A) and L(B), i.e. L(A)L(B). 

Fact 2.2. For m> 1, L(A)nC*{b) =8. 

For each x~{a, b}*, we define 

S(X) = {i 1 x = uu such that EL(A) and i= #*(u) mod H}. 
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Consider x, y~{a, b}* such that S(x)#S(y). Let /ES(X)--S(y) (or S(y)-S(x)). Then 
it is clear that xb”-‘-keL(A)L(B) but yb”- ‘-k$L(A)L(Z3). So x and y are in different 
equivalence classes of the right-invariant relation induced by L(A)L(B) [3]. 

For each x~{a, b}*, define T(x) = max { # (z) 1 x = yz and ZEU*}. Consider 
U, uo{a, b}* such that S(u)=S(u) and T(u)>T(u)modm. Let i=T(u)modm and 
~=cu~-~-‘b”-‘. Then clearly uwoL(A)L(B) but uw#L(A)L(B). Notice that there 
does not exist a word WEE* such that O$S(w) and T(w)=m-1, since the fact that 
T(w) = m - 1 guarantees that OES(W). 

For each subset s={ii, . . . . i,} of (0, . . . . n-l}, where i,> ... >it, and an integer 
jE{O, .*., m - l> except the case when both O$s and j=m- 1 are true, there exists 
a word 

X~~m-l~i~-i~am-l~i~-i~am-l . . . .m-lbit+naj 

such that S(x) = s and T(x) =j. Thus, there are at least m2” - 2”- 1 distinct equivalence 
classes. 0 

The next theorem gives an upper bound which coincides exactly with the above 
lower bound. Therefore, the bound is tight. 

Theorem 2.3. Let A and B be two complete DFAs defined on the same alphabet, where 
A has m states and B has n states, and let A have k jinal states, 0 < k < m. Then there 
exists a (m2”- k2”-‘)-state DFA which accepts L(A) L(B). 

Proof. Let A=(Q, C, d4, qo, FA) and B=(P, C, &,po, FB). Construct C=(R, C, Sc, 
ro, Fc) such that 

R = Q x 2’- F,,, x 2p-{p0) where 2’ denotes the power set of X, 

r. = (qo, 8) if qo4FA, r. = (qo, {po>> otherwise, 

F,= ((4, T)ER I TnFB#@); 

&((q, T), a)=(q’, T’), for aeC, where q’=6,(q, a) and 

T’=6n(T, a)u{ po) if q’EFa, T’=6,(T, a) otherwise. 

Intuitively, R is a set of pairs such that the first component of each pair is a state in 
Q and the second component is a subset of P. R does not contain those pairs whose 
first component is a final state of A and whose second component does not contain the 
initial state of B. Clearly, C has m2” - k2”- ’ states. The reader can easily verify that 
L(C) = L(A)L(B). 0 

We still need to consider the cases when m> 1 and n= 1. We have the following 
result. 
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Theorem 2.4. The number of states that is sufficient and necessary in the worst case for 

a DFA to accept the catenation of an m-state DFA language and a l-state DFA language 

is m. 

Proof. Let C be an alphabet and aeC. Clearly, for any integer m>O, the language 

L = (wEC* 1 #,(w) = m- 1 mod m} is accepted by an m-state DFA. Note that C* is 

accepted by a one-state DFA. It is easy to see that any DFA accepting 

LC* = { WEC * 1 # Jw) 3 m - l} needs at least m states. So we have proved the neces- 

sary condition. 

Let A and B be an m-state DFA and a l-state DFA, respectively. Since B is 

a complete DFA, L(B) is either 8 or C*. We need to consider only the case L(B)= C*. 

Let A=(Q, C, S4, qo, FA). Define C=(Q, C, &, qo, FA), where for any XEC and qEQ, 

&(43 Xl= 
d,(q, Xl if &&, 
4 if qEF*. 

The automaton C is exactly as A except that the final states are made to be sink states: 

when the computation has reached some final state q, it remains there. Now it is clear 

that L(C)=L(A)C*. 0 

3. State complexity of star operation on regular languages 

In [S], an example is given to show that any DFA accepting the star of an n-state 

DFA language needs at least 2”- ’ states in some cases for n > 0. Here we improve that 

result and show that 2”-l+ 2”-* is necessary in the worst case for a DFA to accept the 

star of an n-state DFA language for each n > 1. We use a very different technique and 

use a two-letter alphabet. However, we give the sujicient condition first. 

