B. G. Minion

Kibarnetika, Vol, 2, No. = pp, 'q-10, 1966
UDC 519.35

Every firite sutomaton A with m states gran be assoniated with a dual nondetarminigtie automgtom A^{*}, the automaton A^{*} being the invergion $P *$ of the event Prepresemted by automaton A [1]. It turns out that the minimol autumaton representing the event fok is obtained as a result of detemminization [1] of the cial A^{*}. The number of gtates of this automaton doos not exeeed 2^{m}, and for every natural $m \geq 3$ there exigts sn automator A_{m} for which thig estimate is sekiever.

This result is also proved in this article, but the discugsion is ondinoted in terms of the operations of left ind right partition of events itto words, whech permits a move thorotugh tharification of the comnection between the automata nad the evente they represent.

Cn the basis of the proved theorem, we indicate a method for syathesizing the minimal automaton representige a given (py its regular expression) event.

1. Lat $X=\left\{x_{1}, \ldots, x_{2}\right\}$ be a finite siplabet. We denote the free semigrous over alphaber X (rupplemsted by the empty word e) by $F(x)$, and the set of events over X by $\mathrm{C}(\mathrm{X})$.

Consider the following operations in the set $\mathrm{E}(X)$. We gall the set of all ports g axoh that pq 6 p, that is,

$$
\begin{equation*}
q \in P_{D} \rightarrow-\infty \in P \tag{1,1}
\end{equation*}
$$

the left quotient F_{D} of the pertrion of the event $\mathrm{E} E \mathrm{E}(\mathrm{X})$ by the word $\mathrm{P} \in \mathrm{FX}$).

It as no* difficult to note that P_{p} is the greatest of the erents B sacisfytug the fnolusion $\mathrm{PF} \subset \mathrm{P}$ (which also explatios the name of the operation).

In an analogous manner, the right ceotient p^{P} of tha partition of $P \in E(X)$ by $p \in F(X)$ is detued as the set of words q guch that go $E P$, that is,

$$
\begin{equation*}
q \in B_{0<} \Rightarrow p \in P . \tag{1,2}
\end{equation*}
$$

We tenote the set of mil ditiznent left (mght) guotiente of the eveat P by $\mathrm{P}_{\mathrm{u}}(\mathrm{u} \overline{\mathrm{F}}$), we note that $P=$ $=p_{i} P_{n} ; F=p C_{u} P$. We deavte the maber of element in the set $P_{u}(v P)$ in the istal maner. $\left|P_{u}\right|(u P)$).

It is known that \bar{F} can be represented by a fizite autoragton 连 and ony if $\left|P_{\text {a }}\right|$ is finite.

It is pot difficult to egtabish a relation between left and right partitions of events with the ald of the operam tion of inversion examined in referesce [1]. We recall that the word $\mathrm{p}^{*}=\mathrm{X}_{\mathrm{I}_{\mathrm{k}}} \ldots \mathrm{x}_{\mathrm{i}_{2} \mathrm{y}_{i_{1}}}$ is called the Lnverslom of the word $p=x_{i_{1}} \ldots x_{i_{2}} x_{i k}$, while the inversion of the event P is the next event P.

$$
\begin{equation*}
p \in P^{m} \longrightarrow p^{*} \in P . \tag{1,3}
\end{equation*}
$$

The following properties are obvious:

$$
\begin{equation*}
p^{* *}=P_{0} \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\left(P_{1} \cup P_{z}\right)^{+}=F_{1}^{\prime} \cup P_{2^{\prime}}^{+} \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
\left(P_{1} P_{\eta}\right)^{n}=P_{T}^{\infty} P_{i}^{n} \tag{1,6}
\end{equation*}
$$

It is now easy to prove that

$$
\begin{align*}
& \left(p_{p}\right)^{q} p^{p} \tag{1.7}\\
& (p)^{n}=p^{n} \tag{1,8}
\end{align*}
$$

8. We associate with each evont $P(E(X)$ wo binary equivalence relations on the set $F(X)$:

$$
\begin{align*}
& (p, q) \in \varepsilon_{p} \sim^{*} \rightarrow p_{p}=p_{q^{*}} \\
& \text { (p, q) } \in_{p}{ }^{\varepsilon}{ }_{p}{ }_{p}={ }_{f}{ }^{P} \text {. }
\end{align*}
$$

