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Basic Notions

Cut Operation

Concatenation: KL = {uv | u ∈ K and v ∈ L}
Cut operation: machine implementation on Unix processors
K ! L = { uv |
u ∈ K , v ∈ L, and uv ′ 6∈ K for every nonempty pre�x v ′ of v }

State Complexity

State complexity of a regular language L:
value sc(L) = min{n | L is accepted by a DFA with n states}
State complexity of a binary operation ◦:
function (m, n) 7→ max{sc(K ◦ L) | sc(K ) ≤ m and sc(L) ≤ n}
Range of state complexities resulting from the operation ◦:
(m, n) 7→ set {sc(K ◦ L) | sc(K ) = m and sc(L) = n}

A number representing a �hole� in this set is called
a magic number for the operation ◦
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Motivation and History

Cut operation was examined by

Berglund et al. (2013) � de�nition, regularity preserving

Drewes et al. (2017) � state complexity

Magic number problem was investigated by

Iwama et al. (2000): determinization of binary NFAs

Van Zijl (2005): determinization of unary XNFAs

Ge�ert (2007): determinization of unary NFAs

Holzer et al. (2012): determinization on subregular classes

�evorová (2013): Kleene star on unary DFAs

�ebej (2013): reversal on DFAs over a growing alphabet

. . .

This talk � complexity of languages resulting from the cut operation
(the magic number problem for cut) � unary and binary alphabets
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Range of Complexities for the Cut Operation (1)

Known result: Drewes, Holzer, Jakobi, van der Merwe (2017)

The state complexity of the cut operation on unary languages:

f1(m, n) =


1, if m = 1;

m, if m ≥ 2 and n = 1;

2m − 1, if m, n ≥ 2 and m ≥ n;

m + n − 2, if m, n ≥ 2 and m < n.

Result of this paper (Theorem 6)

Let K , L be unary languages with sc(K ) = m and sc(L) = n.

Condition Range of attainable complexities for K ! L

m ≥ 1, n = 1 [1,m]
m, n ≥ 2, K in�nite [1, 2m − 1]
m, n ≥ 2, K �nite [n,m + n − 2]

• What about the interval [2m, n − 1]?
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The Construction of the Cut Automaton
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Figure: The DFAs A and B and the cut automaton A !B.

We have r = δA(p, a).
The state r is the �rst �nal state in a computation.
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The Construction of the Cut Automaton
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Figure: The DFAs A and B and the cut automaton A !B.

We have r = δA(p, a), s = δB(q, a), and the state r is �nal,

hence no state except for (r , sB) is reachable in the row r .

Michal Hospodár Complexity of languages resulting from the cut operation



The Construction of the Cut Automaton
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Figure: The DFAs A and B and the cut automaton A !B.

We have r = δA(p, a), s = δB(q, a), and the state r is non-�nal.
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The Construction of the Cut Automaton
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Figure: The DFAs A and B and the cut automaton A !B.

Since the state s is �nal in B, each state (p, s) is �nal in A !B.
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An Example of the Cut Automaton
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b
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The Values from 2m up to n − 1 Are Not Attainable

Lemma 5.

There do not exist minimal unary m- and n-state DFAs A and B
such that the minimal DFA for L(A) ! L(B) has α states
if 2m ≤ α ≤ n − 1

Proof.

If L(A) is in�nite

at most m − 1 states are
out of the product part

DFA A has only one loop
⇒ at most m states are

in the product part

⇒ ≤ 2m − 1 reachable states

Example

0

1

2

3

4

5

A

0 1 2 3B
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The Values from 2m up to n − 1 Are Not Attainable

Lemma 5.

There do not exist minimal unary m- and n-state DFAs A and B
such that the minimal DFA for L(A) ! L(B) has α states
if 2m ≤ α ≤ n − 1

Example

0

1

2

3

A

0 1 2 3 4B

Proof (cont.)

If L(A) is �nite

DFA A has a �nal state
before its sink state

in the product part,
there is a copy of B

⇒ ≥ n reachable and
distinguishable states �
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Range of Complexities for the Cut Operation (2)

Known result: Drewes, Holzer, Jakobi, van der Merwe (2017)

The state complexity of the cut operation on regular languages:

f (m, n) =

{
m, if n = 1;

(m − 1)n +m, if n ≥ 2.

