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Abstract

Birget, J.-C., Partial orders on words, minimal elements of regular languages, and state complexity,
Theoretical Computer Science 119 (1993) 267-291.

The classical partial orders on strings (prefix, suffix, subsegment, subsequence, lexical, and dictionary
order) can be generalized to the case where the alphabet itself has a partial order. This was done by
Higman for the subsequence order, and by Kundu for the prefix order. Higman proved that for any
language L, the set MIN(L) of minimal elements in L with respect to the generalized subsequence
order is finite. Kundu proved that for any regular language L, the set MIN(L) of minimal elements in
L with respect to the generalized prefix order is also regular. Here we extend his result to the other
orders and give upper bounds for the number of states of the finite automata recognizing MIN(L).

The main contribution of this paper, however, is the proof of lower bounds. The upper bounds are
shown to be tight; in particular, if L is recognized by a deterministic finite automaton with n states
then any deterministic {or even nondeterministic) finite automaton recognizing MIN(L) needs
exponentially many states in n; here, MIN is taken with respect to a generalized prefix, suffix, or
subsegment order (with a partially ordered alphabet of 4 letters, whose Hasse diagram contains just
one edge) or with respect to the ordinary subsequence order.

We also give a new proof of a theorem of Sakoda and Sipser about the complementation of
nondeterministic finite automata.

1. Introduction and definitions
Let 2 be a finite alphabet, and let X* be the set of all finite strings (or “words™) over

Z (including the empty string ). The length of a string w is denoted |w|; the cardinality
of a set S is denoted |S|. Several partial orders on X* are well known, e.g., the prefix
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order, the suffix order, the subsegment order, the subsequence order, the lexical order,
and the dictionary order; in the latter two, one assumes that a total order on the
alphabet 2 has been given beforehand.

Sukhamay Kundu [8] introduced a generalized prefix order on 2*, assuming that
a partial order has been put on the alphabet X beforehand:

Definition 1.1 (Kundu [8]). Let (2, <) be a partially ordered finite alphabet. The
generalized prefix order on X* is defined as follows: two words u=a,...q, and
v=b,...h, (with ay,...,au. by....,bcX) are ordered u<v if and only if h<k and
ay;<by,...,a,<by.

Note that if (X, <) is just the equality relation, the generalized prefix order reduces
to the ordinary prefix order.

Definition 1.2. For any partial order (X* <) and any set L= X* we define
MIN(L)= {wel |there is no xeL such that x <w} (the set of minimal elements of L).

Kundu proves [8] that if L < X* is a regular language then MIN(L) is also regular
(where MIN is taken with respect to the generalized prefix order determined by
a partially ordered alphabet (2,<)). In his proof, if L has a deterministic finite
automaton with » states then MIN(L) has a deterministic finite automaton with
<n{4" ' 4 3) states; he also proves an order-n? lower bound. He asks whether there
exists some exponential lower bound. In this paper we will give a slightly improved
upper bound (namely, 1+(n—1)2""?), and we will show that this new bound is
optimal, by constructing examples for which the upper bound is reached; the con-
struction and analysis of these examples constitutes the main part of this paper. We
will also show that even a nondeterministic finite automaton needs exponentially many
states to recognize MIN(L).

Kundu’s idea of generalizing the prefix order can also be applied to other classical
orders. We give exact definitions below; later, we will show that for these orders the
MIN operator preserves regularity, and we will analyze the number of states needed
to recognize MIN(L); we will see that, except for the generalized lexical and dictionary
orders, the number of states grows exponentially when one goes from L to MIN(L),
even if nondeterminism is allowed.

Definition 1.3. Assume that (X, <) is a partially ordered finite alphabet. Let u=a,...qa,
and v=b,...h, be two words (with a;.....ay, by,....beX). Then we define the
following partial orders on X*:

Generalized dictionary order: u<v iff either u is a prefix (in the ordinary sense) of ¢,
or we can write u = pa;x and v=pb;y, where p is the longest common prefix (in the
ordinary sense) of u and v, and a; <b; (where i—1 is the length of p).

Note that if (X, <) is a total order then the generalized dictionary order reduces to
the ordinary dictionary order (and the definition is formally the same); on the other



Partial order and state complexity 269

hand, if the partial order on 2 is just the equality relation, the generalized dictionary
order reduces to the ordinary prefix order.

Remark 1.4. If in this definition one replaces “u is a prefix (in the ordinary sense) of ¢t
by “u is a generalized prefix of v”, one still obtains the same generalized dictionary
order.

Generalized lexical order: u<viffeither |u| <|v|, or |u|=|v|and u < with respect to
the generalized dictionary order.

Generalized subsegment order: u<v iff h<k and there exists 0<j<k—h such that
ay<hjiy, a3 <bjia, oty (<hjypo1, ay<bjyy.

If (2, <) is the equality relation on X then this defines the ordinary subsegment (or
“substring™) order.

Generalized subsequence order (Higman [3]): u<v iff h<k and there exist h
numbers 1 <iy <ip <--- <ip-y <iy<ksuch that a, <b;, a, <b;,,...,a4_ <b;,_,a,<h;.

Generalized suffix order is defined in a way similar to the generalized prefix order.

In this paper we use nondeterministic finite automata (NFA), viewed as structures
(0.2.-.40,F), where Q is the set of states, goeQ is the start state, F = Q is the set of
accept states, and - is the next-state relation (i.e., a function from Q x X into the power
set of Q; for geQ, aeZ, the set of next states is ¢-a); we will follow [4]. A partial
deterministic finite automaton (DFA) is an NFA whose next-state relation is a partial
function (i.e., g-a contains at most one element of Q). A DFA is complete if the
next-state relation is a total function (i.e., ¢ a contains exactly one element of Q). In
this paper, DFA means “partial DFA” (unless we explicitly say “complete™).

2. Results about the state-complexity of MIN(L)

We first state and prove upper-bound results. We then state the lower-bound
results; the constructions of rather complicated families of examples that prove these
lower bounds are given in Section 3.

Theorem 2.1 (Upper bounds). Let (X, <) be a partially ordered finite alphabet and let
L = X* be a regular language which is recognized by a deterministic finite automaton
with n states. Assume n>?2 (otherwise the problem is trivial).

(1) With respect to the generalized prefix or suffix orders: MIN(L) is recognized by
a deterministic finite automaton whose number of states is <(n—1)2""2 41,

(2) With respect to the generalized subsegment order: MIN(L) is recognized by
a deterministic finite automaton whose number of states is <(n—2)2""342.

(3) With respect to the generalized subsequence order: MIN(L) is recognized by
a deterministic finite automaton whose number of states is <(n—2)2"~3+2. Moreover,
Jor every L (not necessarily regular), MIN(L) is a finite set (by a classical theorem of
Higman).
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(4) With respect to the generalized dictionary order: MIN(L) is recognized by
a deterministic finite automaton with <n states. For the generalized lexical order:
MIN(L) is recognized by a deterministic finite automaton with <n? states.

