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Alternation is a natural generalization of nondeterminism. The model of alternating finite automata
was first introduced and studied by Chandra et al. in [2]. Although alternating finite automata are no
more powerful than deterministic finite automata with respect to language recognition, special features
of alternating finite automata may provide new approaches and techniques for solving theoretical and
practical problems concerning regular languages. In this paper we present direct constructions for the
usual language theoretic operations in terms of alternating finite automata. Moreover, we discuss
minimization and direct transformations between alternating, non-deterministic, and deterministic finite
automata.
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The notion of alternation is a natural generalization of non-determinism. It
received its first formal treatment in [1], published as [2]. That seminal paper and
most of the subsequent research focused on relating various types of alternating
machines to complexity classes (see, for example, [1, 5-15]). Such machines are
useful for a better understanding of many questions in complexity theory. For
alternating (one-way, single-head) finite automata, it is proved in [2] that they are
precisely as powerful as deterministic finite automata as far as language recogni-
tion is concerned. This result would seem to close the story. However, beyond this
seemingly negative result one should still ask the question whether the presence of
alternation can lead to simplified constructions in the area of finite automata. This
is the focus of the present paper.

*This work was supported by the Natural Sciences and Engineering Research Council of Canada,
Grants OGPOOOO243 and OGPOO41630.
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In this section we introduce the basic notions and notations used in this paper.
The symbol IR denotes the Boolean semi ring, IR= {O, I}. Let Q be a set. Then IRQ is
the set of all mappings of Q into IR; note that u E IRQ can also be considered as a
Q-vector over IR. For u E IRQ and q E Q we write qu or uq to denote the image of q
under U (depending on the context). If P is a subset of Q then ulp is the restriction
of u to P.

An alphabet is a finite, nonempty set. Without loss of generality we assume in
the sequel that alphabets do not contain any of the "special" symbols

The elements of an alphabet are called symbols or letters. A word over an alphabet
L is a finite sequence of symbols from L. We use e to denote the empty word and
L* to denote the set of all words over L.

Any subset of L* is called a language over L. For languages L1 and L2 over L
we consider the operations of complement I1 = L*\Lb union L1 u L2, intersection
L[ n L2, concatenation L1L2, power L1, and star L! = U~o Li

1• We denote the
reversal of a word w by wR• The reversal of L is defined as L R = {wR Iw E L}.

A deterministic finite automaton (DFA) M is specified by a quintuple
M = (Q, L, (j, s, F) where Q is the finite set of states, L is the input alphabet,
(j: Q x L-+Q is the transition function, s E Q is the starting state, and F r;; Q is the
set of final states. A non-deterministic finite automaton (N FA) M = (Q, L, (j, s, F) is
similar to a OF A, except that (j is a mapping of Q x L into 2Q• An NF A with
non-deterministic starting state (NNF A) is defined by a quintuple M = (Q, L, (j, S, F)
where S r;; Q is the set of starting states. Let M as above be a OF A, an NF A, or an
NNF A. Without loss of generality, assume that Land Q are disjoint. A
configuration of M is a word in QL*. Let v, w E L* and p, q E Q. By pv ~ qw, pv ~i qw,
and pv ~* qw we denote the facts that there exist single-step, i-step, or arbitrary-
step transitions, respectively, from pv to qw.

For general information about finite automata and regular languages see [4J or
[16J, for example.

Alternating automata (of any type) are a generalization of non-deterministic
automata in the following sense: If in a given state q the automaton reads an input
symbol a, it will activate all states of the automaton to work on the remaining
part of the input in parallel. Once the states have completed their tasks, q will
evaluate their results using a Boolean function and pass on the resulting value to
the state by which it was activated. A word w is accepted if the starting state
computes the value of 1. Otherwise, it is rejected. We now formalize this idea.

DEFINITION3.1 An alternating finite automaton (AF A) is a quintuple



with the following properties:

a) Q is a finite set, the set of states;

b) L is an alphabet, the input alphabet;
c) s E Q is the starting state;

d) F c;; Q is the set of final states;

e) g is a mapping of Q into the set of all mappings of L x IBQ into lB.

