Intern. J. Computer Math., Vol. 35, pp. 117-132 © 1990 Gordon and Breach, Science Publishers, Inc.
Reprints available directly from the publisher Printed in the United Kingdom
Photocopying permitted by license only

CONSTRUCTIONS FOR ALTERNATING FINITE
AUTOMATA*

A. FELLAH

Department of Mathematics and Computer Science, Kent State University, Kent,
Ohio 44242, USA

H. JURGENSEN and S. YU?

Department of Computer Science, The University of Western Ontario, London,
Ontario, Canada N6A 5B7

(Received 25 January 1990, in final form 16 February 1990)

Alternation is a natural generalization of nondeterminism. The model of alternating finite automata
was first introduced and studied by Chandra et al. in [2]. Although alternatiﬁg finite automata are no
more powerful than deterministic finite automata with respect to language recognition, special features
of alternating finite automata may provide new approaches and techniques for solving theoretical and
practical problems concerning regular languages. In this paper we present direct constructions for the
usual language theoretic operations in terms of alternating finite automata. Moreover, we discuss
minimization and direct transformations between alternating, non-deterministic, and deterministic finite
automata.

KEY WORDS: Alternating finite automata, finite automata, alternation, nondeterminism, NFA with
nondeterministic starting state.

C.R. CATEGORIES: F.1.1, F.1.2.

1. INTRODUCTION

The notion of alternation is a natural generalization of non-determinism. It
received its first formal treatment in [1], published as [2]. That seminal paper and
most of the subsequent research focused on relating various types of alternating
machines to complexity classes (see, for example, [1, 5-15]). Such machines are
useful for a better understanding of many questions in complexity theory. For
alternating (one-way, single-head) finite automata, it is proved in [2] that they are
precisely as powerful as deterministic finite automata as far as language recogni-
tion is concerned. This result would seem to close the story. However, beyond this
seemingly negative result one should still ask the question whether the presence of
alternation can lead to simplified constructions in the area of finite automata. This
is the focus of the present paper.

*This work was supported by the Natural Sciences and Engineering Research Council of Canada,
Grants OGP0000243 and OGP0041630.
1On leave from Kent State University, Kent, Ohio, USA.

117

118 A. FELLAH ET AL.

2. PRELIMINARIES AND NOTATIONS

In this section we introduce the basic notions and notations used in this paper.
The symbol B denotes the Boolean semiring, B={0, 1}. Let Q be a set. Then B? is
the set of all mappings of Q into B; note that ue B2 can also be considered as a
Q-vector over B. For ue B2 and ge Q we write qu or u, to denote the image of g
under u (depending on the context). If P is a subset of Q then u‘P is the restriction
of u to P.

An alphabet is a finite, nonempty set. Without loss of generality we assume in
the sequel that alphabets do not contain any of the “special” symbols

06,0, % v, A, T+, 0).

The elements of an alphabet are called symbols or letters. A word over an alphabet
¥ is a finite sequence of symbols from X. We use ¢ to denote the empty word and
Z* to denote the set of all words over X.

Any subset of X* is called a language over X. For languages L, and L, over
we consider the operations of complement L, =X*\L,, union L, U L,, intersection
L, n L,, concatenation L,L,, power L%, and star L¥=|()2,L;. We denote the
reversal of a word w by w®. The reversal of L is defined as L® = {w®|we L}.

A deterministic finite automaton (DFA) M is specified by a quintuple

=(0,%,0,s,F) where Q is the finite set of states, £ is the input alphabet,
0:Q x Z—Q is the transition function, se Q is the starting state, and F=Q is the
set of final states. A non-deterministic finite automaton (NFA) M =(Q,Z,0,s,F) is
similar to a DFA, except that § is a mapping of @ x X into 22. An NFA with
non-deterministic starting state (NNFA) is defined by a quintuple M =(Q, %, 4, S, F)
where S Q is the set of starting states. Let M as above be a DFA, an NFA, or an
NNFA. Without loss of generality, assume that ¥ and Q are disjoint. A
configuration of M is a word in QZ*. Let v,we X* and p,qeQ. By pvt qw, pvFigw,
and pvF*qw we denote the facts that there exist single-step, i—step, or arbitrary-
step transitions, respectively, from pv to gw.