Theorem 3.1. For any n-state DFA A =(Q, C, 6, qo, F) such that 1 F - {qo} / = k 3 1 and 

n> 1, there exists a DFA of at most 2”-’ +2”-k-’ states that accepts (L(A))*. 

Proof. Let A=(Q, C, 6, qo, F) and L= L(A). Denote F - (qO} by Fo. Then 

1 F. I= k> 1. We construct a DFA A’=(Q’, C, 8, qb, F’) where 

q&&Q is a new start state, 

Q’={qb}u{PIPc(Q-Fo) and P#@} 

u{RIRGQ and qoER and RnF,#@}, 

d’(qb, a)= {~(q0,4> f or any aEC, and 6’(R, a)=6(R, a) for RGQ and 

aEC if 6(R, a)nF,=@, 6’(R, a)=6(R, a)u{q,} otherwise, 

F’={qb}u{RIRcQ and RnF#@}. 
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The reader can verify that L(A’) = L*. Now we consider the number of states in Q’. 

Note that in the second term of the union for Q’, there are 2”-k - 1 states. In the third 

term, there are (2k-l)2n-k-1 states. So IQ’J=2”-1+2”-k-1. 0 

Note that if q,, is the only final state of A, (L(A))* = L(A). 

Corollary 3.2. For any n-state DFA A, n> 1, there exists a DFA A’ of at most 
2”-‘+2”-* states such that L(A’)=(L(A))*. 

Proof. Let k be defined as in the proof above. If k=O, then A’ simply needs n states. 

If k3 1, then the claim is clearly true by Theorem 3.1. 0 

Theorem 3.3. For any integer n > 2, there exists a DFA A of n states such that any DFA 

accepting (L(A))* needs at least 2”-’ +2”-* states. 

Proof. For n=2, it is clear that L= {we{a, b}* 1 #,(w) is odd} is accepted by a two- 

stateDFA,and L*={~}u{w~{a,b}*I #.(w)>l} cannot be accepted by a DFA with 

less than 3 states. 

For n>2, we give the following construction: A,=(Q,, C, 6,, 0, {n- 11) where 

Q,,={O, . . ..n-1}. C={a,b}, S(i, a)=(i+ 1) mod n for each O<i<n, S(i, bj= 
(i + 1) mod n for each 1~ i < n and 6(0, b) = 0. A, is shown in Fig. 4. 

We construct the DFA AL=(QL, C, &, qb, F,‘) from A,, exactly as described in the 

proof of the previous theorem. We need to show that (I) every state is reachable from 

the start state and (II) each state defines a distinct equivalence class. 

We prove (I) by induction on the size of the state set. (Note that each state is a subset 

of Qn except 46.) 

Consider all q such that qEQ’ and lql= 1. We have (0) =&(qb, b) and 

{i}=&(i-l,a) for each O<i<n-1. 

Assume that all q such that 141 <k are reachable. Consider q where [ql= k. Let 

q={iI, i2, . . . . ik} such that 0<il<i2< ... <&<n-1 if n-l$q, iI=n-1 and 
O=i,< . . . < ik < n - 1 otherwise. There are four cases: 

Fig. 4. DFA An. 
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(i) ii=n-1 and iz=O. Then q=&({n-2,i3-l,...,&--l},a) where the latter 

state contains k- 1 states. 

(ii) i,=Oandi,=1.Thenq=6~(q’,a)whereq’={n-1,O,i,-1,...,i,-1}whichis 

considered in case (i). 

(iii) i,=Oandi~=l+tfort~O.Thenq=6~(q’,b’)whereq’={O,l,i,-t,...,i,-t}. 

The latter state is considered in case (ii). 

(iv) il = t >O. Then q=&(q’, a’) where q’= (0, i2 - t, . . . , ik- t} is considered in 

either case (ii) or case (iii). 

To prove (II), let iEp-q for some p, qEQA and p#q. Then &(p, u~-~-~)EF,I but 

&(q, a”-‘_‘)f$F,‘. 0 

Note that a DFA accepting the star of a l-state DFA language may need up to two 

states. For example, 0 is accepted by a l-state DFA and any DFA accepting 0* = {E) 

has at least two states. 

4. Left and right quotient, reversal and other operations 

Theorem 4.1. For any integer n>O, 2”- 1 states are suficient and necessary in the 

worst case for a DFA to accept the left quotient of an n-state DFA language R by an 

arbitrary language L (L\R). 

