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Every:fu:.lte automatun A wit.h m, states CllIl be aa~
[;()cia.ied with a dual nondetermlllistio automaton A*,
the automatoD A* being the i:r..ver~ton p* of the event
:p repre.se~ted by autcmaton A [1]. It turDl!! otTt that
the min1mQl Hl:tcmaton representin.g the event P* is
obtained as a result of determbization [1] of tbe cL;al
A". Th£ number of states of this automato::J. does not
exceed 2m, and for ev~ry natural m 2: 3 there exista
ll!l automaton Am for which thi::o estimate i6 l!chie'l"~ti.

This re~mJ.tis also proved in.this ll,!'tic~e, but the
discussion is conducted in term.s of the op()rations of
If;lft OO1d rig-ht partition of event,s It\to words, which
per:r.mts a m.M·e thorough clarification of the cormac-
tion hetween the automntlO 04i.d the events tbey represent.

On the basis of the proved theo::em, we indicate ll.

methor;. tC".- syr.thel;iz1ng t:t1.~minimal automaton rep!"e-
aelJting a gtven (Oy its re~ar expression) ev~nt.

1. LQt X = {Xl' •.. ,x::J be a fuJite al?habet. We de-
note the free semigroup ever alpha1:>etX Umpplemanted
by the empty word e) by F(X), and the set of events
over X by E(X),

Co~s:d,er the following op,~rstion5 in the set E(X).
We Izall tte ~et,of 1\11word!> q ouch that PC[~ P, that is,

Q fePp ~-- •• liHi: P • (1.1)

the left quotient :Po of the n{!ct1tion oftM event PI:.: :iE(X)
by the ~vord P € F(x),

It tElno'; difficult to )lOt.e that Pp is the gTel\te,~t of
the events ~ SID:isfying' the inclusion pR c: P i:which
also explains the name of the operation).

In a.t, fnaiOgOUB manner, the right quotient ;)1' of th.,
oartiti01J of P E E(X) by p E F(K) i~ ddined as the Bct
of words q ~uC'h that qp E p., that is,

qE.j>-- .•.."OEP (1.2)

We denote tho set of all differ<=nt left. (right; CJ.uo-
tieotlS "f the e'V~~;:).tP by :t\iluP), We uote that!' =
= P, e Pu' P,=!' (;,IJ. We d~.noie the nu.mber ?! el~- ,
menta in the set pub.P) in the usual rnanner~ !pul ktP:).

It is known that :P caIl be ~'e?re5e:ated hy a fi:llte
3ut,omator, ;f a.."l.t;i only ~;fjpui is fbite.

it is not d1ftlcult to establish a relation between laft.
l'lnd .1~ht pa~ltlo:::s of events wim t.'le aid cf the opera-
tion of lnvet'sion examined in refere:1ce [1}, "V~rec~E
that ~heword p* •• xik' ' ''9.?i

1
is caned the lnvoarslon

of th~ woni. p -'"xi1' •• KizXi.k. while the in\'ersiQn of
the event P is the next event P"':

p E p~ _ •..p' E P. (1. Sl

The following properties are obvio115:
p.' =P.

(P, L,;p,r '0'; P~l)P;.

(PJ' = r/'P'.

(,pr ,.. r..,
Z.· We associilte with each eV'i?nt P EE{X) two b:'-

nary equ.:!"$.lence l'ehti01l5 On the set F(X):

(P.o) E fl' "~Pt = Pq• (2.1)

(P./i}E pl!.~-l =1'. j2.2)

FaT any binary reiation .;p C F(.X) x FIX.), we ctenov
by tp~ the follcwing relation:

(D. q) e '1"*+-->. (P*. q.) E Gl- (2,3)

It is easy to see that

bdeed, the fact Oat (p, q) € "p meiUll5 that Pp:= Pq,
~hat is, (1"1)* '" (Pq)*, .~d, by (1. 7), ::;il i:E>quiVa-
lGnt to ~",P"'''; c."P*, wllich It was r'llq1.ll •• ed .0 prove.

