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We study the expressive power of linear propositional temporal logic interpreted on finite 
sequences or words. We first give a transparent proof of the fact that a formal language is 
expressible in this logic if and only if its syntactic semigroup is finite and aperiodic. This gives 
an effective algorithm to decide whether a given rational language is expressible. Our main 
result states a similar condition for the “restricted” temporal logic (RTL), obtained by 
discarding the “until” operator. A formal language is RTL-expressible if and only if its 
syntactic semigroup is finite and satisfies a certain simple algebraic condition. This leads to 
a polynomial time algorithm to check whether the formal language accepted by an n-state 
deterministic automaton is RTL-expressible. 0 1993 Academic P~CSS, IW. 

Temporal logic is a particular case of modal logic. It was introduced by Pnueli 
[16] in connection with applications to the specification, development, and 
verification of possibly parallel or non-deterministic processes. This logical language 
admits several variations, one of them being propositional linear temporal logic 
(PTL). It uses three connectives suggestively called “next,” “eventually,” and 
“until.” 

In this paper we are interested in the descriptive power of propositional linear 
temporal logic and of a restriction of temporal logic (RTL) obtained by considering 
only the operators “next” and “eventually.” In both cases, we interpret temporal 
logic on finite words only. In this case, a temporal formula defines a set of words 
(that is, a formal language) and our problem is to determine precisely which formal 
languages can be specified in this way. In the case of PTL, the solution has been 
known for some time, as a consequence of a series of deep results. Indeed, Kamp 
[6] has shown that PTL is expressively equivalent to first-order logic when 
interpreted on words. Next, McNaughton [lo] proved that a formal language is 
first-order definable if and only if it is star-free. Finally, star-free languages are 
characterized by a deep theorem of Schiitzenberger [17]: a rational (or regular) 
language is star-free if and only if its syntactic semigroup is group-free. Since the 
syntactic semigroup of a given rational language can be effectively computed, this 
provides an algorithm to determine whether a rational language is PTL-definable. 

Various proofs of the equivalence between “first-order,” “star-free,” and “PTL- 
definable” have been announced or given in the literature [S, 6, 11, 121, but all 
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these proofs are rather involved. In this paper, we give a short and simple proof of 
the equivalence between star-free and PTL-definable, based on a weak version of 
the Krohn-Rhodes decomposition theorem for finite semigroups. Our proof was 
inspired by the work of [ 111, whose proof uses an interesting connection with Petri 
nets. 

Our main result concerns the descriptive power of RTL. It was known [S, 7) 
that RTL is strictly less expressive than PTL, but an effective characterization of 
RTL-definable formal languages was still to be found. We show here that 
RTL-definable languages admit a syntactic characterization analogous to 
Schiitzenberger’s theorem: a rational language is RTL-definable if and only if its 
syntactic semigroup is “locally Y-trivial.” This provides a decision procedure to 
determine whether a formal language is RTL-definable. This algebraic charac- 
terization also leads to a polynomial time algorithm to check whether the formal 
language accepted by an n-state (complete) deterministic automaton is RTL- 
definable. We give another (non-effective) description of RTL-definable formal 
languages: these formal languages form the smallest boolean algebra of formal 
languages containing the languages aA* and closed under the operations L -+ aL 
and L -+ A*L for every letter a. 

1. SEMIGROUPS AND FORMAL LANGUAGES 

In this section, we briefly review some basic facts about finite semigroups and 
rational languages. All the definitions and results presented in this section are 
standard, and are reproduced for the convenience of the reader. More information 
on this subject can be found in [3, 8, 153. For the most part, we follow the nota- 
tions and terminology of Eilenberg [3]. In particular, if ~0: S -+ T is a function from 
S into T, we denote by sq (instead of the usual cp(s)) the image of an element s of 
S by 40. We also use the term “rational language” instead of “regular language” for 
two reasons: first, the term “rational” has a much better mathematical foundation 
(rational languages are deeply connected with rational series), and second the term 
“regular” is also used in semigroup theory with a totally different meaning, and 
could the misleading in our context. 

1.1. Semigroups 

A semigroup is a set S together with an associative multiplication. A monoid M 
is a semigroup that has an identity element, usually denoted by 1. The free monoid 
(resp. semigroup) on a set A is the set, usually denoted A* (resp. A+) of all words 
(resp. non-empty words) over A, equipped with the concatenation of words as 
multiplication. Thus A* = A + u { 1 }, where 1 is the empty word. Given two semi- 
groups S and T, a semigroup morphism q: S -+ T is a function from S into T such 
that, for every s, s’ E S, 

(=PWcp) = (4 9 
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All semigroups considered in this paper are finite except for free semigroups and 
free monoids. Therefore, we shall use in the sequel the term “semigroup” instead of 
“finite semigroup.” An element e of a semigroup S is idempotent if e2 = e. The set 
of idempotents of a semigroup S is denoted by E(S). Every non-empty semigroup 
contains at least one idempotent. This is a particular case of the following 
well-known result: 

PROPOSITION 1.1. For any semigroup S, there exists an integer n < Card(S) such 
that, for every s E S, s” is idempotent. 

The smallest integer n satisfying this property is called the exponent of S and is 
usually denoted o(S) or simply o. Thus sw is a convenient notation for the 
(unique) idempotent which is a power of s. For instance, if x, ye S, (xwy”)” 
denotes the idempotent which is a power of ef, where e (resp. f) is the idempotent 
which is a power of x (resp. y). We shall frequently use this type of notation in 
the sequel. If S is a semigroup, the reverse semigroup S’ is the semigroup with 
underlying set S together with the operation * defined by s * t = ts. 

If S is a semigroup, we denote by S’ the monoid equal to S if S is already a 
monoid, and otherwise equal to S u { 1 }, where 1 is a new identity element. 

We shall consider in particular three semigroups, denoted respectively U,, U,, 
and B( 1,Z): U, is the semigroup (0, I> with the multiplication given by 1.1 = 1 and 
O.l=l.O=O.O=O, B(1,2)={a,b) with the multiplication given by a.b=b.b=b 
and a.a=b.a=a, and U,=B(1,2)‘={1,a,b). 