For general information about finite automata and regular languages see [4] or
[16], for example.

3. DEFINITION OF AN ALTERNATING FINITE AUTOMATON

Alternating automata (of any type) are a generalization of non-deterministic
automata in the following sense: If in a given state g the automaton reads an input
symbol q, it will activate all states of the automaton to work on the remaining
part of the input in parallel. Once the states have completed their tasks, g will
evaluate their results using a Boolean function and pass on the resulting value to
the state by which it was activated. A word w is accepted if the starting state
computes the value of 1. Otherwise, it is rejected. We now formalize this idea.

DEerINITION 3.1 An alternating finite automaton (AF A) is a quintuple

ALTERNATING FINITE AUTOMATA 119

A(Q.Z,5,F.g)

with the following properties:

a) Q is a finite set, the set of states;

b) X is an alphabet, the input alphabet;

c) seQ is the starting state;

d) F<Q is the set of final states;

€) g is a mapping of Q into the set of all mappings of £ x B2 into B.

We turn to defining the sequential behavior of an AFA. For geQ, let
g, Z x BC—>B:(a,u) — g(g)(a, u)

where aeX and ueB? Later we also need the mappings g(a) of Q into the set of
all mappings of B? into B and the mappings g,(a) of B into B defined by

gla)(q)(u)=g,(a)(u) =g (a,u)

for acZ, geQ, and ue B2
Now define f € B2 by the condition

f,=1<qeF.

f is called the characteristic vector of F. We extend g to a mapping of Q into the
set of all mappings of Z* x B2 into B as follows:

u,, ifw=eg,
g,(a,g(v,u)), if w=avwithaeX and veX*,

wmﬂ={

where we Zu* and ue BC.

DeriniTION 3.2 Let A=(Q,Z%,s,F,g) be an AFA. A word weX* is accepted by A
if and only if gJw, f)=1. The language accepted by A is the set L(A)=
{wlweZ* A gw, f)=1}.

Occasionally, we need to change the start state of an AFA. In this case,
Lq(A)={w|weZ* A g4(w,f)=1} is the language accepted by A with start state g.
We summarize the results of [2] for AFA.

THEOREM 3.3 [2] If A is an AFA with k states then L(A) is accepted by a DFA
with 2% states and L(A)R is accepted by a DFA with 2* states. Moreover, for every
k, k=1, there is an AFA A with k states such that the reduced DF A accepting L(A)
has exactly 2** states.

The first part of this result is not surprising as any AFA can enter only finitely
many “internal situations,” a notion to be made precise later. However, it also

120 A. FELLAH ET AL.

provides valuable information about the relative sizes of the state sets of an AFA
and a DFA.

In the remainder of this paper we investigate certain natural automaton
theoretic constructions in detail. In Sections 4 and 5, we present two direct
constructions of an NFA from a given AFA; the former actually results in an
NNFA in its usual form; the latter yields an NNFA or an NFA in its matrix
representation. In Section 6, we explore the converse construction to represent a
given DFA or NFA as an AFA. Section 7 focuses on normal forms and
minimization of AFA. One of the results states that the class of e-free regular
languages coincides with the class of languages accepted by AFA without final
states. In Section 8, we provide direct AFA constructions for union, intersection,
and complement. The operations of concatenation and star are dealt with in
Section 9. Finally, Section 10 summarizes the results and addresses further
questions.

4. AFA TO NFA—THE FIRST CONSTRUCTION

The proof of Theorem 3.3. given in [2], though being constructive in principle,
provides little insight in the way a DFA or an NFA would simulate an AFA. In
this section we exhibit one construction of an NFA from a given AFA. Another
quite different construction is given in a later section. These constructions illustrate
various aspects of the connection between AFA and NFA.