Result of this paper (Theorem 11)

Let K , L be binary languages with sc(K ) = m and sc(L) = n.

Condition Range of attainable complexities for K ! L

n = 1 [1,m]
n ≥ 2 [1, (m − 1)n +m]

We divide the range to smaller ranges which are proven separately:
[1, 2m − 1], [2m,m + n − 2], [m + n − 1, (m − 1)n + 1],
[(m − 1)n + 2, (m − 1)n +m]
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Range [m + n − 1, (m − 1)n + 1]

The complexities from m + n − 1 up to (m − 1)n + 1

either can be written as 1+ (r − 1)n + (m − r)s for some r , s

or cannot

Schematic drawing of a �skeleton�

m

n

r

s

1

(r − 1)n

(m − r)s

We have
2 ≤ r ≤ m and 1 ≤ s ≤ n

Let
α = 1+(r − 1)n+(m− r)s

If r := r + 1, then

α := α+ n − s
If s := s + 1, then

α := α+m − r
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Example of a Skeleton for m = 7, n = 8, r = 3, and s = 3

Ar ,s

a

Br ,s
b
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What For Values Between Skeletons?

Let α = 1+ (r − 1)n + (m − r)s

If r := r + 1, then α := α+ n − s

If s := s + 1, then α := α+m − r

We can add n− s or m− r to a current number of reachable states.
To attain the values in between, we use a new variable t.

Lemma 9.

Let 2 ≤ r ≤ m, 1 ≤ s ≤ n, and 1 ≤ t ≤ min{n − s,m − r} − 1.
Let α = 1+ (r − 1)n + (m − r)s + t. Then there exist a minimal
binary m-state DFA Ar ,s,t and a minimal binary n-state DFA Br ,s,t

such that the minimal DFA for the language L(Ar ,s,t) ! L(Br ,s,t) has
exactly α states.

Proof.

We add t new reachable states (�teeth�) to the skeleton Ar ,s !Br ,s

to get α reachable states. Then, we prove distinguishability.
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Example of Teeth for m = 7, n = 8, r = 3, s = 3, and t = 3

q1

q2

q3

Ar ,s,t

a

b

Br ,s,t

a ab
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Reachability and Distinguishability in Skeletons (with Teeth)

Reachability of states in skeleton:

→ (0, 0)
aibj−−→ (i , j)

(i , j)
a−→ (i ′, j ′) where j ′ ≤ s − 1 if i ′ ≥ r

(i , j)
b−→ (i ′′, j ′′) where i ′′ ≤ r − 1 if j ′′ ≥ s

Reachability of teeth:

(r − 1, s + i)
a−→ (r , s + i − 1) = qi for odd i

(r + i , s − 1)
b−→ (r + i − 1, s) = qi for even i

Distinguishability:

(0, 0)
b∗−→ reject but (i , j)

bn−1−j

−−−−→ accept if (i , j) 6= (0, 0)

(i , j)
bn−1−j

−−−−→ accept but (i ′, j ′)
bn−1−j

−−−−→ reject if j 6= j ′

(i , j)
am−i

−−−→ (0, 0) but (i ′, j ′)
am−i

−−−→ (i ′′, j ′′) if i 6= i ′
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Summary

Unary case

Condition Range of complexities

m = 1 {1}
n = 1 [1,m]
m, n ≥ 2 [1, 2m − 1]

∪[n,m + n − 2]

if numbers from 2m up
to n − 1 exist, they are
not attainable (are magic)

for every number from 1 up
to f1(m, n), we know
whether it is or is not
attainable
⇒ the problem is completely
solved for unary languages

General case

Condition Range of complexities

n = 1 [1,m]
n ≥ 2 [1, (m − 1)n +m]

all numbers from 1 up
to f (m, n) are attainable
(not magic)
⇒ the problem is completely
solved for binary languages

we can duplicate letters
⇒ the problem is completely
solved for every alphabet size

we do not know other
operation with such result
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Thank You For Your Attention

Questions?
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