We turn to defining the sequential behavior of an AFA. For q E Q, let

where a ELand u E IBQ
. Later we also need the mappings g(a) of Q into the set of

all mappings of IBQ into IB and the mappings gq(a) of IBQ into IB defined by

for a E L, q E Q, and u E IBQ•

Now define f E IBQ by the condition

f is called the characteristic vector of F. We extend g to a mapping of Q into the
set of all mappings of L* x IBQ into IB as follows:

{
u

g (w L)= q'
q' gq(a,g(v, u)),

ifw=c,
if w=av with aE Land VE L*,

DEFINITION 3.2 Let A=(Q,L,S,F,g) be an AFA. A word WEL* is accepted by A
if and only if gs(w,f)= 1. The language accepted by A is the set L(A)=
{WIWEP /\ gs(w,f)= I}.

Occasionally, we need to change the start state of an AFA. In this case,
Lq(A)={wlwEP /\ gq(w,f)= I} is the language accepted by A with start state q.
We summarize the results of [2J for AF A.

THEOREM 3.3 [2J If A is an AF A with k states then L(A) is accepted by a DF A
with 22k states and L(A)R is accepted by a DF A with 2k states. Moreover, for every
k, k"i'; 1, there is an AFA A with k states such that the reduced DFA accepting L(A)
has exactly 22k states.

The first part of this result is not surprising as any AF A can enter only finitely
many "internal situations," a notion to be made precise later. However, it also



provides valuable information about the relative sizes of the state sets of an AF A
and a DFA.

In the remainder of this paper we investigate certain natural automaton
theoretic constructions in detail. In Sections 4 and 5, we present two direct
constructions of an NF A from a given AF A; the former actually results in an
NNF A in its usual form; the latter yields an NNF A or an NF A in its matrix
representation. In Section 6, we explore the converse construction to represent a
given DFA or NFA as an AFA. Section 7 focuses on normal forms and
minimization of AF A. One of the results states that the class of e-free regular
languages coincides with the class of languages accepted by AF A without final
states. In Section 8, we provide direct AF A constructions for union, intersection,
and complement. The operations of concatenation and star are dealt with in
Section 9. Finally, Section 10 summarizes the results and addresses further
questions.

The proof of Theorem 3.3. given in [2], though being constructive in principle,
provides little insight in the way a DF A or an NF A would simulate an AF A. In
this section we exhibit one construction of an NF A from a given AF A. Another
quite different construction is given in a later section. These constructions illustrate
various aspects of the connection between AF A and NF A.

Let A = (Q, L, s, F, g) be an AF A. Consider the NNF A

for uEIBQ and WEL*. For w=e, one has u=f and g(e,f)=! Now assume the
statement is correct for all words up to length t, and let W= av with a ELand
VELI•

Let u = g( w,f). By the definition of g, one has



By the induction hypothesis u'=g(v,f), and u=g(a,u') by the definition of fJ.
Hence, u = g( w,f). 0

The construction of Theorem 4.1 gives an interpretation to the states of the
AF A. A transition is possible only if a certain combination of successor states can
be successful with respect to acceptance. Note that part of Theorem 3.3 follows
from the above construction. If the given AF A has n states, then the NNF A we
have constructed has 2" states. Therefore, we can construct an equivalent 22" -state
OF A. One can also observe that the reversal of Av is deterministic. This proves the
following result which was already stated in [2].

COROLLARY 4.2 [2] If L is accepted by a k state AF A then L R is accepted by a
DF A with at most 2k states.

In this section we provide another direct construction of an NF A from a given
AF A. This second one yields an NNF A in its matrix representation. At the end of
this section, we show that using a slightly modified approach an NF A (rather than
an NNF A) in its matrix representation can be constructed whjch has one more
state.

Recall that any NNF A A = (Q, L, fJ, S, F) can be represented using a homomor-
phism jJ. of L* into the multiplicative monoid IBQ x Q of all Q x Q-matrices over IB,
and using a row vector n E IB 1 x Q and a column vector '1E IBQ xl, such that

for WEL*. Note that jJ. is completely defined by its restriction to L. This
representation is achieved by



where p,qEQ and aEL.
Now, let A=(Q,L,S,F,g) be an AFA. Let X={XqlqEQ} and X={XqlqEQ} be

two disjoint alphabets, each in one-to-one correspondence with Q. The elements X
will be used as variables in Boolean expressions with - denoting negation as usual.
Let T be the set of terms of the form !\qEQYq where YqE{Xq,Xq} for qEQ. Every
t E T can be considered as a mapping of IIJQinto IIJas follows: Suppose t = !\qEQ Yq
and u E IIJQ.Then t(u) = !\qEQ Zq where

if Yq=Xq,
if yq=Xq.

