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Every firlte sutomaton A with m, etates can be as-
sociated with 2 dual nondeterminigtic sutomaton A%,
the automaton A* being the invervion 2% of the event
P represented by autematon A (1), It turns out that
the minimol autcmaton repregenting the evant F* is
chtained 2z g resalt of determinization [1] of the cural
A*_ The number of gtates of thig autormaton does not
exceed 2™, and for every natural m = 3 there exigte
an gutomator Ay for which this estimate is schieved.

This result is also proved iz this garricle, but the
dizcugslon is condueted in terms of the eperetions of
left gnd right partition of events into words, which
pernuits a mere thorough slarification of the connec=
tion between the asutomars andthe evenisthey represent,

Cm the bagis of the proved theorem, we indicate a
method for zynthesizing the minimal automaton repre-
senting 2 given (by its regular expression) evant.

1. Let X ={x,,.., %} be a Enite slphabet, We de-
note the free semigroup cver alphabet X (supplemented
by the empiv word e) by F(Z), and the set of events
over X by E(X},

Consider the following overations in the set BE(X).
Wea ogll the gst.of g1l words ¢ such that pa € I, that is,

G & Py mmsr 03 & P (1.1)

the lef quotient Py of the vartitionofthe eveni P € Q(X)
by the word P € F{X),

It tg not difficult to note that Pp is the greatest of
the events R saiisfying the inclusion pR C F (which
also explzins the name of the operation).

In an snzlogous manner, the right quetient P of the
partition of T &€ B(X) by p € F(X) is defined 28 the sat
of words g such that ¢p € 2, that is,

§ & P tmmir 0 G P. 1.2)
We denote the set of all different left (right) quo=
tisots of the event P by Pyu(uy?), We note that P =
=P,gP, F=/Pg P Wsdenote the mymber of ele~
ments in the sat Py, P) in the ugual mamner: (Bl (uP).
It ia known that P can be represeated hy z fizute
svtomaton if and only if [Pyl is finite,
it ig not difficult to establish a relation ‘ocween lefl
and right partitions of events with the ald of the opera-
tion of Inversion examined in referazce [1]. We recall
that the word p* = Higer - X4, ¥ is called the Inversion
of the word p = ¥{,. ., X%y, while the inversion of
the event P is the next svent P*:
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(PR =FF; (L.6)
It 1g now easy to prove that

Py =7, (1.7)

(FY = F. (1.3}

£, We associste with each event P € E{X) two bi-
nary equivalence relations on the zet F(X):

(P, @) € By m—a- P =P, (2.1)

U G) B gt e [ = P, (2,2)
For any hinary rélation ¢ C FE) X F(X), we denot
by «* the follewing relation:

e ~—-(p% 7"} eq- (2.3)

It ig ezsy to see ibat
[P (2.4}
Indeed, the fact that (p. 4 € &p means that Pp = Py,
that is, (Fp)* = (Pg*. And, hy (1.7), this 1§ equiva-
lent to E’*P* = g P, which it was raquired {0 prove.
In & like mapney

P B (2.5)

It ie algo zaey to see thet for any » € F{X)
(P P, @.6)
LRI, (2.7

Indeed. let Py € &n(nF). This means that thers ex-
ists a po € P such that Pp = Pp,. The faet that pp €y
ia equivalent to “he fact that psp € P, thatis, p€ Bp, =
=P, . Then pyp € P, that is, p; € pP, which It was re
cu;red to prove. Relation (2.7) iz verified in 2 like
manner,

Propertics (2,6) and (2,7 mean that the right (leff
quotients of the evert P are unions of squivalenosz
clagses of the left (right) relation Eplpt). And since
tha nurabes of equ.ivalenﬂe classes of the relation
e,p(pt,} coinecides with i £, the following esti-
mgtes ars valid:

‘ﬂl

1P 2R, (2.8)
(P, | & 2h. 2.9)

) . Laver we shall show that these setimates are exact
W e [V > 5o o
per ~p'er. (1.3 (ihal s, the equalitles are achisved),
The following properties are chvious: 3. We associate the following two Mocre autorata
P o= (1.4 with egch event P € E(X):
PP = PP, (1.5} Ay = (P X, {5,880 0 (5.1)
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A= (L X (De) Bak (3.2)

wheze GF(Fﬂ'x).:Fm' Pc'(pp'x) = x’P xeX),

gl i sER

I ReEE ;
1(R) {@,.ﬁ cor REER

1 is known [3, 4] that any event R € E(X) can be
represented in the form

R.-—_x;R“ U"'UxﬂRXnUX(R)' (3‘3)
R=a-R'xlU"'UﬁnR'xﬂUX(R)‘ 13-4)