The Green’s relations B? and dp on a semigroup 9’ are the equivalence relations 
defined as follows: 

s 9 t if and only if there exist u, v E S’ such that su = t and tv = s, 

s 9 t if and only if there exist u, u E S’ such that us = t and vt = s. 

A semigroup S is W-trivial (respectively Z-trivial) if the relation 9 (respectively 64) 
is equality. For instance, U, is both L&trivial and L?-trivial, and B(1, 2) and U, are 
9 but not W-trivial, since a 9 b. 

Given a semigroup S, and an idempotent e of S, the three subsets 

eS= {es 1 sE Sj, eSe = {ese 1 s E Sj, Se= {se 1 sES) 

are subsemigroups of S. The subsemigroup eSe is called the local semigroup 
associated with e. It is in fact a monoid, since e is clearly an identity of eSe. A semi- 
group S is said to have a property locally if for every idempotent e of S, the 
subsemigroup eSe has the property. In particular, a semigroup S is locally B-trivial 
(respectively locally LZ-trivial) if, for every idempotent e of S, eSe is W-trivial 
(respectively Y-trivial). For instance, B( 1, 2) is locally g-trivial, but U2 is not, 
since 1 . U2 .1 = U2 is not &J&trivial. 
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PROPOSITION 1.2. Let S be a semigroup. Then 

(1) S is locally W-trivial if and only if, for every e E E(S), Se is W-trivial. 

(2) S is locally Y-trivial if and only & for every eE E(S), eS is Y-trivial. 

Proof. Clearly, (2) is a dual version of (1). Let S be a locally g-trivial semi- 
group. Let e E E(S), and suppose that se 9 te for some s, t E S. Then there exist ue, 
vee (Se)’ such that seue= te and teve=se. Thus s(eue)(eve) =se. Furthermore, 
[(eue)(eve)lw W [(eue)(eve)l” (eue) h o Id s in eSe, and since eSe is B-trivial, it 
follows that 

[(eue)(eve)]w = [(eue)(eve)lw (eue). 

Therefore, 

se=s[(eue)(eve)]w=s[(eue)(eve)]w (eue)=s(eue)= te. 

Conversely, assume that Se is W-trivial. Then eSe, which is a subsemigroup of Se, 
is also W-trivial. 1 

A semigroup S is aperiodic if for every SE S, there exists an n > 0 such that 
S”=S”+‘, For instance the three semigroups U, , U,, and B(1,2) are aperiodic, but 
a non-trivial group is not aperiodic. 

1.2. Transformation Semigroups 

Let Q be a set, and let S be a semigroup. An action of S on Q is a function’ from 
Q x S into Q, denoted (q, s) -+ q. s, such that, for every q E Q and every s, , s2 E S, 

Let S(Q) be the semigroup of all functions from Q into itself, with left-to-right 
composition of functions as the multiplication. Any action of S on Q defines a semi- 
group morphism p: S + S(Q), given, for every s E S, by 

c?.(sP)=q~s for every q E Q 

The action of S on Q is faithful if p is injective, that is, if two elements of S having 
the same action on Q are equal. A transformation semigroup (ts for short) is a pair 
(Q, S), where Q is a set (the set of states) and S is a semigroup acting faithfilIy 
on Q. 

Two natural examples of transformation semigroups are frequently used: first, 
every semigroup S defines a transformation semigroup (S’, S), the action being 
simply the product in S. This transformation semigroup is usually denoted simply 
S, and the context suffices to decide whether one considers a semigroup or a trans- 

‘The definition of Eilenberg [3] allows partial functions, but we do not need this more general 
definition. 
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FIGURE 1.1 

formation semigroup. The second example is the notion of transformation semigroup 
of an automaton. Let d = (Q, A, . ) be a (complete) deterministic automaton. By 
definition, every word w of A + defines a function wp from Q into Q, given, for 
every q E Q, by 

4(w) = 4. w* 

This defines a semigroup morphism p: A* -+ S(Q). The range of p is a 
subsemigroup of S(Q) denoted S(d) and called the semigroup of A, and the 
transformation semigroup KS(d) = (Q, S(d)) is called the transformation 
semigroup of A. In practice, the notation wp is almost always simplified to w, and 
the context makes clear whether one is considering w as a word or as an 
element of S(Q). For instance, if SQ is the automaton represented in Fig. 1.1 
then KS(d) = ((0, 1,2}, {a, b, ab, b a, au}), where the action of each element is 
represented in the following table: 

a b ab ba aa 

000000 

120100 

201020 

We shall also use the transformation semigroup 2 = ({ 1,2), B(1,2)), where the 
action is given by the formulas 1 -a = 2. a = 1 and 1 . b = 2. b = 2 (see Fig. 1.2). 

FIGURE 1.2 
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A transformation semigroup (P, S) divides a transformation semigroup (Q, T) if 
there exists a surjective partial function c;o: Q -+ P, and, for every s E S, there exists 
an element SE T such that, for every q~ Q, (qq) ..s = (q .s^) cp. For instance, both 
B( 1,2) and U, divide U, . 

1.3. Formal Languages 

Let A+ be a free semigroup. The set A is called the alphabet and the elements of 
A are letters. The length of a word w E A + is denoted by /WI. A subset of A + is 
called a (formal) language. Rational languages form the smallest class of languages 
containing letters and closed under union, concatenation and the plus operation 
w+ =un>o L”). Star-free languages form the smallest class of languages containing 
letters and closed under boolean operations (union, intersection, and complemen- 
tation) and concatenation product. 

