
Theoretical Computer Science 13 (1981) 323-330
North-Holland Publishing Company

NOTE

SUCCINCT REPRESENTATION OF REGULAR
LANGUAGES BY BOOLEAN AUTOMATA*

Ernst LEISS**
Department of Computer Science, Unioersity of Kentucky, Lexington, K Y 40506, U.S.A.

Communicated by M. Nivat
Received August 1979
Revised May 1980

Abstract. Boolean automata are a generalization of finite automata in the sense that the 'next
state'i i.e. the result of the transition function given a state and a letter, is not just a single
state (deterministic automata) or a union of states (nondeterministic automata) but a boolean
function of states. Boolean automata accept precisely regular languages; furthermore they
correspond in a natural way to certain language equations as well as to sequential networks. We
investigate the succinctness of representing regular languages by boolean automata. In particular,
we show that for every deterministic automaton A with m states there exists a boolean automaton
with [log2 m] states which accepts the reverse of the language accepted by A (m ~> 1). We also
show that for every n ~> 1 there exists a boolean automaton with n states such that the smallest
deterministic automaton accepting the same language has 2 (2") states; moreover this holds for an
alphabet with only two letters.

1. Notation

We will review some concepts central to this paper; the undefined notions can be

found in any standard text book covering finite automata and regular languages.
A boolean au tomaton ([2]; for more details and proofs see there) is a quintuple

B = (A, (2, r, f0, F) where A is the input alphabet, Q is the finite nonempty set of

states, r : Q x A - ~ B o is the transition function, Bo denoting the free boolean
algebra generated by Q, fO~ Bo is the initial function, and F _ Q is the set of final

states. The operat ions of Bo are w (union), n (intersection), and - (complement) ;

note that Q is the set of states of B and at the same time the set of generators of Bo.
The transition function r is ex tended to B o x A* as follows. Let Q = {ql q,}.

For all w ~ A * , a i E A , qiEQ, f ~ B o we define r(qi, A)=qi, 1 "r(qi, aiw)=
fi](r(ql, w) r(q., w)), where]~i(ql q.) = r(qi, ai) ~ Bo, and r(f, w) =
f(r(ql, w) r(q., w)). We define a re la t ion=F, called evaluation under F, as

* Part of this research was done while the author was visiting the Departmento de Ciencias de la
Computaci6n, Universidad de Chile, Santiago, Chile, supported by a grant from the IBM World Trade
Americas/Far East Corporation.

** Present address: Department of Computer Science, University of Houston, Houston, TX 77004,
U.S.A.

1 h denotes the empty word.

323

324 E. Leiss

follows: Let 8i = 1 if qi ~ F, otherwise 8i = 0. For any f ~ Bo, f= p ~ iff [(61 8,) =
or, a ~ {0, 1}. A word w is accepted by B iff r (f ~ w) =F 1. The set of all such words is
L(B). - Recent ly we learned that boolean automata have been introduced by Kozen
[3] under a different name and in a different context.

Intuitively a boolean au tomaton can be viewed as a parallel finite au tomaton (its
name in [3]) as a letter of the alphabet is applied (in parallel) to each state and then

the results are combined in a boolean function.

I f f ~ Q, r(qi, a~)~ Q for all i,j, then B is a deterministic (finite) au tomaton; if
fo_~ Q, r(qi, at) ~_ Q for all i, j, then B is a nondeterminist ic automaton. It is easily
verified that these are precisely the usual definitions. We will always assume that our

boolean automata are connected i.e. that for no P ~ Q, { r (f ~ w) I w ~ A*} is a subset
of Bp ~_ Bo. This clearly extends the definition of connected finite automata.

It is known ([2, 3]) that L(B) is a regular language for any boolean au tomaton B.

Fur thermore the derived deterministic au tomaton AB accepts exactly L (B) ; AB is

defined as follows: An = (A, P, ~ , f0 , G), where P = { z (f ~ w)[w ~ A * } ~ B o , G =
{f~ P If =F 1}, and/z (z (f ~ w), a) = r (f ~ wa) for all w ~ A*, a ~ A. Clearly, if B has
n states, An can have no more than 2 ~2~ states.

The reverse A ~ of a (connected) deterministic finite au tomaton A =
(A, Q, r, q0, a 6) is defined as follows. For any w ~ A* let Qw = {q ~ Q It(q, w)~F} .
Then A p = (A, P,/z, po, G), where P = {p lp = Ow for some w ~ A*}, p0 = F , G =

{P~PIqo~P} and t z (p , a) = { q ~ Q [z (q , a) ~ p } for p e P , a ~ A . A ~ is always
reduced, has at most 2" states if A has n states, and the language accepted by A ~ is

precisely the reverse of the language accepted by A, (L(A)) ~ = L (A ~ (see [1]).

