
Theoretical Computer Science 10 (1980) 19-35
@ North-Holland Publishing Company

ON EQUATIONS FOR REGULAR
AUTOMATA, AND SEQUENTIAL

J.A. BRZOZOWSKI
E. LEISS””

LANGUAGES,
NE’IWORMS”

FINITE

Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3Gl

Communicated by M. Nivat
Received November 1977
Revised November 1978

Abstract. We consider systems of equations of the form

Xi=,IJ,a l &~LJ& i=l,...,n

where A is the underlying alphabet, the Xi are variables, the Pi.0 are boolean functions in the
variables J&B and each & is either the empty word or the empty set. The symbols - and u denote
concatenation and union of languages over A. We show that any such system has a unique solution
which, moreover, is regular. These equations correspond to a type of automaton, called boolean
automaton, which is a generalization of a nondeterministic automaton. The equations are then
used to determine the language accepted by a sequential network; they are obtainable directly from
the network.

1. Notation

Let A be a finite alphabet and A* the free monoid generated by A. An element of
A is called a letter and an element of A* is called a word over A. The unit element of
the monoid A* is the empty word A. The length 1 w 1 of a word w over A is the number
of letters in w ; note that IA I= 0. The concatenation (product in the monoid A*) of
two words u and v is denoted by u l v. The reverse wp of a word w over A is defined
recursively: hP = A, and (vu)’ = ad’ for a E A, v E A*.

A subset of A* is called a language over A. The empty language is denoted by 0,
and I is a shorthand for the language A*. The concatenation of two languages L and
L,’ is L l L’ = (u l v 1 u EL, v EL’}. If L is a language, then L* = UnacLn, where
Lo = {A). The left quotient w\L of a language L over A with respect to a word w over
A is the language {x I wx E L}; similarly for the right quotient, L/w = {x I xw E L}. The
reverse L.* of a language L is the language {wP I IV E L}.

* This research was supported by the Natural Sciences and Engineering Research Council, Canada
under grant No. A-1617.

** Present address: Department of Computer Science, University of Kentucky, Lexington, KY 405069
U.S.A.

19

20 J.A. Brzozowski, E. Leiss

The set P(A*) of all languages over A together with the set operations union (u),
intersection (n), and complement (‘) forms a boolean algebra, in which 0 and I act as
zero and one, respectively.

We also consider the finite boolean algebra L, of ‘language, functions
f:X:i,P(A*)+ P(A*), i.e. the functions which can be expressed in terms of unions,
intersections, and complements of the variables. (Note that Xi”,lS denotes the
Cartesian product of it copies of S.) The constant functions 0 and I act as zero and
one, respectively.

Another finite boolean algebra which will be used is the set B, of boolean
functions f : X:=1(0, l}+ (0, 1) in the variables xl, . . . , xn, x being {xl, . . . , xJ,

together with the operations OR (v), AND (A), and complement (‘). The constant
functions 0 and 1 act as zero and one, respectively.

Clearly, & and L, are isomorphic as boolean algebras. The following cor-
respondence will be used:

constant functions:

variables: .

operators:

function symbols:

B?l L

0 0
1 I=A*

y=y1,..., y, x=x, ,..., x,
A n

V u

h,iiYJ Fi.i W)

&i(Y) G(X)

We obtain F& from h,i as follows. Take any expression for fi,i (such as the canonical
sum of products) involving 0, 1, yl, . . . , y,, A, v and ‘. In this expression replace yi by
Xi, i = 1,. . . , n, 0 by 0,1 by I, I\ by n , v by v , and ’ by *. We now have an expression
in the variables X1, . . . , X,. The language function defined by this expression is
precisely fi,j (Xl, . . . , X,). The function G is obtained from g in the same way.