The notion of the language recognized by an automaton can be easily adapted 
to transformation semigroups as follows: a transformation semigroup (Q, S) 
recognizes a language L c A + if there is a semigroup morphism 9: A + -+ S, a state 
qoE Q (the initial state), a set of states F (the final states) such that 
L = {U E A + 1 qO . (un) E FJ. When the transformation semigroup is of the form 
S= (S’, S), there is a more convenient equivalent definition that does not refer to 
transformation semigroups: a semigroup S recognizes a language L c A + if there is 
a morphism rf: A + -+ S, and a subset P of S, such that L = Py- ‘. It is easy to see 
that if a language L is recognized by a transformation semigroup X and if X divides 
a transformation semigroup Y, then Y also recognizes L. 

For instance, if aE A and Bc A, the languages A*aA*, A*aB*, and A*a are 
recognized by U,, UZ, and B(l, 2), respectively. Conversely, we have the following 
lemma (see [15, Chap. 21). 

LEMMA 1.3. ( 1) If a language of A + is recognized by U, , then it is a boolean 
combination of languages of the form A*aA*, where a E A. 

(2) If a language of A + is recognized by iJz, then it is a boolean combination 
of languages of the form A*aB*, where aE A and BC A. 

(3) If a language of A + is recognized by B( 1,2), then it is a boolean 
combination of languages of the form A *a, where a E A. 

The syntactic semigroup of a language L c A+, denoted S(L), is the quotient of 
A + by the congruence -L defined by 

u wL u if and only if, for every X, y E A*, xuy E L o xvy E L. 

The syntactic semigroup of a language L is the smallest semigroup that recognizes 
L. It is also the semigroup of the minimal automaton of L. As is well known, a 
language is rational if and only if it can be recognized by a finite automaton. Since 
there are standard algorithms to compute the minimal automaton of a given 
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rational language, this provides an algorithm to compute the syntactic semigroup 
of a rational language. 

For star-free languages, we have the following important result, due to 
Schiitzenberger [17]. A proof can be found in [3,8, 15, 141. 

THEOREM 1.4. Let L be a language. The following conditions are equivalent: 

(1) L is star-free; 

(2) L is recognized by an aperiodic semigroup; 

(3) the syntactic semigroup of L is aperiodic. 

1.4. Wreath Product 

The wreath product of two transformation semigroups X = (P, S) and Y = (Q, T) 
is the transformation semigroup X0 Y = (P x Q, SQ x T), with multiplication given 
by2 

(SIT t1Kf2, a= (f, t,tA where, for every qEQ, qf=(qfiMqtl)fi 

and where the action of an element ( f, t) of SQ x T on a state (p, q) of P x Q is 
given by 

(PI 4). (f, t) = (P . (9.0 4. t). 

The wreath product is an associative operation on transformation semigroups. 
Aperiodic, W-trivial and locally W-trivial semigroups admit simple wreath-product 
decompositions using the three transformation semigroups U1, U2, and 2 defined 
in Sections 1.1 and 1.2. For a proof, see [ 3, Vol. B; or 203. 

THEOREM 1.5. (1) A semigroup is 9-trivial if and only if it divides a wreath 
product of the form U, 0 . . . 0 U,. 

(2) A semigroup is locally S&trivial if and only if it divides a wreath product 
of the form U,o ,.. oU,o20 ... 02. 

(3) A semigroup is aperiodic tf and only tf it divides a wreath product of the 
form U,a ... 0 U,. 

Wreath products are deeply related to sequential functions. Recall that a trans- 
ducer r = (Q, A, B, go, . , *) is given by a finite set of states Q, an input alphabet 
A, an output alphabet B, an initial state go, a next-state function Q x A + Q, 
denoted (q, a) -+ q . a, and an output function Q x A + B+, denoted (q, a) + q * a. 
The next-state function is extended to a function Q x A+ -+ Q by setting q . (ua) = 
(q . u) . a for each u E A* and a E A. Similarly, the output function is extended to a 
function Q x A+ -+ B+ by setting q * ua = (q * u)( (q . u) * a). 

2 SQ denotes the set of all functions from Q to S. Thus if SE SQ and q E Q, qf is an element of S. 
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The function 6: A + + B + defined by uo = qO * u is called the sequential function 
defined by .Y. Then we can state 

PROPOSITION 1.6. [3] Let a: A+ --+ B+ be a sequential function realized by a 
transducer F = (Q, A, B, qO, ., *) and let S(o) be the transformation semigroup of the 
automaton (Q, A, . ). If a language L c B+ is recognized by a semigroup S, then 
Lo-’ is recognized by So S(o). 

The following result is a first application of Proposition 1.6 to a syntactic 
property of the operators L + LaA* and L + La on languages. 

PROPOSITION 1.7. [3,22]. Let L c A+ be a recognizable language. Then 

(1) S(LaA*) divides U,oS(L), 

(2) S(La) divides B(l, 2)oS(L). 

Proof Let q: A+ -+ S = S(L) be the syntactic morphism of L. This morphism 
can be extended to a monoid morphism cp: A* -tS’. Put P=Lqp, B=S’xA, and 
let a:A+ +B+ be the sequential function defined by 

(al ‘..a,)o=(lcp,a,)...((a,...a,-,)Co,a,). 

Note that cr is realized by a transducer (that is, a de,terministic automaton with 
output) with S’ as the set of states and next-state and output functions defined by 
Fig. 1.3. In particular, the semigroup S(a) is equal to S. Put C= Px {a>. Then C 
is a subset of B and we have 

(B*CB*) a-l = {us A+ ) uaE B*CB*} 

={a,...a,EA+ )3i~(l,...,n-l}((a,...ai)cpa,+,)~C} 

= h . ..a.EA+ ~3i~(l,..~,n-l)a,...a,~P~-‘anda~+,=a} 

=(Pq-‘)aA*=LaA*. 

