
Thegretical Computer Science 119 (1993) 267-291

Elsevier

267

Partial orders on words, minimal
elements of regular languages, and
state complexity

Communicated by D. Perrin

Received June 1991

Revised November 1991

Birget, J.-C., Partial orders on words, minimal elements of regular languages, and state complexity,

Theoretical Computer Science 119 (1993) 267-291.

The classical partial orders on strings (prefix, suffix, subsegment. subsequence, lexical, and dictionary

order) can be generalized to the case where the alphabet itself has a partial order. This was done by

Higman for the subsequence order, and by Kundu for the prefix order. Higman proved that for any

language L. the set MIN(L) of minimal elements in L with respect to the generalized subsequence

order is finite. Kundu proved that for any regular language L, the set MIN(L) of minimal elements in

L with respect to the generalized prefix order is also regular. Here we extend his result to the other

orders and give upper bounds for the number of states of the finite automata recognizing MIN(L).

The main contribution of this paper, however, is the proof of lower hound.s. The upper bounds are
shown to be tight; in particular, if L is recognized by a deterministic finite automaton with n states

then any deterministic (or even nondeturministic) finite automaton recognizing MIN(L) needs

euponmtially many states in n; here, MIN is taken with respect to a generalized prefix, suffix, or

subsegment order (with a partially ordered alphabet of 4 letters, whose Hasse diagram contains just

one edge) or with respect to the ordinary subsequence order.

We also give a new proof of a theorem of Sakoda and Sipser about the complementatlon of
nondeterministic finite automata.

1. Introduction and definitions

Let C be a finite alphabet, and let I* be the set of all finite strings (or “words”) over

C (including the empty string E). The length of a string w is denoted 1 WI; the cardinality

of a set S is denoted JSI. Several partial orders on C* are well known, e.g., the prefix

Correspondeta to: J.-C. Birget, Computer Science and Engineering, University of Nebraska, Ferguson
Hall, Lincoln, NE 68588-0115, USA. Email: birget@,cse.unl.edu.

0304.3975/93/$06.00 ‘0 1993-Elsevier Science Publishers B.V. All rights reserved

order. the suffix order, the subsegment order, the subsequence order, the lexical order,

and the dictionary order; in the latter two, one assumes that a total order on the

alphabet Z has been given beforehand.

Sukhamay Kundu [S] introduced a generalized pwfiv order on Z*, assuming that

a partial order has been put on the alphabet C beforehand:

Definition 1.1 (Kundu [S]). Let (1, <) be a partially ordered finite alphabet. The

generalized pwfix order on C * is defined as follows: two words u =a, . . a,, and

r=h, . ..hk (with a,. a,,, hl, hk~Z) are ordered u<o if and only if h< k and

LI, <hl. ah<hh.

Note that if (1, <) is just the equality relation, the generalized prefix order reduces

to the ordinary prefix order.

Definition 1.2. For any partial order (C*, <) and any set L c C*, we define

MIN(L)= [MEL 1 there is no XEL such that x <IV) (the set of minimal elements of L).

Kundu proves [S] that if L G C* is a regular language then MIN(L) is also regular

(where MIN is taken with respect to the generalized prefix order determined by

a partially ordered alphabet (I,<)). In his proof, if L has a deterministic finite

automaton with M states then MIN(L) has a deterministic finite automaton with

< n(4”- ’ + 3) states; he also proves an order-n2 lower bound. He asks whether there

exists some exponential lower bound. In this paper we will give a slightly improved

upper bound (namely. 1 +(n- 1)2”-2), and we will show that this new bound is

optimal, by constructing examples for which the upper bound is reached; the con-

struction and analysis of these examples constitutes the main part of this paper. We

will also show that even a nondetrrministic finite automaton needs exponentially many

states to recognize MIN(L).

Kundu’s idea of generalizing the prefix order can also be applied to other classical

orders. We give exact definitions below; later, we will show that for these orders the

MIN operator preserves regularity, and we will analyze the number of states needed

to recognize MIN(L); we will see that, except for the generalized lexical and dictionary

orders, the number of states grows exponentially when one goes from L to MIN(L),

even if nondeterminism is allowed.

Definition 1.3. Assume that (C, <) is a partially ordered,finite alphabet. Let u = a, . . . uh

and u=hl...hk be two words (with al ,..., a,,, h,,...,h,~C). Then we define the

following partial orders on C*:

Generalized dictionary order: u < L’ iff either u is a prefix (in the ordinary sense) of C,

or we can write u=paix and u=pbiy, where p is the longest common prefix (in the

ordinary sense) of u and U, and ai< hi (where i- 1 is the length of p).

Note that if (C,<) is a total order then the generalized dictionary order reduces to

the ordinary dictionaqa order (and the definition is formally the same); on the other

hand, if the partial order on C is just the equulity relation, the generalized dictionary

order reduces to the ordinary prefix order.

Remark 1.4. If in this definition one replaces “cl is a prefix (in the ordinary sense) of L.”

by “u is a generalized prefix of L”‘, one still obtains the same generalized dictionary

order.

Generulized le.uical order: u < L’ iff either 1 u 1-c 1 u 1, or 1 u I= 1 c 1 and u < L‘ with respect to

the generalized dictionary order.

Generalized subsegment order: u < I; iff h < k and there exists 0 <j < k - h such that

QIGhj+l, a2~hj+2,...,ah-l~hj+h-1, ah<hj+h.

If (1, <) is the equality relation on C then this defines the ordinary subsegment (or

“substring”) order.

Generalized subsequence order (Higman [3]): 11 <c iff h< k and there exist h

numbers 1 < iI < i2 < ... <ih_1<ih~ksuchthatu,,<h,l,a,dh~2,...,ah_1dhlh~,,uh~h,h.

Generalized suffix order is defined in a way similar to the generalized prefix order.

In this paper we use nondeterministicfinite automata (NFA), viewed as structures

(Q, C;,q,, F), where Q is the set of states, ~,,EQ is the start state, F G Q is the set of

accept states, and is the next-state relation (i.e., a function from Q x Z into the power

set of Q; for YEQ, aE,T, the set of next states is q.a); we will follow 141. A partial

deterministic.,finite automaton (DFA) is an NFA whose next-state relation is a partial

function (i.e., q. a contains at most one element of Q). A DFA is complete if the

next-state relation is a total function (i.e., q. a contains exactly one element of Q). In

this paper, DFA means “partial DFA” (unless we explicitly say “complete”).

2. Results about the state-complexity of MIN(L)

We first state and prove upper-bound results. We then state the lower-bound

results; the constructions of rather complicated families of examples that prove these

lower bounds are given in Section 3.

Theorem 2.1 (Upper bounds). Let (C,<) he a partially orderedfinite alphabet and let

L c C* he a regular language which is recognized by a deterministic finite automaton

with n states. Assume n>2 (otherwise the problem is trivial).

(I) With respect to the generalized pre$x or s@ix orders: MIN(L) is recognized by

a deterministic jnite automaton whose number of states is <(n- 1)2”-= + 1.

(2) With respect to the generalized subsegment order: MIN(L) is recognized by

a deterministic finite uutomuton whose number of states is d (n - 2)2” 3 + 2.

(3) With respect to the generalized subsequence order: MIN(L) is recognized by

a deterministie,finite uutomaton whose number af states is <(n - 2)2” 3 + 2. Moreoaer,

,far every L (not necessarily regular), MIN(L) is ajnite set (by a classical theorem af

Higman).

270 J.-C. Birqet

(4) With respect to the generalized dictionary order: MIN(L) is recognized by

a deterministic finite automaton with <n states. For the generalized lexical order:

MIN(L) is recognized by a deterministic finite automaton with <n2 states.