One then extends every t E T to a mapping of (IIJQ)Q into IIJQ, that is to a
functional, in the obvious manner.

The set T serves as the set of states of the NNF A to be constructed. For a EL,
define a T x T-matrix f1(a) by the condition

where a ELand r, t E T. Extend the definition of f1 to a homomorphism of L* into
IIJTx T in the natural way. Let fJ be the column vector over IIJwith fJt = t(f) for t E T.
Finally, let n be the row vector with nt = 1 if and only if t implies XS'

Let Am=(T,L,c5m,Sm,Fm) be the NNFA having the triple (n,f1,fJ) as its matrix
representation.

THEOREM 5.1. L(Am) = L(A).

Proof For wEL* and uEIIJQ, define the mapping g(w,u) of Q into IIJ by
g(w,u)(q)=gq(w,u) where qEQ. Clearly, g(av,u)=g(a,g(v,u)), for any aEL, vEL*,
and u E IIJQ.One proves by induction that

for all wEL* and tET. Indeed, for w=e one has t(g(w,f)) =t(f) = fJt = (f1(e)fJ)t· Now
consider w=av with aEL and vEL*. By induction hypothesis, r(g(v,j))=(f1(v)fJ),
for all rE T. Let u=g(v,j). Then t(g(w,j))= t(g(a,u)). One obtains:



Note that Am has 2k states if IQI = k. By the last part of Theorem 3.3 this cannot
be improved in general. Indeed, let be a k-state AF A such that the smallest
equivalent OFA as 22k states and let A' be an equivalent NNFA with j states.
Then A' has an equivalent OF A with a most 2i states, that is, 2i ~ 22k

, hence j ~ 2k
•

COROLLARY 5.2 For every k, k ~ 1, and every k-state AF A there exists an equivalent
N N F A with at most 2k states. Moreover, this bound is tight for all k.

While the above construction yields an NNF A, a slight modification of it yields
an equivalent NF A with one more state. The state set of the NF A is T' = T u {r:t.}
where r:t. is a new symbol. For a E L, define j1'(a) to be a T' x T' matrix such that
J1'(a)r.r=j1(a)r.r for all r,tE T, and J1'(a)a.,= 1 if and only if t implies gs(a) and
j1'(a),.a= 0 for all t E T. The row vector n' and the column vector r( over Bare
defined by

ift=r:t. and 6¢L(A),

if t = r:t. and 6 E L( A),

if t E T,
{
I, if t=r:t., dn,= an
0, if t E T,

which proves the claim.

COROLLARY 5.3 The N FAA' given by n', j1', and r( is equivalent to the AF A A.
Moreover, if A has k states then A' has 2k + 1 states.

Thus every k-state AF A has an equivalent NF A with at most 2k + 1 states. W~
conjecture that this bound is tight. However, we do not have a proof. Note thT
thiS would not contradict the face that 22k states in an equivalent OFA are
enough.

In this section we show, how a OFA or NFA can be represented In the AFA
formalism. Let A = (Q, L, 0, s, F) be an NF A. We define an AF A



where qEQ, aEL, and uEIBQ.

THEOREM 6.1 L(A.) = L(A).

where qEQ and WEL*. If W=E then gq(w,f)=fq, and fq=l holds if and only if
qEF, that is, EEL(A). Now suppose that w=av where aEL and VEL*. Then one
has

The above construction starts from an NF A or a OF A. To start from an NNF A
A = (Q, L, <5,S, F) one introduces a new state s, s ¢ Q, and defines the AF A A. =
(Q',L,s,F,g) as above with Q'=Qu{s} andgs(a,u)=VPEsgp(a,u).