Therefore, by Proposition 1.6, LaA* is recognized by S(B*CB*)oS(a). Statement 
(1) follows, since S(B*CB*) = U, . Similarly, we have 

(B*C)a-‘= (SEA+ ) UJEB*C} 

= {aI . ..a.,EA+ ) ((al . ..a.,-,) cp, a,,)eB*C} 

= (a,...a,EA+ 1 a,...a,_,EP~-‘anda,=a} 

=(Pq-‘)a=La. 

al (s, a) 

FIGURE 1.3 
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Therefore, by Proposition 1.6, La is recognized by S(B*C) 0 S(a). Statement (2) 
follows, since S(B*C) = B(l,2). 1 

Straubing’s “wreath product principle” recalled below gives a description of the 
languages recognized by the wreath product of two transformation semigroups. Let 
X = (P, S) and Y = (Q, T) be two transformation semigroups, and let Z = X0 Y = 
(P x Q, R), where R = SQ x T. Let L be a language of A + recognized by Z: then 
there exist an initial state (pO, qO) E P x Q, a set of final states F in P x Q, and a 
morphism v]: A+ -+ R such that 

L = {u E A + I (PO, 40). (uv) E f’j. 

The morphism q defines an action of A + on P x Q by setting (p, q) . a = (p, q)(aq). 
Let 7c be the natural projection rc: R = SQ x T + T. Define a sequential function 

CA+ -+(QxA)+ by 

(a, ... a,)a=(qo,a,)(qo.(a,qn),a,)...(qo.(a,...a,-,)?~,a,). 

We can now state 

PROPOSITION 1.8 (Wreath product principle [21]). The language L is a finite 
union of languages of the form U n Vo -I, where U is a language of A + recognized 
by Y and V is a language of (Q x A) + recognized by X. 

Proposition 1.8, or some similar statement, together with Theorem 1.5, has been 
used to prove Theorem 1.4 [2, 3,9]. 

1.5. Varieties of Semigroups 

A variety of semigroups is a class of semigroups closed under taking sub- 
semigroups, quotients and finite direct products. 3 The following varieties will be 
used in this article: 

A, the variety of aperiodic semigroups, 
R, the variety of W-trivial semigroups, 
L, the variety of B-trivial semigroups, 
LR, the variety of locally W-trivial semigroups, 
LL, the variety of locally s-trivial semigroups. 

It is often convenient to define varities by identities. Let U, u E A+. Formally, a 
semigroup S satisfies the identity u = u if and only if, for every semigroup morphism 
cp: A+ -+ S, uv = vcp. For instance, a semigroup is commutative if and only if it 
satisfies the identity xy =yx. The next proposition gives identities defining the 
varieties A, R, L, LR, and LL. In fact, there are not identities in the strict sense,4 
since they involve the exponent o, which depends on the semigroup S. 

3 The correct terminology should be “pseudovariety” to avoid a possible confusion with BirkhofT’s 
varieties. However, we have preferred to avoid this rather awkward terminology. 

4 Again, the correct terminology should be “pseudoidentity.” 
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hOPOSIlION 1.9. (1) A semigroup is aperiodic iJ’ and only if it satkfies the 
identity xw = xw + ‘; 

(2) A semigroup is W-trivial if and only if it satisfies the identity (xy)“’ x = 
(XYYQ 

(3) A semigroup is Y-trivial if and only if it satisfies the identity y(xy)“‘= 
(XY Y; 

(4) A semigroup is locally B-trivial if and only if it satisfies the identity 
( ux”vxo)w UP = ( uxwvxa)~o, or, equivalently, the identity (x%Y”vxw)* x%xw = 
(xwuxwux~“)o; 

(5) A semigroup is locally Z-trivial if and only if it satisfies the identity 
x%(x%x%)” = (x~ux~v)~, or, equivalently, the identity x”v(xouxwvxw)w = 
(xwuxovxw)w. 

A variety of semigroups V is closed under wreath product if, given two transfor- 
mation semigroups X = (P, S) and Y = (Q, T) and their wreath product (P x Q, R), 
the conditions S, TEV imply REV. The next proposition is the “variety version” 
of Theorem 1.5. 

PROPOSITION 1.10 [3, 201. (1) R is the smallest variety of semigroups closed 
under wreath product containing U, . 

(2) LR is the smallest variety of semigroups closed under wreath product 
containing U1 and B( 1,2). 

(3) A is the smallest variety of semigroups closed under wreath product 
containing U2. 

2. PROPOSITIONAL TEMPORAL LOGIC 

Propositional temporal logic (PTL for short) on an alphabet A is defined. The 
vocabulary consists of 

(1) An atomic proposition pa for each letter a E A 
(2) Connectives v , A , and 1. 
(3) Temporal operators 0 (“next”), 0 (“eventually”), and & (“until”); 

and the formulas are constructed according to the rules 

(1) For every a E A, pa is a formula, 
(2) If cp and tj are formulas, so are cp v Ic/, cp A rl/, 1 rp, 0 rp, 0 cp, rp % $. 

Semantics are defined by induction on the formation rules. Given a word w E A + 
and n E { 1,2, . . . . Iw( >, we define the expression “w satisfies q at the instant n” 
(denoted (w, n) j= q) as follows: 
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(1) (w, n) /= pa if the nth letter of w is an a. 

(2) (w, 4 I= ‘P v * (rev. v A vh lcp) if (w, n) + cp or (w, n) + $ (resp. if 
(w, n) + q and (w, n) ‘F I++, if (w, n) does not satisfy cp). 

(3) (w, n) k 041 if (w, n + 1) satisfies cp. 
(4) (w, n) )= 0~ if there exists m such that n Q m d 1 WI and (w, m) j= cp. 
(5) (w,n) )= q%$ if there exists m such that n<m<)w), (w,m) h $ and, 

for every k such that n <k < m, (w, k) + cp. 

Note that, if w=wiwr~..~,~,, (w, n) + cp only depends on the word w = 
WnWn+I “‘Wlwl. If cp is a temporal formula, we say that w satisfies cp if (w, 1) i= cp. 

EXAMPLE 2.1. Let w = abbababcba. Then (w, 4) + pa, since the fourth letter 
of w is an a, (w, 4) )= Op,, since the fifth letter of w is a b, and 
(w, 4) b 0 (p, A Op,), since cb is a factor of babcbu. 