Proof. We show that 2” - 1 states are sufficient in the following. Let M = (Q, Z, 6, s, F) 

be a complete DFA of n states and R = L(M). For each qEQ, denote by L(M,) the set 

{wEC* Id(s, w)=q}. A s a b ove we construct an NFA M’ with multiple initial states to 

accept L\R as follows. M’ is the same as M except that the initial state s of M is 

replaced by the set of initial states S = {q 1 L(M,)nL #0}. By using the standard subset 

construction, the reader can easily verify that there exists a DFA of no more than 

2”- 1 states that is equivalent to M’. (Note that 0 is not a state of M’.) 

Now we show that 2”- 1 states are necessary in the worst case. For any integer 

n>O, let M =(Q, C, 6,0, F) be an n-state DFA shown in Fig. 4, where 

Q={O, . . . . n - l} and F = (n - l}, and R = L(M). Let L = Z*. We construct an NFA 

with multiple initial states N =(Q, C, 6, S, F) where S=Q. Clearly, L(N)= L\R. Let 

the DFA N’ be (Q’, C, 6’, s’, F’) such that Q’=2Q-{0), S’(X, a)= {qEQ 13p~X such 

that 6(p, a)=q} for each XEQ’ and UEC, s’=S, and F’={XEQ’jn- 1eX). It is easy 

to see that N’ is equivalent to N. It remains to prove that N’ is minimal, i.e. (1) each 

state of N’ is reachable from the initial state s’ and (2) each state defines a distinct class 

of the right-invariant relation of the regular language L(N’) = L\R. For (l), the reader 

can verify that each state XEQ’ can be reached from s’ on the string x0x,_ 1 . . . x1 

where, for each 0 <j< n - 1, Xj = a if jeX and Xj = b, otherwise. For (2), consider two 

arbitrary states X, YEQ’ and X# Y. Let ieX- Y (or Y-X). Then it is clear that 

8(X, cT-~)EF’ but S’(Y, an-l-i)$F’(or vice versa). 0 
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In the first part of the above proof, in order to make the construction effective, one 

needs to impose some restrictions, e.g., context-freeness, on the language L. 
For a DFA to accept the right quotient of an n-state DFA language R by an 

arbitrary language L, n states are sufficient and necessary in the worst case. Let 

A = (Q, C, 6, s, F) be the n-state DFA accepting R. Then R/L is accepted by a DFA 

which is exactly the same as A except that the final state set is the set of all states qEQ 
such that there exists a word WEL such that 6(q, w)EF. The necessity can be shown by 

letting L= {E}. 
It is clear that any DFA accepting the reversal of an n-state DFA language does 

not need more than 2” states. But can this upper bound be reached? In [l], a result 

on alternating finite automata (Theorem 5.3) implies a positive answer to the above 

question in the case where n is in the form 2k for some integer k>O. Leiss has 

solved this problem in [S] for all n>O. A modification of Leiss’s solution is shown 

in Fig. 5. 

Theorem 4.2. In the worst case, 2” states are both suficient and necessary for a DFA to 
accept the reversal of an n-state DFA language. 

The next theorem is obvious. 

Theorem 4.3. In the worst case, m ’ n states are both su@icient and necessary for a DFA 
to accept the intersection (union) of an m-state DFA language and an n-state DFA 
language. 

Proof. For intersection, let L,={x~{a, b)*J #.(x)=Omodm) and L2={yE{a,b}*I 
#b(x) =Omod n}. For union, use G and Lz. 0 

b, c 

Fig. 5. DFA B,. 
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5. One-letter regular languages 

For regular languages over a one-letter alphabet, the results above do not hold in 

general. For example, it is obvious that a regular language over a one-letter alphabet 

has the same state complexity as its reversal, while in the two-letter alphabet case, the 

complexity can be much higher. In the following, we show that the optimal upper 

bound for the number of states which is needed for a DFA to accept the star of an 

n-state DFA language over a one-letter alphabet is (n- 1)2 + 1, and this upper bound 

can be reached for any n > 1. For the catenation of an m-state DFA language and an 

n-state DFA language, the optimal upper bound is mn in general, and we show that 

this bound can be reached for any m, n>, 1 such that (m, n)= 1 (m and n are relatively 

prime). Again we assume that all the DFAs are complete. Therefore, there is one and 

exactly one loop in the transition diagram of each DFA over a one-letter alphabet. 

The following lemma is essential to the next two results. Although its proof uses 

only elementary number theory, for the sake of completeness we prove one case as an 

example. 

Lemma 5.1. Let m, n>O be two arbitrary integers such that (m, n)= 1 (m and n are 
relatively prime). 

(i) The largest integer that cannot be presented as cm+dn for any integers c, d>O 
is mn. 