2. The results

In [2] systems of left-language equations were studied; these are equations of the
form

Si=~._J~eaa'Fi, a(Xl X ,) u S i , i = 1 ,n ,

where Fi, a is a boolean function in the variables X1 Xn, 8i E ({,~}, ~}. These

equations give rise to a boolean au tomaton in an obvious way (~'(qi, a) corresponds to
F~.a). In the present note we study the conciseness of this representat ion of regular
languages.

Given a regular language R, we define the (deterministic) complexity of R to be
the 'size', i.e. the number of states, of the (uniquely determined) reduced au tomaton

accepting R. It is known that for any n ~> 1 there exists a nondeterminist ic au tomaton
N with n states such that the complexity of L (N) is 2", i.e. the reduced automaton for
the language accepted by N has 2" states. Moreover this holds for alphabets with a
number of letters independent of n (see also Corollary 4). On the other hand, it is also

known that for every n >/1 there exists a language of complexity n such that the
smallest nondeterminist ic automaton has as many states as the reduced deterministic

automaton, namely n. Such a class is for instance given by 0"-10 *, n/> 1, over the

Representation of regular languages by boolean automata 325

one-letter alphabet {0}. In this paper we study similar questions in the case of boolean
automata.

We first show that the reverse of a regular language of complexity m can be
succinctly represented by a boolean automaton.

T h e o r e m 1. Let A be a deterministic finite automaton with m states. There exists a

boolean automaton B with [log2 m] states which accepts the reverse language,
L (B) = (L(A)) p.

Proof. Let A = (A, {0 m - 1}, r, qo, F), and let i' be the binary representation of
the nur~ber i with k = [log2 m] digits. For example, if m = 9, i = 3, then i'= 0011.
Now we can write the transition table of A induced by r in this notation, i.e. i' under a
is T t ~ , a). This can be conceived as the transition table of a sequential network N with
decoded inputs where the/ th digit of the binary representation corresponds to the jth
variable of N; clearly, N has k variables.

It is known that the language L (N) defined by the network N is exactly L (A) (see

[2], and the following example). We associate variable Xj with the / th variable of N,
/ = 1 k, and derive the next-state equations, the output equation, and the
starting state of N; this is a complete description of our sequential network with
decoded inputs. From it we obtain the system of right-language equations whose
solution is precisely L (A) = L (N) (again see [2]). We get a system of left-language
equations whose solution is the reverse of L (A) by writing the letters in the
right-language equations on the left side [2]. This system of left-language equations
can be rewritten as a boolean automaton B. It follows that B has [10g2 m] states, and
L (B) = (L(A)) p ; hence B is the desired boolean automaton.

We give a detailed example. Let A = ({a, b, c}, {0, 1, 2, 3}, r, 0, {0}) be the given
deterministic automaton, r being defined by

a b c

0 1 1 3
1 2 0 1
2 3 2 2
3 0 3 3

We rewrite this in binary notation and obtain the transition table of a sequential
network with decoded inputs:

a b c

y 2 ~ Y1 Y2 Y1 I/2 Y1 Y2 z

~ 0 0 0 1 0 1 1 1 1
0 1 1 0 0 0 0 1 0
1 0 1 1 1 0 1 0 0
1 1 0 0 1 1 1 1 0

326 E. Leiss

where the arrow (~) indicates the starting state (00) and the last column (z) defines

the output equat ion (z -- ;1 n 372). F rom the transition table we obtain the next-state
equations, the output equation, and the starting state:

Y1 = a (h (yl (h ;2 ~.1 ;1 n y E) U b t'h (yl) kJ c ('~ (yl k-) ;2),

Y2 = a n (;2) u b n (yl n y2 u ;1 n ;2) u c n (;1 u Y2),

Z = ;1 N ; 2 output function,

(0, 0) starting state.

This network describes exactly L(A) . Now we get the right-language equations
which also describe L(A):

Xl = (X1 N 2 2 k..) Xl N X2)" a U (X1)" b k..) (Xl Y 22)" C,

X2 = (22)" a U (x~ n x2 u.ex n.~2), b u (21 n Xz)" c,

X0 = X1 t'~ -~2.

By writing the letters a, b, c on the other side of the functions we obtain the
left-language equations

xl = a . (x~ n 22 u 2~ ~ x2) u b. (xl) u c . (x~ w 2z),

X2 = a . (~2)u b . (xl n x 2 u ~ l n22) u c . (21 wx2),

X 0 = 2 1 N 2 2 .

