On the Descriptive Complexity of $\overline{\sum^{*} \bar{L}}$

Galina Jirásková

Mathematical Institute, Slovak Academy of Sciences, Košice, Slovakia

Joint work with Michal Hospodár and Peter Mlynárčik
DLT 2017, Liège, Belgium

On the Descriptive Complexity of $\Sigma^{*} \bar{L}$

Outline

(1) Basic notions:

DFA, NFA, AFA
(2) Forever operator
$L \rightarrow b(L)=\overline{\Sigma * \bar{L}}$
(3) Birget's results
(3) Our improvements and new results
(5) Open problems

On the Descriptive Complexity of $\Sigma^{*} \bar{L}$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\Sigma * \bar{L}$
(3) Birget's results
(9) Our improvements and new results
(0) Open problems

Finite automata:
deterministic, nondeterministic, alternating

$$
A=(Q, \Sigma, \delta, s, F)
$$

- Q is a non-empty finite set of states
- Σ is an input alphabet
- $s \in Q$ is the starting state
- $F \subseteq Q$ is the set of final states
- δ is the transition function from $Q \times \Sigma$ to
- a single state in DFA
- a union of states in NFA
- a boolean function of states in AFA

On the Descriptive Complexity of $\Sigma^{*} \bar{L}$

Example

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\Sigma * \bar{L}$
(3) Birget's results
(9) Our improvements and new results
(0) Open problems

DFA: δ	a	b	
\rightarrow	q_{1}	q_{2}	q_{2}
\odot	q_{2}	q_{2}	q_{1}

NFA: δ	a	b	
\rightarrow	q_{1}	q_{2}	$q_{1} \vee q_{2}$
\odot	q_{2}	q_{1}	q_{1}

AFA: δ	a	b	
\rightarrow	q_{1}	q_{2}	$q_{1} \wedge \overline{q_{2}}$
\odot	q_{2}	q_{1}	$\overline{q_{1}}$

On the Descriptive Complexity of $\Sigma^{*} \bar{L}$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\Sigma^{*} \bar{L}$
(3) Birget's results
(9) Our improvements and new results
(6) Open problems

Example

DFA: δ	a	b	
\rightarrow	q_{1}	q_{2}	q_{2}
\odot	q_{2}	q_{2}	q_{1}
NFA: δ	a	b	
\rightarrow	q_{1}	q_{2}	$q_{1} \vee q_{2}$
\odot	q_{2}	q_{1}	q_{1}
AFA: δ	a	b	
\rightarrow	q_{1}	q_{2}	$q_{1} \wedge \overline{q_{2}}$
\odot	q_{2}	q_{1}	$\overline{q_{1}}$

$\delta\left(q_{1}, b a\right)=$
$\delta\left(q_{2}, a\right)=q_{2}$

- final state
$\delta\left(q_{1}, b a\right)=$
$\delta\left(q_{1} \vee q_{2}, a\right)=q_{2} \vee q_{1}$
- contains final state
$\delta\left(q_{1}, b a\right)=$
$\delta\left(q_{1} \wedge \overline{q_{2}}, a\right)=q_{2} \wedge \overline{q_{1}}$
- evaluate
at finality vector
$f=(0,1)$
- gives 1 ; accepts ba

On the Descriptive Complexity of $\Sigma * \bar{L}$

Subset automaton of an NFA $A=(Q, \Sigma, \delta, s, F)$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\overline{\Sigma * \bar{L}}$
(3) Birget's results
(9) Our improvements and new results
(6) Open problems
is the DFA

$$
\mathscr{D}(A)=\left(2^{Q}, \Sigma, \delta,\{s\},\left\{S \in 2^{Q} \mid S \cap F \neq \emptyset\right\}\right)
$$

Example ("ab-automaton"; $n=3$)

$$
A \rightarrow 0 \xrightarrow{Q^{a, b}} \xrightarrow{a, b}
$$

$$
\mathscr{D}(A) \rightarrow 0^{a} a
$$

On the Descriptive Complexity of $\Sigma^{*} \bar{L}$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\overline{\Sigma * \bar{L}}$
(3) Birget's results
(9) Our improvements and new results
(6) Open problems