In this section, we show that every AF A has an equivalent AF A with at most one
final state and we show how to transform an AF A into an equivalent one in which
negation is not used. We also consider a special kind of AF A, the so-called s-AF A.
We then prove a theorem concerning the minimum number of states in an s-AFA.

THEOREM 7.1 For any AFA A with k states, k>O, there exists an equivalent k-state
AFA A' with at most one final state. More precisely, A' has no final state if E ¢ L(A);
otherwise, the only final state of A' coincides with the start state.

Proof Let A=(Q,L,S,F,g) be a k-state AFA. For uEIBQ, let u'EIBQ be given by



, _ {iiq, if q E F\ {s},
uq- h·uq, ot erWlse,

if sEF,
otherwise,

'( )_{gq(a,u')' ifqEF\{s},gq a,u - , h .
gq(a, u), ot erWlse.

Let f' be the characteristic vector of F. Obviously, this definition of f' is
consistent with the above. By induction on the length of WE L*, one shows that

As Us =u~ for all u E [BQ, this implies that g.(w,f) =g~(w,f') for all WE P. Therefore,
L(A) = L(A'). 0

At first glance, this result is quite surprising as it allows for non-empty
languages being accepted by AF A without final states. More precisely, one has:

COROLLARY 7.2 The class of languages accepted by AF A without final states
coincides with the class of £jree regular languages.

This result is in contrast to the situation for DF A, but actually parallels the
situation for NF A. For D FA, the family of languages accepted with k final states
is properly contained in the family of languages accepted with k + 1 final states for
all k, k"?: O. For NFA, 2 final states are always sufficient. More precisely, the £-free
regular languages require at most one final state while the regular languages
containing the empty word may need two final states.

The next results states that negations in the Boolean functions defining an AF A
can be avoided at the cost of increasing the number of states by a factor of 2.

THEOREM 7.3 For every AFA A=(Q,L,S,F,g) one can construct an equivalent
AFA A'=(Q',L,S',F',g') with IQ'I=2IQI such that, for every qEQ', g~ is without
negations, that is, can be defined using 1\ and v only.

Proof For each q E Q let q' be a new symbol and let



One verifies by induction that g~,(w)=gq(w) for all WEP.
So far every g~ can be considered as given by a Boolean expression involving

negations only at the level of the variables xq for q EQ. In order to obtain a
Boolean expression without negations for g~, one replaces every occurrence of a
negated variable by the corresponding primed variable, that is, xq would be
replaced by xq" This does not change the AF A A'. 0

In the sequel we refer to an AFA whose functions gq can be defined using /\
and v only as an AF A without negations. As far as final states are concerned,
AF A without negations are similar to NF A.

THEOREM 7.4 Let A be a k-state AF A without negations. One can construct an
equivalent (k + I)-state AF A without negations which has 1 final state if elf L(A) and
at mot 2 final states otherwise.

Proof Let A=(Q,L,S,F,g) and let r be a new state, Let q!, ... ,qk be the states
of A and, for PEQ, aEL, and uEIBQ, let O"p,a,u(x!"",xk) be a Boolean expression
using /\ and v only with variables Xi for the states qi EQ such that

Let Xr be a variable corresponding to the state r. We define Boolean functions
fp(a, u) by

X~= {Xi' if qi If F,
, X" if qjEF.

Now we define the AFA without negations A'=(Q',L,S,F',g') by Q'=Qv{r},
F' =({s} n F) v {r}, and

,( ) {a, if P = r,gp a,u =
gp(a,p(u)) v fq(a,p(u)), if popr,

for p EQ', a ELand u E IBQ',where p is the projection from IBQ'onto IBQwhich is
induced by the inclusion Q S; Q'. One verifies that A and A' are equivalent by
induction on the length of input words. 0



With respect to minimization of AF A, we only consider a special kind of AF A.
An s-AFA is an AFA A=(Q,L,S,F,g) such that for every aEL and every uEIE£Q,
g(a, u) does not depend on US. Intuitively, this means that the start state s cannot
be reached in any computation. Obviously, for every AF A one can construct an
equivalent s-AF A which has just one more state. On the other hand, if A is a
(k + I)-state s-AF A then there need not exist an equivalent k-state AFA. For
example, the language {c,a, a2} is accepted by a 3-state s-AF A, but not by any
2-state AF A.

