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Abstract. Boolean automata are a generalization of finite automata in the sense that the 'next 
state'i i.e. the result of the transition function given a state and a letter, is not just a single 
state (deterministic automata) or a union of states (nondeterministic automata) but a boolean 
function of states. Boolean automata accept precisely regular languages; furthermore they 
correspond in a natural way to certain language equations as well as to sequential networks. We 
investigate the succinctness of representing regular languages by boolean automata. In particular, 
we show that for every deterministic automaton A with m states there exists a boolean automaton 
with [log2 m] states which accepts the reverse of the language accepted by A (m ~> 1). We also 
show that for every n ~> 1 there exists a boolean automaton with n states such that the smallest 
deterministic automaton accepting the same language has 2 (2") states; moreover this holds for an 
alphabet with only two letters. 

1. Notation 

We will review some concepts central to this paper;  the undefined notions can be 

found in any standard text book covering finite automata  and regular languages. 
A boolean au tomaton  ([2]; for more  details and proofs see there) is a quintuple 

B = (A, (2, r, f0, F )  where A is the input alphabet,  Q is the finite nonempty  set of 

states, r : Q  x A - ~ B o  is the transition function, Bo denoting the free boolean 
algebra generated by Q, fO~ Bo is the initial function, and F _  Q is the set of final 

states. The operat ions of Bo are w (union), n (intersection), and - (complement ) ;  

note that Q is the set of states of B and at the same time the set of generators  of Bo. 
The  transition function r is ex tended to B o x  A* as follows. Let  Q = {ql . . . . .  q,}. 

For  all w ~ A * ,  a i E A ,  qiEQ, f ~ B o  we define r(qi, A)=qi, 1 "r(qi, aiw)= 
fi](r(ql, w) . . . . .  r(q., w)), where ]~i(ql . . . . .  q.) = r(qi, ai) ~ Bo, and r(f, w) = 
f(r(ql, w) . . . . .  r(q., w)). We define a re la t ion=F,  called evaluation under  F, as 
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1 h denotes the empty word. 
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follows: Let  8i = 1 if qi ~ F, otherwise 8i = 0. For  any f ~ Bo, f= p ~ iff [(61 . . . . .  8,)  = 
or, a ~ {0, 1}. A word w is accepted by B iff r ( f  ~ w) =F 1. The set of all such words is 
L(B).  - Recent ly  we learned that boolean automata  have been introduced by Kozen 
[3] under  a different name and in a different context.  

Intuitively a boolean au tomaton  can be viewed as a parallel finite au tomaton  (its 
name in [3]) as a letter of the alphabet  is applied (in parallel) to each state and then 

the results are combined in a boolean function. 

I f f ~  Q, r(qi, a~)~ Q for all i,j, then B is a deterministic (finite) au tomaton;  if 
fo_~ Q, r(qi, at) ~_ Q for all i, j, then B is a nondeterminist ic  automaton.  It is easily 
verified that these are precisely the usual definitions. We will always assume that our  

boolean automata  are connected i.e. that for  no P ~ Q, { r ( f  ~ w) I w ~ A*} is a subset 
of Bp ~_ Bo. This clearly extends the definition of connected finite automata.  

It is known ([2, 3]) that L(B)  is a regular language for any boolean au tomaton  B. 

Fur thermore  the derived deterministic au tomaton  AB accepts exactly L (B) ;  AB is 

defined as follows: An = (A, P, ~ , f0 ,  G),  where P = { z ( f  ~ w)[ w ~ A * } ~ B o ,  G = 
{f~  P If =F 1}, and/z  ( z ( f  ~ w), a) = r ( f  ~ wa) for all w ~ A*,  a ~ A. Clearly, if B has 
n states, An can have no more  than 2 ~2~ states. 

The reverse A ~ of a (connected) deterministic finite au tomaton  A =  
(A, Q, r, q0, a 6) is defined as follows. For  any w ~ A* let Qw = {q ~ Q It(q, w)~F} .  
Then A p = (A, P,/z,  po, G),  where P = {p lp = Ow for some w ~ A*}, p0 = F ,  G = 

{P~PIqo~P} and t z ( p , a ) = { q ~ Q [ z ( q , a ) ~ p }  for p e P ,  a ~ A .  A ~ is always 
reduced,  has at most 2" states if A has n states, and the language accepted by A ~ is 

precisely the reverse of the language accepted by A, (L(A))  ~ = L ( A  ~ (see [1]). 