We briefly review the concept of finite automaton. A (nondeterministic) finite
automaton & is a quintuple

d = (4 Q, 7, Qo, F)

where A is the input alpha.bet, Q is the finite (nonempty) set of states, Qo s Q is the
set of initial states, F s Q is the set of final states, and r : Q x A + R(Q) is the
transition function, where P(Q) denotes the power set of Q. If Qo and r(q, a) for all
4 E Q and a E A contain exactly one element, & is called deterministic. The function
T is extended to P(Q) xA* in the usual way. We assume that SQ is connected i.e. for
any q E Q there exists some w CA* such that 9 E 7(Qo, w). A word w CA* is
accepted by s& iff r(Qo, w) n F # 0. L(d), the set of words accepted by J& is a regular

Equations for regular languages, finite automata, and sequential networks 21

language, and to each regular language R corresponds a unique deterministic
automaton J& with the minimal number of states such that & accepts R ; do is called
the reduced automaton of R. The reverse J@’ of a deterministic finite automaton
~8 = (A, Q, T, qo, F) is defined as follows: Let Q, = (s E. Q 1 r(q, w) E F}. Then J@’ =
(A,b, p~,G),where

P={pjp= Q,,, for some w CA*},

po=F,

G=~p4qoEp)

and

Cc(p,a)={qEQlT(q,a)Ep} forpEPandaEA.

#’ is always reduced and the language accepted by # is precisely the reverse of the
language accepted by &, L(d’) = [L(d)]’ <see [3]).

2. Introduction

Consider the following set of language equations over the alphabet (a, b}

&=a l X,ub- XzuA,

&=a* X2vb l X1,

to be solved for X1.

It is well known that these equations correspond to a deterministic finite automaton,
namely the automaton given by Fig. 1 where an arrow (+) indicates an initial state,
and double circles denote a final state.

Conversely, given any deterministic automaton we easily derive a set of equations
as above. Both concepts define the same (regular) language.

The important observation for us is that on the right-hand side of the equations
only single variables appear.

There is a well known generalization of this notion which allows not only single
variables but unions of variables on the right-hand side of the equations. An example

22 J.A. Brzozowski, E. Leiss

is

Xl=a*Xwb-kh,

X2=a* (XIvX2)vb l Xl,

to be solved for Xi u X2.

This set of equations corresponds to the nondeterministic automaton represented by
Fig. 2.

Fig. 2.

It seems natural to introduce a further generalization, that is rather than allowing
single variables or unions of variables we will allow boolean functions of variables.
For example, consider the following equations.

Xl=a-&b-l’,

X2=a*X2ub-(XIn&)vA,

to be solved for X1 n X2.

In this paper we will study systems of such equations. In particular we will show
that there is always a unique solution which, moreover, is regular (Section 3). We also
define the automata, called boolean automata, corresponding to these systems of
equations, and indicate their relation to deterministic automata (Section 4).

A completely different, but no less important motivation is provided by the fact
that these systems of equations can be used to relate sequential networks to regular
languages in a very direct way (Section 5). (A method of obtaining the regular
language accepted by a given sequential network has been described in [4]; however
the basic approach used there was different and less direct.)

3. Left language equations

In this section we will first define formally the equations we propose to study, and
then prove that they always have a unique solution; this solution is regular.

A system of left lar,guage equations has the following form:

Xi=fiaj*~,j(X)v$, i=l,...,n
i=l

x0 = G(X)

Equations for regular languages, finite automata, and sequential networks 23

whereX=Xl,..., X,, &, Si E {A, 0}, F&j is a language function in L, for i = 1, . . . , n

and for j=l,..., m, and G is also in L,; let A = {al,. . . , a,,,}. The term ‘left
language equation’ reflects the fact that the letters aj of the alphabet appear on the
left in (1). In the last section we will also use systems of right language equations of the
form

Xi=ifilFkj(X).ajU& i=f,...,n, . ’
3

(2)
X0 = G(X).

In order to show that (1) has a unique solution we will first construct a larger system
of equations, the left quotient equations defined by (1). We require the following
result (see also [7]).

Proposition 1. Let X, Y s A* be expressed in terms of their left quotients :

X= U a l Xau&, Y= U a. Y,v&.
aeA asA

Then

XV Y= U a. (XaV Ya)U(6xU6,),
asA

Xn Y= U a l (Xan Y,)U(&n&),
aeA

Z= U Q. (X,)u(h-&).
aeA

Proof. This is easily verified.

Given a set of left language equations

(3)

(4)

(5)

as in (l), we construct the set

Fk = 6 aj . &j(X) ” &
j-l

(7)

where Fk ranges over the 22” language functions, i.e. k = 1, - . . , 22”. This is done as
follows: For each language function Fk in L, write an expression involving
X l,...,X”, u, m-9 0 and I. Compute the functions & for Fk, j = 1, . . . , m, hy
using (3), (4) and (5). We call (7) the left quotient equations generated by (6).