The s-AF A are particularly useful to simplify certain constructions. For instance,
given an n-state s-AF A A and an m-state s-AF A B it is particularly easy to
construct (m + n -I)-state s-AFA C and D and an m-state s-AFA E such that
L(C) = L(A) u L(B), L(D) = L(A) n L(B), and L(E) = L(A).

THEOREM 7.5 L is accepted by an s-AF A with k + I states if and only if L R is
accepted by a DF A with 2k states.

Proof Let A be a (k + I)-state s-AFA and L = L(A). The construction of a
2k-state OF A, which accepts e, is similar to the one described in the proof of
Theorem 4.1.

Let D = (QD,L, 0, SD,F D) be a 2k-state OFA and L = L(D). Let K = {I, 2, ... , k}
and Ko=Ku{O}. Without loss of generality, we assume that QD=IE£K and
SD=(O, ... ,O). For uEIE£Ko,let uEIE£Kbe defined by uj=uj for all iEK. We now
define a (k+ I)-state s-AFA A=(QA,L,SA,FA,g) by

if SDEF D,

otherwise,

0(£1, a)j, if i E K,

g(a,u)j= 1, ifi=OanduEDD,

0, if i = 0 and £I rt F D.

for i E K 0, a ELand U E IE£Ko.The function g is well defined since A is deterministic.
By induction on the length of WEL*, one shows that u=g(w,f) if and only if
O(SD' wR) = u. Since Uo = 1 if and only if £IE F D, WEL(A) if and only if wR EL(D). 0

COROLLARY 7.6 Let A be an s-AF A such that (L(A))R is accepted by a minimized
DF A with n states. Then A has at least 1+ r(lOg2n)l states.



Of course, as every AF A language is regular, the class of AF A languages is closed
under the Boolean operations. However, this is only a "surface" result. Rather
than this type of existence result one would like to have concrete constructions for
AFA.

Let A = (Q, L, s, F, g) be an AF A. First we construct an AF A

F' {qEF, ifq,es,qE <=> .
q¢F, Ifq=s,

if q,es,
if q=s,

'( ) {gq(a,u')' ifq,es,
gq a,u = -(-) ifq=s,gq a,u,

where qE Q, aEL, and U E [E£Q.

THEOREM 8.1 L(A) = L*\L(A).

Proof We prove that g'(w,f') =g(w,f)' for all WE P. This is obviously true for
w=e. Now assume that the statement holds for VEL* and consider w=av with
aEL. For qEQ, one has

Thus, g~(w,f')=gs(w,f), that is, wEL(A)<=>w¢L(A) 0

Our next construction is for the union of languages accepted by AF A. For
i=1,2 let A(i)=(Q(i),L,S(i),F(i),g(i») be two AFA with disjoint state sets. We
construct an AF A

such that L(A(l) v A(2l)=L(A(ll)uL(A(2l). Let s be a new state symbol, s¢Q(l)u
Q(2), let



{

F(llU F(2)

F- '
- F(I) U F(2l U {s},

if S(I) ~ F(l) and S(2) ~ F(2),

otherwise.

if q E Q(i) with i E {l, 2},
if q=s.

where q E Q, aEL, and U E [EBQ.

THEOREM 8.2 L(A(I) v A(2)} = L(A(I)} u L(A(2l}.

{

F(l) U F(2)
F- '

- F(I) U F(2) U {s},

if s(l) ~ F(I) or S(2) ~ F(2),

otherwise.

if q EQ(il with i E {I, 2},
if q=s.



where qEQ, aEL, and uE[BQ. One then proves that L(A) is indeed the intersection
of the two languages.

THEOREM 8.3 L(A(I) /\ A(2») =L(A(l») n L(A(2»).

The operations of concatenation and star operation on AF A are more difficult
than the Boolean operations. We found only a partial solution so far.

Let Q be a finite, non-empty set. One defines a partial order on [BQby

with u, vE[BQ and 0<1. If A=(Q,L,S,F,g) is an AFA such that, for every qEQ
and a E L,gq(a) is either constant or a Boolean function with v -operators only
then A actually behaves like an NF A. In this case we say that A is an N FAin
AF A representation. When there is no risk of confusion we would also just say
that A is an NF A.