Proof of Theorem 2.1. (1) Generalized prefix order: Let o/ =(Q,2,",q0,{f}) be a
deterministic finite automaton recognizing L. Here - denotes the next-state func-
tion. We can assume that all out-edges of the accept states of &/ have been dropped
and that all accept states have been coalesced into a single accept state (which we

denoted bv f abovel To avoid trivial cases
vy J 11 P Lasls

denoted above). To avoid trivia we assume ¢y #f.

s YTV Yo7
A deterministic finite automaton recognizing MIN(L) can be defined as follows:
Set of states: { f}u{(q,S)eQ x22|q+#f, q¢S. f¢S}; here fis a new symbol. Start
state: (qo,9). Accept states: { f}.
Next-state function:

First, given a state (¢, S) and a letter aeX, let us define

The next state, reached from (g, S) on input a is

[(q-a,S”"“) if f#q-a, q-a¢S*%, f¢S%°, and q-a#0;
(g,8) a=< f if g-a=f and fgS**;
0 otherwise (i.e., g-aeS?* or feS% or q-a=0)

We also define f-a=0 for all aeZ.

The number of states of this automaton is 1 +(n—1)2""2 where n=|0Q!. One can
check that the language recognized is MIN(L) with respect to the generalized prefix
order. Intuitively, the automaton works as follows: Suppose that, starting in state
(go,®) and reading an input string weX*, the state (¢,S) has been reached; then
qo*w=gq (with respect to the automaton /), and S contains all those elements of
0 that can be reached from g, when &7 reads any string ue 2 * satisfying |u|=|w| and
u<w (strict generalized prefix order). The definition of $%¢ and of (g,S)-a has been
devised accordingly. If, after reading w, we have reached a state (¢, S) with feS but
f#¢q, then w (and any continuation of w) cannot be minimal in L because some strict

lizad f £y I -
generalized prefix of wis in L; similarly, if geS but g#fthen w

1i
L because some strict generalized prefix of w leads to the same state in .« as w. On the
other hand, if w is such that g=/¢S then w belongs to MIN(L).

Generalized suffix order: Let o/ =(Q,2,",qq, F) be a deterministic finite automaton
recognizing L. We can assume that all in-edges of the start state have been dropped.
We assume go¢ F, otherwise the problem is trivial.

A deterministic finite automaton for MIN(L) (with respect to the generalized
subsegment order) is defined as foliows:

Set of states: {(qo.0)}U{(q. T)eQ x22|q0#q, q¢T, qoeT}. Start state: (qo,9).
{ ’T\r—f)v’)QIFr\’T' [ = rcpl

Jo 1 JEY R 4 Vi =Y, Yot d, jTi
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Next-state function: First, given a state (g, S) and a letter ae 2, let us define
Sea=14o}vig-beQlbeX, b<alu{p ceQ|peS, ceX, ¢c<al.
The next state reached from (g, S) on input aeZX is

(q-a,S,.) if g-a¢S,, and q-a#0;
0 otherwise (i.e., if g-aeS,, or q-a=0).

(q,S)-a={

The number of states of this automaton is 1+(n—1)2"" 2, where n={Q|; one can
check that it recognizes MIN(L). The intuition is like in the case of the generalized
prefix order; the main difference is that S, , is defined to contain g, always.

(2) Generalized subsegment order: Let of =(Q,%,",qq,{ f}) be a deterministic finite
automaton recognizing L. We can assume that all in-edges of the start state, and all
out-edges of accept states have been dropped, and that all accept states have been
coalesced into a single state - We assume qo #f, otherwise the problem is trivial.

A deterministic finite automaton for MIN(L) (with respect to the generalized
subsegment order) is defined as follows (where f'is a new symbol):

Set of states: { f}1U{(qo0.0)}Ul(g, T)eQ x29|qo#q#S, q¢ T, qoeT, f¢T}. Start
state: (qo,0). Accept states: { f}.

Next-state function: First, given a state (¢,5) and a letter aeX, let us define

Spa={qo;ulg beQ|beX, b<aju{p-ceQ|peS, ceX, c<a).
The next state reached from (g, S) on input aeX is

(q-a,840) if f#q-a q-a¢S, ., [¢S,.4. and q-a#0;
(g, S)a={f if f=q-a, and f¢S, ,;
0 otherwise (ie., if q-a€S,, or feS,, or ¢-a=9).

We also define f-a=0 for all aeX.

The number of states of this automaton is 2+(n—2)2""3, where n=|Q|; one can
check that it recognizes MIN(L). The intuition is like in the case of the generalized
prefix and suffix orders.

(3) Generalized subsequence order: That MIN(L) is always a finite set (no matter
what L is) follows from the following famous theorem of Higman [3]: With respect to
the ordinary subsequence order, X* contains no infinite subset of pairwise incomparable
elements. Higman’s theorem (1952) has been rediscovered many times; see [5] for an
overview; see also [7, pp. 105-109] (where a short proof is given).

MIN(L), being finite, has a finite automaton, of course; but, in general, this
automaton cannot be effectively constructed from a description of L (indeed, L=0 iff
MIN(L)=@; so, if L is described by a Turing machine, the emptiness problem of
recursively enumerable languages would become decidable).

Let us construct a deterministic finite automaton recognizing MIN(L) when L is
regular. We will obtain an exponential upper bound on the number of states of this
automaton; in Section 3 we will also show that this upper bound is tight.
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Let o7 be a deterministic finite automaton recognizing L, as in the proof of Theorem
2.1(2). A deterministic finite automaton for MIN(L) {with respect to the generalized
subsequence order) is obtained as follows (where fis a new symbol).

Set of states: { f}U{(qo.0)}wi{(q. T)eQ x2%|qo#q#f, q¢T, qoeT, f¢T}. Start
state: (qq, ). Accept states: { f}.

Next-state function: First, given a state (g, S), and ae2, we define

Spa=1{q}uSUlq beQ|beX, b<aju{p-ceQ|peS, ceX, c<al.

(For the ordinary subsequence order S, , becomes {g}uSu{p-acQ|peS}.)
The next state reached from (g, S) on input a2 is:

(q-a.Se.) if f#q-a, q-a¢S, .. [¢S,. and q-a#0;
(q.S)ca={f if f=q-a, [¢S,.4:
0 otherwise (ie., f€S,, or g ae$, , or q-a=9).

We also define f-a=0 for all aeZX.

This automaton has 2+(n—2)2""3 states and recognizes MIN(L). Intuitively,
suppose that from (g, 9), reading we X *, one reaches (g, S); then g = g, - w (with respect
to /), and S contains those elements of Q that <7 can reach from ¢, by reading a strict
generalized subsequence of w.

(4) Generalized dictionary order: Let o/ be as in the proof of Theorem 2.1(1); in
addition, let us assume that from every state of ./ one can reach the accept state. We
construct a deterministic finite automaton for MIN(L) as follows:

The state set Q, start state g, accept state f, are the same as for <.

The next-state function ¢ is defined by

g-a if for all beX such that b<a we have: g-b=0 (in &),
gra={90 otherwise (i.e., there exists heX such that b<a,

and ¢-b#0)

Intuitively, this automaton processes a word we X * the same way as &/, until it finds
a letter a for which there exists be X such that b <a, and g- b is defined (recall that we
are always using partial automata); if this happens, the new automaton rejects (by
having no next state); in this case the input indeed cannot be minimal in L (recall that
we assumed that from any state one can reach an accept state).