In our example we have

Xl=a .&b l I and X2=a .Xzvb l (Xln&)vh.

24 J.A. Brzorowski, E. Leiss

We first note that

0=adub*0 and I=addvIuA.

Next we can find the functions corresponding to Xi

Similarly

etc. In this way we can construct a set of 2*’ = 16 equations of the form (7).

Theorem 1. Any system of left language equations of the form (6) has a unique
solutkw for each Xi, i = 1, . . . , n. Furthermore each Xi is regular.

Proof. The system (7) of equations generated by (6) as described above has the form
of left quotient equations. Hence this system of equations can be solved using the fact
that the equation

X=BXvC, AdB,

has the unique solution X = B*C which is regular if B and C are regular. This last
result is due to Arden [l] and Bodnarchuk [2]; see also [7]. Thus we can find Fk for
k=l , . . . , 22n. Note however that each Xi represents one function in L,, i.e. the left
language equations (6) are contained in the list of left quotient equations (7). Hence
we have a unique solution for X1, . . . , X, which satisfies (6) since it is part of the
solution of (7).

Returning to our example note that we are interested in tinding X0 = Xl n X2. In
general, it is not necessary to find all 16 left quotient equations; we need only those
functions that are ‘reachable’ from X0, i.e. only the quotients of X0. Note also that
the 16 distinct boolean functions of two variables in (7) do not necessarily define 16
distinct languages. In our example, the solution for X1 and X2 satisfies Xl n 22 = 22,
though X1 n& and X2 denote different functions in L”. However, the following
system of equations generates 16 different languages:

The verification of this claim is straightforward and is left to the reader.
Clearly, Theorem 1 also holds for right language equations; for the proof we just

have to replace left by right, and we have to interchange letters and variables on the
right-hand side of the equations. We summarize:

Equations for regular languages, finite automata, and sequential networks 25

Corollary 1. Any system of right language equations of the fore (2) has a unique
solution for each Xi, i = 1, . . . , n. Furthermore each Xi is regular.

0. Boolean Automata

For the systems of equations (1) we can define a type of finite automaton where the
‘next state’ of a given state is not a set of states but a boolean function of the set of
states. It was recently pointed out to us that the concepts in this section have been
introduced by Kozen [6] in a different setting.

Formally a boolean automaton is a quintuple

48 = (A 0,~s f, F),

where A is the input alphabet, Q = {ql, . l . , qn) is the finite, nonempty set of states,
7 : Q x A -B B0 is the transition function which gives for each state and each letter a
boolean function in BQ, f” is the initial function in Bo, and F G Q is the set of final
states. For example let 3 = ({a, b}, (41, qz}, T, ql A 92, {q&, where 7 is given in Fig. 3.

a b

q, q; I m 42 42 q,Nl;

Fig. 3. A boolean automaton.

We extend the transition function T to Bo x A* as follows. For w E A*, aj E A,
i=l n 9***9

where j& = dqi, 4.
Now for any f~ Bo define

r(f, w) =f(+?1, w), ’ l ’ 9 +?n9 4). (9)

We remark, that we could replace (8b) by any of the following two definitions:

r(qi, ajW) = T(T(qi, aj), W) 01’ ?(qi, Waj) = dT(qb W), 4.

One can verify that all three ways of defining T on Ba x A* yield the same function=
We now define acceptance of a word w E A* by a boolean automaton 99. Let

h = ~(p, w). Then

w~L(99) iff h(cl,...,c,)=l,

where cl = 1 if qi E F and ci = 0 otherwise.

26 J.A. Brzozowski, E. Leiss

To illustrate these concepts consider Fig. 3. We find

dql, a& = qi (da, b), da, 0 = qi (1, 41 A 4;) = (41 A qi)‘,

r(q2, ab) = qddql, b), 7(qzr b)) = (41 A d h

r(,f’, ab) =f%(ql, ab), dq2, ab))

=jq(q1 A qi)‘, (41 A q; N = (41 A 4; Y A (Sl A si I= 0.

To determine whether ab E L(B) we now evalute ~(p, ab) at (0,l). Clearly we
obtain 0. Hence abi L(3).