We just have defined “future” temporal formulas but one can define in the same 
way “past” temporal formulas by reversing time: it suffices to replace “next” by 
“previous” (symbol 0 ), “eventually” by “sometimes” (symbol e ) and “until” by 
“since” (symbol 9). The corresponding semantics are modified as follows: 

(3’) (w, n)ka cp if n> 1 and (w, n- 1) satisfies cp. 
(4’) (w, n)+ e cp if there exists m d n such that (w, m) + cp. 
(5’) (w, n)+ cp 9’ $ if there exists m < n such that (w, m) b $ and for every k 

such that m < k < n, (w, k) + cp. 

Figure 2.1 illustrates the symmetry between the operators “until” and “since.” If q 
is a past temporal formula, we say that w satisfies 40 if (w, (WI) i= rp. The language 
defined by a formula cp is the set L(v) of all words of A + that satisfy q. 

3. PTL-DEFINABLE LANGUAGES 

In this section, we present a short proof of the following result. 

THEOREM 3.1. A language of A + is PTL-definable if and only if its syntactic 
semigroup is aperiodic. 
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ProoJ: Since the reverse of an aperiodic semigroup is also aperiodic, it suffices 
to prove the dual version of the theorem, obtained by using past temporal logic. We 
first prove that every PTL-definable language is star-free (by Schiitzenberger’s 
theorem, a language is star-free if and only if its syntactic semigroup is aperiodic). 
This is done by induction on the formation rules. Indeed, 

(1) L(p,)=A*a (for every letter a) is star-free. 
(2) L( 0 cp) = L(cp) A. Thus if ,!,(cp) is star-free, so is L( 0 cp). 
(3) L($ q)=L(cp)A*. Thus if L(cp) is star-free, so is L(@ cp). 

We need a similar formula for 9, but this is slightly more complicated. Assume that 
L(cp) and L(JI) are star-free. In particular, there is a semigroup morphism 
q: A + + S, where S is an aperiodic semigroup, and a subset P of S such that 
L(q) = Pq-‘. Set, for every SE S, s-’ P=(~ES(S~EP). Then we have the 
following lemma, in which \ denotes a set difference. 

LEMMA 3.2. The folIowing equalities hold: 

L(q Y $) = {uv E A+ I u E L($), v E A* andfor each leftfactor 

VI # 1 ofv, UV’ E L(cp)} 

=sys (sy-‘n L(II/))(A*\(A+\(;-‘P) q-‘) A*). 

Proof The first equality is a direct consequence of the definition. Next, if 
Rc A+, (A+\R) A* is the set of all words DE A* having a left factor v’ # 1 in R. 
Therefore, taking complements, this is equivalent to saying that A*\(A+\R) A* is 
the set of all words v E A* such that, for each left factor v’ # 1 of v, v’ 4 R. 

Let w E L(qo Y II/). Then, by the first equality, w = MU, where u E L($), v E A*, and 
for each left factor o’ # 1 of u, uv’ E L( cp). Putting s = uq, we obtain u E sn - ’ n L( +) 
and (uv’) r,i E P, whence v’ E (s-‘P) q-l. Thus, 

by the remark above. 
Conversely, assume that w = uv, where, for some s E S, u E sq-’ n L($) and 

veA*\(A+\(s-‘P)q-‘)A*. Then #EL(+), and for each left factor v’#l of v, 
V’E (s-‘P) r,-l. Thus (uv’) q =s(v’q) E P, whence UV’E L(p). Therefore, by the first 
equality, w E L(cp Sp Ic/). 1 

Now any language of the form Qr,r-‘, where Q c S, is recognized by S, and thus 
is star-free by Schiitzenberger’s theorem. Therefore, Lemma 3.2 shows that 
L(CJI Y $) is star-free and this concludes the first part of the proof of Theorem 3.1. 

We now show that every star-free language is PTL-definable. Let C be the class 
of all transformation semigroups X such that every language recognized by X is 
PTL-definable. By Schiitzenberger’s theorem, it suffices to show that each aperiodic 
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semigroup belongs to C. The class C is certainly closed under division, because if 
X divides Y, every language recognized by X is also recognized by Y. Next, the 
trivial semigroup ( 1) belongs to C, since the languages of A + recognized by ( I> 
are A+ and the empty set. Now, by Theorem 1.5, it remains to show that if 
Y=(Q, T)EC, then U,o YEC. 

By the wreath-product principle, every language of A+ recognized by U,o Y is 
finite union of languages of the form Un VO- ‘, where a: A+ -+ B+ = (Q x A)+ is 
a certain sequential function, U c A + is recognized by Y, and I/c Bt is recognized 
by U2. First, the formulas L(lp)=A+\L((p) and L(cp v $)=L(~)uL($) show 
that PTL-definable languages are closed under boolean operations. Thus it suffices 
to show that every language of the form U n Va - ’ above is PTL-definable. Since 
YE C, U is PTL-definable by definition. Furthermore, by Lemma 1.3, V is a 
boolean combination of languages of the form B*bC*, where b E B and Cc B. 
Since 0-l commutes with boolean operations, it remains to show that languages of 
the form (B*bC*) 0-l are PTL-definable. We claim that 

(B*bC*) c’ = (B*C) CT-’ Y (B*b) 0-l. (3.1) 

Indeed, let u = a, . ..a., be a word of A+ and let (al~..a,)o=b,...b,. Then 
UC E B*bC * if and only if there exists an i such that bi = b and, for every j > i, bj E C. 
This is equivalent to saying that (al ... ai) (T E B*b and for every j> i, 
(4 . ..uj) CJE B*C, and this proves (3.1). Now 

(B*C)o-‘= u (B*b)o-’ 
beC 

and therefore it suffices to show that languages of the form (B*b) 0-l are 
PTL-definable. We take again the notations used in the definition of G (cf. 
Proposition 1.8). Set b = (q, a) (recall that B= Q x A). Then we have 

It follows that (a, . ..a.)oEB*b if and only if q,,.(u,...u,,-,)r]n=q and ~,=a. 
Therefore (B*b) cr.-l= La, where L = {u E A+ 1 qo. (ut/rc) = q}. But L is recognized 
by Y and since YE C, is PTL-definable. Now, since L(q) u = L( 0 cp A p,), 
La = (B*b) 0-l is PTL-definable and this concludes the proof. 1 

4. RESTRICTED TEMPORAL LOGIC 

If we omit the “until” operator, we obtain a restricted temporal logic (RTL) that 
was considered in [5,6]. Here is a first description of the languages definable in 
this logic. The subtle distinction between conditions (2) and (3) will be used in the 
proof of the main theorem below. 