2. The results 

In [2] systems of left-language equations were studied; these are equations of the 
form 

Si=~._J~eaa'Fi, a(Xl . . . . .  X , ) u S i ,  i = 1  . . . .  ,n ,  

where Fi, a is a boolean function in the variables X1 . . . . .  Xn, 8i E ({,~}, ~}. These 

equations give rise to a boolean au tomaton  in an obvious way (~'(qi, a) corresponds to 
F~.a). In the present  note we study the conciseness of this representat ion of regular 
languages. 

Given a regular language R, we define the (deterministic) complexity of R to be 
the 'size', i.e. the number  of states, of the (uniquely determined)  reduced au tomaton  

accepting R. It is known that for any n ~> 1 there exists a nondeterminist ic  au tomaton  
N with n states such that the complexity of L ( N )  is 2", i.e. the reduced automaton for 
the language accepted by N has 2" states. Moreover  this holds for alphabets with a 
number  of letters independent  of n (see also Corollary 4). On the other  hand, it is also 

known that for  every n >/1 there exists a language of complexity n such that the 
smallest nondeterminist ic  automaton has as many states as the reduced deterministic 

automaton,  namely n. Such a class is for instance given by 0"-10 *, n/> 1, over  the 
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one-letter alphabet {0}. In this paper we study similar questions in the case of boolean 
automata. 

We first show that the reverse of a regular language of complexity m can be 
succinctly represented by a boolean automaton. 

T h e o r e m  1. Let  A be a deterministic finite automaton with m states. There exists a 

boolean automaton B with [log2 m] states which accepts the reverse language, 
L ( B )  = (L(A))  p. 

Proof. Let A = (A, {0 . . . . .  m - 1}, r, qo, F),  and let i' be the binary representation of 
the nur~ber i with k = [log2 m] digits. For example, if m = 9, i = 3, then i'= 0011. 
Now we can write the transition table of A induced by r in this notation, i.e. i' under a 
is T t ~ ,  a). This can be conceived as the transition table of a sequential network N with 
decoded inputs where the/ th  digit of the binary representation corresponds to the jth 
variable of N;  clearly, N has k variables. 

It is known that the language L ( N )  defined by the network N is exactly L ( A )  (see 

[2], and the following example). We associate variable Xj with the / th  variable of N, 
/ =  1 . . . . .  k, and derive the next-state equations, the output equation, and the 
starting state of N; this is a complete description of our sequential network with 
decoded inputs. From it we obtain the system of right-language equations whose 
solution is precisely L ( A )  = L ( N )  (again see [2]). We get a system of left-language 
equations whose solution is the reverse of L ( A )  by writing the letters in the 
right-language equations on the left side [2]. This system of left-language equations 
can be rewritten as a boolean automaton B. It follows that B has [10g2 m] states, and 
L ( B )  = (L(A) )  p ; hence B is the desired boolean automaton. 

We give a detailed example. Let A = ({a, b, c}, {0, 1, 2, 3}, r, 0, {0}) be the given 
deterministic automaton, r being defined by 

a b c 

0 1 1 3 
1 2 0 1 
2 3 2 2 
3 0 3 3 

We rewrite this in binary notation and obtain the transition table of a sequential 
network with decoded inputs: 

a b c 

y 2 ~  Y1 Y2 Y1 I/2 Y1 Y2 z 

~ 0  0 0 1 0 1 1 1 1 
0 1 1 0 0 0 0 1 0 
1 0 1 1 1 0 1 0 0 
1 1 0 0 1 1 1 1 0 
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where the arrow ( ~ )  indicates the starting state (00) and the last column (z) defines 

the output  equat ion (z -- ;1 n 372). F rom the transition table we obtain the next-state 
equations,  the output  equation,  and the starting state: 

Y1 = a  (h (yl (h ;2  ~.1 ;1 n y E )  U b  t'h (yl) kJ c ('~ (yl  k-) ;2),  

Y2 = a n (;2) u b n (yl n y2 u ;1 n ;2) u c n (;1 u Y2), 

Z = ;1  N ; 2  output  function, 

(0, 0) starting state. 

This network describes exactly L(A) .  Now we get the right-language equations 
which also describe L(A):  

Xl = (X1 N 2 2  k..) Xl N X2)" a U (X1)" b k..) (Xl Y 22)" C, 

X2 = (22)" a U (x~ n x2 u.ex n.~2), b u (21 n Xz)" c, 

X0 = X1 t'~ -~2. 

By writing the letters a, b, c on the other  side of the functions we obtain the 
left-language equations 

xl = a .  (x~ n 22 u 2~ ~ x2) u b.  (xl) u c .  (x~ w 2z), 

X2 = a .  (~2)u b .  (xl n x 2  u ~ l  n22)  u c .  (21 wx2),  

X 0 = 2 1 N 2 2  . 