In Ii .d.ke ml'l:nn"l'

It i. also easy to see that for any p E F(X)

ll' (oF) c: "P. (2.6)

(2.1)

Ir.dQQQ.. :~tPi E a (pP). This m.e~6 ~at theT~ ex-,
i::;ts a pz e p'P such ~at PP1 ,,; Pp~' T.'le fac'C toat pz E':.,
is equivalent to ~.hefact that p?p EP, that 1,5, p E PP2 ..
== Pp,' Then P1P E P, that is, 0'1~ pP, :VhiO~ lt VIas re
q11Jred to proye. R.elatioll (2.7) IS verified::n a Wee
roanner.

Properties (2.6) and (2.'i) mean tb.at t.~e !'i!}ht (left
qu.otients of the evect. P are unions of equivalence
olflssea ()f the left (right) ::-elation a.p(p&). And since
th6 number of equivall&ll.ce classE;s of the relation
e....( f'.) coincides vlith :P ;(1 Pi) • the following ~sti-.~P . I U I J,(

mstes ,~revll1id:

L.PI ~ ZiP.! ,

Ip. I~ ~li·J.

(2. &}

(2.9\

La-;;e·.rwe @all ",how that theJ;l<;:~8ttm,ate5 are exad
(tha': is, the equalities are i'lchieved),

~. We associate the followIng two MocJ:"G~utomata
I"'ith each ~>;ve:-ltP E E(X):

.4" = (PO' X, 10, cl). op. x), (S.l)



C1.'BErtNE'!'ICS, VOLUME 2, mrMBER 1

,..A 03 (.P, X. {IZ', el, p6, X). (3. Z)

lIhel'e 6" {p •• x) W=Pfl<' ptJ(l·x) =.' (x eX) ,

J6 . if eE;.R (""E(X)
'X(R)=\Ql. if feR "" .

It is \olOWD [3, 40J that any event R E E(X) can be
uniquely represented in the form

Therefore, specitying the automaton Ap is eQuiva-
lent to l:Per:i!y1ng tile system of equations

Pp """ Xl?"". U •. ·LJx"pp.;n U )',(P,,) (P. E Pu), (3.5)

and spec1fyil:l~ the liutolMton pA is equivalent to spe-
cifying the system of aquatio)ll!l

uP •••• ,;;Px1 U· .. U#""pr" V 'X.(/'H:? E uP). (3.6)

It i6 CIiBY to s~e tha.t for any q ~ F(X)

It follows fro):ll (3.7). (1.7), and (1. $) that

6p (P P.q) = (p,O (~ •••q»" • (3 . 8)

~t is known [2-4] that tlle automaton AJ? :repres~mtB
~ar;:hPp E l'u by the outpu.t s~gnal e of the initial Btate
Ppo that is,

l,t fonows from (3.8) and (3.9) that

qE 1'".,. _ •• eE ,.tJ<t,P,q), (3.10)

that is, the automaton pA represents the event Pp~*
of the iDitilll state pP •
. .This means t.~at the automaton pA is indistinEUish-

able from the automaton Apol', and by (2. 6) they have
the same number of states. Moreover, stnce the auto-
maton Ap has the least number of states of all the
Moore autolXl8ta reprE:senti:lg P [2-4], pA.:::;Ap'"
(oorrect to an iaomorpmsnn). .

4~ In an arbitrary Moore automaton A ::;(S, X, Y.:5 ,
IJ.) 'I'>'1th S '" st, ••. , 8m we fix the initial state 81 and
eOIl~Ider the eqUivalence relation "'A c F (X) xF{X). de--
fh:ed by the expl'6s8ion

(P, q) e e,., --... 0 ($1' p) = /l{sp q). (4.1)

Let the automQton A have the transition matrb(
(4'1)\~;1<;" (A:ij is the union of those input signals that
csr.ry the auto7;i1ato fIt' kn n A rom the state 8i to state ~j)'
(E~Bb;:U [5] that the eqllivs.lenceclassesEj, •••• Em

1 e event represented by the state s· (l ~ 1, ...

t
': . I m.)) of the relation EA satisfy the BY6t~mof equa--
lOllS .

