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The Cut Operation

Concatenation: KL = {uv | u ∈ K and v ∈ L}
Cut operation: machine implementation on Unix processors

K ! L = {uv | u ∈ K , v ∈ L, uv ′ 6∈ K for every nonempty pre�x v ′ of v}

Example (Cut vs. Concatenation)

K = {LA,LATA}
L = {TABLE,CHAIR}
KL = {LA·TABLE,LATA·TABLE,LA·CHAIR,LATA·CHAIR}
K ! L = {LATA·TABLE,LA·CHAIR,LATA·CHAIR}
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An Example of the Cut Automaton

0,⊥

1,1

2,0

A 0

1

2

3

4

a

B 0 1 2 3
b

DFAs A and B and the cut automaton A !B ; notice that
the state (1, 1) is unreachable.
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State Complexity

De�nition

State complexity of a regular language L:
number sc(L) = min{n | L is accepted by an n-state DFA}
State complexity of a binary operation ◦:
function (m, n) 7→ max{sc(K ◦ L) | sc(K ) ≤ m and sc(L) ≤ n}
Range of state complexities resulting from the operation ◦:
(m, n) 7→ set {sc(K ◦ L) | sc(K ) = m and sc(L) = n}

A number representing a �hole� in this set
is called a magic number for the operation ◦

The state complexity, or the range of state complexities,
may depend on the size of alphabet over which K and L are de�ned.
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Motivation and History

Cut operation was examined by

Berglund et al. (2013) � de�nition, regularity preserving

Drewes et al. (2017) � state complexity

Magic number problem was investigated by

Iwama et al. (2000): formulation of the magic number
problem for determinization of binary NFAs

Ge�ert (2007): there exist magic numbers for determinization
of unary NFAs

Jirásková (2011): no magic numbers for determinization
of ternary NFAs

Holzer et al. (2012): determinization on subregular classes

�evorová (2013): Kleene star on unary DFAs

This talk � the magic number problem for cut � complete solution
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The Range of Complexities for Cut: Unary Case

Known result: Drewes, Holzer, Jakobi, van der Merwe (2017)

The state complexity of the cut operation on unary languages:

f1(m, n) =


1, if m = 1;

m, if m ≥ 2 and n = 1;

2m − 1, if m, n ≥ 2 and m ≥ n;

m + n − 2, if m, n ≥ 2 and m < n.

Our results in the unary case

Let K , L be unary languages with sc(K ) = m and sc(L) = n.

Condition Range of attainable complexities for K ! L

m ≥ 1, n = 1 [1,m]
m, n ≥ 2, K in�nite [1, 2m − 1]
m, n ≥ 2, K �nite [n,m + n − 2]

• What about the interval [2m, n − 1]?
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The Values from 2m up to n − 1 Are Magic

Lemma

There do not exist minimal unary m- and n-state DFAs A and B
such that the minimal DFA for L(A) ! L(B) has α states
if 2m ≤ α ≤ n − 1.

Proof

If L(A) is �nite

DFA A has a �nal state
before its sink state

in the last row,
there is a copy of B

⇒ ≥ n reachable and
distinguishable states

Example

0

1

2

3

A

0 1 2 3 4B
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The Values from 2m up to n − 1 Are Magic

Lemma

There do not exist minimal unary m- and n-state DFAs A and B
such that the minimal DFA for L(A) ! L(B) has α states
if 2m ≤ α ≤ n − 1.

Example
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Proof (cont.)

If L(A) is in�nite

at most m − 1 states are
in the tail of A !B

DFA A has only one loop
⇒ at most m states are

in the loop of A !B

⇒ ≤ 2m − 1 reachable states
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Magic Number Problem for Cut in the Unary Case

Theorem (Unary Case)

For every m, n, α ≥ 1 such that

1 α = 1 if m = 1,
2 1 ≤ α ≤ m if m ≥ 2 and n = 1, or
3 1 ≤ α ≤ 2m − 1 or n ≤ α ≤ m + n − 2 if m, n ≥ 2,

there exist minimal unary m-state and n-state DFAs A and B
such that the minimal DFA for L(A) ! L(B) has α states.

In the case of m, n ≥ 2 and 2m ≤ α ≤ n − 1, there do not exist

minimal unary m-state and n-state DFAs A and B such that

the minimal DFA for L(A) ! L(B) has α states.
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The Range of Complexities for Cut: General Case

Known result: Drewes, Holzer, Jakobi, van der Merwe (2017)

The state complexity of the cut operation on regular languages:

f (m, n) =

{
m, if n = 1;

(m − 1)n +m, if n ≥ 2;
with binary witnesses.

Our results: No magic numbers for cut in the general case

Let K , L be languages with sc(K ) = m and sc(L) = n.

Condition Range of attainable complexities for K ! L

n = 1 [1,m]
n ≥ 2 [1, (m − 1)n +m]

the most interesting case is if α ∈ [m + n − 1, (m − 1)n + 1]
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The Case α ∈ [m + n − 1, (m − 1)n + 1]

The complexities from m + n − 1 up to (m − 1)n + 1

can be written as α = 1+ (r − 1)n + (m − r)s for some r , s

or cannot

Schematic drawing of a �skeleton� for α = 1+ (r − 1)n + (m − r)s

m

n

r

s

1

(r − 1)n

(m − r)s
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Example: m = 7, n = 8, and α = 1+ 2 ∗ 8+ 4 ∗ 3 = 29

A
a

B
b
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Example: m = 7, n = 8, and α = 1+ 2 ∗ 8+ 4 ∗ 3+3 = 32

q1

q2

q3

A′

a

b

B ′
a ab
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Example: m = 7, n = 8, and α = 1+ 2 ∗ 8+ 4 ∗ 3+3 = 32

q1

q2
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b
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Magic Number Problem for Cut in the General Case

Recall that the state complexity of cut is

f (m, n) =

{
m, if n = 1;

(m − 1)n +m, if n ≥ 2.

Theorem (General Case)

For each α such that 1 ≤ α ≤ f (m, n), there exist

minimal binary m-state and n-state DFAs A and B
such that the minimal DFA for L(A) ! L(B) has α states.

binary case ⇒ every larger alphabet is solved (dummy letters)
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Summary: Magic Number Problem for Cut

Unary case

Condition Range of complexities for cut
m = 1 {1}
n = 1 [1,m]
m, n ≥ 2 [1, 2m − 1] ∪ [n,m + n − 2]

if numbers from 2m up to n− 1 exist, they are not attainable (are magic)

for every number, we know whether it is or is not attainable

Binary case

Condition Range of complexities
n = 1 [1,m]
n ≥ 2 [1, (m − 1)n +m]

all numbers are attainable
(not magic)

dummy letters ⇒ complete solution for every alphabet size

we do not know any other operation where the magic number problem
is completely solved and magic numbers exist
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