For any binary relation $\varphi \subset F(X) \times F(X)$, we denot by of the follcwing relation:

$$
\begin{equation*}
(p, p) \subseteq \varphi^{x} \rightarrow\left(p^{*}, q^{*}\right) \in \varphi^{-} \tag{2.3}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
E_{5}=p_{p o} t^{n} \text {, } \tag{2.4}
\end{equation*}
$$

Indeed, the fact that $(p, q) \in \varepsilon_{p}$ means that $P_{p}=P_{q}$, that is, $\left(P_{p}\right)^{*}=\left(P_{\mathrm{q}}\right)^{*}$. And, by $(1,7)$, this is equity $=$ lent to $p^{* P^{*}}=e^{* P^{24}}$, which it was racrured to prove.
to a like mansy

$$
\begin{equation*}
p^{z}=z_{p m}^{*} \tag{2,5}
\end{equation*}
$$

It is also eacy to see that for finy $p \in F(X)$

$$
\begin{gather*}
z_{p}(P) \mathcal{D}_{p} P \tag{2.6}\\
p^{2}\left(P_{D}\right) \in P_{p^{\circ}} \tag{2,7}
\end{gather*}
$$

Indeed, let $p_{1} \in s_{p}(p)$. This means that there existe a $p_{2} \epsilon_{p} P$ such that $P_{p_{1}}=P_{p_{2}}$. The rect that $p_{2} \xi_{p}$. is equivalent to the fact that $\mathrm{p}_{2} p \in \mathrm{P}$, that is, $\mathrm{p} \in \mathrm{P}_{\mathrm{P}_{2}}=$ $=P_{p_{2}}$. Then $p_{1} p \in P$, that is, $P_{1} \in P$, which th was te curted to prove. Belation (2.7) is verified in a liks mamer.

Properties (2,6) and (2.7) mean that the right (lent quotients of the evect P are unions of ecquivalenoe olasses of the left (right) relation $\varepsilon_{p}(p \varepsilon)$. And since thes number of equivalence clasges of the relation $\varepsilon_{p}\left(p^{\varepsilon}\right\}$ coincides with $\left|P_{u}\right|\left(\left.\right|_{\mu} P\right)$, the followiag estirigtes are valid:

$$
\begin{align*}
& \left|{ }_{u} P\right|<2_{z} P_{u} \mid \tag{2,5}\\
& \left|P_{u}\right| \leqslant 2^{1}{ }_{u} P^{\prime} . \tag{2.0}
\end{align*}
$$

Later we sholl bhow that these agtimatea are exact (that is, the equalities are achieved).
5. We asocciate the following two Mocre sutomata with each event $P \in E(X)$;

$$
\begin{equation*}
A_{2}=\left(P, X_{1}\left\{\varnothing_{0}, E\right\}, \delta_{p}, X_{1}\right. \tag{5,1}
\end{equation*}
$$

$$
\begin{equation*}
A=\left({ }_{u} P, X,\{\varnothing, e\}_{, ~}{ }_{P}, \chi, \chi\right) \tag{3.2}
\end{equation*}
$$

whetre $\delta_{p}\left(F_{p}, x\right)=F_{p x}, p^{d}\left(P_{p}, x\right)={ }_{x p} p(x \in X)$,

$$
x(R)=\left\{\begin{array}{lll}
e, & \text { if } & e \in R \\
\varnothing, & \text { if } & e \in R
\end{array} \quad(R \in E(X)) .\right.
$$

It is known [3, 4] that any event $\mathrm{R} \in \mathrm{E}(\mathrm{X})$ can be uniquely represented in the form

$$
\begin{align*}
& R=x_{1} R_{z} \cup \ldots U x_{n} R_{x_{n}} U \chi(R) \tag{3,3}\\
& R=x_{n} R \cdot x_{1} U \ldots U x_{n} R \cdot x_{n} \cup x(R) . \tag{3.4}
\end{align*}
$$

