The Range of State Complexities of Languages Resulting from the Cut Operation

Michal Hospodár

Mathematical Institute, Slovak Academy of Sciences, Košice, Slovakia

Joint work with Markus Holzer (Institut für Informatik, Universität Giessen, Germany)

LATA 2019, St. Petersburg, Russia, March 27, 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Interpretation Definition and Examples
- Range of State Complexities of Languages Resulting from Cut (Magic Number Problem for Cut)
- Onary Case
- Binary (General) Case
- Summary

<ロト < 母 ト < 臣 > < 臣 > 臣 の < で 2/16

- Concatenation: $KL = \{uv \mid u \in K \text{ and } v \in L\}$
- Cut operation: machine implementation on Unix processors

 $K \,!\, L = \{ uv \mid u \in K, v \in L, uv' \notin K \text{ for every nonempty prefix } v' \text{ of } v \}$

Example (Cut vs. Concatenation)

$$\begin{split} & \mathcal{K} = \{ \text{LA}, \text{LATA} \} \\ & \mathcal{L} = \{ \text{TABLE}, \text{CHAIR} \} \\ & \mathcal{KL} = \{ \text{LA} \cdot \text{TABLE}, \text{LATA} \cdot \text{TABLE}, \text{LA} \cdot \text{CHAIR}, \text{LATA} \cdot \text{CHAIR} \} \\ & \mathcal{K} \, ! \, \mathcal{L} = \{ \text{LATA} \cdot \text{TABLE}, \text{LA} \cdot \text{CHAIR}, \text{LATA} \cdot \text{CHAIR} \} \end{split}$$

An Example of the Cut Automaton

DFAs A and B and the cut automaton A!B; notice that the state (1,1) is unreachable.

Michal Hospodár Complexity of languages resulting from the cut operation

3

Definition

- State complexity of a regular language L:
 number sc(L) = min{n | L is accepted by an n-state DFA}
- State complexity of a binary operation o: function (m, n) → max{sc(K ∘ L) | sc(K) ≤ m and sc(L) ≤ n}
- Range of state complexities resulting from the operation \circ : $(m, n) \mapsto set \{sc(K \circ L) \mid sc(K) = m \text{ and } sc(L) = n\}$

A number representing a "hole" in this set is called a magic number for the operation \circ

The state complexity, or the range of state complexities, may depend on the size of alphabet over which K and L are defined.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Motivation and History

Cut operation was examined by

- Berglund et al. (2013) definition, regularity preserving
- Drewes et al. (2017) state complexity

Magic number problem was investigated by

- Iwama et al. (2000): formulation of the magic number problem for determinization of binary NFAs
- Geffert (2007): there exist magic numbers for determinization of unary NFAs
- Jirásková (2011): no magic numbers for determinization of ternary NFAs
- Holzer et al. (2012): determinization on subregular classes
- Čevorová (2013): Kleene star on unary DFAs

This talk – the magic number problem for cut – complete solution

The Range of Complexities for Cut: Unary Case

Known result: Drewes, Holzer, Jakobi, van der Merwe (2017)

The state complexity of the cut operation on unary languages:

$$f_1(m,n) = \begin{cases} 1, & \text{if } m = 1; \\ m, & \text{if } m \ge 2 \text{ and } n = 1; \\ 2m - 1, & \text{if } m, n \ge 2 \text{ and } m \ge n; \\ m + n - 2, & \text{if } m, n \ge 2 \text{ and } m < n. \end{cases}$$

Our results in the unary case

Let K, L be unary languages with sc(K) = m and sc(L) = n.

Condition	Range of attainable complexities for $K!L$
$m \geq 1, n = 1$	[1, <i>m</i>]
$m,n\geq 2$, K infinite	[1, 2m - 1]
$m,n\geq 2,~K$ finite	[n, m + n - 2]

The Values from 2m up to n-1 Are Magic

Lemma

There do not exist minimal unary *m*- and *n*-state DFAs *A* and *B* such that the minimal DFA for L(A) ! L(B) has α states if $2m \le \alpha \le n-1$.

Proof

If L(A) is finite

- DFA *A* has a final state before its sink state
- in the last row, there is a copy of *B*
- ⇒ ≥ n reachable and distinguishable states

Lemma

There do not exist minimal unary *m*- and *n*-state DFAs *A* and *B* such that the minimal DFA for $L(A) \mid L(B)$ has α states if $2m < \alpha < n-1$.