This system has the unique solution (L(A))  ~ and yields immediately the desired 

boolean au tomaton  B = ({a, b, c}, {Xl, x2},/~, 21 n 22, 0), p. given by 

a b c 

Xl [ X1N 22 U 21 ("~X 2 Xl X l U 2 2  
m 

X2 I 22 Xl (") X2 tO 21 n x2 2 1 u x 2  

There fore  L(B)  = (L(A))  ~ This can also be verified directly by constructing A ~ and 
An, and comparing the two automata.  

It is known that the reverse of any language accepted by an n-s ta te  boolean 

au tomaton  can be accepted by a deterministic au tomaton  with 2" states (see [4]). 

Thus, if we define a language R to be of boolean complexity n if the smallest boolean 
au tomaton  accepting L has n states, this observation together  with Th eo rem  1 yields: 

Corollary 1. The languages o]: boolean complexity at most n are exactly the reverses of 
the languages of deterministic complexity at most 2". 

Theorem 1 has an immediate  consequence for languages over  a one- le t ter  
alphabet.  

Corollary 2. I]: R is a regular language of deterministic complexity m, and R is over a 
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one-letter alphabet, then there exists a boolean automaton B with [log2 m] states which 

accepts R,  L ( B )  = R. 

The proof  is contained in the observation that L = L ~ if L is any language over  a 

one- le t ter  alphabet.  

The  reader  may recall that the situation was different in the case of nondeter-  

ministic automata.  This might p rompt  one  to speculate that we can always achieve a 
logarithmic reduction.  This, however,  turns out  to be wrong as the following example 
shows. 

Consider the reduced au tomaton  A = ({0, 1, 2}, {qo, ql}, ~', q0, {qo}), ~" given by 

0 1 

qo ql ql 

ql qo qx 

If the above conjecture  were correct  there would exist a boolean au tomaton  with one 
state accepting L(A) .  This is not true as one can verify directly. Thus there  is no 

boolean au tomaton  for this language with fewer states than two, the number  of states 
of the reduced automaton.  

It is an open problem whether  there is a regular language of complexity n for all 
n t> 3 such that the smallest boolean automaton has n states. 

We now direct our  at tention to the question whether  there are regular languages 

which can be optimally represented by boolean automata,  i.e. we ask whether  there 

are boolean automata  with n states, n I> 1, such that the corresponding languages are 
of maximal (deterministic) complexity,  namely 2 (2") . This question can be answered 
affirmatively. 

Proposition 1. For every m >1 1 there exists a deterministic finite automaton Am with m 

states such that A ~ has 2 m states. 

Proof .  Let  m ~> 2. Consider the following automaton A,,  = ({a, b, c}, {0 . . . . .  m - 1}, 

r,., 0, {0}), ~m being defined by 

~',. (i, a)  = (i + 1) mod m, 

1, i = 0 ,  

7 , , ( i ,b )= 0, i = 1 ,  

i, i = 2  . . . . .  m - l ,  

m - l ,  i = 0 ,  

zm( i , c )= i, i = 1  . . . . .  m - 1 .  

For  instance the au tomaton  A in the above example is . 4 . 4 .  - We claim that A ~  has 2 m 

states. The  proof  relies on the following observations. Columns ~'m ( ", a ) and ~'m ( ' ,  b), 
considered as permutat ions  of the set {0 . . . . .  m - l } ,  generate  the symmetric 
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group S "  of all permutat ions of the set {0 . . . . .  m -1} .  The column z " ( .  ,c)  will be 

used in the construction of A ~  to obtain a set with J + 1 elements f rom one with ] 
elements,  for ] = 1 . . . . .  m - 1. It also induces the empty set. Hence  all 2 "  subsets 

. . . .  A " ,  note that A "  is connected.  {0, m - 1} occur as states of P �9 

It should be clear that this proof  is very similar to the proof  that there  exists a 
nondeterminist ic  au tomaton  with m states such that the derived deterministic 

au tomaton  has 2 "  states. However ,  in our  case we have the added advantage that A~  
is always reduced.  

Combining The o rem 1 and Proposit ion 1 yields 

Theorem 2. For any  n >I 1 there exists a boolean au tomaton  Bn with n states such that  

the reduced au tomaton  accepting L (B,,) is A s a n d  has 2 (z") states. 

Proof. Let  m = 2" in Proposit ion 1; then A~ is reduced and has 2 <2"~ states. Now 

apply Theorem 1 to Am. The  resulting boolean au tomaton  B,  has n = [log2 m ] states 
and defines L ( A ~ ) .  

Therefore  AB, has 2 (z") states. 