The following theorem summarizes the main property of boolean automata.

Theorem 2. For every boolean automaton %I with n states there exists an equivalent

deterministic automaton J& with at most 22” states, such that L(spSe) = L(B).

Proof. Construct the derived deterministic automaton

as follows:

P=b(fo, wh=A*l,

and

g(#, w), a) = T(f, wa) for all w GA* and a E A.

Note that P E BQ; hence A&, is a deterministic finite automaton. Furthermore one
verifies that Lids) = L(B).

In summary, boolean automata or the corresponding language equations provide a
potentially concise way of representing regular languages. Suppose the reduced
deterministic automaton of a regular language L has n states. Then the nondeter-
ministic automaton representation uses at least [log2 nl states, whereas the boolean
automaton representation uses at least [log2 log2 n 1, where [al denotes the smallest
integer > a.

Finally we remark that the language equations corresponding to boolean automata
are ‘as general as possible’, if one wants their solutions to be regular, in the following
sense. If one permits concatenation in the expressions for the Fi,+ the result need not
be regular. For example, one verifies that

X=a(Xm Y)vA, Y=beZ, Z=A

has the unique solution X = {a “bn 1 n 2 Oi which is not regular.

Equations for regular languages, finite automata, and sequential networks 27

5. Sequential networks

In this section we will show how to use tts methods developed in the previous
sections to describe the language defined by a sequential network in a more direct
way than was previously known. First we briefly describe our network and the
language it defines. (For more technical details on the realization of sequential
networks see, for example, [S].) Then we give a detailed example, contrasting our
method with the classical approach, before we formally prove the relation between
networks and equations.

We will consider sequential networks with ‘decoded inputs as shown in Fig. 4. TLC
rectangles labelled A represent unit delays; the circles labelled A, v , and -
represent AND gates, OR gates, and inverters, respectively. The inputs .;lcal, xa,
are binary decoded inputs, yl, . . . , y, are the state variables, and t is the output. This
type of network is a commonly used idealized model of sequential network operating
synchronously. By ‘decoded inputs’ we mean the following: suppose we have an
abstract alphabet A of m elements. These m elements are represented by k =
[log* m 1 binary inputs u 1, . . . , uk. Each input xrri of JV is obtained by a decoder from
the ul. More precisely xai = vl A l l l n t)k, where vi = ui if the jth digit of the binary
representation of i - 1 is 1 and vi = ui otherwise. For example, let k = 2. Then we can
have four decoded inputs:

X0= u’l Al&, x,=u; AU2,

x2 = u1 A 4, x3= u1 A u2.

Only one of the xi will be 1 at any given time, and not all of them need be
used.

In Fig. 4, J,j =f;;j A xaj, where f;;j is a boolean function of yl, . . . , y, only, for
i=l ,..., nandj=l,..., m. The single binary output z of JV is determined by g
which is also a boolean function of y = (yl, . . . , y,). Clearly for any finite automaton
;aQ we can always find a network JV realizing JXZ and design it in the form shown in
Fig. 4. The network JV is now completely defined by its initial state and the next-state
and output equations:

initial state: yO=(yY, l . l 9 Y!i>

next-state equations: Y~=(f~.~(Y)~.k&/’ l l v(fi.dY)AXam)

(10)

output equation: 2 = g(y).

28 J.A. Brzozowski, E. Leiss

INITIAL STATE :

Fig. 4. General sequential network N.

We now define the state y w of JV reached by N when we apply H, to M started in y ‘.
This is done by induction on 1 w I,

yA = YO, the initial state,

Y wai =(fi,j(Y”), - . l ,fn.j(Yw))*
(11)

Clearly this corresponds to the usual computation of the next state of the network
using the next-state equations.

Next we define acceptance of a word w E A* by Af as follows:

wEL(N) iff g(yw)=l. (12)

To illustrate these concepts consider the sequential network J& given by Fig; 5. It is
easily verified that & is described as follows:

next-state equations: &=(y;)~&v(1)~xb,

output equation: r = Yl A y2,

initial state: (YL Y!i!> = (091).

(13)

ISpations for regular languages, finite automata, and sequential networks 29

“b

x0

INPUTS :
‘h n ‘%

“b

lNltlAL STATE : y; l 0, y; = I

Fig. 5. The network Nl.

