Nondeterministic Complexity of Operations on Free and Convex Languages

Michal Hospodár Galina Jirásková Peter Mlynárčik

Slovak Academy of Science, Košice, Slovakia

CIAA 2017 Marne-la-Vallée, France, 27th June 2017

Outline

- Preliminaries
 - Finite Automata
 - Lower-Bound Methods for NFAs
- 2 Free languages
- 3 Convex languages

Finite Automata

Definition (NFA)

Nondeterministic finite automaton (NFA)

is a quintuple $A = (Q, \Sigma, \delta, s, F)$

- exactly one initial state s
- transition function $\delta: Q \times \Sigma \to 2^Q$

Definition (nsc)

The nondeterministic state complexity of L is the number of states of some minimal NFA for L. We use the denotation nsc(L).

Example

- $\delta(0, a) = \{0, 1\}$
- $L_{3a} = \{w \in \{a, b\}^* \mid w \text{ has an } a \text{ in the 3rd position from the end}\}$
- $nsc(L_{3a}) \le 4$

Definition (NFA)

Nondeterministic finite automaton (NFA) is a quintuple $A = (Q, \Sigma, \delta, s, F)$

- exactly one initial state s
- transition function $\delta: Q \times \Sigma \to 2^Q$

Definition (nsc)

The nondeterministic state complexity of L is the number of states of some minimal NFA for L. We use the denotation nsc(L).

Example

- $\delta(0, a) = \{0, 1\}$
- $L_{3a} = \{w \in \{a, b\}^* \mid w \text{ has an } a \text{ in the 3rd position from the end}\}$
- $nsc(L_{3a}) \leq 4$

Definition (NFA)

Nondeterministic finite automaton (NFA) is a quintuple $A = (Q, \Sigma, \delta, s, F)$

- exactly one initial state s
- transition function $\delta: Q \times \Sigma \to 2^Q$

Definition (nsc)

The nondeterministic state complexity of L is the number of states of some minimal NFA for L. We use the denotation nsc(L).

Example

- $\delta(0, a) = \{0, 1\}$
- $L_{3a} = \{ w \in \{a, b\}^* \mid w \text{ has an } a \text{ in the 3rd position from the end} \}$
- $nsc(L_{3a}) \le 4$

Finite Automata

Definition (NFA)

Nondeterministic finite automaton (NFA) is a quintuple $A = (Q, \Sigma, \delta, s, F)$

- exactly one initial state s
- transition function $\delta: Q \times \Sigma \to 2^Q$

Definition (nsc)

The nondeterministic state complexity of L is the number of states of some minimal NFA for L. We use the denotation nsc(L).

Example

$$a, b$$

$$\xrightarrow{\beta} a \xrightarrow{a, b} \xrightarrow{a, b} \bigcirc$$

- $\delta(0, a) = \{0, 1\}$
- $L_{3a} = \{w \in \{a, b\}^* \mid w \text{ has an } a \text{ in the 3rd position from the end}\}$
- $nsc(L_{3a}) \le 4$

Prefix-, Suffix-, Factor-, Subword-Free Languages

Definition

w = uxv

- u is a prefix of w
- v is a suffix of w
- x is a factor of w

 $W = U_0 V_1 U_1 V_2 U_2 \cdots V_m U_m$

• $V_1 V_2 \cdots V_m$ is a subword of w

Definition

- L is prefix-free iff $w \in L \Rightarrow$ no prefix of w is in L
- suffix-, factor-, subword-free defined analogously

Example

w = CONFERENCE

- CONFER is a prefix of w
- RENCE is a suffix of w
- FERENC is a factor of w
- CERN is a subword of w

Example

- $\{\varepsilon, FR, FRANCE\}$ is not prefix-free
- {FRANCE, PARIS} is prefix-free

Properties of Free Languages

- L is prefix-free ⇒ no out-transition from any final state
- L is suffix-free ⇒ no in-transition to the initial state

Lemma (Sufficient conditions for an incomplete DFA to accept suffix-free language)

- no in-transition to the initial state,
- single final state,
- no two transitions on the same symbol to any state

Inclusions for classes of languages:

Prefix-free ∪ suffix-free = bifix-free

Bifix-free \supseteq factor-free \supseteq subword-free

Convex languages

Definition

- L is prefix-convex iff $u, uvw \in L \Rightarrow uv \in L$
- suffix-, factor-, subword-convex defined analogously

Every prefix-free, prefix-closed, and right ideal language is prefix-convex; inclusions for suffix-, factor-, subword-convex languages hold analogously

Lemma (Property of Prefix-Convex Languages)

Let $D = (Q, \Sigma, \delta, s, F)$ be a DFA. If for each final state q and each symbol a in Σ , the state $\delta(q, a)$ is final or dead, then L(D) is prefix-convex.