Therefore, specifying the automaton Ap is equiva-
lent to specifying the system of squations

P, = tiPae U+ UXePos, UL PRI (P, € P, (3, 5)

and specifying the sutomaton ph is equivalent to spe-
cifying the system of equations

DP’I,;PzLU“-U%@Pr,._UX(aP)(npe o) {3.6)
It is easy to see that for any g & F(X}

uniquely

8 (Pos §) = Fogy (P, g) = rsP. (3.7)
1t follows from (3.7), (1.7), and (1.8§) that
B (Poq) = (psb (P, g))*. (3.8)

It i knoum [2=4] that the automaton Ay, repregents
each Pp € Py by the output signal e of the initinl state
Pp, that is,

GE P, w—i 2 & 8p{Fp. ). (3.8)
Tt follows from (3.8) and (3.2) that
g€ P ~—re€ AP, 9), (3.10)
that ie, the automaton pA represents the evemt Ppa®
of the initia]l state pPE-

_ This means thet the sutomaton pA ig indistinguish-
able from the autoraston Apw, and by (2.5) ¢hey have
Fhe same mumber of states, Moyeover, since the aute-
?aton Ap has the least number of states of all the
Moore automata represeating P [2—4], pA = Apx
{correct to an ipomorphism),

: ‘i-‘ In an erbitrary Moore automaton A = (8.%,Y,5,
Hiwith8 =g, ., ., sy we fix the initial state sy and

fbnsider :che squivelence relation e, F(X)xF(X) de-
{red by the expression
B @) € e ym—n d(s,, p) = bis;, q) (4.1)

5 )Let “he automaton A have the transition matrix
C: Vg (a;; 18 the union of those input zignals that
: ;;yknfhe auiomaton A from the state sg to state 55).
Bt 1-;“ [5] that the equivalenceclassesE;,...,Em

A1 e ‘¢ Event represented by the state sj(i=1,...
‘;io‘n)s 1) of the relation &5 satisfy the system of equa-

EmEa (... UE g UX(E) @a=1,... m) (4.2)

where X(E;) = ) € ifima,
D, 1Fi>1,

&
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Hencs it immedistely follows that the equivalence
clagses ¥y = EY, ..., Fpp = Efy of the relation e} sat-
isfy the equations

Fyma P UagFaUziF) G=1....m. (4.3)

e, ifi=1,
o, if1>1,

Let A represent the event P by the set of output
signals Z C Y. It is not difficult to prove that

where X(Fi) = {

&) T Epe (4.4)

Indeed, let (D, q) € £5. This means that 3(s, p) =
=8(s,q). Lt follows that for'any re F(X) pr€P~—r
greP, that is, r€P,~——»r€ P, , but this means that
Pp = Pq, which is what it was required to prove,

1t follows from (4. 4) and (2. 4) that:

£y nt {4.5)

Formulas (4. 4) and (4. 5) together with (2.6) and (2.7)
mean that right quotients of the event P are unions of
classes Eq, ..., Eq of the relation 24 and left quo-
tlents of the event P* are unions of the equlvalence
¢laszes Fy,.... Py of the Telation €.

We =hall now show how, with the aid of (4.2) and
{4,3), we carnot only express the right quotients of the
svent P in terms of the events Ey, ..., Em, but also
show the connection between them.

Let {si,..... sy be a set of states marked by out-
put signals from Z (that is, a set of finite etatas).
Then [5]

PmE, U...UB (4.6)

Pr=F .-\ Fy (4.7}

Substifuting espressions (4,2) in (4.6) in place of
Ej,, . . -, By and maldng use of the distributivity of
multiplication with respect to unions, we obtain

P=Py=Pt,J-.. Pty (P

where Py, .... Py are unions of events of the set {E;,
..,Em}. For those Fj which are not unions of events

Egpr e Ejy (that is, not equal to P = Py), we again
write out the equations using (4.2). Ifunions of events
Ey, ..., Epy not previously encountered appear on their
right sides, then we continue writing out equations for
these new ouctients. We continue until new unions of
events Eq, ..., Ep, cesse to appear. This takes not
more than 2™ steps, since the number of different
unione of m elements is equal to 2. Az a result, we
obtain equaticns of the form (8.6). the automaton A
ig connected, then all claspes of the relation e4 are
different and nonempty. This means that all events Py
ohtained are different and, consequently, the equations
obtained define the automaton pA.