Now, let w = abb. We have

YA = y” = (0, l),
YU = ((Y3, y:, = (0, u,

Y Ob = (1, y; A (yz”)‘) = (1,O A 1’) = (1, O),

Y =lib = (1, yfb A (yib)‘) = (1,1 A 1) = (1,l).

Since g(ya66) = 1, we conclude abb E L(JV~).
Let us illustrate the classical method of describing the language accepted by a

network with the aid of our example. We obtain the transition table as shown in
Fig. 6(a), where the arrow points to the initial state. Note that the state 00 is not
reachable from the initial state; hence a more appropriate table is that of Fig. 6(b)
which shows only the reachable states. Note that the output z depends only on the
state; its value is shown in the rightmost column of the table.

‘b “b

010
; I I 0

I

I 01 I
0 I I 0

Yl yz

(4

VI

(b)

Fig. 6. Transition table of .N;.

We have now in Fig. 6(b) the finite automaton defined by the network ,/lr,, if we
interpret 2 = 1 as denoting an accepting state. The state graph of this automaton is
shown in Fig. 7, where we have 1,2 and 3 instead of 01,lO and 11 as state symbols.
One can verify that J& is reduced.

30 J.A. Brzozowski, E. Leiss

Figure 7. Finite automaton sQ1 defined by Jv;.

In this rather indirect way we have reached a point where we have defined the
language L(&). This language can be specified in many ways. For instance, we can
interpret the automaton &!I as a satisfactory description of L = L(&) = L(J&), or we
can write a regular expression for L, e.g.

L = a*b(a v ba*b)*b.

We now proceed to show that the language L = L(N) can be related much more
closely to JV than in the classical approach described above. Suppose we translate the
set (13) of equations to the following system of right language equations:

Xz=Xz-au(X1n&)-bvA, (14

The motivation for this is as follows. Let Xi be the set of all words in A* that lead Jy;
to a state with yi = 1, when started in yy, y& for i = 1,2. Suppose now that w E A*

and w&X2, i.e. y2 = 0 after w is applied. From the network J& it is clear that yi = 1
and, if X= = 1, Y1 = 1. Thus the word wa will result in a state where yl = 1. we
conclude that X1 2 s. The remaining pieces of (14) are similarly obtained. Note
that we have used all the information about J& to write (14). In fact the next-state
equations define the non-empty words of X1 and X2; the initial state determines
whether or not h E Xi, i = 1,2; and the output equation leads to the ‘output language’
equation for X0.

According to Corollary 1, (14) has a unique solution for X0, and, in fact, one can
verify that X0 = L(&) = L(&). In general, we will give a direct translation of
next-state equations, output equation and initial state of a sequential network JV
which leads to the language L(N). We first define this transformation.

Given the description (10) of a sequential network with decoded inputs we derive a
system of right language equations defined by .

X1 = F1,JX) l al v l l l v F1,,(X) l a,,, u 61
.
.

X,,=Fi,.l(X)-alv- l .vF,,,(X).a,v&,

x0 = G(X)

Equations for regular languages, finite automata, and sequential networks 31

where X=Xi,...,X,,; &=A if J$= 1 and Si = 0 otherwise; I;;;i is the language
function in L, which corresponds to fi,j for i = 1, . . . , yt, j = 1, . . . , m; and G is the
language function in L, corresponding to g.

Note that the A function of (10) in the expression fi,j(y) A xai is replaced by
concatenation in (15).

We now have to show that the unique, regular solution of (15) is the language
accepted by the network given by (lo), i.e. that

x0 = L(N).

Lemma 1. Let f E B, be a boolean function and let F be the corresponding function in
L”.Fori=l,..., n let yi E (0, 1) and Xi s A* be such that yi = 1 iff A E Xi. Then

f(y)=1 iff AEF(X). (16)

Proof. Assume that the function f is represented by some standard expression in
the symbols 0, 1, yl, . . . , y, and operators v , A and ‘. We proceed by structural
induction on the number r of operators in that expression.
Basis, r = 0. (a) If f = 0, then F = 0 and (16) holds.

(b) If f = 1, then F =I and (16) holds.
(C)Iff=yiforsomeiE(1,..., n}, then F = Xi. By assumption yi = 1 ifI A E Xi.