We mentioned already that if (X, <) is just the equality relation, the generalized
dictionary order becomes the ordinary prefix order; hence MIN(L) can be infinite.
When (2, <) is a total order, the generalized dictionary order is the ordinary dictio-
nary order; in that case MIN(L) contains cither exactly one element or is empty (the
latter is possible, e.g., when ¥={a,b} with a<b and L=a*b).

Generalized lexical order: If L is recognized by a IDFA .o/ with n states, then
MIN,. (L)=MINg.. (LN Z™), where m (< n) is the length of the shortest directed path
from the start state of &/ to any accept state; L 2™ has a IDFA with <nm states
(using the well-known cartesian-product construction), and applying MIN ;. does
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not increase the number of states (as we just saw). This yields a IDFA of nm < n? states
for MIN . (L).

From the state-complexity point of view, the generalized dictionary and lexical
orders do not lead to problems about exponential lower bounds, so we will not study
them any further in this paper.

This completes the proof of Theorem 2.1. [J

Theorem 2.2 (Lower bounds). (1) The upper bounds of Theorem 2.1(1)~(3) are reach-
able even if nondeterministic automata are used.

More precisely: For every n 2= 3 there exists a partially ordered alphabet (X, <) of size
O(n*), and a regular language L, < XY such that: L, is recognized by a deterministic
Sfinite automaton with n states, but any deterministic or nondeterministic finite automa-
ton recognizing MIN(L,) needs (n—1)2"~ 241 states, in the case of the generalized
prefix or suffix orders (or (n—2)2"" 2+ 2 states in the case of the generalized subsegment
order).

For the generalized subsequence order there exists an alphabet X, of size <n?, and
a language L, such that any nondeterministic automaton recognizing MIN(L,) needs
(n—2)2""* 42 states (even for the ordinary subsequence order).

(2) Exponential lower bounds with a fixed small alphabet: There exists a partially
ordered alphabet (X, <) with just four letters, such that for all n =3 rhere is a language
L, < X* satisfying: L, is recognized by a deterministic finite automaton with n states, but
any nondeterministic finite automaton recognizing MIN(L,) (with respect to the general-
ized prefix, suffix, or subsegment orders) needs 2('\/” states { for some constant ¢ > 1)
the Hasse diagram of the partial order (X, <) has just one edge.

For the generalized subsequence order, any nondeterministic finite automaton for
MIN(L,) needs = c¢" states ( for some constant ¢ > 1); the alphabet X has size 2 and need
not be ordered at all (ordinary subsequence order).

The proof of Theorem 2.2 is given in the following section.

Corollary 2.3. Suppose L is recognized by a 1AF A (one-way alternating finite automa-
ton) with n states. Then MIN(L) can be recognized by a 1AF A with <2"+n—2 states,
in the case of the generalized prefix or suffix orders (<2"+n—73 states in the case of the
generalized subsegment or subsequence orders).

Moreover, these bounds are optimal for all n (i.e., they can be reached).

This corollary is surprising: Intuitively, the MIN operation is just a combination of
nondeterminism and negation (see the results in Examples 3.10 and 3.15 in the next
section); so one would expect alternation to handle MIN(L) using few states, even if
L has an n-state AFA.

Proof of Corollary 2.3. See [2] for a definition of alternating finite automata. We
will use the following theorem of Leiss, Brzozowski and Kozen: A language L is
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recognized by a 1AFA with <n states iff L™ (the reverse of L) is recognized by
a IDFA with <2"states (see [6, 1] for other consequences of this theorem). Moreover,
for any partially ordered alphabet (X,<) one easily checks that
MIN(L™)=(MIN(L))*, with respect to the generalized subsegment or subsequence
orders; similarly, MIN (L") =(MIN(L))**". Now applying Theorems 2.1 and
2.2, one obtains the upper (and lower) bound [log,((2"—1)2*" "2+ 1)]=2"+n—2in
the prefix and suffix case (and [log,((2"—2)2*"~3+2)]=2"+n—3 in the subsegment

and subsequence case).

3. Lower bounds, examples

Example 3.1 (Reachability of the upper bounds for the state-complexity of MIN(L) for
the generalized prefix, suffix, and subsegment orders). Construction of a partially
ordered alphabet (X,,<) and a regular language L, < 2, such that:

(a) L, is recognized by a deterministic finite automaton with n states.

(b) Any deterministic, and also any nondeterministic, finite automaton recognizing
MIN(L,), with respect to the generalized prefix or suffix (or subsegment) orders,
requires =14 (n—1)2"" 2 (or =2+ (n—2)2"" *)states. So the upper bounds (Theorem
2.1) are reached, even if one allows nondeterminism.

The alphabet X, in this example has cardinality O(n?*(n+ 1)"). In Example 3.9 we
modify Example 3.1 in such a way that properties (a) and (b) still hold, but the
alphabet has cardinality O(n?).

Finally, in Examples 3.10 and 3.15, Example 3.9 is further modified to prove
Theorem 2.2(2), for the generalized prefix, suffix, and subsegment orders. The sub-
sequence order is studied in Example 3.18.

The idea for our example was inspired from the graph languages of Sakoda and
Sipser [9]. Here, in addition, we put a partial order on the graph alphabet.

In the following, n is any integer greater than 2. When fis a partial function
(1,...,n}={1,...,n} then f ! denotes the inverse of f(f ~ " is not a partial function, in
general); Dom( ') is the domain of f.

Alphabet: A letter of the alphabet X, is of the form (f 7% (f(x).x).7) or
(f,(x, £(x)).7%). where fis any partial function {l,....n}—{1,....n}; (f(»c x) (or
(x,f(x))) with xeDom(f), is a singled-out edge; 7 (with 0<k<n) is the cyclic
permutation of {1,...,n}, defined by: y(x)=x+k, for each xel{l,...,n—k}, and
w(x)=x+k—nfor xe{n—k+1,...,n}. So, £, has <2n?(n+ 1)" elements.

In the definition of X, we used partial functions and their inverses; more generally,
we could have used arbitrary binary relations R on {1,...,n}, and get letters of the
form (R, (x, y), ), with (x,y)eR < {1,....n} x {1,...,n}, and 7, as before.

The definition ofthe partial order, in general, is: (R, (x1, 1) 7)) <(Ry,(x2, y2 ) i) 1T
Ry=Ry, j=k 7 "x0) <y Hxa) 7 "y <o H(02):
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The definition of (R, (x, y), 7%) and the partial order become clearer in the following
graphical representation (see Fig. 1 for an example).

A letter (R,(x,y).7) is represented by drawing the directed bipartite graph of
R (with edges pointing from left to right), in which the edge (x, y) is drawn in bold; if
k=0 (ie., y,=identity map) the vertices are labeled from | to » in each column,
starting at the bottom; if k0, we label the vertices from k+1 (=7.(1)) to n, and
continue from 1 to k (=vy,(n)), starting at the bottom.

Two letters are ordered (according to the above definition) iff they have the same
underlying graph (R, =R,), the same labeling of the vertices ( j=k), and the marked
edge (x, yy) of the first letter appears entirely below the marked edge (x,, y;) of the
second letter (except for possible common vertices).

To define the language L,, we first define the graph of a word we 2, : it is the graph
obtained by putting the graphs of the letters of w in the sequence in which they appear
in w, and connecting equally labeled vertices in adjacent letters. See Fig. 2 for a small
example. Thus, the graph of w will have 2n|w| vertices.