(ii) The largest integer that cannot be presented as cm + dn for any integers c > 0 and 
da0 is (m- 1)n. 

(iii) The largest integer that cannot be presented as cm + dn for any integers c, d > 0 
is mn-(m+n). 

Proof. Let us consider (ii) only. (i) and (iii) can be proved similarly. It suffices to show 

that (m- 1)n cannot be presented as cm + dn for any integers c >0 and d 20, but 

(m - 1)n + i can be presented for any integer i, 1 < i < m. 

Assume that (m - 1)n = cm + dn for some c > 0 and d 3 0. Then 

n 1 (m - l)n-n 1 (cm + dn)*n 1 cm+n ) c. 

Since c < n, this is a contradiction. 

Define a mappingf: { 1, . . . , m}+{l, . . . . m} as follows. For kE{l, . . . . m}, letf(k) be 

the integer iE{ 1, . . . , m} such that kn E i (mod m), i.e. kn = i +jim where 0 < ji < n. Note 

thatfis bijective since (m, n)= 1. Thus, every iE(l, . . , m} can be written in the form 

f - ’ (i)n -j,m where 0 < ji <n. Then 

(m-l)n+i=(m-l)n+f-‘(i)n-j,m=(n-j,)m+(f-l(i)-1)n 

where n-ji>O and f -l(i)-1 20. 0 

Fact 5.2. Let RGC* be a regular language. Zf there exists an integer n such that 

max{#(w)IweC* and w$R)=n, 
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then any DFA accepting R needs at least n + 2 states. In particular, ifC is a singleton, the 
minimal DFA accepting R uses exactly n-I-2 states. 

Theorem 5.3. The number of states which is sujicient and necessary in the worst case for 
a DFA to accept the star of an n-state DFA language, n > 1, over a one-letter alphabet is 
(n-l)2+1. 

Proof. For n=2, the necessity is shown by a 2-state DFA which accepts (au)*. 
For each n> 2, the necessary condition can be shown by the DFA 

A=({O, . . . . n-1>,{a>,kO,{n-I>) h w ere 6(i,a)=i+lmodn for each i,O<i<n-1. 
The star of L(A) is the language {ai I i = c(n - 1) + dn, for some integers c > 0 and d 2 0, 
or i=O}. By (ii) of Lemma 5.1, the largest i such that a’$(L(A))* is (n-2)n. So the 

minimal DFA that accepts (L(A))* has (n - 2)n + 2, i.e. (n - 1)2 + 1, states. 

The proof for showing that (n- 1)2 + 1 states are sufficient is more interesting. Let 

A=(Q, (a),ks,F) b e an arbitrary n-state DFA, n > 1 and R = L(A). If s is the only 

final state of A, then R* = R. So we assume that there is at least one final state f such 

thatf#s. Clearly, R* (excluding E if s$F) is accepted by the NFA A’=(Q, {a}, 6’, s, F) 
where 6’ = 6u{ (q, E, s) I qEF}. For any X G Q, denote by closure(X) the set 

Xu{qEQ I (p, E, q)& for some PEX}. Now we follow the subset construction 

approach to build a DFA B=( P, {a>, n, {s}, Fr) from A’ to accept R* such that 

Pc~~, n(X,a)=closure({qEQ 1 there exists PEX such that (p,a,q)&‘}), and 

Fr = {XEP I XnF # 8 or X = is}}. Let f be the first final state from s in A and let a’ be 

the shortest word such that 6(s, a’)=f: Then q( {s}, a’) = {s, f >. Denote by pki the state 

q( {s}, ait) in P, i > 0, which is a subset of Q. 

Weclaimthatp,,~pki_,foralli31.1tistruefori=1 becauseq({s},a’)={s,f},and 

also true for i> 1 since 

=pki-,ud{f}, a”-“‘). 

Then one of the following must be true: 

(I) pki = pki _ 1 for some i < n- 1, 

(2) Pk., - , = Q. 
This is because if (1) is false, pk,_ 1 contains at least n states and, therefore, (2) is true. 

Note that if (2) is true, then q( pk,_ , , a) =pk,_ 1. In any of the cases, the number of states 

of B is no more than t(n-1)+1 which is at most (n-1)2+1. 0 

Theorem 5.4. Let m, n be two arbitrary positive integers such that (m, n) = 1. Then there 
exist an m-state DFA language RI and an n-state DFA language R2, over a one-letter 
alphabet, such that any DFA accepting R,R, needs at least mn states. 