Proof of Theorem 2.1. (1) Generalized prefix order: Let &‘=(Q, C,. , qO, { f)) be a

deterministic finite automaton recognizing L. Here “. ” denotes the next-state func-

tion. We can assume that all out-edges of the accept states of d have been dropped

and that all accept states have been coalesced into a single accept state (which we

denoted byf above). To avoid trivial cases, we assume q, #f

A deterministic finite automaton recognizing MIN(L) can be defined as follows:

Set af states: { ,fj u i (q, S)EQ x 2Q 1 q #,f q#S, ,f#S); here f is a new symbol. Start

state: (qO,@). Accept states: if).

Next-state function:

First, given a state (q, S) and a letter a&, let us define

Sqv”=jq.h~QIh~C, h<aJu{p.cEQjpeS, CEZ, c<a).

The next state, reached from (q,S) on input a is

/ (4’a,Sq’“) if .f#q.a, q.a$Sq*“, f&Sq~‘, and q.a#@;

(q,S)*a= f I 0

if q.a=,f and ,f$Sq~“;

otherwise (i.e., q.asSqsu or ~~~~~~~ or q.a=@).

We also definef a=@ for all aeE.

The number of states of this automaton is 1 +(n- 1)2”-‘, where n= IQI. One can

check that the language recognized is MIN(L) with respect to the generalized prefix

order. Intuitively, the automaton works as follows: Suppose that, starting in state

(qO,@) and reading an input string WEC *, the state (4,s) has been reached; then

q,, . w =q (with respect to the automaton &); and S contains all those elements of

Q that can be reached from q0 when d reads any string UEC* satisfying I uI = I WI and

u <w (strict generalized prefix order). The definition of Sq.” and of (q, S). a has been

devised accordingly. If, after reading w, we have reached a state (q,S) withfES but

f#q, then w (and any continuation of w) cannot be minimal in L because some strict

generalized prefix of w is in L; similarly, if qES but q Zfthen w cannot be minimal in

L because some strict generalized prefix of w leads to the same state in d as w. On the

other hand, if u’ is such that q=f$S then w belongs to MIN(L).

Generalized suffix order: Let &‘= (Q, C, , q,, F) be a deterministic finite automaton

recognizing L. We can assume that all in-edges of the start state have been dropped.

We assume qO$F, otherwise the problem is trivial.

A deterministic finite automaton for MIN(L) (with respect to the generalized

subsegment order) is defined as follows:

Set of states: { (qO, 0)) u {(q, T)EQ x 2Q I q,, # q, q$ T, qOE T}. Start state: (qO, 8).

Accept states: ((,JT)EQx~~I FnT=@, q06T,,fEF}.

Purticrl order and .stute c~ompleuit~ 271

Next-state function: First, given a state (4, S) and a letter aE,E, let us define

S,,,=(q,Julq.h~Qlh~~, h<a~u{p.c~QIp~S, EC, c<aJ.

The next state reached from (4,s) on input UGZ is

(q,S)*a=
(q.a, S,,,) if q.a$S,,, and q.a#@;

8 otherwise (i.e., if q’ UES~,~ or q.a=@).

The number of states of this automaton is 1 +(n - 1)2”-‘, where n = (Q 1; one can

check that it recognizes MIN(L). The intuition is like in the case of the generalized

prefix order; the main difference is that S,,, is defined to contain q,, always.

(2) Generalized subsegment order: Let JZZ =(Q, C, , q,, if)) be a deterministic finite

automaton recognizing L. We can assume that all in-edges of the start state, and all

out-edges of accept states have been dropped, and that all accept states have been

coalesced into a single state $ We assume q. #,_t otherwise the problem is trivial.

A deterministic finite automaton for MIN(L) (with respect to the generalized

subsegment order) is defined as follows (wherefis a new symbol):

Set of states: if) u j(qo,@)) ~((q,T)~Qx2~Iq~#q#.f; q#T, qoET,.f$Tj. Start
state: (qo,@). Accept states: {J}.

Next-state function: First, given a state (q,S) and a letter UEC, let us define

S,,.=(q,Ju(q.h~Qlh~C, b<a]u{p.cEQIpES, ~EC, c<a].

The next state reached from (4,s) on input UEZ is

:

(q.a,S,,,) if.fZq.0, q.a4S,,,, .fW,,,, and q.a#@

(q,s)*rJ= f if .f= q. a, and ,f$S,,.;

8 otherwise (i.e., if q. UES~,~ or .fES,,, or q .a =@).

We also definef a=@ for all UEC.

The number of states of this automaton is 2+(~-2)2”-~, where IZ= IQI; one can

check that it recognizes MIN(L). The intuition is like in the case of the generalized

prefix and suffix orders.

(3) Generalized subsequence order: That MIN(L) is always a finite set (no matter

what f. is) follows from the following famous theorem of Higman [3]: With respect to

the ordinury subsequence order, .?I* contains no infinite subset efpairwise incomparable

elements. Higman’s theorem (1952) has been rediscovered many times; see [S] for an

overview; see also [7, pp. 105-1091 (where a short proof is given).

MIN(L), being finite, has a finite automaton, of course; but, in general, this

automaton cannot be effectively constructed from a description of L (indeed, L = Q, iff

MIN(L)=o; so, if L is described by a Turing machine, the emptiness problem of

recursively enumerable languages would become decidable).

Let us construct a deterministic finite automaton recognizing MIN(L) when L is

regular. We will obtain an exponential upper bound on the number of states of this

automaton; in Section 3 we will also show that this upper bound is tight.

272 J.-C. Birqet

Let d be a deterministic finite automaton recognizing L, as in the proof of Theorem

2.1(2). A deterministic finite automaton for MIN(L) (with respect to the generalized

subsequence order) is obtained as follows (wherefis a new symbol):

Set of states: if 1 uj(yo,O)i uj(q,T)~Qx2~IyofqZf; y4T, ~oET,,~$T). Start
state: (qo, 0). Accept states: if).

Next-stute function: First, given a state (q, S), and aE,?I, we define

(For the ordinary subsequence order S,,, becomes jq)uSujp.a~Qlp~SJ.)

The next state reached from (q,S) on input acC is:

(q.u,S,,,) if,f’#q.a, q.a4S,,., .I’@,,., and q.a#0;

(q,S)*a= f

I

ifj’=q.a, .f#S,,,;

0 otherwise (i.e.,fiS,,, or ~.uES~,~ or q.u=@).

We also definef a=@ for all ~EC.

This automaton has 2+(n-2)2”-3 states and recognizes MIN(L). Intuitively,

suppose that from (qO,O), reading WEI*, one reaches (4, S); then 4 = q, w (with respect

to .c4), and S contains those elements of Q that &’ can reach from q, by reading a strict

generalized subsequence of ~1.

(4) Generalized dictionary order: Let d be as in the proof of Theorem 2.1(l); in

addition, let us assume that from every state of .d one can reach the accept state. We

construct a deterministic finite automaton for MIN(L) as follows:

The state set Q, start state qo, accept state,/; are the same as for d.

The next-state function l is defined by

:

q.a if for all ~EC such that h<u we have: q.h=@ (in d)‘);

q-a= 0 otherwise (i.e., there exists ~EC such that b<a,

and ~~.h#0).

Intuitively, this automaton processes a word ~EC* the same way as d, until it finds

a letter a for which there exists bEC such that b<a, and q. b is defined (recall that we

are always using partial automata); if this happens, the new automaton rejects (by

having no next state); in this case the input indeed cannot be minimal in L (recall that

we assumed that from any state one can reach an accept state).

We mentioned already that if (C,<) is just the equality relation, the generalized

dictionary order becomes the ordinary prefix order; hence MIN(L) can be infinite.

When (C,<) is a total order, the generalized dictionary order is the ordinary dictio-

nary order; in that case MIN(L) contains either exactly one element or is empty (the

latter is possible, e.g., when Z= (a, b) with u < b and L=a* h).