We define L, ={we X, |the graph of w has a path which starts at the vertex labeled
1 in the left-most column, which reaches the vertex labeled # in the right-most column,
and which consists only of marked edges and inter-letter connections; this path should
not encounter a vertex labeled » until the right end is reached].

See Fig. 2. This definition is inspired from the graph languages of [9]. The last
sentence in the definition of L, impiies that L, is prefix-free (with respect to the
ordinary prefix order).
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Fig. 1. Some letters in £, with their order. The first letter is (f ~',(4. 1).7,), where f 7! is given by 41,
44,43, 2-2. In the second letter, the marked edge is (4,4). Since we have 77 1 (4)=3 <y 1(1)=4, the
first letter is indeed higher in the order than the second letter. The last two letters are incomparable.
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Fig. 2. A word we Ly, of length 4. Note that w¢Min(L,) (because of the path 1 2524 in a generalized
prefix of w), with respect to the generalized prefix order.

It is very easy to sec that L, has an n-st:
states are the vertex labels 1,2, ..., n, with 1 as the start state and » as the sole accept
state). Recall also that we use partial automata throughout this paper.

The fact that any nondeterministic finite automaton for MIN(L,) has
>14(n—1)2"" 2 states (in the case of the generalized prefix or suffix orders) or
>2+4(n—2)2" 3 states (in the case of the generalized subsegment order) follows from
the Facts 3.2, 3.5 and 3.6. To prove Facts 3.2 and 3.5 (deterministic case) only the
letters of the form ( /'~ %, (f(x), x), 7} play a role; the letters ( f. (x, ( f(x)), 7 ) will be used
to prove lower bounds for nondeterministic automata (Fact 3.6).

Fact 3.2. The deterministic automaton for MIN(L,), with respect to the generalized
prefix order (constructed from the above n-state automaton for L, in the proof of

Theorem 2.1(1)) is minimal. The generalized suffix order can Be handled similarly.

Proof. We shall show that (a) every state is reachable from the start state (1,®);
(b) from every state one can reach the accept state f; (c) every two states are
distinguishable by some input string.

(a) Reachability from (1,0): For any state (¢,S) we have (¢, S)=(1,0)*(f ~'.(1,9).7,).
where f'is the partial function defined by f(x)=1 if xe{q} uS (and f(x) is undefined,
otherwise). See Fig. 3(a) for an example.

(b) f is reachable from ali states: For any state (g, S) we have f=(q,5)*(g ™%, (g, n), 7,).
where g is the partial function defined by g(n) =g (and g(x) is undefined for x #n). See

(c) Distinguishability of all states: We consider the following cases.

Case 1. To distinguish the state f from any state (g, S), consider the input letter
a=(g~',(q,n),7,) defined a few lines ago. Then f*a is undefined, but (¢,S)*a=f.

Case 2: To distinguish two states (g, S), (p, T') where p #q, consider again the input
letter a=(g~',(¢,n),7,), defined a few lines ago. Then (p, T)+a is undefined, but
(g.S)=a=f See Fig. 4 for an example.

Case 3: To distinguish two states (q,3), (¢, T) where S# 7, assume there is an
element r which belongs to S but not to T. (If instead, there exists re T—S, the proof is

clmilar\ Consider the input string Inf anoth 7\ nh—(f Yia ad v M7 (g moy )
.......... Consider the mnput string h q.9) 7002 75g,n)7,)
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@ |

(2.{1.3,4)=(1.2 ) f=(3,9)

O 606000
& ET® @ 6

®E 6 0 00
® e 606 06

(a) (b)
Fig. 3. Here n=6. {(a) Reachability of (2,{1,3,4}) from (1,0). (b) Reachability of f from (3,S), where
Scil.... n—1}—13}.
—
(2,T)- =g (3,8)- =f.

®0 g0 0 e

® e 6 0 606

®6e 60 6

Fig. 4. Distinguishing (2, T') from (3,S}); here n=6, ¢=3, p=2.

where the partial functions f; and f, are defined as follows: f1(q) =g, fi(n)=r (this is
well defined, since g #n; indeed, since (g,S) is a state we have g#n), and f;(x) is
undefined for x¢{q,n}; f>(n)=gq, and f5(x) is undefined for x#n. Then (g,5)*a and,
hence, (g, S)* ab, is undefined; but (g, T)*ab=(q,0)*b=f. See Fig. 5 for an example.
This proves that the minimum deterministic automaton for MIN(L,) is the
automaton of the proof of Theorem 2.1(1) and, thus, has 1 +(n—1)2""2 states.

Remark 3.3. If we had simply defined our alphabet to be {(f ', (f(x),x)),
(f.(x, f(x)))| fis a partial function {1,...,n}—>{1,...,n}, and xeDom [} (equivalently,
we would just take the subset of X, obtained when y, is always replaced by y,) then the
minimum deterministic automaton for MIN(L,) would only need the states
{fru{T<={l,....n—1}| T+#0}. Indeed, in this case we would replace the state (g, S)
of the proof of Theorem 2.1(1) by T=Su{g}; then T uniquely determines (g, S), since
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Fig. 5. Distinguishing (3,{2.4,5)) from (3, 1,2,5}). Here n=6, g=3, and r=4€{2,4,5! —{1,2,5}.

(in the absence of 7;’s): g=min T and S=T—{g}. So without the y,’s, we do not reach
the upper bound, although we do obtain an exponential lower bound 142" 2,

Remark 3.4. If one looks at the letters of the alphabet X, which are actually used to
prove Fact 3.2, one sees that one only needs O(n?2") letters. Indeed, the following
groups of letters are used:

(a) Letters of the form (f ~',(1, p),y,) where ge{1,...,n—1} and f is the “constant
1” function restricted to domain S, where g¢S < {1,...,n—1} and where peS. There
are (n—1)(n—2)2""2 such letters.

(b) Letters of the form (¢~ 1,(g, n),7,) as in part (b) of the proof; here g # n. There are
n—1 such letters.

(c) Letters of the form (f ~',(¢,9),7,), where ge{l,...,n—1} and f(q)=q. f(n)=r
(for some re{l,...,n—1}, r#g) and fis undefined elsewhere. There are (n— 1)(n—2)
such letters. This corresponds to case 3 of part (¢) of the above proof (cases 1 and 2 use
the same letters as part (b)).
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Let us consider now the generalized subsegment order. In reference to the same
alphabet and the same language L, as in Fact 3.2 we have:

Fact 3.5. The deterministic automaton for MIN(L,), with respect to the generalized
subsegment order (constructed in the proof of Theorem 2.1(2) from the n-state automaton
of L,) is minimal.

Proof. The proof scheme is similar to the one for Fact 3.2.

(a) Reachability from (1,8): For any state (¢,S) (with 1#g+#n, 18, g¢S,
S<{l,...,n—1}) we have (¢,S)=(1.0)*(f ~',(1,9),7,), where fis the partial function
defined by f(x)=1 for all xe{q} U S (and f(x) is undefined otherwise). This is just like
in the proof of Fact 3.2, except that we only consider sets S with 1&S.

(b) fis reachable from all states: This is again exactly like in Fact 3.2.