This system has the unique solution (L(A)) ~ and yields immediately the desired

boolean au tomaton B = ({a, b, c}, {Xl, x2},/~, 21 n 22, 0), p. given by

a b c

Xl [X1N 22 U 21 ("~X 2 Xl X l U 2 2
m

X2 I 22 Xl (") X2 tO 21 n x2 2 1 u x 2

There fore L(B) = (L(A)) ~ This can also be verified directly by constructing A ~ and
An, and comparing the two automata.

It is known that the reverse of any language accepted by an n-s ta te boolean

au tomaton can be accepted by a deterministic au tomaton with 2" states (see [4]).

Thus, if we define a language R to be of boolean complexity n if the smallest boolean
au tomaton accepting L has n states, this observation together with Th eo rem 1 yields:

Corollary 1. The languages o]: boolean complexity at most n are exactly the reverses of
the languages of deterministic complexity at most 2".

Theorem 1 has an immediate consequence for languages over a one- le t ter
alphabet.

Corollary 2. I]: R is a regular language of deterministic complexity m, and R is over a

Representation of regular languages by boolean automata 3 2 7

one-letter alphabet, then there exists a boolean automaton B with [log2 m] states which

accepts R, L (B) = R.

The proof is contained in the observation that L = L ~ if L is any language over a

one- le t ter alphabet.

The reader may recall that the situation was different in the case of nondeter-

ministic automata. This might p rompt one to speculate that we can always achieve a
logarithmic reduction. This, however, turns out to be wrong as the following example
shows.

Consider the reduced au tomaton A = ({0, 1, 2}, {qo, ql}, ~', q0, {qo}), ~" given by

0 1

qo ql ql

ql qo qx

If the above conjecture were correct there would exist a boolean au tomaton with one
state accepting L(A) . This is not true as one can verify directly. Thus there is no

boolean au tomaton for this language with fewer states than two, the number of states
of the reduced automaton.

It is an open problem whether there is a regular language of complexity n for all
n t> 3 such that the smallest boolean automaton has n states.

We now direct our at tention to the question whether there are regular languages

which can be optimally represented by boolean automata, i.e. we ask whether there

are boolean automata with n states, n I> 1, such that the corresponding languages are
of maximal (deterministic) complexity, namely 2 (2") . This question can be answered
affirmatively.

Proposition 1. For every m >1 1 there exists a deterministic finite automaton Am with m

states such that A ~ has 2 m states.

Proof . Let m ~> 2. Consider the following automaton A,, = ({a, b, c}, {0 m - 1},

r,., 0, {0}), ~m being defined by

~',. (i, a) = (i + 1) mod m,

1, i = 0 ,

7 , , (i ,b)= 0, i = 1 ,

i, i = 2 m - l ,

m - l , i = 0 ,

zm(i , c)= i, i = 1 m - 1 .

For instance the au tomaton A in the above example is . 4 . 4 . - We claim that A ~ has 2 m

states. The proof relies on the following observations. Columns ~'m (", a) and ~'m (' , b),
considered as permutat ions of the set {0 m - l } , generate the symmetric

328 E. Leiss

group S " of all permutat ions of the set {0 m -1} . The column z " (. ,c) will be

used in the construction of A ~ to obtain a set with J + 1 elements f rom one with]
elements, for] = 1 m - 1. It also induces the empty set. Hence all 2 " subsets

. . . . A " , note that A " is connected. {0, m - 1} occur as states of P �9

It should be clear that this proof is very similar to the proof that there exists a
nondeterminist ic au tomaton with m states such that the derived deterministic

au tomaton has 2 " states. However , in our case we have the added advantage that A~
is always reduced.

Combining The o rem 1 and Proposit ion 1 yields

Theorem 2. For any n >I 1 there exists a boolean au tomaton Bn with n states such that

the reduced au tomaton accepting L (B,,) is A s a n d has 2 (z") states.

Proof. Let m = 2" in Proposit ion 1; then A~ is reduced and has 2 <2"~ states. Now

apply Theorem 1 to Am. The resulting boolean au tomaton B, has n = [log2 m] states
and defines L (A ~) .

Therefore AB, has 2 (z") states.

Clearly, all constructions are effective. Fur thermore the complexity of the con-
struction is substantially 'smaller' than the deterministic au tomaton we define by
specifying a regular language.