Therefore, specifying the automatom A_{p} is ecuivalent to specitying the system of equations

$$
\begin{equation*}
P_{p}=x_{1} P_{p=1} \cup \ldots \cup x_{n} P_{p \pi n} \cup \chi\left(P_{n}\right)\left(P_{p} \in P_{\mu}\right), \tag{3.5}
\end{equation*}
$$

and specifying the automaton P^{A} is equivalent to specifying the system of equations

$$
\begin{equation*}
{ }_{0} P=x_{x_{1} F} P x_{1} U \ldots U_{w_{n}+} P P_{x_{n}} U x\left({ }_{2} P\right)\left({ }_{p} P \in \in_{\mu} P\right) . \tag{3.6}
\end{equation*}
$$

It is ¢asy to see that for any q $\xi F(\mathrm{X})$

$$
\begin{equation*}
\delta_{\rho}\left(P_{p}, q\right)=P_{p q}, \quad P \delta(\rho P, q)=q_{0} P . \tag{3.7}
\end{equation*}
$$

it follows from (3.7), (1.7), and (1.8) that

$$
\begin{equation*}
\delta_{p}\left(P_{p}, q\right)=\left(\operatorname{sob}\left(\mu^{p^{*}}+q\right)\right)^{*} . \tag{3.8}
\end{equation*}
$$

It is known $[2-4]$ that the automaton A_{p} represents pach $P_{p} \in F_{u}$ by the oufpuit sigaral e of the initial state P_{p}, that is,

$$
\begin{equation*}
q \in P_{p} \rightarrow z \in \delta_{p}\left(P_{p} q\right) . \tag{3,9}
\end{equation*}
$$

It follows fromit (3.8) and (3.2) thet

$$
\begin{equation*}
q \in P_{p_{0}^{*}}^{\longrightarrow} \in e \in \delta\left({ }_{\rho} P, q\right), \tag{3.10}
\end{equation*}
$$

that is, the automaton pas represents the event $P_{p * * *}$ of the initial state p^{P}.

This meare that the automator pA^{A} is indistinguishable from the automaton A, and by (2.5) they have the same number of states. Moreover, since the automaton Ap has the least number of states of all the Moore automata representing $P[2-4], p A=A$. ${ }^{*} *$ (correct to an isomorphism).
4. In an arbitrary Mopre automaton $\mathrm{A}=\{\mathrm{S}, \mathrm{X}, \mathrm{X}, 5$, ر) with $S=s_{1}, \ldots, s_{\mathrm{pn}}$ we fix the initial state s_{1} and consider the squivalence relation $\varepsilon_{A} \subset F(X) \times F(X)$, defired by the expression

$$
\begin{equation*}
(p, q) \in \varepsilon_{A} \longleftrightarrow \delta\left(s_{1}, p\right)=\delta\left(s_{1}, q\right) . \tag{4.1}
\end{equation*}
$$

Let the automaton A have the transition matrix $\left(a_{i f}\right)_{1, i, i c m}\left(a_{i j}\right.$ is the union of those input sigarls that

Hence it immediately follows that the ecquivalence classes $F_{1}=E_{1}^{*}, \ldots, F_{m}=E_{D_{1}}^{*}$ of the relation s. isfy the equations

$$
\begin{equation*}
F_{t}=a a_{1} F_{1} \cup \ldots \cup a_{m f} F_{m} \cup \chi\left(F_{i}\right) \quad(t=1, \ldots, m), \tag{4.3}
\end{equation*}
$$

where $X\left(F_{1}\right)=\left\{\begin{array}{l}e, \text { if } i=1, \\ \phi, \text { if } i>1 .\end{array}\right.$
Let A represent the eveat P by the set of output signals Z C Y. It is not difficult to prove that

$$
\begin{equation*}
\varepsilon_{A}=\varepsilon_{p^{+}} \tag{4.4}
\end{equation*}
$$

Indeed, ler $(p, q) \in \varepsilon_{A}$. This means that $a\left(s_{1}, p\right) \neq$ $=\delta\left(s_{1}, q\right)$. It follows that for any $r \in F(X)$ pr $\in P \longrightarrow$ ar $\in P$, that is, $r \in P_{\nu} \longleftrightarrow r \in P_{q}$, but this means that $P_{p}=P_{q}$, which is what it was required to prove,

It follows from (4, 4) and (2. 4) that:

$$
\begin{equation*}
e_{A}^{*} \subset{ }^{2} \tag{4.5}
\end{equation*}
$$

Formulas (4.4) and (4.5) together with (2.6) and (2.7) mean that right quotiente of the event P are unions of classes $E_{1}, \ldots, E_{\text {mn }}$ of the relction E_{A} and left quotlents of the event P* are unions of the equivalence classes F_{1}, \ldots, F_{m} of the Telation $E_{\text {㭗. }}$.