Why Free and Convex Languages?

Motivation and History

- Holzer, Kutrib (2003) (NFA), nsc(L) introduced
- Han, Salomaa, Wood (2009): prefix-free (DFA, NFA)
- Han, Salomaa (2010): suffix-free (DFA, NFA)
- Brzozowski et al. (2010, 2017): convex (DFA)
- P.M. (DCFS 2015): free, ideal (complement)
- M.H., G.J., P.M. (CIAA 2016): closed, ideal (NFA)

Definition (Fooling Set)

A set of pairs of strings $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ is called a fooling set for a language L if for all i, j in $\{1, 2, \dots, n\}$, **(F1)** $x_i y_i \in L$, and

(F2) if $i \neq j$, then $x_i y_j \notin L$ or $x_j y_i \notin L$.

Lemma (Birget, 1992)

Let $\mathcal F$ be a fooling set for a language L. Then every NNFA for L has at least $|\mathcal F|$ states.

If we insist on having a single initial state, we use very useful modification of fooling-set method.

Lemma (Jirásková, Masopust, 2011

- A, B sets of pairs of strings
- u, v two strings
- $A \cup B$, $A \cup \{(\varepsilon, u)\}$, and $B \cup \{(\varepsilon, v)\}$ are fooling sets for a language L.

Then every NFA with a single initial state for L has at least |A| + |B| + 1 states.

Fooling-Set Lower-Bound Method for NFAs

Definition (Fooling Set)

A set of pairs of strings $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ is called a fooling set for a language L if for all i, j in $\{1, 2, \dots, n\}$,

(F1) $x_i y_i \in L$, and (F2) if $i \neq j$, then $x_i y_i \notin L$ or $x_i y_i \notin L$.

Lemma (Birget, 1992)

Let \mathcal{F} be a fooling set for a language L. Then every NNFA for L has at least $|\mathcal{F}|$ states.

If we insist on having a single initial state, we use very useful modification of fooling-set method.

Lemma (Jirásková, Masopust, 2011)

- A, B sets of pairs of strings
- u, v two strings
- $A \cup B$, $A \cup \{(\varepsilon, u)\}$, and $B \cup \{(\varepsilon, v)\}$ are fooling sets for a language L.

Then every NFA with a single initial state for L has at least |A| + |B| + 1 states.

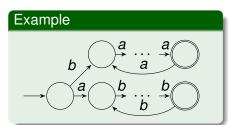
Other Lower-Bound Methods for NFAs

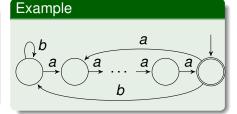
Lemma

Let A be an NNFA. Let for each state q of A, the singleton set {q} be reachable and co-reachable in A.
Then A is minimal.

Corollary

Let A be a trim NFA. If both A and A^R are incomplete DFAs, then A and A^R are minimal NFAs.





We use these claims in the proofs of our results.

Complexity of operations on free languages

We examined the nondeterministic state complexity of the following operations:

Binary Operations

- union (∪)
- intersection (∩)
- concatenation (·)

Unary Operations

- square (L²)
- star (Kleene closure, L*)
- reversal (L^R)
- complementation (L^c)

Known and New Results

	Prefix-free	$ \Sigma $		Suffix-free	$ \Sigma $	
$K \cap L$	mn-(m+n-2)	2	[2]	mn-(m+n-2)	2	[3]
$K \cup L$	m+n	2	[2]	m+n-1	2	[3]
KL	m+n-1	1	[2]	m+n-1	1	[1]
L ²						
L*	n	2	[2]	n	4	[1]
L^R	n	1	[2]	n + 1	3	[1]
Lc	2 ⁿ⁻¹	3	[2]	2 ⁿ⁻¹	3	[4]

Jirásková, Mlynárčik 2014

Known and New Results

	Prefix-free	Σ		Suffix-free	$ \Sigma $	
$K \cap L$	mn-(m+n-2)	2	[2]	mn-(m+n-2)	2	[3]
$K \cup L$	m+n	2	[2]	m+n-1	2	[3]
KL	m+n-1	1	[2]	m+n-1	1	[1]
L ²	2 <i>n</i> – 1	1		2 <i>n</i> – 1	1	
L*	n	2	[2]	n	2	
L^R	n	1	[2]	n + 1	2	
Lc	2 ⁿ⁻¹	3	[2]	2 ⁿ⁻¹	3	[4]