S,-E:\II:IU ... VE "_IUv(EI) (i 1 ) 2rr'..." ••• •... , m, (4. )

'libere X(Ei). {e. if i '"1,
<P,Ui>l.

Hence it immedi.ll.tel~· follOWS that tlle equivalence
clas5les :Fj '" E1.... , F m '" E~ of the :r-clation l;A sat-
isfy the equationE'

F/.,. (i,!'\ U ... Ullm.Fm u~(F,) (/ = 1, •••. m). (4.3)

F) {e, if i ••l.
wher~ X( 1 '" tp, if 1 > 1.

Let A represent the event P by the set of output
signals Z C Y. It ls not difficult to prove that

Indeed, let (p, q) E "'.A.' This ttleBIlS that O(sz·p) ""= e,(s,..q). It follows that fol' any rEf' (X) pr eP _ ••
qr e P, that is. r EPp ~ rE Pq • bllt thts m~ans that
Pp ~ Pq• which i$ what it was required to prove.

It follows from (4.. 4) and (2. 4:)that:

Formulas (4.4) and (4.5) together with (2.6) and (2. '7)
mean that right quotients of the event P are unions of
clae51e~ Ei, .• " Em of the relEtion o.Aand left quo-
tients of the event P'" ll.):e unions of the equivalenoe
classes :E'f, ... , Fm of the relation el·

We shall DOW show how, with the aid of (4.2) anel
(4. 3), we call1lO't ocly expres s the right quotients of tte
event P in ter):ll!5 of the events Ei •..• ,EJU, but also
show the connection between them.

Let {si1' ...• 5il.} be a set of states marked by out-
put 5ignala from Z (that 15, a Bet of !illite states).
Then [5]

P=EIIU UE/~. (4.&)

P*=F"U UF,). (4.7)

Su.bstituti~g e,q>rEls,;;iOns(4.2) in (4.6) in.place of
Eii' ... , Eik and making uee of the distdbutivity of
xnultiplication with respect to U1\1ons, we obtain

whe ••e ~1' .... Pn are Ullione of events of the sat {E1•

..•. EnJ. For those Pi which are not unions of ~vents
Eli' . , . l Eik (that is. not equal to P '" Po), we aga.in
write out the equations \l!i:ing (4.2). rfUllions of event~
E1l ... , Em not previously eJICountered aPP~iLr on their
right sides, then we continue writing out equatioul!l for
these new quotients. We continue UIltil new unions of
~ents E1, ••• , Em celitse to appear. !'his takeli not
mor'l than 2m steps. since the )lumber of different
unions of m elements ia equai to 2m. As a result, we
obtain equations or the form (8.6). If the automaton A
is connected. then all classes of the relation EA are
different and nonempty. This me!C1S that aU events Pi
obtain~d are dIfferent and. conBequently, the equation'S
obtained define the automaton pA.

If the connected automaton A :represents the event
Q "" P"', then. in th~ sar.ne way, with the aid of (4. 3)
and (4.7). we obtain equation>; of the form (3.5) de-
fining the &l.\tomaton Ap.

ThuB. we have shown bow to construct the minimal
automaton pA{Ap) from a. given automaton A repre-
92nting tlle event P{P*).



We note t.b.at the prlnc1psl stages of OUI construc-
tion CflD. be expressed in the te).''m.!,l101ogy of R~"ln Dnd
Scott (1] as :follow$~ 1) construction of the nor.d@!:e:;:m1m
metic 8.ttto:nll.ton A", the dUBl of tb e !lutoxnaton A IeOtta-
tiQns (4,2)), and 2) determinlZf¥tion of the auto:m;tc;
A*- (construction of equations ot the form (S, 5»).