Let A=(Q,Z,s,F,g) be an AFA. Consider the NNFA

A,=(B%%,4,8,{f})
where
(u,a,uYedo<=gla,u)=u
for u,u’ e B2 and ae X, and where
S={u|lueB%u,=1}.
THeEOREM 4.1 L(A4,)=L(A).

Proof As an auxiliary result, we prove that

uwb* f < g(w, f)=u

for ueB? and weX* For w=¢, one has u=f and g(e, f)=f. Now assume the
statement is correct for all words up to length [, and let w=av with aeX and
veZl

Let u=g(w,f). By the definition of g, one has

Uy =8q(W,) =84(a,&(v, f)).

ALTERNATING FINITE AUTOMATA 121

Let u'=g(v, f). The induction hypothesis implies that
uvk* f,
hence, by the definition of é one obtains
uw=uavku'vt* f.
For the converse, let uw F* f. Then there is a state u’ of the NNFA such that
uw=uavku'vk* f.

By the induction hypothesis u'=g(v, f), and u=g(a,u’) by the definition of d.
Hence, u=g(w,f). O

The construction of Theorem 4.1 gives an interpretation to the states of the
AFA. A transition is possible only if a certain combination of successor states can
be successful with respect to acceptance. Note that part of Theorem 3.3 follows
from the above construction. If the given AFA has n states, then the NNFA we
have constructed has 2" states. Therefore, we can construct an equivalent 2%"-state
DFA. One can also observe that the reversal of 4, is deterministic. This proves the
following result which was already stated in [2].

CoroLLARY 4.2 [2] If L is accepted by a k state AFA then L® is accepted by a
DF A with at most 2 states.

5. AFA to NFA—THE SECOND CONSTRUCTION

In this section we provide another direct construction of an NFA from a given
AFA. This second one yields an NNFA in its matrix representation. At the end of
this section, we show that using a slightly modified approach an NFA (rather than
an NNFA) in its matrix representation can be constructed which has one more
state.

Recall that any NNFA A=(Q,X,0,S, F) can be represented using a homomor-
phism p of £* into the multiplicative monoid B2*2 of all Q x Q-matrices over B,
and using a row vector 7€ B! *2 and a column vector ne B2*?!, such that

we L(A) < nu(wn=1

for weZX* Note that p is completely defined by its restriction to X. This
representation is achieved by

n,=1<qes,
n,=1<qeF,

and

122 A. FELLAH ET AL.

wa), ,=1<>(p,a,q)€d

where p,geQ and aeX.

Now, let A=(Q,X,s,F,g) be an AFA. Let X={x,|qeQ} and X={X,|qeQ} be
two disjoint alphabets, each in one-to-one correspondence with Q. The elements X
will be used as variables in Boolean expressions with ~ denoting negation as usual.
Let T be the set of terms of the form /\, oy, where y,e{x,,X,} for geQ. Every
teT can be considered as a mapping of B into B as follows: Suppose 1=\ .0V,
and ue B Then t(u)=/\ .oz, Where

u, ify,=x,
Uy, ify,=x,.

One then extends every teT to a mapping of (B9)? into B2 that is to a
functional, in the obvious manner.

The set T serves as the set of states of the NNFA to be constructed. For ae X,
define a T x T-matrix p(a) by the condition

w(a), = 1<t implies r(g(a))

where aeX and r,te T. Extend the definition of x4 to a homomorphism of X* into
BT*T in the natural way. Let n be the column vector over B with n,=t(f) for te T.
Finally, let 7= be the row vector with n,=1 if and only if ¢ implies x;.

Let A,=(T,Z,0,, S, F,,) be the NNFA having the triple (7, 4, 1) as its matrix
representation.

THEOREM 5.1. L(A4,,)=L(A).

m

Proof For weZXZ* and ueB? define the mapping g(w,u) of Q into B by
g(w,u)(q) =g,(w,u) where qeQ. Clearly, g(av,u)=g(a,g(v,u)), for any aeX, veX*,
and ue B2 One proves by induction that

t(g(w, f)) = (u(w)n),

for all weZ* and te T. Indeed, for w=¢ one has t(g(w,[))=t(f)=n,=(u(e)n),. Now
consider w=av with aeX and veX*. By induction hypothesis, r(g(v, f))=(u(v)n),
for all re T. Let u=g(v, f). Then t(g(w, f))=t(g(a,u)). One obtains:

t(g(a,u))=1<>3re T:r implies t(g(a)) and r(u)=1
<> p(a),,, =1 and (u(v)n),=1
<> (u(a)(u()n), = (u(win), = 1.