284 COHEN, PERRIN, AND PIN 

PROPOSITION 4.1. Let L be u language of A +. The @lowing conditions ure 
equivalent: 

(1) L is RTL-definable, 
(2) L belongs to the smallest boolean algebra of languages containing the 

languages aA* and closed under the operations L + A*L and L + aL for every a E A, 
(3) L belongs to the smallest boolean algebra of languages containing the 

languages aA* and closed under the operations L -+ A*aL and L --+ aL for every 
aeA. 

ProojY Let QZ (respectively V) be the smallest boolean algebra of languages 
closed under the operations L -+ A*L (respectively L -+ A*aL) and L -+ aL for 
every letter a E A. In particular, the languages 0 and A+ belong to V and 97:’ by 
definition. We first prove that k? = $7. The inclusion V’ c V follows directly from the 
formula A*aL = A*(aL). The opposite inclusion follows from the formula 

A*L=Lv u A*aL. 
UEA 

Thus (2) and (3) are equivalent. 
(1) implies (2). We show by induction on the formation rules that L(q) E V for 

every RTL-formula C+X First, if cp =p,, then 

L(p,)=aA*E%. 

If cp and + are formulas such that L(q) and L(e) belong to V, then 

ucp v *I = L(cp) u L(JI) 6 WY 

L(cp * @)=Ugo)nL($)EV, 

L(lcp)=A+\L(cp)~W, 

L(Ov)=Wv)= u aL(v)Ev, 
UGA 

L(ocp)=A*L(cp)~%‘. 

(2) implies (1). Let 9 be the set of RTL-definable languages. Then % contains 
aA* = L(p,), for every aE A. The formulas L(V) v L($)= L(cp v $) and 
A+ \ L(p) = L( 1~) show that 9 is a boolean algebra and the formula 
A*L(rp) = L( 0~) shows that 9 is closed under the operation L -+ A*L. Finally, 
the formula aL(cp) = L(p, A O~J) shows that % is closed under the operation 
L + aL, for every letter a E A. Therefore % contains V. [ 

We can now state our main result. 

THEOREM 4.2. Let L be a language of A+. The following conditions are 
equivalent : 
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(1) L is RTL-definable, 
(2) the syntactic semigroup of L is locally T’-trivial. 

Proof. As for Theorem 3.1, we prove the dual version of the theorem, which 
states that L is definable in past restricted temporal logic if and only if its syntactic 
semigroup in a-trivial. Consider the smallest boolean algebra ?8 containing the 
languages A*a and closed under the operations L --t LaA* and L -+ La for every 
a E A. By Proposition 4.1 and duality, it suffices now to prove the following 
statement 

A language belongs to a if and only if its syntactic semigroup 
belongs to LR. 

First, S(A*a)=B(l, 2)eLR. Now, by Proposition 1.7, S(LaA*) divides U, OS(L) 
and S(La) divides B( 1,2) 0 S(L). It follows by Proposition 1.10, that if S(L) E LR, 
then S(LuA*) E LR and S(La) E LR. Therefore, if L E 9, then S(L) E LR. 

In the other direction, the proof mimics the proof of Theorem 3.1. Let C be the 
class of all transformation semigroups X such that every language recognized by X 
belongs to .@. The class C contains the trivial semigroup and is closed under 
division. Therefore, to show that C contains LR, it suffices, by Proposition 1.10, to 
verify that if YEC, then U,o YEC and 20 YE.C. 

By the wreath-product principle, every language of A+ recognized by U, 0 Y 
(respectively 2 0 Y) is a finite union of languages of the form U n Vcr - ‘, where 
o:A+-+B+=(QxA) + is a certain sequential function, UC A + is recognized by Y 
and V c B+ is recognized by U, (respectively 2). Since YE C, U belongs to W by 
definition. Furthermore, by Lemma 1.3, V is a boolean combination of languages 
of the form B*bB* (respectively B*b), where be B. Since a-i commutes with 
boolean operations, it remains to show that the languages of the form (B*bB*) 0-l 
(respectively (B*b) cr -‘) belong to a. We take again the notations used in the 
definition of (T (cf. Proposition 1.8). Set b = (q, a) (recall that B = Q x A). Then we 
have 

(4 ~~~u,)~=(40,ul)(q,~(u,r~),u2)~~~(q,~(a,~~~a,-,)rl~,a,). 

First assume q#qO. Then (a, . . . a,) (r E B*bB* if and only if there exists an index 
i such that qO. (a, . . . a,- ,) r,rn= q and ui = a. Therefore (B*bB*) 0-l = LuA*, where 

L= {SEA+ ) qO-(uqx)=q}. 

If q=qO, then (B*bB*)a-‘=LuA*uaA *. But L is recognized by Y and since 
YE C, L belongs to B. Furthermore, aA* also belongs to 99, since 

(a} = A*a\ ((A*a) aA* u (A*u) bA* u (A*b) uA* u (A*b) bA*) 

and 

uA* = {a] u {u} aA* u {u] bA*. 

571/46/3-Z 
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a-r_r 2 

FIGURE 4.1 

It follows that (B*bB*) 0-r belongs to 5B. Similarly, (al . ..a.) G E B*b if and only 
if 4dk . ..a.-,)qx=q and a,=a. Therefore (B*b)a-‘=La or Law(a) (if 
q = q,,) and (B*b) o - ’ also belongs to @. i 

COROLLARY 4.3. Given a rational language L, one can effectively decide whether 
it is RTL-definable. 