Therefore, w~ Oil.» form.ulate our ::eErnlt in me same
terminology as follows: thp.: c:or.nected par!; (If the
autom8.ton obte.i.rled as a retlu,lt of d(!tex'mi:rllzlI.tioll of
the nondeterm.:nlstic chml of a given autcmaton is a
mi.nJ:mal automaton.

Examole 1. Consider the automaton Am with states
{l, 2, .,'. m} (m 2: S), ou,tput alphabet X = {(:t, b, o}, ini-
tial. state 1, final state 1, and the transition di.agram
:3hOWD in Fig. 1. It is D~)t ,11fflc"lt to see that tl:.e dual
Po4:t 11')eq\l,al {correct to an isomc'I'JJhism) to a nQnm
detEl:rrr,jn~stiCl al1tomaton (source) Urn. for which, as
shown by Lupano'V tel, the equi'V'alem dl!!termbi.stic
automa.ton (special ac'urOf;l) contll.ins exactly 2m 9tat~",
which also proves the estimates (2.6), (lL ~).

5, The .algorithm O/lsoribed abc;';'e ¢ltn bQ applied
to the Slyr:t'hesis of t.he mini:m:al automaton T.'epre5ent~
i,ng the event ;p f:rom its regular exf,)):'ei;,lsion.

For Ul5', it i$ first necessary to COJ:lstruct tile reg-
ular <.::;qJressi011 of event .P*, then with ti'.e a.id of a
knO'~'1l.algorithm sJrntlleSlze automa.ton A which repre-
sents the event P"', Tbii!! <li.l.tol:naton A Ca:t.l alM be (Jon·-
st.ructed dlrectly fro:n ~ regulu e),.-press1c;n of P by
applying the synthesis algorithm to P, .not. as lHmal,
irom lef; to right, but from ri~ht to left. The transi-
ticm from autom~tor A to Ap is realized with the aid
of (4.3) aJ:l.d (4.1).

It may happen that Ipul considerably excEe.1s the
number of states of automat.on A (Example 1), In this
¢ase, our method for constructing the minimal 9.utom-
:J.ton is p;referable to the. methods DCW being used,
where one first obtains &Xl lJ,utomaton with Q number
of states exaeedir.g jpu\' :md ollly then proceeds to its
minimization. nuwever, the opposite ml>Y h::l.ppan:
lPuJ may be considerably sma.l1er thEir. the number of
states A. Tnthls Cllse, our path lEI clearly lor.ger,

Exwnple 2. Let X" {c. l}. We consider the r<i'g'.l-
lar e,,"Pressio:r:

To P we apply the algorithm fo:r construoting a basis
[3J f:rom right to left, In virtue (If the identity

(R) = (R) RUt

p "" p. "'" PO {OIII I} (QU I)UI1= P,(OU I)U 11,

p~ == ;\0 (0 {llli ;;= p~O(1\ 1UNJ = Pal U.P10.
p•••• f.e (I) = P.l UP.O,

Tb.¢ Syliltenl of equstions obtained ~ves the automaton
pA. Its transition matrix is

10 0Ul 0\
(00 11).
\0 0

l'he.n the system of equations for equtvRlence classes
of the relation E.pA>t(= pc) is of the for::A:

r,= OF~Ue.
i,= 0 (F~UFiJ U iF,.

F, "" 1 (F~UF.).
From this we obtain ::I system of equations ':If the (3. 5):

p ~~p.". F1= OF,U 10 Ue;; Op.U lP.Uc,
P2 =- F2 = C(F1 U Fa) U 1Ft = OPd U IPt,

P,:;= 0"'" OP.U [P"

p. = Fl UF~•••OF,U1(F'tUF~) Ue =O·~.U lP.U~.
Ps - f~ UF. = 0 (F1U F.l U I (F1 UF. UF.) =

••• OP~U IP~,

p. "'"FIUF~Ul. = OPeU lP~U~,

Thus, the de$ired auto1Ua+.onAp has the dia~am
sho'Wl.'l in Fig. 2.

In r;!C11.clusion, this author than~ M. A. Spi.vak fol"
his i.n.tere$t in thifl work.
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