The reverse of an NFA $A=(Q, \Sigma, \delta, s, F)$

is the NFA

$$
A^{R}=\left(Q, \Sigma, \delta^{R}, F,\{s\}\right)
$$

where $(p, a, q) \in \delta^{R}$ iff $(q, a, p) \in \delta$

Example (Reverse of NFA)

On the Descriptive Complexity of $\Sigma^{*} \bar{L}$

A general formulation of the problem:

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\Sigma * \bar{L}$
(3) Birget's results
(c) Our improvements and new results
(6) Open problems

```
Dokl. Akad. Nauk SSSR
Tom 194 (1970), No. 6
```

Soviet Math. Dokl.
Vol. 11 (1970), No. 5
estimates of the number of states of finite automata
519.95
A. N. MASLOV

A general formulation of the problem is as follows: We have events $T\left(A_{i}\right)(1 \leq i \leq k)$ representable in automata A_{i} with n_{i} states, respectively, and a k-place operation f on events, preserving representability in finite automata. What is the maximal number of states of a minimal automaton representing $f\left(T\left(A_{1}\right), \cdots, T\left(A_{k}\right)\right)$, for the given n_{i} ?
We have languages $L_{i}(1 \leq i \leq k)$
represented by automata A_{i} with n_{i} states, resp., and a k-ary regular operation f.

What is the maximal number of states of a minimal automaton representing $f\left(L_{1}, \ldots, L_{k}\right)$, for the given n_{i} ?

On the Descriptive Complexity of $\Sigma * \bar{L}$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\Sigma * \bar{L}$
(3) Birget's results
(9) Our improvements and new results
(0) Open problems

A general formulation of the problem:

We have languages $L_{i}(1 \leq i \leq k)$
represented by automata A_{i} with n_{i} states, resp., and a k-ary regular operation f.

What is the maximal number of states of a minimal automaton
representing $f\left(L_{1}, \ldots, L_{k}\right)$, for the given n_{i} ?
In this paper:

- $k=1$
- $f(L)=\overline{\sum^{*} \bar{L}}$
- automaton for L in \{DFA,NFA,AFA\}
- automaton for $\overline{\sum^{*} \bar{L}}$ in $\{$ DFA,NFA,AFA $\}$

On the Descriptive Complexity of $\Sigma * \bar{L}$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\Sigma * \bar{L}$
(3) Birget's results
(9) Our improvements and new results
(0) Open problems

Motivation and history I

- J. C. Birget (1996): The state complexity of $\sum * \bar{L}$ and its connection with temporal logic
- combined operation with complementation
- operational state complexity
(Maslov 1970, Yu, Zhuang, Salomaa 1994)
- combined operations
(A. Salomaa, K. Salomaa, Yu 2007)
- star-complement-star (Jiraskova, Shallit 2012: $2^{\Theta(n \log n)}$)
- boundary, i.e. $L^{*} \cap\left(L^{c}\right)^{*}$
(Jiraskova, Jirasek 2013: $\Theta\left(4^{n}\right)$)

On the Descriptive Complexity of $\Sigma^{*} \bar{L}$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\Sigma * \bar{L}$
(3) Birget's results
(9) Our improvements and new results
(0) Open problems

Question by Jean-Éric Pin

- If NFA (DFA) for L has n states, how many states has NFA (DFA) for $\overline{\sum * \bar{L}}$?

Restricted Temporal Logic (Cohen, Perrin, Pin)

- models of $\varphi=$ a regular language $L(\varphi)$
- temporal operators:

$$
\begin{aligned}
& \circ=\text { "next" } \\
& \diamond=\text { "eventually" }
\end{aligned}
$$

- combined operator: \square ("forever") $\square=-\diamond-$ ("not eventually not")

$$
\begin{aligned}
L(\bar{\varphi}) & =\overline{L(\varphi)} \\
L(\diamond \varphi) & =\Sigma^{*} L(\varphi)
\end{aligned} \quad \Rightarrow \quad L(\square \varphi)=\frac{L(\overline{\diamond \bar{\varphi})}}{}=\frac{\Sigma * \overline{L(\varphi)}}{}
$$

On the Descriptive Complexity of $\Sigma^{*} \bar{L}$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\Sigma * \bar{L}$
(3) Birget's results
(c) Our improvements and new results

Properties of the forever operator

- $b(L) \subseteq L$
- $b(L)=\{w \in L \mid$ every suffix of w is in $L\}$
- if L is suffix-closed, then $b(L)=L$
- if $\varepsilon \notin L$, then $b(L)=\emptyset$