To prove L(A)=L(A,,), we still have to show that g(w, f)=mnu(w)y for we Z*:

ALTERNATING FINITE AUTOMATA 123

&w, f)=1+x,=1
<>3te T:t implies x, and t(g(w,))=1
<n,=1 and (u(w)y),=1
< mu(wn=1.

O

Note that A,, has 2* states if |Q|=k. By the last part of Theorem 3.3 this cannot
be improved in general. Indeed, let be a k-state AFA such that the smallest
equivalent DFA as 2% states and let A’ be an equivalent NNFA with j states.
Then A’ has an equivalent DFA with a most 2/ states, that is, 2/>2%" hence j>2*.

COROLLARY 5.2 For every k, k=1, and every k-state AFA there exists an equivalent
NNFA with at most 2* states. Moreover, this bound is tight for all k.

While the above construction yields an NNFA, a slight modification of it yields
an equivalent NFA with one more state. The state set of the NFA is T'=T u {a}
where o is a new symbol. For ae X, define y/(a) to be a T’ x T" matrix such that
w(a), ,=wa),, for all r,teT, and p'(a),,=1 if and only if ¢t implies g a) and
W(a), ,=0 for all te T The row vector " and the column vector ' over B are
defined by

0, ift=a and e¢ L(A),

T[;:{(l)’ 1?;:;’ and n= 1, if t=a and EEL(A),
’ ’ «f), ifteT,

for te T'. One verifies that again
T u(wy'=1<welL(A)

which proves the claim.

COROLLARY 5.3 The NFA A’ given by 7', i, and u' is equivalent to the AFA A.
Moreover, if A has k states then A’ has 2*+1 states.

Thus every k-state AFA has an equivalent NFA with at most 2*+1 states. We
conjecture that this bound is tight. However, we do not have a proof. Note that
this would not contradict the fact’ that 22 states in an equivalent DFA are
enough.

6. DFA OR NFA TO AFA

In this section we show, how a DFA or NFA can be represented in the AFA
formalism. Let A=(Q,X,0,s, F) be an NFA. We define an AFA

124 A. FELLAH ET AL.
A,=(Q,%,s,F,g)
as follows. Let
g a,u)=0<u,=0 for all peQ with (¢,a,p)ed

where geQ, aeZ, and ue B2
THEOREM 6.1 L(A,)=L(A).

Proof By induction, one proves the more general statement that
g,w, f)=1<qwt*p for some pe F

where geQ and weZ* If w=e¢ then g,(w, f)=f,, and f,=1 holds if and only if
qeF, that is, ee L(A). Now suppose that w=av where ae X and veZ*. Then one
has

gw, f)=g,(av, f)=1<g,a,g(v, f) =1
<>3peQ:qatpand g, (v, f)=1
<3peQ3reF:qat p and pvt*r,
hence, using the induction hypothesis,
<3JreF:qw=qavt*r.

O

The above construction starts from an NFA or a DFA. To start from an NNFA
A=(0,%,0,S,F) one introduces a new state s,s¢Q, and defines the AFA A,=
(Q,Z,s,F,g) as above with Q'=Q U {s} and g(a,u)=\/,.s&,(a, u).

7. NORMAL FORMS AND MINIMIZATION OF AFA

In this section, we show that every AFA has an equivalent AFA with at most one
final state and we show how to transform an AFA into an equivalent one in which
negation is not used. We also consider a special kind of AFA, the so-called s-AFA.
We then prove a theorem concerning the minimum number of states in an s-AFA.

THEOREM 7.1 For any AFA A with k states, k>0, there exists an equivalent k-state
AFA A’ with at most one final state. More precisely, A’ has no final state if ¢¢ L(A);
otherwise, the only final state of A’ coincides with the start state.