(c) Distinguishability of all states. This is also exactly like in Fact 3.2,

This proves Fact 3.5. [

The previous remark (to the effect that only a subalphabet of O(n?2") letters is
needed) also applies here.
We now prove the lower bound for nondeterministic finite automata.

Fact 3.6. Every nondeterministic automaton for MIN(L,), with respect to the general-
ized prefix order (or the generalized suffix or subsegment orders), requires as many states
as the minimum deterministic finite automaton.

Proof. The proof is based on the same idea as the new proof of the Sakoda and Sipser
theorem given in the Appendix.

For every state (p,S) of the deterministic automaton for MIN(L,), we choose two
words u, gy and v, ) as follows (they are actually single letters here):

Ui sy=(f"1,(1,p),7,). where fis the partial function defined by f(x)=1 if xeSu { p!
(and f(x) is undefined otherwise);

Up.5y={g,(p,n),7,), where g is the partial function defined by g(x)=n if x¢S (and
g(x) is undefined if xeS§).

We also define ug=(fo""',(1,n),7,), where fy is the (total) function defined by
Jo(x)=1 for all x; and vr=¢ (the empty string).

One can check the following (for the generalized prefix, suffix, and subsegment
orders):

(1) For all states (p,S) of the deterministic automaton: u, s,v(,.s)€ MIN(L,); also
ug e MIN(L,).

(2) For all states (p,S), (¢, T) of the deterministic automaton: If (p,S)+#(q, T)
then u, 50 1y¢MIN(L,) or uy 10,5 ¢MIN(L,); also u,sv¢MIN(L,), and
us v 5y EMIN(L,).

Indeed, if p# g then u(, 5,04, 7) and Uy, 1,0, 5,do notbelongto L,;if p=gand S# T
then either S~ T #0 (and then u,, 5,0, ) is not minimal in L,), or S~ T#0 (and then
U, T)U(p,sy 1S NOt minimal).
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Let #=(R,2,,*,ro.{r}) be a nondeterministic finite automaton recognizing
MIN(L,) (we may, without loss of generality, assume that # has only one accept
state).

For each state (g, T') of the deterministic automaton, we choose a state r(, r,€ R such
that ry, r)€rg® . vy and reery ry° vy 1y (i€, rg ry can be reached on an accepting
computation on input uy 1y, 1) after u, ¢y was read). We choose r; to be rg (the
accept state of £).

Claim 3.7. For all states (q, T), (p,S) of the deterministic automaton of MIN(L,) we
have: if (q, T)#(p,S) then vy 1) #¥p g also vy 1y #re. (From this claim one immediately
concludes that # has at least as many states as the deterministic automaton.)

Proof. Suppose, by contradiction, that ry ry=r,s), with (4, T)#(p,S). Then the
words Uy, )U(p,s) and U, 5 0 1y do not both belong to MIN(L,), as we saw. But
2 will accept both; the following describes an accepting computation of 4 on input
U(p,s5)Viq, 7): Starting in state ro, # reads u, 5y and reaches the state r(,, 5, (=1, 1,); then,
by definition of #, 7y, # can reach the accept state r; by reading v, 7). In a similar way
one can describe an accepting computation on g, 1y, s)-

That ry, r,#rs follows immediately from the definition of ry ). This proves
Fact 3.6. [J

Remark 38. In the proof of Fact 3.6 we not only use letters of the form
(f ~L(f(x), x), 7). but also of the form (f,(x, (x)), 7x). The number of letters used is
O(n?2") (see a previous remark; actually, the use of letters (/. (x, f(x)),7,) doubles the
number of letters, but we still have O(n22") valid).

Example 3.9 (Reachability of the upper bounds of the state-complexity of MIN(L) for
the generalized prefix, suffix, and subsegment orders, with alphabet of size O(n®)).
Construction of a partially ordered alphabet (I},,<) and a regular language L, =TI}
such that properties (a) and (b) of Example 3.1 hold; in addition T, has O(n3) elements
only.

We start from Example 3.1 in which, however, we keep only the required O(n22")
letters. There are at least two natural ways of reducing the size of an alphabet
(assuming that useless letters have been discarded already): One is to encode the larger
alphabet into fixed-length strings over a small alphabet (e.g. binary encoding); we will
do this in Example 3.15; but because we are working with ordered alphabets, the
encoding does not work as well as in other situations, and the lower bounds will not
be optimal (although still exponential). In a second method, which we use in the
present example, each letter of X, is “factored as a product of generators™; X, is then
replaced by the (smaller) set I, of generators.

Each element of X, is of the form (f ~L,(f(x), x),yx) or (f.(x, [ (x)),7«), where f is
a partial function. One can decompose fas a composition of other partial functions. It
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is well known that the set of all partial functions {1, ...,n} = {1, ..., n} can be generated
by just four partial functions, e.g., by the four partial functions whose function tables
are x=[2,3,...,n 1] (cyclic shift), f=[2,1,3,4,...,n] (transposition of 1 and 2),
»=[1,1,3,4,...,n] (collapse of 1 and 2 to 1), d=[—.2,3, ..., n] (identity, left undefined
on 1).

We will use the following alphabet:

(LU0, 0700, (L6, (), 7) | xeDom L ke {1, ..., nj, fe®],

where v, denotes the cyclic k-shift (v (x)=x+k if x<n—k, and y(x)=x+k—n if
x>n—k), and @ is the following set of partial functions: ®={u;|1<i<n}u{c}u
{t;| 1 <i<n—1}. These partial functions are defined as follows: u;(x)=x if x#i (and is
undefined if x=i); ¢(x)=11f x #n (and is undefined if x =n); and ¢; is the transposition
(i,n) (defined by t;(i)=n, t;(n) =1, t;,(x) = x for i # x #n). Note that u; and t; are injective,
and w;=u; !, =171

Clearly, I, is a subset of 2,,; we will use the partial order of Z,, (restricted to I},) as the
partial order of I,,. The number of elements of I, is O(n?3).

As our language L, we pick L,nTF* (where L, is the language of Example 3.1).

The same n-state automaton which recognizes L, can also be used for L,; we just
have to restrict it to the alphabet I(SZX,).

To show that any deterministic finite automaton which recognizes MIN(L,) needs
(n—1)2" 241 states in the case of the generalized prefix or suffix orders (and
(n—2)2"~3 42 states for the generalized subsegment order), we proceed as in example
3.1: Facts 3.2 and 3.5 can be proved for L, too, but the letters that were used must now
be factored over the alphabet T,.

Part (a) of the proof of Facts 3.2 and 3.5 (reachability of (q,S) from the start state
(1,0)): We have (1,0)«(c™ L (1,9)7)=(g, {1,....g—1L,g+1,....n—1}), and (g, {1, ...,
g—l.g+1,...,n— 1})'H1¢5u:q: (u;,(4,9),7,)=1(q,S). See Fig. 6 for an example.

I,

{2,{1,34}) = (1,2) -

Pi3l
81

©®
©

;
9y
1iis

Iz
{
[

L

Fig. 6. Reachability of (2, {1,3,4}} from {1,0); here n=7.
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Part (b) (Reachability of ffrom any (¢, S)): We have (¢, 5) [T, ¢ (4 (¢, 4). 74) = (g, D),
and (q,0)*(t,,(g,n),7,)=f. See Fig. 7.