On the Descriptive Complexity of $\Sigma^{*} \bar{L}$

Birget's results:

- Upper bounds:
- L accepted by an n-state DFA
$\Rightarrow b(L)$ accepted by a 2^{n-1}-state DFA
- L accepted by an n-state NFA
$\Rightarrow b(L)$ accepted by a $2^{n+1}+1$-state NFA
- Lower bounds:
- there is L acc. by ternary n-state DFA s.t. every NFA for $b(L)$ has at least 2^{n-1} states

$L \backslash b(L)$	DFA	$\|\Sigma\|$	NFA	$\|\Sigma\|$	AFA
DFA	2^{n-1}	3	2^{n-1}	3	
NFA			$\geq 2^{n-1}$	3	
			$\leq 2^{n+1}+1$		
AFA					$\leq n+1$

On the Descriptive Complexity of $\Sigma * \bar{L}$

DFA-to-DFA; lower bound $=2^{n-1}$ with $|\Sigma|=2$

- Birget's claim: $L^{c}=a(a+b)^{n-2}$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\overline{\Sigma * \bar{L}}$
(3) Birget's results
(c) Our improvements and new results
(6) Open problems

However, complete DFA has $n+1$ states.

- Our modification: $L^{c}=$

- Unary case: n

On the Descriptive Complexity of $\Sigma * \bar{L}$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\overline{\Sigma * \bar{L}}$

Birget's results:

$L \backslash b(L)$	DFA	$\|\Sigma\|$	NFA	$\|\Sigma\|$	AFA
DFA	2^{n-1}	3	2^{n-1}	3	
NFA			$\geq 2^{n-1}$	3	
			$\leq 2^{n+1}+1$		
AFA					$\leq n+1$

(3) Birget's results
(1) Our improvements and new results
(6) Open problems

Our improvements and new results

$L \backslash b(L)$	DFA	$\|\Sigma\|$	NFA	$\|\Sigma\|$	AFA
DFA	2^{n-1}	2			
NFA					
AFA					

On the Descriptive Complexity of $\Sigma * \bar{L}$

Reverse of the forever operator:

$$
b(L)^{R}=\overline{\overline{L^{R} \Sigma^{*}}}
$$

- L^{R} is accepted by DFA A
$\Rightarrow b(L)^{R}$ is accepted by DFA obtained from A by replacing every non-final state with the non-final sink state

$$
L \rightarrow b(L)=\overline{\sum^{*} \bar{L}}
$$

(3) Birget's results
(c) Our improvements and new results
(5) Open problems

Example

$b(L)^{R}$

On the Descriptive Complexity of $\Sigma^{*} \bar{L}$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\overline{\Sigma * \bar{L}}$
(3) Birget's results
(9) Our improvements and new results
(5) Open problems

Leiss 1981, FJY 1990
L has n-state AFA
if and only if L^{R} has 2^{n}-state DFA with 2^{n-1} final states

Reverse of the forever operator:

$$
b(L)^{R}=\overline{\overline{L^{R}} \Sigma^{*}}
$$

- L^{R} is accepted by DFA A
$\Rightarrow b(L)^{R}$ is accepted by DFA obtained from A by replacing every non-final state with the non-final sink state

AFA-to-AFA: upper bound $=n$

- L has n-state AFA
$\Rightarrow L^{R}$ has 2^{n}-state DFA with 2^{n-1} final states
$\Rightarrow b(L)^{R}$ has 2^{n}-state DFA with 2^{n-1} final st.
$\Rightarrow b(L)$ has n-state AFA

On the Descriptive Complexity of $\Sigma^{*} \bar{L}$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\overline{\Sigma * \bar{L}}$

Birget's results:

$L \backslash b(L)$	DFA	$\|\Sigma\|$	NFA	$\|\Sigma\|$	AFA
DFA	2^{n-1}	3	2^{n-1}	3	
NFA			$\geq 2^{n-1}$	3	
			$\leq 2^{n+1}+1$		
AFA					$\leq n+1$

(3) Birget's results
(1) Our improvements and new results
(0) Open problems

Our improvements and new results

$L \backslash b(L)$	DFA	$\|\Sigma\|$	NFA	$\|\Sigma\|$	AFA
DFA	2^{n-1}	2		$\leq n$	
NFA			$\leq 2^{n}+1$	$\leq n$	
AFA				$\leq n$	