Proof Let A=(Q,Z,s,F,g) be a k-state AFA. For ue B, let u'e B2 be given by

ALTERNATING FINITE AUTOMATA 125

q

u/ . aqa lquF\{S}’
u,, otherwise,

for ge Q. We construct an AFA A'=(Q,%,s, F',g) with

P {s}, ifseF,
|0 otherwise,

and

4 a,u), ifgeF\{s},
g(a,u)= &l ,) = \.{ }
gq(a,u’), otherwise.
Let f* be the characteristic vector of F'. Obviously, this definition of [’ is
consistent with the above. By induction on the length of we Z*, one shows that

(g(w, f)) =g'(w, f).

As u,=u, for all ue B2, this implies that g(w, f)=g4(w, f”) for all we Z*. Therefore,
L(A)=L(A"). O

At first glance, this result is quite surprising as it allows for non-empty
languages being accepted by AFA without final states. More precisely, one has:

CoRrOLLARY 7.2 The class of languages accepted by AFA without final states
coincides with the class of e-free regular languages.

This result is in contrast to the situation for DFA, but actually parallels the
situation for NFA. For DFA, the family of languages accepted with k final states
is properly contained in the family of languages accepted with k+ 1 final states for
all k, k=0. For NFA, 2 final states are always sufficient. More precisely, the e-free
regular languages require at most one final state while the regular languages
containing the empty word may need two final states.

The next results states that negations in the Boolean functions defining an AFA
can be avoided at the cost of increasing the number of states by a factor of 2.

THEOREM 7.3 For every AFA A=(Q,%,s,F,g) one can construct an equivalent
AFA A'=(Q,%,s,F.,g) with |Q'|=2|Q| such that, for every qe(Q’, g, is without
negations, that is, can be defined using A and v only.

Proof For each geQ let ' be a new symbol and let
Q'=0Qu{qlqeQ},
s'=s,

F=Fulq

qeQ\F},

126 A. FELLAH ET AL.

and

g =18 ifpeQ,
P&, ifp=4q withqeQ.

One verifies by induction that g.(w)=g,(w) for all we Z*,

So far every g, can be considered as given by a Boolean expression involving
negations only at the level of the variables x, for geQ. In order to obtain a
Boolean expression without negations for g/,, one replaces every occurrence of a
negated variable by the corresponding primed variable, that is, x, would be
replaced by x,. This does not change the AFA A". [J

In the sequel we refer to an AFA whose functions g, can be defined using A
and v only as an AFA without negations. As far as final states are concerned,
AFA without negations are similar to NFA.

THEOREM 7.4 Let A be a k-state AFA without negations. One can construct an
equivalent (k+ 1)-state AFA without negations which has 1 final state if e¢ L(A) and
at mot 2 final states otherwise.

Proof Let A=(Q,X,s,F,g) and let r be a new state. Let q,,...,q, be the states
of A and, for peQ, aeX, and ueB? let 6, , ,(x;,...,x,) be a Boolean expression
using A and v only with variables x; for the states g;e Q such that

gp(av u)=ap.a,u(x11' . .,xk).

Let x, be a variable corresponding to the state r. We define Boolean functions
fola,u) by

fola,u)=a(x', ..., x})
where

o[ifaF,

o |x,, ifg;eF.

Now we define the AFA without negations A'=(Q",%,s,F’,g') by Q'=0Qu {r},
F'=({s} nF)u {r}, and

- u):{o, ifp=r,
e g (a, p(w) v fila, p(w), if p#r,

for peQ’, aecX and ueB?, where p is the projection from B2 onto B? which is
induced by the inclusion Q<= Q’. One verifies that A and A" are equivalent by
induction on the length of input words. []

ALTERNATING FINITE AUTOMATA 127

With respect to minimization of AFA, we only consider a special kind of AFA.
An s-AFA is an AFA A=(Q,Z%,s, F,g) such that for every aeX and every ueB?,
g(a,u) does not depend on u,. Intuitively, this means that the start state s cannot
be reached in any computation. Obviously, for every AFA one can construct an
equivalent s-AFA which has just one more state. On the other hand, if A4 is a
(k+1)-state s-AFA then there need not exist an equivalent k-state AFA. For
example, the language {¢ a,a’} is accepted by a 3-state s-AFA, but not by any
2-state AFA.