We shall now show how, with the aid of (4.2) and (4.3), we camot only express the right quotients of the evert P in terms of the pvents E_{1}, \ldots, E_{m}, but also show the connection between thern.

Let $\left\{s_{i_{1}}, \ldots, s_{i_{k}}\right\}$ be a net of states marked by ortput signals from Z (that is, a set of finite gtates). Then [5]

$$
\begin{align*}
P & =E_{L_{1} \cup \cup \cdots \cup E_{i k^{\prime}}} \tag{4.6}\\
P^{*} & =F_{i,} \cup \ldots \cup F_{i_{k^{*}}} . \tag{4.7}
\end{align*}
$$

Substituting expressions (4.2) in (4,6) in place of $\mathrm{E}_{\mathrm{i}_{1}}, \ldots, \mathrm{E}_{\mathrm{i}_{\mathrm{k}}}$ and making use of the distributivity of multiplication with respect to unions, we obtain

$$
P=P_{0}=P_{1} x_{1} \cup \ldots \bigcup P_{n} x_{n} \cup \times(P),
$$

where $F_{1}, \ldots . P_{n}$ are unions of events of the set $\left\{E_{1}\right.$, Emt. For those F_{i} which are not unions of events $E_{i_{1}}, \ldots, E_{i_{k}}$ (that is, not equal to $P=P_{0}$), we again write out the equations using (4.2). If unions of events E_{1}, \ldots, E_{m} not previously encountered appear on their right sides, then we continue writing out equations for these new quotients. We continue until new unions of events $E_{1}, \ldots, E_{\text {In }}$ cease to appear. This taker not more than 2^{m} steps, since the number of different unions of m elements is equal to $2^{\text {min }}$. As a result, we obtain equations of the form (3,6). If the autoroaton A is comected, then all clasges of the relation ε_{A} are different and nonempty. This meang that all events P_{i} obtained are different and, consequently, the equations obtained difine the automaton pA.

If the connected automaton A represents the event $Q=P *$, then, in the same way, with tbe gid of (4.3) and (4.7), we obtain equations of the form (3.5) defining the automaton Ap.

Thus, we have shown bow to construct the minimal automaton $P A(A, D)$ from a given automaton A representing the event $P\left(P^{*}\right)$.

We note that the primeipal stages of our construe－ tron can be expressed in the temenipology of Robin and Scott（1］as follows：1）construction of the nordatermim nistic automaton AF the dual of the automaton A（equal－ tions（4．2）），and．2）determinization of the automaton A^{*}（construction of equations of the form $(5,5)$ ）．
 terminology as follows：the connected part of the automaton obtained as a result of ceterminization of the nondeterministic dual of a given automaton is a minimal automaton．

Example 1．Consider the automaton A_{m} with states $\{1,2, \ldots, m\}(m \geq 3)$ ，output alphabet $\mathrm{X}=\{a, b, c\}$ ，ins m trial state 1，final state 1，and the transition diagram Shown in Fig．1．It is not 至舐cult，to see that the fiat $A_{\text {m }}^{*}$ is equal（correct to an isomorphism）to anon－ deterministic automaton（source）［y for which，as shown by lupazov［6］，the equivalent deterministic automaton（special scrap）contains exactly sm staten， which also proves the estimates（2．8），（2．3）．

5．The algorithm cescribed above can be applied to the synthesis of the minimal automaton represent－ ing the event P from its regular expression．

For this，it is first necessary to construal tine reek ular expression of event p＊，then with the aid of a known algorithm synthesize automaton A which repre－ sorts the event P＊．This automaton A cen aldo be con－ strutted directly from the regular expeesation of E by applying the synthesis algorithm to P ，not，as usual， from left to right，but from．right to le at．The trans－ trow from automaton A to Ap is realized with the aid of（4，3）and（4，7）．

It may happen that $\left|F_{u}\right|$ considerably exceeds the number of states of automaton A（Example 1）．In this case，our method for constructing the minimal autoro－ aton is preferable to the methods now being used， where one first obtains th automaton with a number of states exceeding $\left|\mathrm{Fu}_{\mathrm{u}}\right|$ ，ada only then proceeds to its x minimization．However，the opposite may happen： $\left|P_{u}\right|$ may be considerably smaller than the number of states A．In this case，our path is clearly longer，