On the Descriptive Complexity of $\Sigma^{*} \bar{L}$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\Sigma * \bar{L}$
(3) Birget's results
(3) Our improvements and new results
(5) Open problems

Leiss 1981, FJY 1990
L has n-state AFA
if and only if
L^{R} has 2^{n}-state DFA with 2^{n-1} final states

DFA-to-AFA: lower bound $=n$ with $|\Sigma|=3$

- L is suffix-closed $\Rightarrow b(L)=L$
- minimal DFA for L^{R} has $2^{n-1}+1$ states \Rightarrow every AFA for L has $\geq n$ states

AFA-to-AFA: lower bound $=n$ with $|\Sigma|=1$

$$
L=\left\{a^{i} \mid 0 \leq i \leq 2^{n-1}-1\right\}
$$

- accepted by DFA of 2^{n} states; 2^{n-1} final \Rightarrow accepted by n-state AFA; ...

On the Descriptive Complexity of $\Sigma^{*} \bar{L}$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\overline{\Sigma * \bar{L}}$
(3) Birget's results
(4) Our improvements and new results
(5) Open problems

- minimal DFA for L^{R} has $2^{n-1}+1$ states \Rightarrow every AFA for L has $\geq n$ states

NFA-to-AFA: lower bound $=n$ with $|\Sigma|=2$

On the Descriptive Complexity of $\Sigma^{*} \bar{L}$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\overline{\Sigma * \bar{L}}$

Birget's results:

$L \backslash b(L)$	DFA	$\|\Sigma\|$	NFA	$\|\Sigma\|$	AFA
DFA	2^{n-1}	3	2^{n-1}	3	
NFA			$\geq 2^{n-1}$	3	
			$\leq 2^{n+1}+1$		
AFA					$\leq n+1$

(3) Birget's results
(9) Our improvements and new results
(0) Open problems

Our improvements and new results

$L \backslash b(L)$	DFA	$\|\Sigma\|$	NFA	AFA	$\|\Sigma\|$
DFA	2^{n-1}	2		n	3
NFA			$\leq 2^{n}+1$	n	2
AFA				n	1

On the Descriptive Complexity of $\Sigma^{*} \bar{L}$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\Sigma * \bar{L}$
(3) Birget's results
(9) Our improvements and new results
(6) Open problems

$$
b(L)^{R}=\overline{\overline{L^{R} \Sigma^{*}}}
$$

NFA-to-NFA: upper bound $=2^{n-1}$

- $L \quad n$-state NFA (one initial)
$\Rightarrow \quad L^{R} \quad n$-state NFA (one final)
$\Rightarrow \quad \frac{L^{R}}{L^{R}} \quad 2^{n}$-state DFA (2 2^{n-1} final)
$\Rightarrow \quad \overline{L^{R}} \quad 2^{n}$-state DFA (2 2^{n-1} final)
$\Rightarrow \quad \overline{L^{R} \Sigma^{*}} \quad 2^{n-1}+1$-state DFA (one final sink)
$\Rightarrow \quad \overline{\overline{L^{R} \Sigma^{*}}} \quad 2^{n-1}$ state partial DFA D (all final)
$\Rightarrow \quad b(L) \quad 2^{n-1}+1$-state NFA
- show that $L(D)$ is accepted by a 2^{n-1}-state NFA with one final state

On the Descriptive Complexity of $\Sigma * \bar{L}$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\Sigma^{*} \bar{L}$

Birget's results:

$L \backslash b(L)$	DFA	$\|\Sigma\|$	NFA	$\|\Sigma\|$	AFA
DFA	2^{n-1}	3	2^{n-1}	3	
NFA			$\geq 2^{n-1}$	3	
			$\leq 2^{n+1}+1$		
AFA					$\leq n+1$

(3) Birget's results
(9) Our improvements and new results
(3) Open problems

Our improvements and new results

$\angle \backslash b(L)$	DFA	$\|\Sigma\|$	NFA	$\|\Sigma\|$	AFA	$\|\Sigma\|$
DFA	2^{n-1}	2			n	3
NFA			2^{n-1}	3	n	2
AFA					n	1