Part (¢) (Distinguishability of all states): We consider the following cases.

Case 1: To distinguish (¢, S) from f one uses the same input as in part (b) above.

Case 2: To distinguish (g, S) from (p, T) when p #gq, one uses again the same input
string wel' ¥ as in part (b} above. Then (¢.8S)*w=f and (p,7) w=0 (since
(p.T)*(....(q.q),...)=0 when p#¢).

Case 3: To distinguish (g, S) from (g, T') when S# 7, assume there exists reS—T
(the proof 1s similar if, instead, there exists reT—S). We have
(@ T)* g1y 1 Wi2(4,9),7,) =(q. ) since r¢ T also (¢,0)+(1,.(9.9). 74)=(4.0): also, as
we just saw in part (b) (¢q,0)°(t;,(g.n).7,)=f On the other hand,
(8:5)* Tl Wer(9-4), 74)=(4. {r} ). and (g. {r})* (1,14 4). 7,) =0 (undefined). Thus, for
the input string v=[T ;. .. (W:.(4.9), 7)1 (4. 4). 74} tg- (. 1), 7g) We have (g, S)*v=f.
but (¢, T)*r=0. See Fig. 8.

Fact 3.6 is also proved like Example 3.1; now u, s, and v, s, are words obtained by
factoring the partial functions appearing in the u, s, and v, s, of Example 3.1. The
details are the same as for adapting Facts 3.2 and 3.5: to obtain the new u(,, 5. proceed
as in part (a); to obtain the new v, s,, proceed also as in part (a), but use partial
functions rather than inverses of partial functions.

Example 3.10 (Exponential lower bound for the state-complexity of MIN(L) for the
generalized prefix, suffix, and subsegment orders, with an alphabet of size O(n)).
Construction of a partially ordered alphabet (4,,<) and a regular language L, = 4}
such that:

(a) L, is recognized by a deterministic finite automaton with n states

(b) Any nondeterministic finite automaton recognizing MIN(L,’), with respect to
the generalized prefix, suffix, or subsegment orders, requires >2""3—1 states.

(c) The alphabet A4, has cardinality O(n).

L
il

(3, {2,5)+

9y
od

CECECEONOXS)

?@
L

l?
le

®

Fig. 7. Reachability of f'from (3,12, 5}); herc n=6.
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Fig. 8. Distinguishing the states (3, {2,4.5)) and (3, {2.5}). Here r=4, n=6.

This example and the proof of its properties are based on the previous examples,
and on a result of Sakoda and Sipser [9].

In {9, p. 281] the following example is introduced: They consider the alphabet
I,={j""|fis a partial function from [i,....n} into {i,...,n}}, and the language
7,={wel}|in the graph of w there is a path from the extreme left column to the

extreme right column]. This was the inspiration of our Example 3.1 (except that in [9]

LOuIin (AL
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there is no marked edge and no cyclic permutation of the vertices). They prove the
following result (see [9, Theorem 4.1.3 and Remarks on p. 2817, and see the Appendix
of the present paper for a new proof):

Theorem 3.11 (Sakoda and Sipser [9]). The language T, is recognized by a nondeter-
ministic finite automaton with n states, but every nondeterministic finite automaton
recognizing T, (=1F —T,, the complement of T,) must have =2" states.

The alphabet I, used here has (n+1)" letters. But the semigroup of all partial
functions from {1,....n} into {1,...,n} under composition is generated by just four
partial functions 2, f,, 7», 0, (as we saw at the beginning of Example 3.9); the function
tables of %, f,.7,. 0, are: 2, =[2,3,4,...,n, 1] cyclic shift; ,=[2.1,3,4,...,n] transpo-
sition of 1 and 2; 7,=[1.1,3,4,....0] so 7y, ()=7,2)=1, 7, (x}=x if x>2;
Op=[—2,3,....1n] so d,(x)=x if x#1, J,(1) is undefined. So we could replace the
alphabet I, by the alphabet J,= {21, 8, ', 7. 1,0, '} (inverses of these four partial
functions); we also consider ¥, =T, (J,)* and ¥,=(J,)* — Y,. The theorem of Sakoda
and Sipser still holds for Y, and now we have a constant-size alphabet (|J,|=4). See
our Appendix for a slightly stronger result and a new proof.

To make use of this theorem we need the notion of reduction between regular
languages.

Definition 3.12. Let L, < 2*, ., < A* be languages, where X and 4 are finite alpha-
bets. Then L,/ L, (L, reduces to L,) iff there exist u,zeA* and a homomorphism
@:X* A% such that L, =¢ Y(u 'L, 1) (or equivalently: xe L, iff up(x)vel,).

Theorem 3.13. [f L,/ L,,and if L, is recognized by a nondeterministic finite automaton
with n states, then Ly is recognized by some nondeterministic finite automaton with
<n+1 states.

(The proof is straightforward; see e.g. [4] p. 61 for inverse homomorphisms, and
pp. 62 and 63 for right-quotients; left-quotients are similar, but one might need several
start states in the nondeterministic case, or one new start state; the proofs in [4] also
work for nondeterministic automata.)

We are now ready to introduce Example 3.10.

To define the alphabet 4, we will use partial functions {1,...,.n—3}—{1,....n—3}
and their generators o, s=a, fi,_3=f, y,—3=7 and J,_3=20:

Ay ={(fi ' fux) ) uela, B, 7,0}, xeDom(f,), and f, is the partial func-
tion {1,...,n} = {1,...,n} defined as follows: /,(2)=2, f,(1) and f, (n) are
undefined, and f(x)=pu(x—2) for all xe{3,....n—1}}

uilgr ' (g1(x),x)) | xeDom(yg, )}

U{(gn, (x,m) | 2<x<n— 1},
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Here g, and g, are partial functions defined by: g;(x)=1 for 2<x<n—1, (and ¢,(1)
and g,(n) are undefined); g,(x)=n for 2<x<n—1 (and g,(1) and ¢,(n) are undefined).
See Fig. 9.

One can check that |4,|=0(n). Also, 4, will be considered a subset of 2,
(Example 3.1), by identifying (R, (x, y)) with (R.(x,y),7,). The language L, = 4,F and
the partial order on 4, are defined as in Examples 3.1 and 3.9. Clearly, L, can be
recognized by a deterministic finite automaton with n states (just like L,).

In view of the preceding two theorems, property (b) of Example 3.10 follows from
the next claim (which gives an interesting inherent connection between minimization
and negation);

Claim 3.14. Y,_3/ MIN(L, ), where L denotes reduction, as defined above;: MIN is
taken with respect to the generalized prefix, suffix, or subsegment orders. For the
generalized prefix and suffix orders we actually have Y,_,/ MIN(L,).

Proof (see also Fig. 9). In the notation of the Definition of reduction, we let: X =J, _3;
A=A4,; u is the letter (g7 '.(1,2)); v is the letter (¢, (2, n)); finally, @: X*—>A* is the
length-preserving homomophism defined by: forevery i~ 'eJ,-3={2", Ly Lo}
we let (™ 1)=(f,"".(2,2))e4,. See Fig. 9 for an example.