Generalized lexical order: If L is recognized by a 1DFA .d with n states, then

MINI,,(L)= MIN,i,,(LnC”), where m (<n) is the length of the shortest directed path

from the start state of & to any accept state; LnC” has a 1DFA with <nm states

(using the well-known Cartesian-product construction), and applying MINdi,, does

Portia/ order rend .stuttj c~ompleuit~ 273

not increase the number of states (as we just saw). This yields a 1 DFA of nm < n2 states

for MINI,,(L).

From the state-complexity point of view, the generalized dictionary and lexical

orders do not lead to problems about exponential lower bounds, so we will not study

them any further in this paper.

This completes the proof of Theorem 2.1. Cl

Theorem 2.2 (Lower bounds). (1) The upper hounds of Theorem 2.1 (l)-(3) are reach-

able eren if nondeterministic automata are used.

More precisely: For erery n > 3 there exists a partially ordered alphabet (I,, <) of’sise

0(n3), und a requlur /anguaye L, c C,* such that: L, is recognized by u deterministic

,finite automaton tvith n states, but any deterministic or nondeterministichnite uutoma-

ton recoynizing MIN(L,) needs (n- 1)2”-2+ 1 states, in the case qf the generalized

prefix or suffix orders (or (n - 2)2”- 3 + 2 states in the case qf the generalized subsegment

order).

For the generalized subsequence order there exists un alphabet C, of size < n2, and

u language L, such that any nondeterministic automaton recognizing MIN(L,) needs

(n - 2)2”-3 + 2 states (even ,for the ordinary subsequence order).

(2) Esponential lower bounds with a,fi.xed small alphabet: There exists a partially

ordered alphabet (C, <) with just ,fitur letters, such fhat ,for all n > 3 there is a lunguayr

L, G Z* satisfying: L, is recognized by a determini.stic,finite uutomaton with n states, but

any nondeterministic.finite automaton recognizing MIN(L,) (with respect to the general-

ized prefix, sufix, or subsegment orders) needs 3 cdl1 .stutes (,for some constant c > 1);

the Hasse diagram of the purtial order (C, <) has ,just one edge.

For the yeneralized subsequence order, any nondeterministic ,finite automaton sin

MIN(L,) needs 3 c” states (,for some constant c > 1); the alphabet C has size 2 and need

not be ordered at all (ordinary subsequence order).

The proof of Theorem 2.2 is given in the following section.

Corollary 2.3. Suppose L is recognized by u 1 AFA (one-way alternatingjinite automa-

ton) with n states. Then MIN(L) can be recognized by a 1 AFA with d 2” + n - 2 states,

in the case of' the generalized prefix or suflx orders (< 2”+ n - 3 states in the case of the

generalized subsegment or subsequence orders).

Moreover, these bounds are optimal,/& all n (i.e., they can be reuched).

This corollary is surprising: Intuitively, the MIN operation is just a combination of

nondeterminism and negation (see the results in Examples 3.10 and 3.15 in the next

section): so one would expect alternation to handle MIN(L) using few states, even if

L has an n-state AFA.

Proof of Corollary 2.3. See [2] for a definition of alternating finite automata. We

will use the following theorem of Leiss, Brzozowski and Kozen: A language L is

recognized by a 1AFA with <n states ifl L”‘ (the reverse of L) is recognized by

a 1 DFA with < 2” states (see [6, l] for other consequences of this theorem). Moreover,

for any partially ordered alphabet (C,<) one easily checks that

MIN(L’““)=(MIN(L))“‘, with respect to the generalized subsegment or subsequence

orders; similarly, MIN,,,,(L”‘)=(MIN,,,,(L))““. Now applying Theorems 2.1 and

2.2, one obtains the upper (and lower) bound rlog,((2”- 1)2”-‘+ 1)]=2”+n-2 in

the prefix and suffix case (and rlog,((2”-2)2”P”+2)]=2”+n-3 in the subsegment

and subsequence case).

3. Lower bounds, examples

Example 3.1 (Reachability cfthe upper hounds~br the state-covnpleuity $MIN(L),for

the generalized pwfi.u, suff.~, and suhseyment orders). Construction of a partially

ordered alphabet (C,, <) and a regular language L, E C,* such that:

(a) L, is recognized by a deterministic finite automaton with n states.

(b) Any deterministic, and also any nondeterministic, finite automaton recognizing

MIN(L,), with respect to the generalized prefix or suffix (or subsegment) orders,

requires > 1 +(n- 1)2”P2 (or >2+(n-2)2”P3) states. So the upper bounds (Theorem

2.1) are reached, even if one allows nondeterminism.

The alphabet C, in this example has cardinality O(n’(n+ 1)“). In Example 3.9 we

modify Example 3.1 in such a way that properties (a) and (b) still hold, but the

alphabet has cardinality O(n3).

Finally, in Examples 3.10 and 3.15, Example 3.9 is further modified to prove

Theorem 2.2(2), for the generalized prefix, suffix, and subsegment orders. The sub-

sequence order is studied in Example 3.18.

The idea for our example was inspired from the graph languages of Sakoda and

Sipser [9]. Here, in addition, we put a partial order on the graph alphabet.

In the following, n is any integer greater than 2. When ,f is a partial function

{l,..., n)+{l,..., n) thenf’- ’ denotes the inverse of,f’(,f’~’ is not a partial function, in

general); Dam(f) is the domain off:

Alphabet: A letter of the alphabet C, is of the form (.f‘-‘,(.f‘(.u),.~),;‘~) or

(,j; (.x,,p(.x)),~~), where ,f’ is any partial function (1, n) + i 1, n]; (f(x), x) (or

(s,.f‘(x))) with xEDom(f), is a singled-out edge; ;‘k (with Odk<n) is the cyclic

permutation of [1, n,, I defined by: llk(.u)=.x+k, for each .x~(l,...,n-k), and

y,(x)=.u+k-n for x~{n-k+l,...,n). So, C, has <2n2(n+l)” elements.

In the definition of C, we used partial functions and their inverses; more generally,

we could have used arbitrary binary relations R on i 1, . , rz], and get letters of the

form (R,(x,~),;‘~), with (x,y)~R 5 (1, 17) x (1, 171, and ;‘k as before.

The dqfinition of’the partial order, in general, is: (RI ,(~~,!‘~),~j)~(R~,(x~,y~),;‘~) iff

R1=R2, j=k, ~k1(~x1)<;‘;1(x2), ;~;‘(yl)<;‘;‘(yz).

The definition of (R, (.u, y), ;I~) and the partial order become clearer in the following

graphicul representation (see Fig. 1 for an example).

A letter (R,(s,y),~~) is represented by drawing the directed bipartite graph of

R (with edges pointing from left to right), in which the edge (.u,y) is drawn in bold; if

k =0 (i.e., ;‘k =identity map) the vertices are labeled from I to II in each column,

sturtir~g af the bottom; if k #O, we label the vertices from k+ 1 (=yk(1)) to n, and

continue from 1 to k (=yk(tz)), sturtiny ut the ho~~om.

Two letters are ordered (according to the above definition) iff they have the same

underlying graph (R, = R2). the same labeling of the vertices (,j= k), and the marked

edge (.Y~,_v~) of the first letter appears entirely below the marked edge (s,,y,) of the

second letter (except for possible common vertices).

To define the language f.,,, we first define the gruplz CI{LI n~rli NEZT : it is the graph

obtained by putting the graphs of the letters of w in the sequence in which they appear

in w. and connecting equally labeled vertices in adjacent letters. See Fig. 2 for a small

example. Thus, the graph of ~1 will have 2nIbvI vertices.

We define L,== (\vEC~ 1 the graph of LL‘ has a path which starts at the vertex labeled

1 in the left-most column, which reaches the vertex labeled n in the right-most column,

and which consists only of murked edges and inter-letter connections; this path should

not encounter a vertex labeled n until the right end is reached).

