Operations on Boolean and Alternating Finite Automata

Michal Hospodár, Galina Jirásková, Ivana Krajňáková

Mathematical Institute, Slovak Academy of Sciences, Košice

NCMA 2018, August 21-22, Košice, Slovakia

- Submission of short papers: July 2, 2018

- One of the easternmost Gothic cathedrals in Europe
- The oldest coat of arms given to a city
- The oldest marathon in Europe
- ...

Why Alternating and Boolean Automata?

Motivation and History

- Referee report in 2007 on a paper on AFAs
- Fellah, Jürgensen, Yu:

Constructions for alternating finite automata (1990)
In Theorem 9.3 we show that $2^{m_{1}}+m_{2}+1$ states suffice for an AFA to accept the concatenation of two languages accepted by AFA with m_{1} and m_{2} states, respectively. We conjecture that this number of states is actually necessary in the worst case, but have no proof.

- Jirásková (CSR 2012): concatenation $\geq 2^{m}+n$
- Krajňáková (master thesis 2016): square $\geq 2^{n}+n+1$
- Hospodár (NCMA 2016): concatenation $\geq 2^{m}+n+1$
- Leiss: Succinct representation of regular languages by boolean automata (1981)

Outline

(1) Deterministic, Nondeterministic, Alternating Automata
(2) Boolean Automata
(3) Brzozowski-Leiss Lemma (BFA/AFA for L vs. DFA for L^{R})
(9) The Complexity of Operations on AFA and BFA Languages

- Lower Bounds
- Upper Bounds
(3) Summary and Open Problems

Deterministic, Nondeterministic, Alternating Automata

$$
A=(Q, \Sigma, \delta, s, F)
$$

- $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ is a non-empty finite set of states
- Σ is an input alphabet
- $s \in Q$ is the starting state
- $F \subseteq Q$ is the set of final states
- δ is the transition function that maps $Q \times \Sigma$ to
- a single state in DFA
- a set (disjunction) of states in NFA
- a boolean function of states in AFA

DFA, NFA, AFA: Examples

$$
A=\left(\left\{q_{1}, q_{2}\right\},\{a, b\}, \delta, q_{1},\left\{q_{2}\right\}\right)
$$

Example (Deterministic Finite Automaton)

δ	a	b
q_{1}	q_{2}	q_{2}
q_{2}	q_{2}	q_{1}

computation on bba:
$q_{1} \xrightarrow{b} q_{2} \xrightarrow{b} q_{1} \xrightarrow{a} q_{2} \in F$
$b b a \in L(A)$
Example (Nondeterministic Finite Automaton)

δ	a	b
q_{1}	q_{2}	$q_{1} \vee q_{2}$
q_{2}	q_{1}	q_{1}

$q_{1} \xrightarrow{b} q_{1} \vee q_{2} \xrightarrow{b}\left(q_{1} \vee q_{2}\right) \vee q_{1} \xrightarrow{a}$ $\xrightarrow{a} q_{2} \vee q_{1} \vee q_{2} \quad$ where $q_{2} \in F$ $b b a \in L(A)$

Example (Alternating Finite Automaton)

δ	a	b
q_{1}	q_{2}	$q_{1} \wedge \overline{q_{2}}$
q_{2}	q_{1}	$\overline{q_{1}}$

$\begin{aligned} q_{1} & \xrightarrow{b} q_{1} \wedge \overline{q_{2}} \xrightarrow{b}\left(q_{1} \wedge \overline{q_{2}}\right) \wedge \overline{\overline{q_{1}}} \xrightarrow{a} \\ & \xrightarrow{\rightarrow}\left(q_{2} \wedge \overline{q_{1}}\right) \wedge \overline{q_{2}}=q_{2} \wedge \overline{q_{1}}\end{aligned}$ this function gives 1 in finality vector $(0,1)$ $b b a \in L(A)$

Boolean Finite Automata

Example (Alternating Finite Automaton)

$$
A=\left(\left\{q_{1}, q_{2}\right\},\{a, b\}, \delta, q_{1},\left\{q_{2}\right\}\right)
$$

δ	a	b
q_{1}	q_{2}	$q_{1} \wedge \overline{q_{2}}$
q_{2}	q_{1}	$\overline{q_{1}}$

$$
\begin{aligned}
& q_{1} \xrightarrow{b} q_{1} \wedge \overline{q_{2}} \xrightarrow{b}\left(q_{1} \wedge \overline{q_{2}}\right) \wedge \overline{q_{1}} \xrightarrow{a} \\
& \xrightarrow{\rightarrow}\left(q_{2} \wedge \overline{q_{1}}\right) \wedge \overline{\overline{q_{2}}}=q_{2} \wedge \overline{q_{1}}
\end{aligned}
$$

this function gives 1 in finality vector $(0,1)$ $b b a \in L(A)$
$A=\left(Q, \Sigma, \delta, g_{s}, F\right)$, where g_{s} is the initial function