ProoJ: The language L can be given either by a rational expression or by a finite 
automaton. In both cases, there are well-known algorithms to compute its minimal 
automaton d(L), and then its syntactic semigroup S(L), which is also the transfor- 
mation semigroup of d(L). Then it suffices, by Proposition 1.9 to verify that S(L) 
satisfies the identity x”v(xo~xov)o = (xo~xwv)o. [ 

Say that two PTL-formulas rp and $ are equivalent if L(q) = L(e), that is, if they 
agree when interpreted on finite words. 

COROLLARY 4.4. Given a PTL-formula, one can effectively decide whether it is 
equivalent to some RTL-formula. 

We conclude this section by three examples. 

EXAMPLE 4.1. Let A = {a, b} and let L = (ab)+. Then the minimal automaton 
of L is represented in Fig. 4.1. The syntactic semigroup of L is the semigroup S with 
zero presented by the relations 

a2=b2=(), aba = a, bab = b. 

Thus S = {a, b, ab, ba, 0). There are three idempotents ab, ba, and 0. The 
corresponding “local” semigroups are 

abSab = {ab, O), baSba= {ba, 01, OS0 = (01, 

b 

FIGURE 4.2 
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FIGURE 4.3 

all of which are Y-trivial. Therefore L is expressible in restricted temporal logic. 
Indeed, we have L = L(p), where 

(p=Po A o(P, A loPa A lo/‘,) A lo(Pa * OPa) A lo(P, A OPd 

EXAMPLE 4.2. Let A = (a, 6, c> and let L =A .a(~, c}*. Then the minimal 
automaton of L is represented in Fig. 4.2. The syntactic semigroup of L is U,, 
which is locally Y-trivial. Therefore L is expressible in restricted temporal logic. 
Indeed, we have L = L( cp), where 

EXAMPLE 4.3. Let A = {a, b, c> and let L = u*b{u, b, c}*. Then the minimal 
automaton of L is represented in Fig. 4.3. The syntactic semigroup of L is the 
monoid S presented by the relations 

u= 1, bb=bc=b, cb=cc=c. 

This is the reverse of U2 and it is aperiodic, but not locally g-trivial. Therefore, any 
formula $ such that L = L($) uses the “until” operator. In fact, L = L(p), where 
p=Pa@!b. 

5. AUTOMATA, VARIETIES, AND FORBIDDEN CONFIGURATIONS 

In the two previous sections, we have seen how to characterize the formal 
languages associated with a formula of propositional temporal logic (Section 3) and 
of restricted temporal logic (Section 4). Both characterizations are in terms of the 
syntactic semigroup of the formal language. We shall see here how this charac- 
terization can be expressed in terms of automata. In the case of restricted temporal 
logic, this has the advantage of providing a polynomial algorithm to check whether 
the language defined by a given automaton is RTL-definable. This is of interest 
since, on the contary, the corresponding problem for PTL logic is the complement 
of an NP-hard problem [ 191 and is PSPACE-complete [ 11. Thus, unless P = NP, 
checking whether the language defined by a given automaton is RTL-definable 
cannot be solved in polynomial time. 

We begin with the characterization of automata associated with W-trivial semi- 
groups. We shall then treat the case of locally &trivial semigroups. This 
corresponds, as we have seen, to formulas of past temporal logic. We shall finally 
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come to T-trivial and locally Y-trivial semigroups, which correspond to RTL- 
formulas. We shall see how these characterizations lead to polynomial algorithms. 

Before we give the details of our algorithms, let us fix some convenient notations. 
Given a finite (complete) deterministic automaton d = (Q, A,. ) and a positive 
integer k, we denote by dk = (Qk, A, . ) the direct product of k copies of JZZ, where 
the action of A on Qk is given by 

(41, ..., qk) ’ a = (41 ’ a~ ...> qk .a)* 

We also denote by G,(d) the transitive closure of the directed graph defined by 
ralk. For instance, if Jai is the automaton represented in Fig. 5.1, then 6’ is the 
automaton pictured in Fig. 5.2 and Gz(d) is the graph shown in Fig. 5.3. Given a 
deterministic automaton d = (Q, A, . ), the set of all paths in &’ defines an infinite 
labelled graph G(d), with Q as set of vertices, and the triples of the form 
(q, w, q . w) (where w E A ‘) as edges. A labelled subgraph of G(&‘) is said to be a 
configuration present in d. Two words x, y E A* which have the same action on Q 
are said to be equivalent in d (notation x ‘~1). The following result is already in 
[15, p. 1183. 

THEOREM 5.1. The semigroup of a deterministic automaton d is W-trivial if and 
only if there exist no configurations of d of the form 

with p # q, 

Proof. Suppose first that 5’(a) is &‘-trivial and consider a configuration as 
above. Let UI be the exponent of s(a). Then we have, for every x, y E A+, 

(xy)@ E (xy)” x 

and therefore 

p=p.(xy)“=p=p.(xy)“x=q, 

whence p = q. Conversely, if d = (Q, A, . ) contains no forbidden configuration, let 
us verify that, for every U, v E A +, (uv)~ E (uv)~ u. Let r E Q and let p = r. (uv)~. 
Since (uv)~ is idempotent, we have p . (uv)~ =p. Set x = u, y = (vu)~- ’ u and 
q = p . x. Then q . y = p . xy = p . (uv)O = p. Therefore d contains the configuration 
shown by Fig. 5.4 and thus p = q. Therefore p = r . (uv)~ = r. (uv)~ u and thus 
(uvy = (uvy u. 1 
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FIGURE 5.4 
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FIGURE 5.5 

The transposition of the previous characterization to the case of locally W-trivial 
semigroups follows a general scheme. Let V be a variety of semigroups and assume 
that the deterministic automata whose semigroups belong to V can be described by 
a set W of forbidden configurations. Then the deterministic automata whose semi- 
groups belong to the variety LV of all semigroups which are locally in V can be 
described by the set V’ of forbidden configurations obtained as follows. For each 
configuration CEV, we add to each vertex a loop labeled by a new symbol, the 
same for all vertices. Then the semigroup of a deterministic automaton d belongs 
to LV if and only if that ~4 contains no configuration of C’. In particular, we have 
the following result. 