See Fig. 2. This definition is inspired from the graph languages of [9]. The last

sentence in the definition of L, implies that L, is prefix-free (with respect to the

ordinary prefix order).

Fig. 1. Some letters m Z4 with their order. The first letter is (f -‘,(4. I),;,), where,/‘-’ is given by 4-1,

4+4, 4-3, 2-2. In the second letter. the marked edge is (4,4). Since we have ;,;‘(4)=3<;1,‘(1)=4, the
first letter is indeed higher in the order than the second letter. The last two letters are incomparable.

276 J.-C. Bir<pI

Fig. 2. A word M.EL~. of length 4. Note that w$Mm(l.,) (because of the path l-2-2-4 in a generalized

prefix of w), with respect to the generalized prefix order.

It is very easy to see that L, has an n-state minimum deterministic automaton (the

states are the vertex labels 1,2, . ., n, with 1 as the start state and n as the sole accept

state). Recall also that we use partial automata throughout this paper.

The fact that any nondeterministic finite automaton for MIN(L,) has

> 1 +(n- 1)2”-2 states (in the case of the generalized prefix or suffix orders) or

3 2 + (n - 2)2’- 3 states (in the case of the generalized subsegment order) follows from

the Facts 3.2, 3.5 and 3.6. To prove Facts 3.2 and 3.5 (deterministic case) only the

letters of the form (,f ‘, (f‘(x), x), yk) play a role; the letters (,f; (x, (f(x)), yk) will be used

to prove lower bounds for nondeterministic automata (Fact 3.6).

Fact 3.2. The deterministic, automaton ,for MIN(L,), with respect to the generalized

pwfix order (constructed ,fLom the above n-state automaton ,ftir L,, in the proof of

Theorem 2.1(l)) is minimal. The generalized s@iis order can he handled similarly.

Proof. We shall show that (a) every state is reachable from the start state (l,(j);

(b) from every state one can reach the accept state ,f; (c) every two states are

distinguishable by some input string.

(a) Reachability from (1, 8): For any state (q, S) we have (q, S) = (1, 0) l (f ‘, (1, q), yq),

wherefis the partial function defined byf’(x)= 1 if XE (q} US (andf(x) is undefined,

otherwise). See Fig. 3(a) for an example.

(b) f is reachable from all states: For any state (q, S) we havef=(q, S)*(q- ‘, (q, n), y,),

where y is the partial function defined by g(n) = q (and g(x) is undefined for x Zn). See

Fig. 3(b) for an example.

(c) Distinguishability of all states: We consider the following cases.

Case 1: To distinguish the state ffrom any state (q,S), consider the input letter

a =(q- ‘,(q, n), y,) defined a few lines ago. Then p a is undefined, but (q, S) l a =f:

Case 2: To distinguish two states (q, S), (p, T) where p # q, consider again the input

letter a = (g- ‘, (q, n), yq), defined a few lines ago. Then (p, T) l a is undefined, but

(q, S) . a =f: See Fig. 4 for an example.

Case 3: To distinguish two states (q, S), (q, T) where S # T, assume there is an

element r which belongs to S but not to T. (If instead, there exists rE T- S, the proof is

similar.) Consider the input string (of length 2): ah = (,1;- ‘, (q, q), y,)(,fi- ‘, (q, n), y4),

(a)

Fig. 3. Here n=h. (a) Reachability of (2, : I. 4j) from (I, 0). (b) Reachability of j from (3, S), where

SG I n-1)-(3) , 1

G-&T)*

(b)

Fig. 4. Distinguishing (2, T) from (3, S); here n =6. q = 3, p= 2

where the partial functionsfl andf; are defined as follows: ,fr (4) = q, J1 (n) = r (this is

well defined, since q #n; indeed, since (q, S) is a state we have q #n), and f;(x) is

undefined for x${q, n,‘;,f2(n)=q, and .f;(x) is undefined for x fn. Then (q, S)*a and,

hence, (q, S) l ah, is undefined; but (q, T) l ah =(q, 8) l h =f: See Fig. 5 for an example.

This proves that the minimum deterministic automaton for MIN(L,) is the

automaton of the proof of Theorem 2.1(l) and, thus, has 1 +(Iz- 1)2”m2 states.

Remark 3.3. If we had simply defined our alphabet to be { (.f ‘,(.f’(x),x)),

(.f; (x,.f’(x))) l,fis a partial function { 1,. .., uj+ i 1, H), and xcDomf) (equivalently,

we would just take the subset of Z, obtained when yk is always replaced by 1;,,) then the

minimum deterministic automaton for MIN(L,) would only need the states

{.fi U{TG {l , . . , n - 11 1 T#@j. Indeed, in this case we would replace the state (q, S)

of the proof of Theorem 2.1(l) by T=S u (q); then T uniquely determines (q, S), since

27X J.-C. Birget

Fig. 5. Distinguishing (3, (2.4,5)) from (3. (1,2,5)). Here n=6, y=3, and r=4E;2,4,5) -(,,2,5;

(in the absence of yk’s): q = min T and S = T- {q). So without the yk’s, we do not reach

the upper bound, although we do obtain an exponential lower bound 1+2”-‘.

Remark 3.4. If one looks at the letters of the alphabet C, which are actually used to

prove Fact 3.2, one sees that one only needs O(n’2”) letters. Indeed, the following

groups of letters are used:

(a) Letters of the form (.f-‘,(l,~),y,) where qE{ 1,n-1) and f is the “constant

1” function restricted to domain S, where q#S C_ { 1, II- 1) and where YES. There

are (n- 1)(n-2)2”m2 such letters.

(b) Letters of the form (g- I, (q, n), yy) as in part (b) of the proof; here q #n. There are

n - 1 such letters.

(c) Letters of the form (.f - ‘,(q, q), yI), where qe{ 1, . . . , n- 1) and .f(q)=q, f(n)=r

(for some r~(l, n-l}, r#q) andfis undefined elsewhere. There are (n- l)(n-2)

such letters. This corresponds to case 3 of part (c) of the above proof (cases 1 and 2 use

the same letters as part (b)).

Let us consider now the generalized subsegment order. In reference to the same

alphabet and the same language L, as in Fact 3.2 we have:

Fact 3.5. The deterministic automaton .fbr MIN(L,), with respect to the generalized

subsegment order (constructed in the procfof Theorem 2.1(2) from the n-state automaton

of L,) is minimal.

Proof. The proof scheme is similar to the one for Fact 3.2.

(a) Reachability from (l,@: For any state (4, S) (with 1 #q fn, leS, q$S,

SG (1,n-1)) we have (4,S)=(l,~).(f-‘,(l,q),y,), wherefis the partial function

defined byj‘(x) = 1 for all XE [q) u S (andf’(x) is undefined otherwise). This is just like

in the proof of Fact 3.2, except that we only consider sets S with 1 ES.

(b) fis reachable from all states: This is again exactly like in Fact 3.2.

(c) Distinguishability of all states. This is also exactly like in Fact 3.2.

This proves Fact 3.5. 0

The previous remark (to the effect that only a subalphabet of O(n22n) letters is

needed) also applies here.

We now prove the lower bound for nondeterministic finite automata.

Fact 3.6. Egery nondeterministic automaton,for MIN(L,), with respect to the general-

ized prejx order (or thr generalized suji.u or subsegment orders), requires us many states

as the minimum deterministic finite automaton.

Proof. The proof is based on the same idea as the new proof of the Sakoda and Sipser

theorem given in the Appendix.