On the Descriptive Complexity of $\Sigma^{*} \bar{L}$

Dedekind number $M(n)=$

- the number of antichains of subsets

Outline

 of an n-element set(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\Sigma * \bar{L}$
(3) Birget's results
(9) Our improvements and new results
(0) Open problems

Example

n	$M(n)$
0	2
1	3
2	6
3	20
4	168
5	7581
6	7828354
7	2414682040998
8	56130437228687557907788

On the Descriptive Complexity of $\Sigma^{*} \bar{L}$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\overline{\Sigma * \bar{L}}$
(3) Birget's results
(9) Our improvements and new results
(0) Open problems

Dedekind number $M(n)=$

- the number of antichains of subsets of an n-element set

$$
2^{2^{n-\log n}} \leq M(n) \leq 2^{2^{n-\frac{\log n}{3}}}
$$

NFA-to-DFA: tight upper bound $=M(n-1)$

- upper bound: show that each set of sets is equivalent to an antichain in DFA for $b(L)$
- tightness for $|\Sigma|=2^{n+1}$
- conjecture: 6-letter alphabet should work

On the Descriptive Complexity of $\Sigma^{*} \bar{L}$

Outline

(1) Basic notions: DFA, NFA, AFA
(2) Forever operator $L \rightarrow b(L)=\overline{\Sigma * \bar{L}}$
(3) Birget's results
(9) Our improvements and new results
(6) Open problems

Birget's results:

$L \backslash b(L)$	DFA	$\|\Sigma\|$	NFA	$\|\Sigma\|$	AFA
DFA	2^{n-1}	3	2^{n-1}	3	
NFA			$\geq 2^{n-1}$	3	
			$\leq 2^{n+1}+1$		
AFA					$\leq n+1$

Our improvements and new results

$\angle \backslash b(L)$	DFA	$\|\Sigma\|$	NFA $\|\Sigma\|$	AFA $\|\Sigma\|$	
DFA	2^{n-1}	2			n
NFA	$M(n-1)$	2^{n+1}	2^{n-1}	3	n
AFA					n

On the Descriptive Complexity of $\Sigma * \bar{L}$

Summary

On the Descriptive Complexity of $\overline{\Sigma^{*} \bar{L}}$

Summary

$L \backslash \overline{\Sigma *} \bar{L}$	DFA	\| Σ	p-DFA \| \quad \|	NFA ${ }^{\text {a }}$	NNFA \| Σ \|	AFA \| Σ \|	BFA
DFA	2^{n-1}	2	$2^{n-1} \quad 2$	2^{n-1}	$2^{n-1} \quad 3$	$n 3$	$n 3$
p-DFA	$2^{n-1}+1$	4	$2^{n-1} \quad 2$	2^{n-1}	$2^{\text {n-1 }}$	$n \quad 2$	$n 2$
NFA	$\mathrm{M}(\mathrm{n}-1)$	2^{n+1}	$\mathrm{M}(n-1)-1 \quad 2^{n+1}$	2^{n-1}	$2^{\text {n-1 }} \quad 3$	$n \quad 2$	$n 2$
NNFA	$\begin{aligned} & \geq \mathrm{M}(n-1) \\ & \leq \mathrm{M}(n) \end{aligned}$		$\begin{aligned} & \geq \mathrm{M}(n-1)-12^{n+1} \\ & \leq \mathrm{M}(n)-1 \end{aligned}$	$\begin{aligned} & \geq 2^{n-1} \\ & \leq 2^{n}-1 \\ & \hline \end{aligned}$	$\begin{aligned} & \geq 2^{n-1} 3 \\ & \leq 2^{n}-2 \\ & \hline \end{aligned}$	$n+12$	$n 2$
AFA	$2^{2^{n-1}}$	2	$2^{2^{n-1}}-1 \quad 2$	$2^{n-1}+12$	$2^{n-1} \quad 1$	n	$n 1$
BFA	$2^{2^{n}-1}$	2	$2^{2^{n}-1}-1 \quad 2$	2^{n}	$2^{n}-1 \quad 1$	$n+11$	$n 1$

Open problems

- NNFA to $\{$ DFA, p-DFA, NFA, NNFA\}: tightness
- smaller alphabets

Thank you for your attention

Merci beancoup
pour volre allention

AFA for $L \rightarrow$ DFA for L^{R}

Theorem (Fellah, Jürgensen, Yu 1990)

If L is accepted by an n-state AFA, then L^{R} is accepted by a 2^{n}-state DFA of which 2^{n-1} are final.