Note that the fact that As . is reduced is a trivial by-product . This is in marked
contrast to the problem for nondeterminist ic automata where it is quite difficult to

show that there is an m-state au tomaton such that the subset construction yields a
deterministic automaton with 2 " states which is reduced.

Theorem 2 was first obtained by Kozen [3]; however his method is quite different
f rom ours. Fur thermore , it requires an alphabet with three letters, leaving open the
question whether fewer letters will suffice.

In view of Corollary 2, Theo rem 2 cannot hold for languages over a one- le t ter

alphabet. This can also be seen directly if one considers the two constant boolean
functions 0 and 1. However , it does hold for a two-let ter alphabet. All we have to
show is an analogue of Proposit ion 2 over an alphabet with two letters.

Proposition 2. Le t . 4 " = ({0, 1}, {0 m - 1}, ~-~", 1, ff~") for m I> 2 with F " =

{0 <<- i <~ m - 11 i even } and

r 0) = (i + 1) mod m,

Then (A ") ~ has 2 " states.

"~,, (i, 1) = { i ' m O < ' i < - m - 3 '

- 1 , i = m - 2 , m - 1 .

Proof. Clearly (A~") ~ = ({0, 1}, {0 m - 1}, 8,., P,., {1}) and 8,. as follows:

Representation of regular languages by boolean automata 329

6re(i, O) = (i - 1) mod m,

({i},

8"(i , 1) = ~0,

{m - 2, m - 1},

0 < ~ i < ~ m - 3 ,

i = m - 2 ,

i = m - 1 .

We have to show that any subset S of {0 m - 1} can be obtained from F,, using

the actions of 6 " (. , 0) and 6 " (. , 1). For convenience let S = (i l , ik) where
0 ~ < il <" �9 �9 < ik ~< m -- 1. We first observe:

(a) is ~ S can be erased from S (we can construct S - {is}) if is + 1 is not in S, and
(b) l ~ S can be inserted into S (we can construct S w {l}) if l + 1 is in S.

To verify this, one first uses the cyclic permutat ion p, enacted by 6,. (' , 0), x times
to get is (l) into position m - 2 , then uses 6 , , (. , 1) once, and then applies (m - x)

times p again.

The second crucial idea is the following construction of S"X: S mx is the sequence

formed out of the maxima of all contiguous subsequences of S. For example, if
$ = (1, 2, 3, 7, 8, 10, 12, 15, 16, 17, 18, 19) then S = (3, 8, 10, 12, 19). Given S it

is a trivial observation how to construct S. Simply apply (b) to fill in all missing states.
Note that S "x can never have more than [�89 + 1)] elements. This is exactly the
number of elements in/6m, the set of starting states of (P~,,)~ Now is is easy to see that

all possible S "x can be obtained from if"'.

This gives rise to the following corollaries.

Corollary 3. For every n >t 1 there exists a boolean automaton. B , with n states over a

two-letter a lphabet such that L(B, ,) has complexi ty 2 <2").

Proof. If n/> 2, the result follows from Proposit ion 2 and Theorem 1.

For n = 1 we define the boolean automata B,, as follows:

B1 : ({0, 1}, {q}, ~'1, q, O)

with rl given by rl(q, O) = ~, rl(q, 1) = O.
#.

It can be easily verified that L(B1i is of deterministic complexity 4.

Corollary 4. For every m >! 1 there exists a nondeterminist ic au tomaton N " with m

states over a two-letter a lphabet such that L (N ') is o f complexi ty 2" .

Proof . Consider 4 " defined in Proposit ion 2 and define PC,, as follows:

N,, = ({0, 1}, {0 m - 1}, (~,.)-~, a6,,, {0}).

Note that (~ ')-~, the inverse function of ~,,, is indeed the transition function of a
nondeterminist ic automaton. It is easily verified that the deterministic automaton

obtained by the subset construction from N,, is precisely (.~,,)o, and hence it has 2 "
states and is reduced. For m = 1, the claim follows trivially.

330 E. Leiss

References

[1] J.A. Brzozowski, Canonical i'egular expressions and minimal state graph for definite events, in:
Mathematical Theory of Automata, Symposia Series 12 (Polytechnic Institute of Brooklyn, Brooklyn,
1963) 529-561.

[2] J.A. Brzozowski and E. Leiss, On equations for regular languages, finite automata, and sequential
networks, Theor. Comput. Sci. 10 (1980) 19-35.

[3] D. Kozen, On parallelism in turing machines, Proc. 17th Annual Symposium on Foundations of
Computer Sc&nce (1976) 89-97.

[4] D. Kozen, private communication, April 1980.