For every state (p, S) of the deterministic automaton for MIN(L,), we choose two

words UW) and u(~,~) as follows (they are actually single letters here):

u~~,~) = (,f’ ‘, (1, p), y,), whereJ‘is the partial function defined byf(x) = 1 if .xcS u (pi

(and,f(s) is undefined otherwise);

~/l~~,~) =(q, (p, n), y,), where 9 is the partial function defined by q(x) = n if x$S (and

y(x) is undefined if XES).

We also define ur=(Jb-’ ,(1, n), v,,), where ,fO is the (total) function defined by

fb(x)= 1 for all X; and q=& (the empty string).

One can check the following (for the generalized prefix, suffix, and subsegment

orders):

(1) For all states (p, S) of the deterministic automaton: u~~.~,u~~,~~EMIN(L,); also

ufl;fEMIN(L,).

(2) For all states (p, S), (q, T) of the deterministic automaton: If (p, S)#(q, T)

then u ~p,s~~‘~q,r4MfN(L,) or u(,,T)c’(~,s)~MIN(L,); also q,,s,vr$MfN(L,), and

urq,,s,$MfN(L,).

Indeed ifpfq then qp,~)qq,T)and qq,T)q,,S) do not belong to L,; if p = q and S # T _
then etther Sn T#@ (and then u~P,sJvCq,T) is not minimal in L,), or Sn T#@ (and then

U(q,TIqp.S) is not minimal).

Let G?=(R,C ,,, l , ~0, {rf}) be a nondeterministic finite automaton recognizing

MIN(L,) (we may, without loss of generality, assume that 9 has only one accept

state).

For each state (q, T) of the deterministic automaton, we choose a state Y(,, TJ~ R such

that Y(*, r+rO l u(~,~) and rrgv(,,Tj l q,,,) (i.e., Y(~, TJ can be reached on an accepting
computation on input Us,, Tjli(q, r) after I.+,,~) was read). We choose rf to be rf (the

accept state of &?).

Claim 3.7. For all states (q, T), (p, S) af the deterministic automaton af MIN(L,) we

have: if(q, U#(p,S) then Y(~,T)zY(~,~);~~sO~(,,T) #r-f. (From this claim one immediately

concludes that B has at least as many states as the deterministic automaton.)

Proof. Suppose, by contradiction, that Y~~,~)=v(~,~), with (q, T)#(p, S). Then the

words UC,, T)~(P,~) and u (p,S)u(q,T) do not both belong to MIN(L,), as we saw. But

98 will accept both; the following describes an accepting computation of $9 on input

u~~,~~u~~, Tr: starting in state ro, $3 reads u~,,~) and reaches the state Y(~,~) (=Y(~, rr); then,

by definition of ycq. r), 9J can reach the accept state rf by reading I;(,, TJ. In a similar way

one can describe an accepting computation on u~~,~~u~~,~).

That Q, T) frf follows immediately from the definition of Y~~,~). This proves

Fact 3.6. 0

Remark 3.8. In the proof of Fact 3.6 we not only use letters of the form

(,f - ‘, (,f (x), x), yk), but also of the form (.f; (x,f (x)), yk). The number of letters used is

O(n’2”) (see a previous remark; actually, the use of letters (j; (x,f‘(.u)), yk) doubles the

number of letters, but we still have O(n’2”) valid).

Example 3.9 (Reachability af the upper bounds of' the state-complexity (!f’MIN(L) for

the generalized prefix, suffix, and subsegment orders, with alphabet af size O(n3)).

Construction of a partially ordered alphabet (T,,<) and a regular language LA G r,*

such that properties (a) and (b) of Example 3.1 hold; in addition r, has O(n3) elements

only.

We start from Example 3.1 in which, however, we keep only the required O(n’2”)

letters. There are at least two natural ways of reducing the size of an alphabet

(assuming that useless letters have been discarded already): One is to encode the larger

alphabet into fixed-length strings over a small alphabet (e.g. binary encoding); we will

do this in Example 3.15; but because we are working with ordered alphabets, the

encoding does not work as well as in other situations, and the lower bounds will not

be optimal (although still exponential). In a second method, which we use in the

present example, each letter of C, is ‘:factored as a product of generators”; Z, is then

replaced by the (smaller) set r, of generators.

Each element of C, is of the form (,f - I, (f (x), x), yk) or (,f; (u,,f (x)), yk), where ,f is

a partial function. One can decomposef as a composition of other partial functions. It

281

is well known that the set of all partial functions (I, . , H) -+ (I, . . , rz) can be generated

by just four partial functions, e.g., by the four partial functions whose function tables

are X= [2,3, n, I] (cyclic shift), fi= [2, I, 3,4, n] (transposition of 1 and 2)

;’ = [1, 1,3,4, . , n] (collapse of 1 and 2 to l), (5 = [-, 2,3, . . . , n] (identity, left undefined

on I).

We will use the following alphabet:

where ;lk denotes the cyclic k-shift (~~(x)=~+k if x<n- k, and Y~(.Y)=.Y+ k-n if

x > n -k), and @ is the following set of partial functions: @= (ui 1 1 < i<n) u (c) u

(ti 1 1 d i < n - 1). These partial functions are defined as follows: ui(x) = ,Y if x # i (and is

undefined if .Y = i); c(x) = 1 if x #II (and is undefined if x = n); and ri is the transposition

(i, n) (defined by [i(i) = II, [i(n) = i, ti(x) = .Y for i # x #PI). Note that Ui and ti are injective,

and ui=ui-‘, ti=til.

Clearly, f, is a subset of C,; we will use the partial order of C, (restricted to r,) as the

partial order of &,. The number of elements of r, is O(n3).

As our language LA we pick L,n Fz (where L, is the language of Example 3.1).

The same n-state automaton which recognizes L,, can also be used for LL; we just

have to restrict it to the alphabet r,(CC,).

To show that any deterministic finite automaton which recognizes MIN(LA) needs

(n- 1)2”-‘+ I states in the case of the generalized prefix or suffix orders (and

(~-2)2”-~ +2 states for the generalized subsegment order), we proceed as in example

3.1: Facts 3.2 and 3.5 can be proved for LA too, but the letters that were used must now

be factored over the alphabet F,.

Purt (a) of the proof of Facts 3.2 and 3.5 (reachuhility of (y, S) jkm the sturt stare

(1,0)): We have (1,8)*((.-‘,(l,q),~,)=(q,(l,..., q-l,q+l,..., n--Ii), and (q,(l)...,

q--f,q+ 1,n- lj)*ni4Svll,l , (Ui, (q, q), ~4) = (q, S). See Fig. 6 for an example.

(2, {1,3,4)) = (1.0) l

Fig 5. I 5. Reachability of (2, :1,X,4:) from (1.0); here n=7

282 J.-C. Birqet

Purr (h) (Reachability offfrom any (4,s)): We have (4,s). nits (Ui,(4,4), ~,)=(4,0),

and (4,0) l (t,, (4, n), ;I~) =J: See Fig. 7.

Part (c) (Distinguishability of all states): We consider the following cases.

Case 1: To distinguish (4,s) from f one uses the same input as in part (b) above.

Case 2: To distinguish (4, S) from (p, T) when p fq, one uses again the same input

string r-t;~f,* as in part (b) above. Then (4,S)*w=f’ and (p,T)*w=@ (since

(p, T)*(...,(q,q), . ..)=0 when p#4).
Cusr 3: To distinguish (4, S) from (q, T) when Sf T, assume there exists YES- T

(the proof is similar if, instead, there exists txT--S). We have

(4>T)*flig;c,,Y; (ui,(4,4),./4)=(4,0) since r$ T; also (q, @)*(t,, (q,q), yq)=(4, 0); also, as

we just saw in part (b): (4,0)*(t,,(q,n),~,)=f: On the other hand,

(4J)‘rI;,;,.,; (ui,(q,q), r4)=(q, (rJ), and (4, iri)*(rV,(4,4),;‘,)=0 (undefined). Thus, for
the input string ZI=~,~,~,)_:

but (4, T) l c = 0. See Fig: s.
(ui,(q,q),~,)(t,,(4,4),~~)(f~,(q, u),;‘~) we have (q,S)*c=.f;

Fact 3.6 is also proved like Example 3.1; now u~~,~) and v~~,~) are words obtained by

factoring the partial functions appearing in the u(~,~) and L’~,,~) of Example 3.1. The

details are the same as for adapting Facts 3.2 and 3.5: to obtain the new I.+~,~), proceed

as in part (a); to obtain the new u (P,s), proceed also as in part (a), but use partial

functions rather than inverses of partial functions.