Then for every we(J,_3)* we have: weY,_5 iff up(w)veMIN(L;). Indeed, the
marked path 1 »2-2—..-52-52-pnin ue(w)e is minimal iff no other path in up(w)r

©O®OEAE®
HEHOEO®
QICIOIIOIO,

u o(3) oY) ¢o{a) oy v

Fig. 9. A word w=4dy2ye(J3)* and the corresponding word u@(w)redd: here we¢Y;, and
upw)re MIN(Lg).
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goes all the way through; by the choice of u and v, this holds iff w¢ ¥, _ ;. This proves
the claim. [J

Finally, by Theorem 3.11 any nondeterministic automaton for Y,_, needs
=273 —1 states; and thus, by Theorem 3.13, this must also be true for MIN(L,).

Note that for the generalized prefix order we could identify vertices 1 and 2; so then
Yu-2 L MIN(L,).

Example 3.15 (Exponential lower bounds for the generalized prefix, suffix, and subseg-
ment orders, using a fixed alphabet of size 4). Construction of a regular language
C, over the partially ordered four-letter alphabet ({0,1,4, 5}, <), such that:

(a) C, is recognized by a deterministic finite automaton with O(n?) states.

(b) Any nondeterministic finite automaton recognizing MIN(C, ), with respect to the
generalized prefix, suffix, or subsegment orders, requires >2""*—1 states; so the
relation between the number of states for C, and MIN(C,) is a function 20\/", for
some constant ¢ > 1.

(c) The partially ordered alphabet ({0,1,a,b},<) does not depend on n, and the
Hasse diagram of its partial order contains only one edge (namely, “0<1").

Example 3.15 will be based on Example 3.10 (where we had an alphabet A4, with
O(n) letters); we encode the alphabet A, into strings over the alphabet {0,1,4,b}, as
follows:

The letter (f ~L(f(jhi)Ned, (with fe{ fo. f5.fi f5.91}) 18 encoded into the string
CODE(f ~L(f()), j)y= 0T+ rUgri*+11J where [ is defined as
follows:

(f)°) = aaa, (f3)*°=aab, (f.)°°" =aba, (f;)*** = abb, (g,)**"* = baa.

The letter (g,,(j,n))e4, is encoded as CODE(y,,(j,n)=hbab0" i*11/01" A word
w=da,...aedy¥ is encoded into CODE(w)=CODE(a,)CODE(a,)...CODE(a,)
(concatenation of the encodings of the letters).

The language C, is obtained by encoding the language L, (of Example 3.10), as
above, word for word, i.e., C,=CODE(L, )={CODE(w)|wel, }.

Claim 3.16. C, is recognized by a deterministic finite automaton with O(n?) states.
The proof is elementary, and we omit it.
In order to prove property (b), we will reduce the language Y,_; (introduced in
Example 3.10) to MIN(C,).

Claim3.17. Y,_ 3/ MIN(C,), where [ denotes the reduction introduced by Sakoda and
Sipser.

Proof. Here (referring to the definition of £ ) we pick X=J,_s={a"', 71y L7}
(see Example 3.10); 4=1{0.1,a, b}; the length-preserving homomorphism v is defined
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as follows (2™ ")=CODE(f,"'.(2,2)), ¥ (" )=CODE(f; 1.(2.2)), ¥(77 ")
CODE(f.71,(2,2)), and ¢y (5! —CODE (f; 1.(2,2)); finally, u=CODE (g1 !,(1,2)),
v=CODE(g,.(2,n)).

We must show that weY,_; 1Ff uy (wyre MIN(C,). We know from Example 3.10
that we Y,_5 if and only if (g7 1.(1,2))(w)(g,,(2,n))eMIN(L,). Also, the function
CODE:4,—{0,1,a,b}* is injective and doubly order-preserving; i.e., (Ry,(x1,y1))<
(R;.(x5,¥3)) in (4,, <) iff CODE(R;,(x,y())<CODE(R;.(x,,y,))} with respect
to cither of the generalized prefix and the subsegment orders on {0,1,a,b}*.
This follows from the facts that (1) there is no order relation between a and b, (2) we
have 0<1, and (3) the marked edges of 4, are coded in unary notation over
{0,1,a.5* From this we conclude that (g7 ',(1,2))@(w)(g,.(2,n)eMIN(L;) iff
CODE(g; 1.(1,2))@(w)(¢,,(2,7))eMIN(C,). This proves Claim 3.17.

From Claim 3.17 and Theorems 3.11 and 3.13 it follows that any nondeterministic
finite automaton recognizing MIN(C,) must have at least 2"~ 3 —1 states.

Example 3.18 (Reachability of the upper bound for the subsequence order). Construc-
tion of an alphabet K, (of size <n?) and a regular language L, < K,F such that

(1) L, is recognized by a deterministic finite automaton with » states;

(2) every nondeterministic finite automaton recognizing MIN(L,), with respect to
the ordinary subsequence order, requires =(n—2)2""3 +2 states; so the upper bound
in Theorem 2.1(3) 1s reached (even if non-determinism is used).

We assume n>2.

We take the alphabet K,={(i,j)|i,je{l,....n} and i#j}, and we define our
language L, < K,S by L,={weK,"|the first letter in w is of the form (1, j) for some j,
the last letter of w is of the form (i, n) for some i, and any two neighboring letters of
w are of the form (i, j)(j, k), for some i, j,k}.

One can check easily that, with respect to the ordinary subsequence order, we have:
MIN(L,) = {{1,i)i1,i2) (2, 03) - Gp= 1 i) n)eKS [r=1, and in the sequence
1,iy,i3,13,...,0,_1,1,,n NO integer occurs more than once}.

Graphically, K, is the complete directed graph on n vertices without loops: L, is the
set of all walks from 1 to n in this complete graph; MIN(L,) is the set of all paths from
1 to n (walks without repeated vertex) in this complete graph.

It is easy to see that L, can be recognized by a deterministic finite automaton (DFA)
with n states. To establish the state-complexity of MIN(L,), we first show that the
DFA constructed in the proof of Theorem 2.1(3) is minimal; then we show that the
same lower bound also holds for all NFAs (nondeterministic finite automata)
recognizing MIN(L,).

Fact 3.19. The DFA for MIN(L,), constructed in the proof of Theorem 2.1(3), is the
minimum automaton of MIN(L,).

Proof. Notation n={1,...,n}. The states of this DFA (see the proof of Theorem
2.1(3)) for our example are { £} U {(1,0)} U {(i, T)enx2"|1#i#n, i¢T, 1€T, n¢T ).
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The start state is (1,0), and the sole accept state is f. The next-state function in this
example (with input letter (j, k)¢ K,) becomes: (i, T)*(j,k)=0 if i #j; and

(k,{itoT) if n#k and k¢T,
(i, T)(i,k)y={f if n=k,
0 if keT.

We must show that in this DFA (1) every state (as defined above) is reachable from
(1,0), (2) from every state one can reach f, (3) every two states are distinguishable.

(1) The state (i, T), with T={j,,...,j,} (r distinct states), is reachable from (1,0) by
reading the input string (1,/1)(j1./2)(Jz2.j3) - U= 1.ds)-

(2) From the state (i, T') one reaches f by reading the input (i, n).