The s-AFA are particularly useful to simplify certain constructions. For instance,
given an n-state s-AFA A4 and an m-state s-AFA B it is particularly easy to
construct (m+n—1)-state s-AFA C and D and an m-state s-AFA E such that
L(C)=L(A) U L(B), L(D)= L(A) n L(B), and L(E)=L(A).

THEOREM 7.5 L is accepted by an s-AFA with k+1 states if and only if LX is
accepted by a DF A with 2 states.

Proof Let A be a (k+1)-state s-AFA and L=L(A). The construction of a
2%.state DFA, which accepts L%, is similar to the one described in the proof of
Theorem 4.1.

Let D=(Qp,%,d,sp, Fp) be a 2*-state DFA and L=L(D). Let K={1,2,...,k}
and K,=Ku{0}. Without loss of generality, we assume that Q,=B* and
sp=(0,...,0). For ueBX°, let 7eBX be defined by i;=u; for all ie K. We now
define a (k+1)-state s-AFA A=(Q 4, Z,s4, F 4, 8) by

QA:KOa

5,=0,

Fo_ {0} ifspeFp,
A :
0, otherwise,

and

ou,a);, ifiek,
gla,u);= 1, if i=0and iie Dy,
0, ifi=0and i ¢ F),.

for ieK,, ae X and ue BX°. The function g is well defined since A is deterministic.
By induction on the length of weX* one shows that u=g(w, f) if and only if
3(sp, wR) =1 Since u,=1 if and only if e Fj,, we L(A) if and only if wRe (D). O

CoROLLARY 7.6 Let A be an s-AFA such that (L(A))® is accepted by a minimized
DF A with n states. Then A has at least 1+[(log,n)] states.

128 A. FELLAH ET AL.

8. UNION, INTERSECTION AND NEGATION ON AFA

Of course, as every AFA language is regular, the class of AFA languages is closed
under the Boolean operations. However, this is only a “surface” result. Rather
than this type of existence result one would like to have concrete constructions for
AFA.

Let A=(Q,Z,s, F,g) be an AFA. First we construct an AFA

A=(Q,Z,s,F.g)

such that L(4)=X*\L(A4). The set F’ of final states is defined by the condition

qeF, ifq#s,

eF’
! o{qéF, if g=s,
for ge Q. For ue B2 let u’' be the mapping given by

o = 4 Ve if g#s,
¥ la, ifg=s

for ge Q. The function g’ is given by

el {gq(a, u), ifg#s,
a’ Uu)y=— .
gq gq(a, M), lfq:S’

where g€ Q, aeX, and ue B2
THEOREM 8.1 L(A)=X*\L(A).

Proof We prove that g'(w, f')=g(w, f) for all we X*. This is obviously true for
w=¢. Now assume that the statement holds for veX* and consider w=av with
aeX. For geQ, one has

gow, [)=g,(a,8(v, ') =gq(a,g(v, [)) =g,(w, [)

Thus, gi(w, f')=g,(w, f), that is, we L(A) < w¢ L(4) [

Our next construction is for the union of languages accepted by AFA. For
i=12 let A9=(Q9,Z, sV F? ¢V be two AFA with disjoint state sets. We
construct an AFA

A=AV v AP =(Q,%,s,F,g)

such that L(A" v A®)=L(A") U L(A?). Let s be a new state symbol, s¢ Q" U
0, let

Q___Q(l) v Q(ZDU {5},

ALTERNATING FINITE AUTOMATA 129

and let

FMy F3, if sV ¢ FM and s® ¢ F?,
FYUF?y{s}, otherwise.