Proof (cont.)

- If L(A) is infinite
 - at most m-1 states are in the tail of A! B
 - DFA A has only one loop \Rightarrow at most *m* states are in the loop of A!B

 $\Rightarrow \leq 2m - 1$ reachable states

Theorem (Unary Case)

For every $m, n, \alpha \geq 1$ such that

1 $\alpha = 1$ if m = 1,

- 2 $1 \le \alpha \le m$ if $m \ge 2$ and n = 1, or
- $\textbf{ 0 } 1 \leq \alpha \leq 2m-1 \text{ or } n \leq \alpha \leq m+n-2 \text{ if } m, n \geq 2,$

there exist minimal unary m-state and n-state DFAs A and B such that the minimal DFA for $L(A) \mid L(B)$ has α states.

In the case of $m, n \ge 2$ and $2m \le \alpha \le n - 1$, there do not exist minimal unary m-state and n-state DFAs A and B such that the minimal DFA for $L(A) \mid L(B)$ has α states.

The Range of Complexities for Cut: General Case

Known result: Drewes, Holzer, Jakobi, van der Merwe (2017)

The state complexity of the cut operation on regular languages:

$$f(m,n) = \begin{cases} m, & \text{if } n = 1; \\ (m-1)n + m, & \text{if } n \ge 2; \end{cases}$$

with binary witnesses.

Our results: No magic numbers for cut in the general case

Let K, L be languages with sc(K) = m and sc(L) = n.

Condition	Range of attainable complexities for K ! L	
n = 1	[1, <i>m</i>]	
$n \ge 2$	[1, (m-1)n + m]	

• the most interesting case is if $\alpha \in [m + n - 1, (m - 1)n + 1]$

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ のへで 10/16

Michal Hospodár Complexity of languages resulting from the cut operation

Example: m = 7, n = 8, and $\alpha = 1 + 2 * 8 + 4 * 3 = 29$

Michal Hospodár Complexity of languages resulting from the cut operation

Example: m = 7, n = 8, and $\alpha = 1 + 2 * 8 + 4 * 3 + 3 = 32$

Michal Hospodár Complexity of languages resulting from the cut operation

Example: m = 7, n = 8, and $\alpha = 1 + 2 * 8 + 4 * 3 + 3 = 32$

Michal Hospodár Complexity of languages resulting from the cut operation

Magic Number Problem for Cut in the General Case

Recall that the state complexity of cut is

$$f(m,n) = \begin{cases} m, & \text{if } n = 1; \\ (m-1)n + m, & \text{if } n \geq 2. \end{cases}$$

Theorem (General Case)

For each α such that $1 \le \alpha \le f(m, n)$, there exist minimal binary m-state and n-state DFAs A and B such that the minimal DFA for L(A)!L(B) has α states.

• binary case \Rightarrow every larger alphabet is solved (dummy letters)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ()

Summary: Magic Number Problem for Cut

Unary case

$$\begin{array}{l|l} \mbox{Condition} & \mbox{Range of complexities for cut} \\ \hline m = 1 & \{1\} \\ n = 1 & [1,m] \\ m,n \geq 2 & [1,2m-1] \cup [n,m+n-2] \end{array}$$

- if numbers from 2m up to n-1 exist, they are not attainable (are magic)
- for every number, we know whether it is or is not attainable

Binary case

Condition	Range of complexities
n = 1	[1, <i>m</i>]
$n \ge 2$	[1, (m-1)n + m]

- all numbers are attainable (not magic)
- \bullet dummy letters \Rightarrow complete solution for every alphabet size
- we do not know any other operation where the magic number problem is completely solved and magic numbers exist and the solution of the solution o

Ďakujem za pozornosť				
Danke	Arigato	Köszönöm		
Dziękuję	Namaste	Grazie		
Merci	Tack	Spasibo		
Gràcies	Dĕkuji	Dank u wel		
Kiitos	Gracias	Teşekkür		
Xièxiè	Shokran	Obrigado		

See You in Košice, Slovakia

DCFS 2019July 17-19deadline for submissions: April 1CIAA 2019July 22-25submissions are already closed