Proof idea (AFA to NNFA; $n=3$):

δ	a	b
$\rightarrow q_{1}$	q_{3}	q_{1}
q_{2}	$q_{1} \vee q_{2}$	q_{3}
$\odot q_{3}$	q_{1}	$q_{1} \wedge \overline{q_{2}}$

\rightarrow

Initial: with first component 1
Final: $f=(0,0,1)$
Evaluate $\left(\delta\left(q_{1}, a\right), \delta\left(q_{2}, a\right), \delta\left(q_{3}, a\right)\right)$ at $(0,0,0) \ldots$ gives $(0,0,1)$
Evaluate $\left(\delta\left(q_{1}, b\right), \delta\left(q_{2}, b\right), \delta\left(q_{3}, b\right)\right)$ at $(0,0,0) \ldots$ gives $(0,0,0)$
The reverse of this NNFA is deterministic!

DFA for $L^{R} \rightarrow$ AFA for L

Theorem (Fellah, Jürgensen, Yu 1990, Jiraskova 2012)
If L^{R} is accepted by an 2^{n}-state DFA of which 2^{n-1} are final, then L is accepted by an n-state AFA.

Proof idea (NNFA to AFA; $n=3$):

$L: 2^{n}$-state NNFA, 2^{n-1} initial, one final, rev. det.
(

DFA for $L^{R} \rightarrow$ AFA for L

Theorem (Fellah, Jürgensen, Yu 1990, Jiraskova 2012)
If L^{R} is accepted by an 2^{n}-state DFA of which 2^{n-1} are final, then L is accepted by an n-state AFA.

Proof idea (NNFA to AFA; $n=3$):

$L: 2^{n}$-state NNFA, 2^{n-1} initial, one final, rev. det.
(

DFA for $L^{R} \rightarrow$ AFA for L

Theorem (Fellah, Jürgensen, Yu 1990, Jiraskova 2012)
If L^{R} is accepted by an 2^{n}-state DFA of which 2^{n-1} are final, then L is accepted by an n-state AFA.

Proof idea (NNFA to AFA; $n=3$):

$L: 2^{n}$-state NNFA, 2^{n-1} initial, one final, rev. det.
(

DFA for $L^{R} \rightarrow$ AFA for L

Theorem (Fellah, Jürgensen, Yu 1990, Jiraskova 2012)

If L^{R} is accepted by an 2^{n}-state DFA of which 2^{n-1} are final, then L is accepted by an n-state AFA.

Proof idea (NNFA to AFA; $n=3$):

$L: 2^{n}$-state NNFA, 2^{n-1} initial, one final, rev. det.

		$q_{1} \cdot a$	$q_{2} \cdot a$	$q_{3} \cdot a$
	000	0	0	1
	001	1	0	1
$a \quad$ a	010	0		
$\text { (000) }{ }^{a}$	011	1		
	100	0		
b_{b} b	101	1		
$\left(\left\{q_{1}, q_{2}, q_{3}\right\},\{a, b\}, \cdot, q_{1},\left\{q_{3}\right\}\right)$	110	0		
	111	1		

AFA for $L \rightarrow$ DFA for L^{R}

Theorem (Fellah, Jürgensen, Yu 1990)

If L is accepted by an n-state AFA, then L^{R} is accepted by a 2^{n}-state DFA of which 2^{n-1} are final.

Proof idea (AFA to NNFA; $n=3$):

δ	a	b
$\rightarrow q_{1}$	q_{3}	q_{1}
q_{2}	$q_{1} \vee q_{2}$	q_{3}
$\odot q_{3}$	q_{1}	$q_{1} \wedge \overline{q_{2}}$

\rightarrow

Initial: with first component 1
Final: $f=(0,0,1)$
Evaluate $\left(\delta\left(q_{1}, a\right), \delta\left(q_{2}, a\right), \delta\left(q_{3}, a\right)\right)$ at $(0,0,0) \ldots$ gives $(0,0,1)$
Evaluate $\left(\delta\left(q_{1}, b\right), \delta\left(q_{2}, b\right), \delta\left(q_{3}, b\right)\right)$ at $(0,0,0) \ldots$ gives $(0,0,0)$
The reverse of this NNFA is deterministic!