Hence (16) holds.
Induction step, r > 0. Assume now that (16) holds for g and G, as well as for h and H:

(a)f=gvh,F=GuH,

f(y)=1 iff g(y)vh(y)=l

iff g(y)=1 orh(Y)=l

iff A E G(X) or A EH(X)

iff A E G(X) v H(X) = F(X).

(b) f = g A h, F = G AH. The proof is similar to (a).
(c) f = g’, F = e. This case follows easily. Thus the induction step holds.

This result shows that L(N) and X0 agree as far as the empty word is concerned, for

AEL(N) iff g(y’)=l.

By construction of (15), y’ = 1 iff A E Xi for i = 1, . . . , n. Thus Lemma 1 applies and
g(y”) = 1 iff A E G(X). Next we would like to show that w E L&V) iff w E X0 by
induction on the length of w. We encounter the following problem. Let w E A*. For,
the network we must compute y w inductively as in (1 l), i.e.

y+yp

and

y? =f;:,j(y")*

32 J.A. Brzozowski, E. Leiss

Sate that in this computation the letters of w are used from Ieft to right. On the
other hand the computation of right quotients of the Xi involves the use of the letters
of w from right to left, for we have

and
X/h =x

XJaiw = (Xl w)lafi

In view of these difhculties it is convenient to reverse the system (15) of equations.
To simplify the notation we will let V$ =X&, & = Xp, and V = VI, . . . , V,. This
formal reversal yields the system of left language equations:

Vi=a,~~,~(V)U~**Ua,‘~,,(V)USi, i=l,...,n,

&,=G(V).
(17)

Now we can deal with the left quotients of K

Proposition 2. Lef X = XI, . - . , Xn be lanqliages and F a language function in L,,.
Then for all w E A*

w\F(X)= F(w\X).

Proof. The proof follows easily by structural induction on F. It is sufficient to verify
that

and
w\(G(X) uH(X)) = w\G(X) u w\H(X),

w\d(X) = w\G(X).

This follows from the definition of left quotients.

Lemma 2. In the system (17) of left language equations, for all i = 1, l l g 9 n, aj E A,

WEA”

ajw\Vi = Fi,j(w\V). (18)

Proof. We proceed by induction on r = 1 w I.

Basis, I = 0. Here w = A, and (18) reduces to:

aj\ Vi = Fi,j(V).

This follows immediately from (17).

Induction step, t > 0. Assume (18) holds for Wa&, where a& E A. Then

ajWak\vi=ak\(ajW\Yi)=ak\Fi,j(W\V)=Fi,j(Wllk\V),

by Proposition 2.

Equations for regular languages, finite automata, and sequential networks 33

Lemma 3. Let w E A*, let y w be defined by (11) and let V be as in (17). Then for all
i=l n 9*--S

yr=l iff AE:wP\&.

Proof. We proceed by induction on r = Iwl.
Basis, t = 0. Here w = A, y3 = yy and A”\& = V;:. By construction of (17), yp = 1 iff
A E vi.
Induction step, I > 0. Assume the result holds for w and let aj E A. Then by (11)

yi”“’ =f&&Y w)’

By Lemma 2

alwp\ Vi = Fi,i(w’\ V).

By the inductive assumption y; = 1 iff h E wp\ Vk for all k = 1, . . l , n. By Lemma 1,
fkj(yw)= 1 iff A EFkj(wP\V)m Note that ajwp =(waj)“. ThUS A E(wLz~)"\& iff ywaj= 1
as required.

We now prove our main result about networks:

Theorem 3. Let N be a network defined by (10) and let X0 be the solution of the
corresponding system of right language equations (15). Then L(N) = X0.

Proof. By the definition of acceptance (12) we have

wEL(N) iff g(y”)=l.

Because of Lemma 3, we can apply Lemma 1 to yw and

g(y”)= 1 iff h c G(wP\V)

iff A E G(wP\XP)

iff A E G((w~\X~)~)

iff A E G(X/w)

iff A E G(X)/w

iff weG(X)=Xo

where we have used the (easily verified) property (wp\Xp)’ = Xl w.

We now relate boolean automata to networks.