Example 3.10 (Exponential lowrr hound ,fbr tk state-complrxity c~f MIN(L) ,fi~r the

generalized prqfi.u, .s~fi.x, und subsegment orders, with an alphabet of’ size O(n)).

Construction of a partially ordered alphabet (A,,<) and a regular language Li c A,*

such that:

(a) L; is recognized by a deterministic finite automaton with n states

(b) Any nondeterministic finite automaton recognizing MlN(L6’), with respect to

the generalized prefix, suffix, or subsegment orders, requires >2”-3 - 1 states.

(c) The alphabet d, has cardinality O(n).

Fig. 7. Reachability off’from (3, (2.5;); here ~1~6

0. On the other hand,

e-4
w = (3,{4H, and

Fig. 8. Distinguishing the states (3, (2.4,5)) and (3, 12.5) 1. Here r=4, ~=6

This example and the proof of its properties are based on the previous examples,

and on a result of Sakoda and Sipser [9].

In [9, p. 2811 the following example is introduced: They consider the alphabet

I,= (,r‘~’ 1.f‘ is a partial function from (1, . . PI) into (I, . , n)), and the language

T= (WEI,*) in the graph of w there is a path from the extreme left column to the

extreme right column!. This was the inspiration of our Example 3.1 (except that in [9]

284 .I.-c. Rkqer

there is no marked edge and no cyclic permutation of the vertices). They prove the

following result (see [9, Theorem 4.1.3 and Remarks on p. 28 11, and see the Appendix

of the present paper for a new proof):

Theorem 3.11 (Sakoda and Sipser [9]). The lanyucxge T, is recoynized hq‘ u nondeter-

minktic ,jinire mutomuton bvith n states, hut every narzdeterministic, finite automuton

reco~qniziny T, (= In* - T,, the complement of’ T,) must huce 3 2” stutes.

The alphabet I, used here has (n + 1)” letters. But the semigroup of all partial

functions from (l,..., n) into (1, . ,nj under composition is generated by just four

partial functions x,, /In, ;‘“, 6, (as we saw at the beginning of Example 3.9); the function

tables of x,,, [jn.;‘.. ii, are: r,, = [2,3,4, , n. l] cyclic shift; /I&, = 12, 1,3,4, . , n] transpo-

sition of 1 and 2: ~,=[1.1,3,4 ,..., rz] so ~,,(1)=7,(2)=1, ~,(x)=.Y if .~>2;

6,= [-. 2,3. n] so ii,(s)=x if .Y # 1, (5,(1) is undefined. So we could replace the

alphabet I, by the alphabet J, = (xi ‘, p; I, ;);l, 6; 1) (inverses of these four partial

functions); we also consider Y, = T, n (J,)* and r, =(J,)* - Y,,. The theorem of Sakoda

and Sipser still holds for Y, and now we have a constant-size alphabet (IJ,J =4). See

our Appendix for a slightly stronger result and a new proof.

To make use of this theorem we need the notion of reduction between regular

languages.

Definition 3.12. Let L, E C*, L, G d * b e anguages, where C and A are finite alpha- I

bets. Then L1 L L2 (L, reduces to L2) iff there exist ~1, L’E~ * and a homomorphism

cp:C*+A* such that L,=cp-‘(UC’ L,c-‘) (or equivalently: XEL, iff ucp(s)cEL2).

Theorem 3.13. [J’L, L Lz, and fLz is recognized h)! a nondeterministic~,finite uutomuton

with n states, then L1 is recognized by some nondeterministic ,finite automaton \z.ith

<n + 1 stutes.

(The proof is straightforward; see e.g. [4] p. 61 for inverse homomorphisms, and

pp. 62 and 63 for right-quotients; left-quotients are similar, but one might need several

start states in the nondeterministic case, or one new start state; the proofs in [4] also

work for nondeterministic automata.)

We are now ready to introduce Example 3.10.

To define the alphabet A, we will use partial functions (1, . . . , II - 3j -+ (1, . . , n - 3)

and their generators 3x, j = U, [$, 3 = p, yn _ j = ;’ and fi, 3 = ii;

A,= ((fU-‘,(,f;(.x), x)) 1 pi (~,/Ily, a), .uEDom(,fP), and,f, is the partial func-

tion (l,..., n)+(l)..., n) defined as follows:,1;(2)=2,fP(1) andfP(n) are

undefined, and f(s) = ~(x - 2) for all SE j3, , n - 1) 1

u((S;‘,(Yl(.~j,x))I.~~Dom(gl)J

Here yr and q,, are partial functions defined by: .~/r(.y)= 1 for 2<.x<n- I, (and ~~(1)

and q1 (n) are undefined); q,(s) = y1 for 2 <x <n - 1 (and qn(1) and q,(n) are undefined).

See Fig. 9.

One can check that Id,,] =0(n). Also, d, will be considered a subset of C,

(Example 3.1) by identifying (R, (x, 4~)) with (R,(.u,y), ;I~). The language L; E d,* and

the partial order on d, are defined as in Examples 3.1 and 3.9. Clearly, Li can be

recognized by a deterministic finite automaton with n states (just like L,).

In view of the preceding two theorems, property (b) of Example 3.10 follows from

the next claim (which gives an interesting inherent connection between minimization

and negation):

Claim 3.14. vn_3 i MIN(Li), where L denotes reduction, as dqfined above; MIN is

taken with respect to the generalized prqfix, &fix, or subsegment orders. For the

generulized prqfis and .s~jjfi.~ orders we actually have Y,- 2 L_ MIN(Li).

Proof (see also Fig. 9). In the notation of the Definition of reduction, we let: C = J, _ 3;

d = d,; u is the letter (y; ‘, (1,2)); c is the letter (y,, (2, n)); finally, y : C*+d * is the

length-preserving homomophism defined by: for every 11~ ’ EJ,_ 3 = (X ‘, /3- ‘, y- ‘, 6- ’)

we let ~(rll_l)=(,f;~l,(2,2))~d,. See Fig. 9 for an example.

Then for every vt’~(J,_~)* we have: WEY,_~ iff u~I(\v)uEMIN(L~). Indeed, the

marked path 1+2+2+...+2+2+n in UQ(~V)G is minimal iff no other path in ucp(\~)~.

Fg. 9. A word w=ij;.r;‘~(J~)*, and the corresponding word ucp(w)~.~dX; here w&Y,, and

LI(~(I\.)I.EMIN(L;).

286 J.-C. Birget

goes all the way through; by the choice of u and L’, this holds iff w# Y,_,. This proves

the claim. q

Finally, by Theorem 3.1 I any nondeterministic automaton for Y,_, needs

>2”-3 - 1 states; and thus, by Theorem 3.13, this must also be true for MIN(Li).

Note that for the generalized prefix order we could identify vertices 1 and 2; so then

Y,_,LMIN(L;).

Example 3.15 (Exponential lower houndsjb thp generalized prejix, .~fix, and suhseg-

ment orders, using a ,fiued ulphahet of size 4). Construction of a regular language

C, over the partially ordered four-letter alphabet ([O, 1, a, b i, <), such that:

(a) C, is recognized by a deterministic finite automaton with 0(n2) states.