THEOREM 5.2. The semigroup of a deterministic automaton d is locally B-trivial 
if and only if there exist no configurations of d of the form shown by Fig. 5.5 with 
4 # (I’* 

Proof. By Proposition 1.9, a semigroup is locally W-trivial if and only if it 
satisfies the identity 

(ux”uxo)o uxw = (uxwvxw)w. (5.1) 

Suppose that S(d) is locally g-trivial and that & contains a configuration of the 
form represented in 5.5. Then by (5.1), 

q = q . ( ux”vxo)o = q . ( ux”uxw)w uxw = q’. 

Conversely, suppose that d satisfies the condition of the theorem, and let U, v, x 
be arbitrary words of A +. Set u’= uxw, v’ = vx”, and x’ =x0. Let q be a state, 
and set q1 =q~(ux”uxo)o and q2=q1 .ux? Then a short computation shows 
that d contains the configuration of Fig. 5.6 and thus q1 = q2. It follows that 
q * ( uxwuxw)o = q . (ux“‘vx”‘)~ ux” for any state q, and thus S satisfies the identity 
(5.1). Thus S(d) is locally %%-ivial. 1 

FIGURE 5.6 
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The previous result yields to a polynomial time algorithm to check whether the 
semigroup of an n-state deterministic automaton J$ is locally g-trivial or not. 
Indeed, one first observes that, given two states q and q’, there is a word w E A + 
such that q. w = q and q’ . w = q’ if and only if ((q, q’), (q, q’)) is an edge in the 
directed graph G,(a). Therefore, one can check whether d contains a conligura- 
tion of Fig. 5.5 with q # q’ by computing G, and Gz and by verifying that there are 
no pairs {q, q’} of states such that 

(a) (q, q’) and (q’, q) are edges in G,(d), and 

(b) ((9, 41, (4, 4’)) is an edge of G*(oQI). 
Since G, (resp. G,) has n (n*) vertices, this gives a polynomial algorithm. 

This is in fact a general property of varieties defined by forbidden configurations. 
Let indeed V be a variety of semigroups and assume that the deterministic 
automata whose semigroups belong to V can be described by a finite set %’ of 
forbidden configurations. Then there is a polynomial algorithm to check whether a 
given n-state deterministic automaton d belongs to V. For this we have to check 
whether or not some configuration C of % is present in d. The number of possible 
assignments of states to the vertices of C is polynomial in n. And for each 
assignment, the existence of a given set of k edges with the same label is solved by 
reduction to an accessibility problem in the graph Gk(&‘). The overall algorithm is 
polynomial. In particular, we have the following result. 

COROLLARY 5.3. There is a polynomial time algorithm for testing whether the 
reverse of the language accepted by an n-state deterministic automaton is RTL- 
definable. 

We illustrate this method on the following example. 

EXAMPLE 5.1. Let d be the automaton given on Fig, 5.7 and already considered 
in Example 4.2. To check whether S(a) is locally B-trivial, we construct the graph 
G2(&). It is represented in Fig. 5.8. Now this graph contains a cycle of length 1 
around (1,2) and 1 and 2 are in the same strongly connected component of G,(d). 
This indicates the presence of a forbidden configuration. It is indeed obtained, for 
instance, with the labels given in Fig. 5.9. It follows that d is not B?-trivial and 
L(d) is not expressible in reverse restricted temporal logic. 

We now consider the case of -Y-trivial semigroups. 

PROPOSITION 5.4. The semigroup of a deterministic automaton d is Y-trivial if 
and only if the configuration 

0 

Y 
c3 xc(JlI 

X X 

with p # r is not present in d. 
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Proof. Let us first suppose that S(d) is Y-trivial. We consider a configuration 
as above. Since (yx)” = x(yx)“, we have 

r=q.x(yx)“=q.(yx)W=p, 

whence p = r. Conversely, suppose that the above configuration is not present in &. 
Let X, y E A + and let q E Q be arbitrary. Let r = q. x(yx)” and p = q . (yx)“. Then, 
by the hypothesis p = r and therefore x( yx)” 3 ( yx)“. Thus S(d) is Y-trivial. 1 

Note that the characterization of Proposition 5.4, contrary to that of Proposition 
5.1 requires the hypothesis that the automaton is complete. There is in fact no 
possibility of characterization by forbidden configurations of p-trivial semigroups 
given by a deterministic automaton if it is not complete. Indeed the automaton of 
Fig. 5.10(i) is a subgraph of the labeled graph of the automaton of Fig. 5.1O(ii). The 
semigroup of the first one is not T-trivial whereas the second one is. We finally give 
the announced characterization of locally .$&‘-trivial semigroups. It is a corollary of 
Proposition 5.4. 

PROPOSITION 5.5. The semigroup of a deterministic automaton d is locally 
LY-rivial if and only if the configuration 

with p # r is not present in d. 

Together with Theorem 4.2, we obtain 

COROLLARY 5.6. There is a polynomial time algorithm for testing whether the 
language accepted by an n-state deterministic automaton is RTL-definable. 

This does not give, however, a polynomial algorithm to check whether a given 
PTL-formula is equivalent with a RTL formula. We presently do not know any 
reasonable bound on the complexity of this problem. 

6. CONCLUSION 

We have given an effective characterization of the languages definable in linear 
propositional temporal logic and in restricted temporal logic. It would be 
interesting to obtain similar characterizations when the temporal logic is interpreted 
on infinite words. This will be the subject of a future paper. Another interesting 
question is to consider the temporal logic whose only operator is “eventually.” 
Sistla and Zuck [ 183 have given a description of the set of infinite words definable 
in this logic, but this description does not seem to be effective. 
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