LEMMA 9.1 Let A=(Q,L,S,F,g) be an NFA in AFA representation. Then for every
u, v E [BQ and every a E U the following statements hold true:

1) u~v implies g(a)(u) ~g(a)(v).
2) g(a)(u v v) =g(a)(u) v g(a)(v).

Proof The properties are immediate consequences of the definition. D

THEOREM 9.2 Let A(l)=(Q(l), L,s(l),F(l),g(l») be an NFA in AFA representation,
and let A(2)=(Q(2), L,S(2),F(2),g(2») be an arbitrary AFA with Q(l) and Q(2) disjoint.
Consider the AF A

if q E Q(l) and q ¢ F(l),
if qEQ(I) and qEF(I),
if qEQ(2)

for qEQ(l)UQ(2) and aEL. Then L(A(l)·A(2»)=L(A(l»)L(A(2»). Moreover, if A(l) and
A(2) have ml and m2 states, respectively, then A(l). A(2) has ml +m2 states.

Proof Let wEL(A(l»)L(A(2»). Then w=xy for some xEL(A(l») and YEL(A(2»).
Then g~n(y) = 1 and, therefore, gq(y) = 1 for all q E F(l). Hence f(l) ~g(y)IQ(1) and,
using Lemma 9.1, g(l)(X) (f(l») ~g(l)(x)(g(y)IQ(I)). Since g~n(x)(f(l») = 1 one has
g~N)(x)g(y)IQ(l)=l, that is, w=xYEL(A(ll.A(2»).

Let w¢L(A(l»)L(A(2»). We show that w¢L(A(l)·A(2»). Let YI,Y2, ... ,Yn be those



words which are suffixes of wand are contained in L(A(Z»). If n=O, that is, if w has
no suffix y which is contained in L(A(Z») then gq(w)=O for all qEQ(1), hence
w¢ L(A(1)· A(Z»). Therefore, suppose that n >O. Then there are distinct words
x1,xZ, ... ,XnE:E* such that XiYi=W for i=1,2, ... ,n. Moreover, one has xi¢L(A(I»)
for these words, that is, g~IMx;)(f(1»)=O. Using the fact that Atl) is an NFA in
AFA representation and by Lemma 9.1 one obtains gs(W)=V?;lg~t?)(XJ(f(1»)=O.
This implies w¢L(A(I)·A(2»). D

THEOREM 9.3 Let Atl) and A(Z) be two AF A with ml and mz states, respective~Y. r--
Then there exists an s-AF A A with at most 2m, +mz + 1 states which accepts the '-
language L(A(l»)L(A(Z»).

Proof Using the results of Section 5, one transforms the AFA A(l) into an
NFA A(I)' with 2m, + 1 states which accepts the language L(A(1»). Using the
construction of Section 6, one obtains an equivalent NF A in AF A representation
A(I)" with 2m, + 1 states. We now apply Theorem 9.2 to complete the proof. D

In Theorem 9.3 we show that 2m, + mz + 1 states suffice for an AFA to accept
the concatenation of two languages accepted by AF A with m I and mz states,
respectively. We conjecture that this number of states is actually necessary in the
worst case, but have no proof.

A modification of the construction used in Theorem 9.2 can be used to obtain
an AF A which accepts the star closure of an AF A accepted language.

As far as language recognition is concerned, AFA are exactly as powerful as OFA
[2]. However, their mode of accepting words is quite different from that
considered with OF A. This becomes strikingly clear from our result that an AF A
needs at most one final state; moreover, it can do without any final states if the
empty word is not to be accepted. .

Given this difference it is important to derive at least the basic constructions for
AF A. In this paper we provide direct transformations between AF A, NF A, and
OF A and we exhibit constructions for union, intersection, and negation. Further
results concern minimization, concatenation, and star operation.

Additional questions will need to be asked about AF A. On the one hand, a
structure theory would need to be developed to turn AFA into a tool as easily
usable as are NF A. On the other hand, a representation theory which parallels the
theory of regular expressions and of linear equations over certain semirings has to
be developed in order to make AF A tractable by algebraic tools. The latter
problem is addressed in a paper in preparation.
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