(b) Any nondeterministic finite automaton recognizing MIN(C,), with respect to the

generalized prefix, suffix, or subsegment orders, requires >2”-3- 1 states; so the

relation between the number of states for C, and MIN(C,) is a function >,(JI1, for

some constant c > 1.

(c) The partially ordered alphabet ((O,l,a, hi, <) does not depend on n, and the

Hasse diagram of its partial order contains only one edge (namely, “0~ 1”).

Example 3.15 will be based on Example 3.10 (where we had an alphabet d, with

O(n) letters); we encode the alphabet d, into strings over the alphabet (O,l,a, bj, as

follows:

The letter (.f‘~ ‘,(,f(,j),j))~d, (with .fi (./;,,~b,j,,j~,sl)) is encoded into the string

CODE(f‘~ l,(.f‘(j),j))=,~‘“d’O”-f(j)+l lJ(j)OnPj+’ lj, where ,fcodr is defined as

follows:

(,fz)c”de = aaa, (,ffl)Code = sub, (.f;yd’ = ubu, (j;)c”d’ = ubh, (9 1)code = baa.

The letter (y,,(j,n))Ed, is encoded as CODE(~,,(j,n))=bubOflPj+’ ljO1”. A word

w=ui . ..a.EA,* is encoded into CODE(~~~)=CODE(a,)CODE(a2)...CODE(a,)

(concatenation of the encodings of the letters).

The language C, is obtained by encoding the language Li (of Example 3.10) as

above, word for word, i.e., C,=CODE(Li)= (CODE(w)] w~&‘j.

Claim 3.16. C, is recognized by (I deterministic finite automaton with O(n’) stutes.

The proof is elementary, and we omit it.

In order to prove property (b), we will reduce the language Yn-3 (introduced in

Example 3.10) to MIN(C,).

Claim 3.17. r,_ 3 L_ MIN(C,), where L denotes the reduction introduced by Sukoda und

Sipser.

Proof. Here (referring to the definition of L) we pick C = J,_ 3 = (x- ‘, [j- ‘y- ‘, b- ’)

(see Example 3.10); d = [O, 1, a, h 1; the length-preserving homomorphism $ is defined

as follows i(z-‘)=CODE(,fj~‘,(2,2)), $(/I-‘)=CODE(.fb-‘,(2,2)), $(7-l)=

CODE(,fi.-‘,(2,2)), and $(K1)=CODE(,~6~1,(2,2)); finally, ~=CoDE(y;l,(l,2)),

u=CODE(y,,(2, n)).

We must show that M’EY,_~ iff u$(M’)PEMIN(C,). We know from Example 3.10

that M.EY,_~ if and only if (~;‘,(1,2))cp(w)(g,,(2,n))~MIN(Li). Also, the function

CODE:&+jO,l,a,b)* 1s injecti~e and u’ouhly order-preserving; i.e., (R 1, (x1, ~1~)) <

(R2,(x2,.vZ)) in (A,, <) $7 CODE(Rl,(.~,,y1))6CODE(R,,(.~,,y,)) with respect
to either of the generalized prefix and the subsegment orders on [O, l,a,b) *.

This follows from the facts that (1) there is no order relation between a and b, (2) we

have 0~1, and (3) the marked edges of d, are coded in unary notation over

(O,l,a,b) *. From this we conclude that (s;’ ,(1,2))~(4(y,,(2,n))~MIN(Li) iff

CODE(~L,‘,(I,~))(~(M.)(~,,(~,~)))EMIN(C,). This proves Claim 3.17.

From Claim 3.17 and Theorems 3.11 and 3.13 it follows that any nondeterministic

finite automaton recognizing MIN(C,) must have at least 2”m3 - 1 states.

Example 3.18 (Reachuhility of the upper hound,for the subsequence order). Construc-

tion of an alphabet K, (of size <n2) and a regular language L, G K,* such that

(1) L, is recognized by a deterministic finite automaton with n states;

(2) every nondeterministic finite automaton recognizing MIN(L,), with respect to

the ordinury suhsryuence order, requires >(n-2)2”-3 +2 states; so the upper bound

in Theorem 2.1(3) is reached (even if non-determinism is used).

We assume n > 2.

We take the alphabet K,=((i,j)li,j~(l,...,n) and i#,ji, and we define our

language L, E K,* by L,= [wcK,* 1 the first letter in M‘ is of the form (1,j) for somej,

the last letter of IV is of the form (i,n) for some i, and any two neighboring letters of

\V are of the form (i,j)(j,k), for some i,j,kj.

One can check easily that, with respect to the ordinary subsequence order, we have:

MIN(L,)=((l,i,)(i,,i,)(i,,i,)...(i,_,,i,)(i,,n)~K,f lr31, and in the sequence

l,i,,i,,i, ,..., i,_ 1, i,, n no integer occurs more than once!.

Graphically, K, is the complete directed graph on n vertices without loops: L, is the

set of all walks from 1 to n in this complete graph; MIN(L,) is the set of all paths from

1 to n (walks without repeated vertex) in this complete graph.

It is easy to see that L, can be recognized by a deterministic finite automaton (DFA)

with n states. To establish the state-complexity of MIN(L,), we first show that the

DFA constructed in the proof of Theorem 2.1(3) is minimal: then we show that the

same lower bound also holds for all NFAs (nondeterministic finite automata)

recognizing MIN(L,).

Fact 3.19. The DFA ,for MIN(L,), constructed in the proof of Theorem 2.1(3), is the

minimum automaton qfMIN(L,).

Proof. Notation n = ’ 1 , , . . . , n). The states of this DFA (see the proof of Theorem

2.1(3)) for our example are if)ui(l,~))ui(i,T)~nx2”1 lfifn, i&T, IET, n$Ti.

288 J.-C. Lcr</rt

The start state is (l,@), and the sole accept state is.6 The next-state function in this

example (with input letter (.j, k)$K,) b ecomes: (i, T) l (j, k) = 0 if i #j; and

I
(k, {i) u T)

(i, T)-(i,k)= f

0

We must show that in this DFA

if nfk and k$T,

if n= k,

if keT.

1) every state (as defined above) is reachable from

(l,(j), (2) from every state one can reach f; (3) every two states are distinguishable.

(1) The state (i, T), with T= (.jl , . . . , j, 1 (r distinct states), is reachable from (l,@) by

reading the input string (l,j,)(il,,~,)(i2,j,)...(~~-~,~~).

(2) From the state (i, T) one reachesfby reading the input (i,n).

(3) Any state (i, T) is distinguishable from f; because in state f no next state is

defined. Two states (i, T), (k, U) with if k are distinguished by applying the input (i, n):

(i, T)*(i,n)=J; but (k, U)*(i,n)=@ T wo states (i, T), (i, U) with Tf U are distinguished

as follows: Assume PE T- U (the proof would be similar if there exists PE U - T), and

consider the input w=(i,p)(p.n)EK,*. Then (i,T)*(i,p)=@, since pcT, and so

(i, T)*w=@ On the other hand, (i, U)*(i,p)=(p, (iI VU) since p$U (and also pfn,

because PET, and (i, T) is a state); thus (i, U)*w=(p, (ii uU)*(p,n)=,f: This proves

Fact 3.19.

Fact 3.20. Ecrry NFA ,fiw MIN(L,) neds as mung states us the minimum DFA ,fbr

MIN(L,).