The function g is given as follows

¢ (au)= 29(a, u|pw) if ge Q¥ with ie{1,2},
Gl gith(a,ulom) v gh(a,ulgm), ifg=s.

where geQ, ae X, and ue B2
THEOREM 8.2 L(AV v A®)=L(A"V)u L(4A®).

Proof By induction one verifies that

guhw, f) v gh(w, f®) ifg=s,

& /) :{g;“(w, 1), if g€ 0 with ie {1,2),

for geQ and weX*. []

The construction of an AFA.
A=AY A AP =(0Q,Z,s,F,g)

such that (A" A A®)=L(A"V) n L(A®) is similar. With Q as above, one defines

F(l) v F(Z) if S(l)¢ F(l) or S(Z)¢F(2),
_{F‘“ U F® U {s}, otherwise.
and
= g(a, u|gw), if ge Q¥ with ie {1,2},
&= gih(a,u)gm) A g(a,ulpm), ifg=s.
JCM—E

130 A. FELLAH ET AL.

where geQ, aeX, and ue B2 One then proves that L(A) is indeed the intersection
of the two languages.

THEOREM 8.3 L(AM A AP)=L(AY) n L(AP).

9. CONCATENATION AND STAR ON AFA

The operations of concatenation and star operation on AFA are more difficult
than the Boolean operations. We found only a partial solution so far.
Let Q be a finite, non-empty set. One defines a partial order on B¢ by

usv<VqeQ:u,<v,

with u, veB? and 0<1. If A=(Q,Z,s,F,g) is an AFA such that, for every geQ
and aeX, g (a) is either constant or a Boolean function with v -operators only
then A actually behaves like an NFA. In this case we say that A is an NFA in
AF A representation. When there is no risk of confusion we would also just say
that A is an NFA.

LeEMMA 9.1 Let A=(Q,Z%,s,F,g) be an NFA in AF A representation. Then for every
u,ve B2 and every acu the following statements hold true:

1) u=v implies g(a)(u) =g(a)(v).
2) gla)(u v v)=g(a)(u) v gla)(v).
Proof The properties are immediate consequences of the definition. [

THeOREM 9.2 Let AV =(QW, Z,sV, FV ¢M)) be an NFA in AFA representation,
and let A =(Q?, £,5®, F? ¢?) be an arbitrary AFA with Q) and Q'® disjoint.
Consider the AF A

AW A(Z):(Q(l) v Q(Z). > S(l), F(Z),g)

where

g a), if g Q" and q¢ FV,
g(a)=< g"a) v g&(a), if qe Q™ and ge F"),
g (a), if ge Q¥

for qe QMU QP and aeX. Then L(AV- A®)=L(AV)L(A®). Moreover, if AY and
A® have m, and m, states, respectively, then AV - A? has m, +m, states.

Proof Let we L(AV)L(A®). Then w=xy for some xeL(A") and yeL(A?).
Then g (y)=1 and, therefore, g,(y)=1 for all ge F"’. Hence [<g(y)|om and,
using Lemma 9.1, g™(x)(f™)<g™(x)(g(y)|om). Since gih(x)(f")=1 one has
gih(x)g(»)|eor=1, that is, w=xye L(4" - A®).

Let w¢ L(AV)L(A®). We show that we¢ L(AY - A@). Let y,,y,,...,V, be those

ALTERNATING FINITE AUTOMATA 131

words which are suffixes of w and are contained in L(A®). If n=0, that is, if w has
no suffix y which is contained in L(A®) then g,(w)=0 for all geQ", hence
weg L(A"- A®). Therefore, suppose that n>0. Then there are distinct words
X1,X2,...,X,€2* such that x;y;=w for i=1,2,...,n. Moreover, one has x;¢ L(A")
for these words, that is, gi{)(x;)(f*)=0. Using the fact that A is an NFA in
AFA representation and by Lemma 9.1 one obtains g(w)=\/7- g (x;)(f*)=0.
This implies w¢ L(AV-A?). O

THeOREM 9.3 Let AV and A® be two AFA with m, and m, states, respectively.
Then there exists an s-AFA A with at most 2™ +m,+ 1 states which accepts the
language L(AV)L(A('?).