(3) Any state (i, T') is distinguishable from f, because in state f no next state is
defined. Two states (i, T'), (k, U) with i # k are distinguished by applying the input (i, n):
(i, T)*(i,n)=f but (k, U)*(i,n)=0. Two states (i, T), (i, U) with T# U are distinguished
as follows: Assume pe T— U (the proof would be similar if there exists pe U —T'), and
consider the input w=(i,p)(p.n)eK)S. Then (i, T)*(i,p)=0, since peT, and so
(i, T)*w=0. On the other hand, (i, U)+*(i,p)=(p, |i} v U) since p¢ U (and also p#n,
because peT, and (i, T) is a state); thus (i, Uy*w=(p, [i} uU)*(p,n)=f This proves
Fact 3.19.

Fact 3.20. Every NFA for MIN(L,) needs as many states as the minimum DFA for
MIN(L,).

Proof. We apply the same idea as in the new proof of the theorem of Sakoda and
Sipser (see Appendix). For every state (¢, T) of the minimum DFA of MIN(L,)
(described in the proof of Fact 3.19 above), we choose two words u, 1, 0, )€K, as
follows: Let T={p,=1,p,,....px] with p;#p; for i#j; then we define uy r,=
(1,p2}(p2.P3) - (Pr=1.P)(Pio ). Let T=n—T={pes1=4. Prs2+---sPa-1-Pn=n} With
pi#p;for i#j; then we define v r)=(q, Px+2) (Pr+2, Pr+3) - APn— 22 P 1) (P 1,1)- (In
the definitions of ug, ) and vy, r,, it does not matter how the elements of T'and T are
ordered, except that in u, r, we must start with 1, and in v 7, we must start with
g and end with n) As a special case we have u g=¢ (the empty word), and
vy =(1,2)(2,3)...(n—2,n—1)(n—1, n) (since here T=n). We also define, for the state
frup=(1,2)(2,3)...(n—=2,n—1)(n—1,n), and vy=c¢.

From these definitions, and the description of MIN(L,) one concludes that:

(1) uprpe MIN(L,), and ug, 70, 1y €MIN(L,), for every state (¢, T') of the DFA.

(2) If (p,S)#(q, T) then u, 5 e mEMIN(L,) or ug 1), 5¢MIN(L,), also
Up s bpEMIN(L,), and upv(, 5)¢MIN(L,) (for all states (p,S), (4. T') of the DFA). See
the proof of Fact 3.6 of Example 3.1.

Let o/ =(R, X, 1o, {15} ) be a NFA recognizing MIN(L,) (we may assume, without
loss of generality, that ./ has a single accept state).
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For each state (¢,7) of the DFA, we choose a state r, r,eR such that
Fo.T)EFo * Uy, Ty and reEF 1) * U ). For (1,0) we have then # g=r,; and for the state
fof the DFA we have ry,=r;. We assume now that a fixed choice of r(, ), has been
made for very (¢, T).

Claim 3.21. For all states (q, T), (p,S) of the DFA:if (q. T)#(p,S) then vy 1) #F .5
also vy, ry#r ;. (From this claim one immediately concludes that the NFA o/ has at
least as many states as the DFA recognizing MIN(L,).)

For a proof of the claim see Fact 3.6 of Example 3.1.

Remark 3.22. One could easily encode our alphabet K, over a 2-letter alphabet, so
that the encoded language L°%%9 has a DFA with O(n) states, whereas every NFA for

AATYNI/ T Lnded\ _________________________
IVITINUL, ICL‘U“CD )( blale \lUl SUILIC bUlldelll (4 l)

Appendix: a new proof of a theorem of Sakoda and Sipser about the complementation
of nondeterministic finite automata

We give a new (and probably simpler) proof of the following result [9, p. 281,
Theorem 4.1.3] (slightly improved here regarding the alphabet size):
Theorem A.1. For every n>1 there exisis a language L, over a three-leiter alphabet
2 such that:

(1) L, isrec ()/tnl"z)/! h\ a NFA with n states (in ’fg( t, more \tr/m/l]v the reverse LIV nlf

L, is recognized by a DF A with n states, with a single accept state).
(2) Any NFA recognizing L,(=2X* —L,) requires =2" states.

Our language L, will be almost the same as the language 7, of Sakoda and Sipser;
the only modifications are: (1) We want the alphabet to consist of 3 letters (rather than
(n+1)"), (2) we want L} to be recognized by a DFA (this is almost true in [9]).

For this, we use the three generators a, f5, 7, of the semigroup of all total functions
f,...on) -1, nla=[2.3,4,....n—Ln 1] (cyclic shift), =[2,1.3,4,...,n] (trans-
position o h“ m.d 2y, vy=[1134, .. .#1]Ge,()=72)=1, 7(x)=x if x>2). Similar to
Example 3.10 of this paper, we pick our alphabet to be 2 = la“ B Ly (ie., the
inverses of the three generators). In analogy with the definition of 7,, we pick our
language to be L,={we2 *|in the graph of w there is a path, starting at vertex 1 in the
extreme left column, and ending in vertex 2 in the extreme right column].

Clearly, L, is recognized by a DFA with n states (in fact, the minimum DFA has
n states) with a single accept state. One can also check that the minimum DFA for
L, has 2" states (see [ 1, Section 2]).

So far we have closely followed [9]. To show that any NFA recognising L, requires

> 2" states, we will use a new argument
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For every set S<{1,...,n} we choose two words ug,vse X * as follows.

For ug: The word ug is chosen in such a way that S consists of the labels of those
vertices in the extreme right column of ug that are reachable by a path in the graph of
ug, starting at 1 in the extreme left column.

For vg: The word vy 1s chosen 1n such a way thai S consisis of the labeis of those
vertices in the extreme left colume of v from which 2 in the extreme right column is
not reachable.

In other words, the relations on {1, ...,n} determined by the graphs of ug and vg are
such that the image of 1 under ug is S and the inverse image of 2 under vg is S.

From these properties of ug and vy we immediately conclude (for all
S.Z<{1,....nj)

(1) usvseL,,

(2) if S#Z then ugvzelL, or uzvsel, (since S#Z iff (SNZ)u(SNZ)#0).

Let &/ =(0.%.*,po. F) be a INFA recognizing i,. For each set S (once we have
fixed ug and vg) we choose a state ggeQ such that gsepy *ugand gg* vgn F#£0 1

(1e., gs1s
a ctate An an accenting camniitatinn An 1 that 1g rn;nl«m{ after 11 wae readl Wae
a state on an accepting computation on uyuy, that is reached after uy was read). We
now assume that a fixed choice of ¢5 has been made for each set S.

Claim A.2. For all sets S,Z < {1,....n} we have: if S#Z then qs+#q;.

From the claim, one immediately concludes that the INFA .o/ has > 2" states, since
there are 2" subsets in {1,...,n}.

Proof. Suppose, by contradiction, that g¢ =g, with S# Z. Consider the words ugv,
and u,vg, of which (as we noted above) at least one belongs to L,; so they should not,
both. be accepted by /. Nevertheless, the following describes an accepting computa-

tion on input usvy: <7 starts in state po and, by reading ug it can reach the state gg=g,:
next, by the deﬁmtlon of qz. / can reach an accept state (e F) from ¢, by reading v,.
In a similar way, .o/ also accepts the word uyrg. So o/ accepts both words, which

contradicts the fact that at leas t one of them is not in L,.
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