Proof. We apply the same idea as in the new proof of the theorem of Sakoda and

Sipser (see Appendix). For every state (4, T) of the minimum DFA of MIN(L,)

(described in the proof of Fact 3.19 above), we choose two words I+~,~), P(,,,)EK,* as

follows: Let T= (p, = 1, pz, pk) with Pi#pj for ifj; then we define qq,rj=

(~,P~)(P~,P~)...(P~-~,~~)(~~,~~). Let T=n-T=(p,+,=q,~~+~,...,p,-~,p~=lli with

pi#pjfor i#i; then we define C~~.T)=(~,P~+~)(P~+~,P~+~)...(P~~~,P~-~)(P~-~~~Z).(I~

the definitions of uCq, Tj and L’(~, r), it does not matter how the elements of T and Tare

ordered, except that in qrTj we must start with 1, and in c(~,~) we must start with

q and end with n.) As a special case we have u,~,o,=E (the empty word), and

L’,~,o,=(1,2)(2,3)...(n-2, n- I)(n- I,n) (since here r=n). We also define, for the state

j’: uf=(1,2)(2,3)...(n-2,n-l)(n-I,!?), and v~=E.

From these definitions, and the description of MIN(L,) one concludes that:

(1) u~L.~EMIN(L,), and u(~,~)c(~,~) EMIN(for every state (y, T) of the DFA.

(2) If (p,S)#(q, T) then u(p,S)qq,~) $MIN(L,) or u~,,~)~;(~,~~~MIN(L,); also

qp,s,r/$MIN(L,), and ~I.L.(~,~)$MIN(L,) (for all states (p, S), (y, T) of the DFA). See

the proof of Fact 3.6 of Example 3.1.

Let sl=(R,C;,rO, ,q,) ’ ’ be a NFA recognizing MIN(L,) (we may assume, without

loss of generality, that .d has a single accept state).

For each state (4, T) of the DFA, we choose a state v(~,~)ER such that

~(4,Tj~~O*~(y,T) and Q=(~,T)*c(~,T). For (l,@) we have then ~,,.g,=r,; and for the state

,fof the DFA we have v~=Q. We assume now that a fixed choice of Y~~,~, has been

made for very ((1, T).

Claim 3.21. For u/l states (4, T), (p, S) of’ the DFA: #‘(Al, T) #(p, S) tlzrr~ rt4, TJ #P(~,~);

ulso I’(~, T, fr,. (From this claim one immediately concludes that the NFA ,cl has at

least as many states as the DFA recognizing MIN(L,).)

For a proof of the claim see Fact 3.6 of Example 3.1.

Remark 3.22. One could easily encode our alphabet K, over a 2-letter alphabet, so

that the encoded language Liodcd has a DFA with O(n) states, whereas every NFA for

MIN(L;“drd) q re uires >c” states (for some constant c> 1).

Appendix: a new proof of a theorem of Sakoda and Sipser about the complementation

of nondeterministic finite automata

We give a new (and probably simpler) proof of the following result [9, p. 281,

Theorem 4.1.31 (slightly improved here regarding the alphabet size):

(1) L, is recoynized hi, u NFA with II stutrs (in,firct, more’ strongl~~, thr rcvcrs~ LL’” of

L, is rrcoynizrd by u DFA bcith n states, lrith u sincqlr uccept stutcj).

(2) Any NFA rrcognizin<q L,,(=Z* - L,) requires 32” states.

Our language L, will be almost the same as the language T, of Sakoda and Sipser;

the only modifications are: (1) We want the alphabet to consist of 3 letters (rather than

(n+ l)“), (2) we want Lie’ to be recognized by a DFA (this is almost true in 191).

For this, we use the three generators r, p, ;‘, of the semigroup of all total functions

il, n) +(I, ~1; r=[2.3,4, n- l,n, l] (cyclic shift), fi=[2, 1,3,4 ,..., n] (trans-

position of 1 and 2), ;‘= [1,1,3,4 ,..., n](i.e.,~(1)=~(2)=1,~(.~)=.~if.~>2). Similar to

Example 3.10 of this paper, we pick our alphabet to be C= ix- ‘,/I- ‘, 7-l) (i.e., the

inverses of the three generators). In analogy with the definition of T,, we pick our

language to be L,= (M’EC* (in the graph of M: there is a path, starting at vertex 1 in the

extreme left column, and ending in vertex 2 in the extreme right column).

Clearly, Lr” is recognized by a DFA with n states (in fact, the minimum DFA has

n states), with a single accept state. One can also check that the minimum DFA for

L, has 2” states (see [l, Section 21).

So far we have closely followed [9]. To show that any NFA recognising L,, requires

32” states, we will use a new argument.

290 J.-C. Birqet

For every set S G (1, .., n) we choose two words us, as~C* as follows.

For us: The word us is chosen in such a way that S consists of the labels of those

vertices in the extreme right column of us that are reachable by a path in the graph of

us, starting at 1 in the extreme left column.

Fov ps: The word cs is chosen in such a way that S consists of the labels of those

vertices in the extreme left colume of [‘s from which 2 in the extreme right column is

not reachable.

In other words, the relations on (1, . . , n) determined by the graphs of us and 1’s are

such that the image of 1 under us is S and the inverse image of 2 under z’s is $.

From these properties of us and rs we immediately conclude (for all

S ZG (l,...,nJ):

‘(1) u,1+r,,

(2) if SfZ then usuz~L,, or uZcs~Ln (since SfZ iff (Sni?)u(SnZ)#@.

Let sJ=(Q, C, l ,po, F) be a 1NFA recognizing LO. For each set S (once we have

fixed us and us) we choose a state qsgQ such that qsEpo l us and qs l rs n F # 0 (i.e., qs is

a state on an accepting computation on uses, that is reached after us was read). We

now assume that a fixed choice of qs has been made for each set S.

Claim A.2. For all sets S, Z c (1, . , n) NV hate: if S # Z thrn qs #qz

From the claim, one immediately concludes that the I NFA .cJ has 32” states, since

there are 2” subsets in [I,I?).

Proof. Suppose, by contradiction, that qs = q z, with SfZ. Consider the words ustiz

and uz~:~, of which (as we noted above) at least one belongs to L,; so they should not,

both, be accepted by .d. Nevertheless, the following describes an accepting computa-

tion on input ~~i’~: .d starts in state pO and, by reading us it can reach the state qs = qz:

next, by the definition of qz, .rl can reach an accept state (EF) from qz by reading 11~.

In a similar way, .rJ also accepts the word uzcs. So $1 accepts both words, which

contradicts the fact that at least one of them is not in E,,.

Acknowledgment

I would like to thank my colleagues David Klarner and Stuart Margolis for

pointing out references [3. 5, 71.

References

[I] J.C. Birget, State-complexity of finite-state devicca. state compresibility and incomprcssiblltty. Mtrtl~.

S~~srcwls T~wor~ (1993). to appear.

[?I A. Chandra, D. Kozen and L. Stockmeyer? Alternation. J. ACM 28 (19X1) 114~133.

[3] G. Higman. Ordering by divisibility an abstract algebras. P,oc~. I~odon h!rrrh. S’oc~. 2 (1951) 326-336.

[4] J. Hopcroft and J. Ullman, Inrrotlwrio!~ ro A~tfomrrrtr T/wor!~. f.~n<q~rtrqc,.\ trwl Con~puftrrron (Addison-

Wesley. Reading. MA, 1979).

[S] J.B. Kruskal, The theory of well quasi ordering: a frequently discovered concept. J. C~>rvh~n. Tlwor~.

Srr. A, 13 (1972) 797-305.

[6] E. Leiss. Succinct representation of regular languages by boolean automata. U~cowr. COUI~UC. %I. 13

(19X I) 33 330.
173 M. Lothalre. C‘o,,lhi,lclrori~.\ O)I U’wrlv (Addison-Wesley, Reading. MA. 1983).

[X] S. Kundu. The minimal strings in a regular language with respect to a partial order on the alphabet.

T/wowr. Co~np~rr. SC,;. 83 (I99 I) 2X7-300.

[9] W. Sakoda and M. Sipser. Non-determinism and the size of two-aa) finite automata. Proc,. /Of/l Ac‘.V
Swlp. ON 7-hcor\~ of’ Coqxhzq (197X) 275 2X6.