Theorem 4. For every boolean automaton 39 = (A, Q, T, f, F) with n states there
exists a sequential networkN with n unit delays such that L(N) = [L(B)]‘. Conversely,

34 J.A. Brzozowski, E. Leiss

for every sequential network N with n unit delays there exists a boolean automaton 48
with n states such that L(B) = [L(Z)]‘.

Proof. L,et !B = (A, Q, T, p, F) be a boolean automaton with Q = (41,. . . , q,,}.
Define a system 8 of left language equations derived from SB as follows:

Xi = I_I a l Fi,a v Si, i = 1, . . . , n,
GEA

XO=Fo

where Fi,a EL, corresponds to *r(qi, a) for i = 1, . . _, n and a E A via the iso-

morphism between BQ and L,, and F” corresponds to p in a similar way. Also & = A
if qi E F and Si = 0 otherwise.

We *will show that L(a) = L(8). First we note that

. WEI, iff WEXO=F’(X)

iff A E w\F’(X) = F’(w\&) = F’(w\X, . l l , w\&),

or

w EL(~) iff h E F'(w\Xl, . . . , w\X,).

Secondly, let r(qi, w)=qr for i= 1,. . . , n and WEA”, and let c=c~,

whe.re

I

0,
Ci =

if qiEF,

1, otherwise.

‘We have

w EL(B) iff [~(p, w)](c) = 1

iff [/%(qb w), . . . 9 &, w))lW = 1

iff [PiqL . . . 9 431(c) = 1

ifl PMW, . . . , 4: (4) = 1,
or

w EL(a) iff p(qr(c), . . . , q:(c))= 1.

Nowweclaimthatforalli=l,...,n andall WE/~*,

hEW\Xi iff qr(C)=l.

If we assume this claim, then Lemma 1 applies and

f%?Tk) , . *. , q:(c)) = 1 iff h E F'(w\Xl, . . . , w\X,),

thus showing that L(B) = L(8) by (19) and (20).

(19)

l 9 G

(0) 2

(21)

Equations for regular languages, finite automata, and sequential networks 35

The proof of (21) follows by induction on 1 w 1. For w = A we have A E A \Xi = Xi iff
qi E F iff Ci = 1, by construction. NOW assume tk ‘xc claim holds for w and consider ajw.
By Lemma 2, the induction hypothesis, and Lemma 1

A E ajw\Xi iff A E Fi,i(w\Xl, . . . , w\X,)

iff fi,j(q;y(c), . . . , q,“(c)) = 1.
.

But

qPw= dqivajW)=fi.i(q;V9. l 0 9qnWb

Hence the induction step goes through, and (21) holds.
Now we construct a network JV so that its language will satisfy the reverse of 8’.

Namely, the network equations are of the form:

x = (fi.l(Y) f4 x0,) v 8 l 9(fi,,(y)hx,,), i=l,.. .,n.

y”=c,

2 =PcY>*

It is then clear that the equations for L(N) are obtained by reversing g. Hence
[L(,llr))3p =I.($) =I@). Thus we have constructed JV from 93 in such a way that
L(N) = [L(se)]S

Reversing the argument proves the converse claim.

References

IN

PI
r31

[43

ISI
161

r71

D.N. Arden, Delayed logic and finite state machines, Proc. 2nd Ann. Symp. on Switching Circuit
Theory and Logical Design, (Detroit, 1961) 133-151.
K. Bodnarchuk, Sistemy uravnenij v algebre sobytij, 2. VyGsf. Mat. i Fiz. 3 (1963) 1077-1088.
J.A. Brxozowski, Canonical regular expressions and minimal state graphs for definite events, in:
Mathematicul Theory of Automutu, (Polytechnic Institute of Brooklyn, New York, 1963) 529-561.
J.A. Brzozowski, Regular expressions from sequential circuits, IEEE Trans. EC-13 (6) (1964)
741-744.
J.A. Brxozowski and M. Yoeli, Digital Networks (Prentice Hall, Englewood Cliffs, NJ, 1976).
D. Kozen, On Parallelism in Turing machines, Proc. I7th Ann. Symp. on Foundations of Computer
Science (Polytechnic Institute of Brooklyn, 1976) 89-97.
A. Salomaa, Theory of Automata (Pergamon Press, Oxford, 1969).