1f the comnected sutomaton A represents the event
Q = P*, then, in the same way, with the aid of (4.5)
and (4.7), we obtain equations of the form (3. 5) de-
fining the automaton Ap.

Thus, we have shown how to construct the minimal
autoraaton PA{Ap) from & given autometon A repre-
genting the event P{P*).
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. We nete that the prineipsl stages of our construe-
tion can be expressed in the terminology of Rebin and
Scott [1] a8 follows: 1) comstruction of the nondaetermi~
nigtie autematon A%, the dual of the automaton A (egua-
tions (4, 2}), and 2) determinizgtion of the automaten
A* (construction of equations of the form (5, 8)),

Therefors, wa can formulate our »seult in thegame
terminology as follows: the connected part of the
avtomaton obtained as a result of determinization of
he nondeterminigtic dunl of a given antomaton is a
minimal avfermaton.

Example 1. Consider the sutomaton Ay, with states
{1,2....,m} (m=3), output alphabet X ={a, b, o}, ini~
tial state 1, final siate 1, and the transition diagram
shown in Fig. L. It iz not dlffleult to see that the dual
AY i equal {gorreet to an isomoerphism) {¢ & non~
determinigtic automaton (source) Uy, for which, as
shown by Lupanev [6], the equivalemt determninistic
automaton (special aguros) conteine exactly 212 states,
which algo pruves ihe estimates (2.8), (2.9).

5. The algorithm deseribed abeve can be spplied
to the syrthegis of the minimal sutomaton Tepresent-
ing the eveént P from its regular expresgion.
~ For thig, if iz first necessary to construet the reg-
ular expression of event P*, than with the aid of a
imown algorithm syathesize automaton A which repre-
sants the event P*. This avtomaton A cen zlso be gon-
structed directly from the regular expressicn of P by
applying the synthesis algorithm to P, not, as usual,
from lef to right, but from right to left. The transi-
tion from automaton A o Ap iz realized with the eid
of (4.3) and (4.7).

It may happen that |F,| considerably exceeds the
number cf states of automaton A (Example 1), In this
case, our method for constructing the minimal autom=
ston is preferable to the metbods now being used,
where one firgt obtaing sf sutomaton with a number
of states exvesdivg [Py, 2nd only then proceeds to its
mindmization. However, the oppesite mey happen:
[P,| may be considerably smalier thex the number of
atatez A, T this case, our path is ¢learly longer,

Ae

,-""‘\

l

‘;v'-'
@

Example 2. Let X ={0,1}. We consider the regu-
laxr expression

P ={0{0{1}1}(OUD).

To P we apply the algorithm for constructing a bapis
[3] from right to left, In virtue of the identity

(R} = (R} R{Je
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we have

PeapPe=pPORLNYOULe=FO e
= PO 1] =P (1 1URD = Byl A0,
Pyae P20 (1) = 21 1) P0.
The gysiem of equations obtainad gives the automaton
pA. Iig transition metrix is

(8 DY @\
B oo d
T

Then the system of equations for equivalence classes
of the relation epA* (= pe) i of the form:

Fy=0F.lle,
FRzO(F?UF,) 0} 1,
F';';'l(lﬂaufs)-

From this we obtain a system of equations of the (28.5): |

P = P1 —-,_n-.F‘mﬂFaU 1@ U£ = 0P=U 1P3Uﬂ,
Py== Fy=0(F; JF)|J1Fy = 0Pu|j1P,
By= @ = 0P ) 1Py

Fig. 2

Py= F\|JFy = OF Y1 (F; | Fa) e = 0P, tPe e,
Pyas FolJFy=0(F R UNEFUF )=
w 0P, 17,
By = P Fy UFs = 0P 1P .

Thus, the desired automaton Ap has the diagram
shown in Fig, 2

In copelusion, the author thanks M, A, Spivek for
his interest in this work,
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