Proof Using the results of Section 5, one transforms the AFA A into an
NFA A" with 2™ 41 states which accepts the language L(AY). Using the
construction of Section 6, one obtains an equivalent NFA in AFA representation
AM" with 2™ + 1 states. We now apply Theorem 9.2 to complete the proof. []

In Theorem 9.3 we show that 2™ +m,+1 states suffice for an AFA to accept
the concatenation of two languages accepted by AFA with m, and m, states,
respectively. We conjecture that this number of states is actually necessary in the

worst case, but have no proof. (o)
modification of the construction used in Theorem 9.2 can be used to obtain

an AFA which accepts the star closure of an AFA accepted language.

10. CONCLUDING REMARKS

As far as language recognition is concerned, AFA are exactly as powerful as DFA
[2]. However, their mode of accepting words is quite different from that
considered with DFA. This becomes strikingly clear from our result that an AFA
needs at most one final state; moreover, it can do without any final states if the
empty word is not to be accepted. A

Given this difference it is important to derive at least the basic constructions for
AFA. In this paper we provide direct transformations between AFA, NFA, and
DFA and we exhibit constructions for union, intersection, and negation. Further
results concern minimization, concatenation, and star operation.

Additional questions will need to be asked about AFA. On the one hand, a
structure theory would need to be developed to turn AFA into a tool as easily
usable as are NFA. On the other hand, a representation theory which parallels the
theory of regular expressions and of linear equations over certain semirings has to
be developed in order to make AFA tractable by algebraic tools. The latter
problem is addressed in a paper in preparation.

References

[1] A. K. Chandra, D. C. Kozen and L. J. Stockmeyer, Alternation. Res. Rept. R7489, IBM T. J.
Watson Research Center, Yorktown Heights, NY, 1978.
[2] A. K. Chandra, D. C. Kozen and L. J. Stockmeyer, Alternation. JACM 28 (1981), 114-133.

)

132 A. FELLAH ET AL.

[3] J. H. Chang, O. H. Ibarra and B. Ravikumar, Some observations concerning alternating turing
machines using small space, Inform. Process. Lett. 25 (1987), 1-9.

[4] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley, Reading, 1979.

[5] H. Hromkovic, Alternating multicounter machines with constant number of reversals, Information
Processing Letters 21 (1985), 7-9.

[6] J. Hromkovic, On the power of alternation in Automata Theory, J. of Comp. and Syst. Sci. 31
(1985), 28-39.

[7] K. Inoue, I. Takanami and H. Tanaguchi, Two-dimensional alternating turing machines, Proc.
14th Ann. ACM Symp. On Theory of Computing, New York, ACM, 1982, 37-46.

[8] K. Inoue, I. Takanami and H. Tanaguchi, A note on alternating on-line turing machines, Inform.
Process. Lett. 15 (1982), 164-168.

[9] K. N. King, Restricted Forms of Alternation, Ph.D. Dissertation, University of California,
Berkeley, 1980.

[10] P. A. Lindsay, Alternation and w-type turing acceptors, Theoret. Comput. Sci. 43 (1986), 107-115.

[11] R. E. Ladner, R. J. Lipton and L. J. Stockmeyer, Alternating pushdown automata, Proc. 19th
IEEE Symp. on Foundations of Computer Science, IEEE, 1978, 92-106.

[12] W.J. Paul, E. J. Prauss and R. Reischuck: On Alternation, Acta Inform. 14 (1980), 243-255.

[13] W. L. Ruzzo, Tree-size bounded alternation, J. Comput. System Sci. 21 (1980), 218-235.

[14] 1. H. Sudborough: Efficient algorithms for path system problems and applications to alternating
and time-space complexity classes, Proc 2Ist IEEE Ann. Symp. On Foundations of Computer
Science, IEEE, 1980, 62-72.

[15] K. Wagner and G. Wechsung: Computational Complexity, VEB Deutscher Verlag der
Wissenschaften, Berlin, 1986.

[16] D. Wood, Theory of Computation, Harper & Row, New York, 1987 (2nd printing, Wiley, 1988).