Clearly, all constructions are effective. Fur thermore  the complexity of the con- 
struction is substantially 'smaller'  than the deterministic au tomaton  we define by 
specifying a regular language. 

Note that the fact that As .  is reduced is a trivial by-product .  This is in marked  
contrast  to the problem for nondeterminist ic  automata  where it is quite difficult to 

show that there is an m-state  au tomaton  such that the subset construction yields a 
deterministic automaton with 2 "  states which is reduced. 

Theorem 2 was first obtained by Kozen [3]; however  his method  is quite different 
f rom ours. Fur thermore ,  it requires an alphabet  with three letters, leaving open the 
question whether  fewer letters will suffice. 

In view of Corollary 2, Theo rem 2 cannot  hold for languages over  a one- le t ter  

alphabet.  This can also be seen directly if one considers the two constant boolean 
functions 0 and 1. However ,  it does hold for a two-let ter  alphabet.  All we have to 
show is an analogue of Proposit ion 2 over  an alphabet  with two letters. 

Proposition 2. Le t  . 4 "  = ({0, 1}, {0 . . . . .  m - 1}, ~-~", 1, ff~") for  m I> 2 with F "  = 

{0 <<- i <~ m - 11 i even } and 

r 0) = (i + 1) mod m, 

Then ( A " )  ~ has 2 "  states. 

"~,, (i, 1) = { i '  m O < ' i < - m - 3 '  

- 1 ,  i = m - 2 ,  m - 1 .  

Proof. Clearly (A~") ~ = ({0, 1}, {0 . . . . .  m - 1}, 8,., P,., {1}) and 8,. as follows: 



Representation of regular languages by boolean automata 329  

6re(i, O) = (i - 1) mod m, 

({i}, 

8"(i ,  1) = ~0, 

{m - 2, m - 1}, 

0 < ~ i < ~ m - 3 ,  

i = m - 2 ,  

i = m - 1 .  

We have to show that any subset S of {0 . . . . .  m - 1} can be obtained from F,, using 

the actions of 6 " ( . , 0 )  and 6 " ( . ,  1). For  convenience let S = ( i l  . . . .  , ik) where 
0 ~  < il <"  �9 �9 < ik ~< m -- 1. We first observe: 

(a) is ~ S can be erased from S (we can construct S - {is}) if is + 1 is not in S, and 
(b) l ~ S can be inserted into S (we can construct S w {l}) if l + 1 is in S. 

To verify this, one first uses the cyclic permutat ion p, enacted by 6,. ( ' ,  0), x times 
to get is (l) into position m - 2 ,  then uses 6 , , ( . ,  1) once, and then applies (m - x )  

times p again. 

The  second crucial idea is the following construction of S"X: S mx is the sequence 

formed out  of the maxima of all contiguous subsequences of S. For  example,  if 
$ = (1, 2, 3, 7, 8, 10, 12, 15, 16, 17, 18, 19) then S .... = (3, 8, 10, 12, 19). Given S ..... it 

is a trivial observation how to construct S. Simply apply (b) to fill in all missing states. 
Note  that S "x can never have more  than [�89 + 1)] elements. This is exactly the 
number  of elements  in/6m, the set of starting states of (P~,,)~ Now is is easy to see that 

all possible S "x can be obtained from if"'. 

This gives rise to the following corollaries. 

Corollary 3. For every n >t 1 there exists a boolean automaton.  B ,  with n states over a 

two-letter a lphabet  such that  L(B, , )  has complexi ty  2 <2"). 

Proof. If n/> 2, the result follows from Proposit ion 2 and Theorem 1. 

For  n = 1 we define the boolean automata  B,, as follows: 

B1 : ({0, 1}, {q}, ~'1, q, O) 

with rl  given by rl(q, O) = ~, rl(q, 1) = O. 
#. 

It can be easily verified that L(B1i  is of deterministic complexity 4. 

Corollary 4. For every m >! 1 there exists a nondeterminist ic  au tomaton  N "  with m 

states over a two-letter a lphabet  such that L ( N ' )  is o f  complexi ty  2" .  

Proof .  Consider 4 "  defined in Proposit ion 2 and define PC,, as follows: 

N,,  = ({0, 1}, {0 . . . . .  m - 1}, (~,.)-~, a6,,, {0}). 

Note  that (~ ')-~,  the inverse function of ~,,, is indeed the transition function of a 
nondeterminist ic  automaton.  It is easily verified that the deterministic automaton 

obtained by the subset construction from N,, is precisely (.~,,)o, and hence it has 2 "  
states and is reduced. For  m = 1, the claim follows trivially. 
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