Jirásková, Olejár 2009

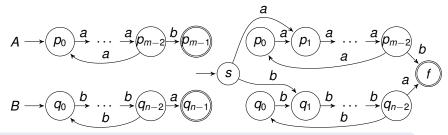
Jirásková, Mlynárčik 2014

New Results

	Factor-free	$ \Sigma $	Subword-free	$ \Sigma $
$K \cap L$	mn - 2(m + n - 3)	2	mn - 2(m + n - 3)	m + n - 5
$K \cup L$	m+n-2	2	m+n-2	2
KL	m+n-1	1	m+n-1	1
L ²	2 <i>n</i> – 1	1	2 <i>n</i> – 1	1
L*	<i>n</i> − 1	1	<i>n</i> − 1	1
L^R	n	1	n	1
Lc	$2^{n-2}+1$	3	$2^{n-2}+1$	2^{n-2}

The results for complementation are from P.M., DCFS 2015

Union on Prefix-Free Languages



Let

Let
$$\mathcal{A} = \{(a^{m-1}, a^{m-2}b)\} \cup \{(a^i, a^{m-2-i}b) \mid 1 \le i \le m-2\} \cup \{(a^{m-2}b, \varepsilon)\},$$
 $\mathcal{B} = \{(b^{n-1}, b^{n-2}a)\} \cup \{(b^i, b^{n-2-j}a) \mid 1 \le i \le n-2\},$ $u = b^{n-2}a$, and $v = a^{m-2}b$. Using AB-Lemma, we show that every NFA for $K \cup L$ needs at least $m + n$ states.

Our Results From CIAA 2016

Table shows nsc of operations on classes of convex languages

	Prefix-		Suffix-		Factor-		Subword	-
	convex	$ \Sigma $	convex	$ \Sigma $	convex	$ \Sigma $	convex	$ \Sigma $
$K \cap L$	mn	2	•	2	•	2		2
$K \cup L$	<i>m</i> + <i>n</i> +1	2	•	2	•	2	•	2
KL	m+n	2	•	3	•	3		3
L ²	2n	2	•	3		3		3
L*	n + 1	1	•	2	•	2	•	2
L ^R	n + 1	2	•	3	•	3	. :	2 <i>n</i> – 2
Lc	2 ⁿ	2	$\geq 2^{n-1} + 1$	2	ě	2	•	2 ⁿ
			≤ 2 ^{<i>n</i>}					

All upper bounds are met by closed or ideal languages.

Complementation on Suffix-Convex Languages

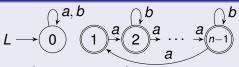
The value of $nsc(L^c)$ on subclasses of suffix-convex languages

- suffix-closed: $2^{n-1} + 1$
- left ideal, suffix-free: 2^{n-1}

Lemma (Complementation)

If all subsets are reachable and co-reachable, then $nsc(L^c) = 2^n$

Suffix-convex witness: $nsc(L^c) = 2^n$



$$0 \cdot c = \{0, 1, \dots, n-1\},\ 0 \cdot d = \{1, 2, \dots, n-1\},\$$

$$q \cdot e = \{n-1\}$$
 for each state q of A

Proof Idea

- show that L^R is prefix-convex by Lemma (Property)
- use Lemma (Complementation)

Unary Case

- Unary free languages: $L = \{a^{n-1}\} \Leftrightarrow \operatorname{nsc}(L) = n$
- Unary convex languages:
 - $L = \{a^i \mid i \geq k\} \Rightarrow \operatorname{nsc}(L) = k+1$
 - $L = \{a^i \mid k \le i \le \ell\} \Rightarrow \operatorname{nsc}(L) = \ell + 1$

Unary	$K \cap L$	$K \cup L$	KL	L ²	L*	Lc
free	n; m = n	$\max\{m,n\}$	m+n-1	2 <i>n</i> – 1	n – 1	$\Theta(\sqrt{n})$
convex	$\max\{m,n\}$	$\max\{m,n\}$	m + n - 1	2n – 1	n – 1	n + 1
regular	mn;	m+n+1;	$\geq m+n-1$	≥ 2 <i>n</i> − 1	n + 1	$2^{\Theta(\sqrt{n\log n})}$
	(m, n) = 1	(m, n) = 1	$\leq m+n$	≤ 2 <i>n</i>		

Summary and Open Problems

We have tight upper bounds for nondeterministic complexity of intersection, union, concatenation, square, star, and reversal on prefix-, suffix-, factor-, and subword-free and -convex languages.

Moreover, we have nondeterministic complexity 2^n of complementation on prefix-convex (CIAA 2016) and suffix-convex languages.

Open problems:

- complementation on factor-convex and subword-convex languages
- smaller alphabets for
 - intersection on subword-free languages
 - reversal on subword-convex languages
 - complementation on subword-closed, all-sided ideal, and subword-free languages (we still have exponential size of

Thank You for Attention

Merci beaucoup pour votre attention