Proof. Let RI =am-l(am)* and R2=a”-’ (a”)*. Obviously, Rl and R2 can be accepted 

by an m-state DFA and an n-state DFA, respectively. Then RlR2 = {ai 1 i= 
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(m- l)+(n- l)+cm+dn for some integers c, d >O}. By Lemma 5.1 (iii), the largest 

i such that a’$R, R2 is mn-2. So the minimal DFA that accepts RIR, has mn 
states. 0 

Theorem 5.5. For any integers m, n > 1, let A and B be an m-state DFA and an n-state 
DFA, respectively, over a one-letter alphabet. Then there exists a DFA of at most mn 
states that accepts L(A)L(B). 

Proof. The cases when m = 1 or n = 1 are trivial. We assume that m, n 22 in the 

following. Let A=(Q,, {a}, BA, sA, FA) and B=(Q,, {a}, ds, sB, FB). By a variation of 

the subset construction, we know that L(A)L(B) is accepted by the DFA 

C=(Qc, {a>, &, SC, Fc) where 

sc=(sA,@) if sA$FA and sc=(sA, {sg}) if s~EF~, 

6,((q, P),a)=(q’, P’) where q’=d,(q,a) and P’=6B(P, a)u{sB} if 

q’EF,, P’=6B(P, a) otherwise; 

&={(q,P)lPnF,#@} 

Now we show that at most mn states of Qc are reachable from sc. 

First we assume that in A there is a final statefin the loop of the transition diagram 

of A. Then dA(sA, a’) =f and S,(f; a’) =f for some nonnegative integers t <m and 

1Qm. Let j, ,..., j,,O<j,< ..’ <j*<l, be all the integers such that S,(A aji)EFA 

for each 1 <i<r. Denote 

PO= (SB}~ 

PI ={~B(~B,a'),6B(~B,a'-j'),...,~B(~~,a'-j~)}, 

and for i>2 we define 

Pi=6B(Pi-i, a’). 

Let G&, af)=(f; S). Denote Se=S-{ss} and Si=dB(Si-1, a’) for each iZ=l. Then 

we have the following state transition sequence of C: 

(1) sc Et <J P,uS,) 

(2) k:: (f, P0UPlUS1) 

(3) . . . . . . . . 

(4) t-&U POUPlU ... UP,_lUS,_l) 

(5) FA(f, POUPlU ... uP,uS,). 

Here p k,!J q stands for 6,( p, a”) = q. Denote POu ... UPi by Pi, i $0. Let i be the 

smallest integer such that Pii- 1 = Pi. It is clear that i < n since B has n states. If i = n, 
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then 9’” _ 1 = QB and 

Therefore, C needs at most m + I(n - 1) <m + m(n - 1) = mn states. If i <n, consider the 
set Si- 1 = Si_ 1 -Pi- I. Note that every state in Sf_ 1 is in the loop of the transition 
diagram of B. If for each element I of Sl_ 1, there exists j, 0 < j < n - i, such that 
BB(r, aj’)E~i- l(i.e. Pnml), then the proof is concluded as above. Otherwise, there is an 
element r0 of Si_1 and a transition sequence 

such that, for some j, k < n- i and j< k, rj= rk. (There are at most n-i states 
not in .Pi_l.) Then it is easy to verify that Si-1 +j=Si_l +k. Therefore, 

<f; qi-l+jUSi-l+j)=(.L pi- l+kuSi-l+k). Thus, the number of states that are 
reachable from sc is at most t+1+l(n-l)~(m-1)+1+m(n-1)=mn. 

Finally, we consider the case when no final states of A are in the loop. Let 

QA={% . . . . m-l)wheres,=Oand6,(0,ai)=iforO~i~m-l.Wecanassumethat 
m-2 is a final state and m- 1 loops to itself. Otherwise, L(A) can be accepted by 
a complete DFA with less than m states. Consider the following m + n - 1 transition 
steps of C 

scFF-*(m-2, T)kc(m-1, To) t-&m-l, T,) t-c...Ec(m-l, T,). 

Let the state dB(sB, ai+ ‘) be ti, for each i30. Note that sBET and ti is in Ti. It is clear 
that there exist j, k such that 0 < j < k < n and tj= tk. Then it is not difficult to see that 
(m- 1, Tj)= (m- 1, Tk). Therefore, at most m+n states are necessary for C. 
(m+n<mn for m, n>2.) 0 

6. Open problems 

For the problems on catenations, we have considered the three-letter alphabet case 
and the one-letter alphabet case. We do not know whether the results in the three- 
letter alphabet case hold if the size of the alphabet is two. 
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