Mg． 1

Example 2．Let $X=\{0,1\}$ ．We consider the regu－ lax expression

$$
P=\{0\{0\{1] 1\}(0 \cup 1)\} .
$$

To F we apply the algorithm for constructing a basis ［3］from right to left．in virtue of the identity

$$
\{R\rangle=\{R\} R \cup e
$$

N意have

$$
\begin{gathered}
P=P_{1}=P 0\{0\{1\} 1\}(0 \cup 1) \cup s=P_{3}(0 \cup 1) \cup e_{8} \\
P_{2}=P_{2} 0\{0\{1\} 1\}=P_{3} 0\{1\} 1 \cup P_{1} 0=P_{3} 1 \cup P_{2} 0, \\
P_{8}=P_{2} 0\{1\}=P_{2} \cup P_{3} 0 .
\end{gathered}
$$

The aygten of equations obtained jives the automaton pA．Its transition matrix is

$$
\left(\begin{array}{ccc}
\varnothing & 0 \cup 1 & Q \\
0 & \varnothing & 1 \\
Q & 0 & 1
\end{array}\right)
$$

Then the systeru of equations for equivalence classes of the relation $\varepsilon P^{*} A^{*}\left(=p^{\varepsilon}\right)$ is of the form：

$$
\begin{aligned}
& F_{1}=0 F_{5} \cup e_{1} \\
& \vec{F}_{3}=0\left(F_{2} \cup F_{2} \cup 1 F_{1}\right. \\
& F_{3}=1\left(F_{3} \cup F_{3}\right) .
\end{aligned}
$$

From this we obtain a system of equations of the（3．5）：

$$
\begin{gathered}
P=P_{2}=F_{1}=0 F_{3} \cup 1 \oslash \cup e=0 P_{2} \cup 1 P_{3} \cup e_{7} \\
p_{2}=F_{2}=Q\left(F_{1} \cup F_{3}\right) \cup 1 F_{2}=O P_{4} \cup 1 P_{1} \\
P_{\mathrm{a}}=\varnothing=O P_{8} \cup!P_{1}
\end{gathered}
$$

Fig． 2

$$
\begin{aligned}
& P_{4}=F_{2} \cup F_{3}=0 F_{3} \cup 1\left(F_{3} \cup F_{7}\right) \cup e=0 P_{3} \cup 1 P_{5} \cup s, \\
& F_{\mathrm{s}} \cos F_{\mathrm{s}} \bigcup F_{\mathrm{z}}=0\left(F_{3} \cup F_{\mathrm{s}}\right) \cup 1\left(F_{1} \cup F_{3} \cup F_{\mathrm{a}}\right)= \\
& =O P_{3} \cup M P_{0} \\
& P_{8}=F_{1} \cup F_{1} \cup F_{3}=O P_{8} \cup I P_{0} \bigcup \in .
\end{aligned}
$$

Thus，the desired automaton Ap bis the diagram shown in Fig．©

In conclusion，the author thanks M，A．Spiral for hila interest in this work．

REFERENCES

1．M．O．Rabin and D．Scott，＂Finite automats and their decision problems，＂IBM J．Research Develop． vol．3．P9．114－125，1259．

2．M．A．Spivak，TA．new algorithm for abstract synthesis of automats，＂Proceedings of Sciential Sem－ inarts on Cybernetics．Theory of Automats［in Russian］， no．3，Kiev， 1963.

3．M．A．Spivak，＂An algorithm for abstract syn－ thesis of autornata for an extended language of regular expressions，＂IZvestia AN SESR．Tekhnicheakaya ki－ bernetika，no．1， 1965.

4．J．A．Brzozowski，Derivatives of regular ex－ pressions，＂J．of the Association for Computing Ma－
chinery, 11, 4, 1964.
3. V. G. Bocmarchak, "Systeros of equations in the gigebra of gvents," Zhurnal vychislitel moy matematiki i matematicheskoy firiki, 3, 6, 1963.
6. O. B. Lupanov, "A comparison of two types of flnite sources, " Eroblemy ldibernetik, no. 9, 1963.

28 May 1965
Saratov State Univarsity