Example (Boolean Finite Automaton)

$$
A=\left(\left\{q_{1}, q_{2}\right\},\{a, b\}, \delta, \overline{q_{1}},\left\{q_{2}\right\}\right)
$$

δ	a	b
q_{1}	q_{2}	$q_{1} \wedge \overline{q_{2}}$
q_{2}	q_{1}	$\overline{q_{1}}$

$\bar{q}_{1} \xrightarrow{b b a} \overline{q_{2} \wedge \overline{q_{1}}}$
this function gives 0 in finality vector $(0,1)$ $b b a \notin L(A)$

The Complexity of Regular Operations on DFAs

A．N．Maslov：Estimates of the number of states of finite automata（1970）

Нввєстно，что есіи $T(A)$ п $T(B)$ представимы в автоматах A и B с m и n состояними соответстнени（ $m \geqslant 1, n \geqslant 1$ ），то

1）$T(A) \cup T(B)$ преметавимо в аптомате с $m \cdot n$ состояниями．
2）$T(A) \cdot T^{\prime}(B)$ дредстаиимо в автомате с $(m-1) \cdot 2^{n}+2^{n-1}$ состоя． ниями（ $n \geqslant 3$ ），

$$
\text { 3) } T(A)^{*} \text { предстаиимо в автоматө } \frac{3}{4} \cdot 2^{m}-1 \text { состолниями }(m \geqslant 2) \text {. }
$$

Нами построены примеры автоматов вад алфанитом $\Sigma=\{0,1\}$ ，па ко－ торых этп оценки достигаютсл．

1．Объединепие：А имеет состояния $\left\{S_{\mathrm{e}}, \ldots, S_{m-1}\right\}$ и переходи $S_{n-1} 1=S_{v}, \quad S_{i} 1=S_{i+1}$ при $i \neq m-1, \quad S_{i} 0=S_{i,} \quad S_{m,-1}-$ заклютительвое состояния；B пмеет состояния $\left\{P_{0}, \ldots, P_{n-1}\right\}$ и иореходы $\mu_{1} t=P_{\text {。 }}$ $P_{n-1} 0=P_{\mathrm{j}}, P_{1} 0=P_{i+1}$ при $i \neq n-1, P_{n-1}$－заключителтнис состояние．

2．Іроизведеиие：B имеөт состояния $\left\{P_{0}, \ldots, P_{n-1}\right\}$ и переходы $P_{n-1} 1=P_{n-2}, \quad P_{n-2} 1=P_{n-1}, \quad P_{i} 1=P_{i}$ при $\quad i<n-2, \quad P_{n-1} 0=P_{n-1}, \quad P_{i} 0=$ $=P_{i+1}$ при $i \neq n \cdots 1, P_{n-1}-$ заключитетьное состолние；автомат A такой же，как длл об́ьединения．

3．Ітер адия：A нмеет состолния $\left\{S_{0}, \ldots, S_{m,-1}\right\}$ и переходы $S_{n-1} 1=$ $=S_{n}, S_{i} 1=S_{i+1}$ при $i \neq m-1, S_{0} 0=S_{n}, S_{0} 0=S_{i-1}$ при $i>0, S_{m,-1}-$ зи ключптельное состонние．

По A и B строим соотиетствуюцие автоматы，как в $\left({ }^{2},{ }^{6}\right)$ ，и находим ию－ обходпмое чисєо достажимых и различных состолний，что пп доказывает минимальность（ ${ }^{3}$ ）．

General Formulation of the Problem

Maslov 1970:

Общцая постановка задач татого рода: щмеются события $T\left(A_{i}\right)(1 \leqslant i \leqslant$ $\leqslant k$), представимые в автоматах A_{i} с n_{i} состояниямя соотиетственно, п k - местная олерация f над событиями, сохранлющая предетавимость в тоночных автоматах. Каким может быть мажсиматьное тисло состояний минпмального автомата, представляющего $f\left(T\left(A_{1}\right), \ldots, T\left(A_{4}\right)\right)$, при данных n_{i} ?
"Given languages $L\left(A_{i}\right)(1 \leq i \leq k)$
accepted by automata A_{i} with n_{i} states
and a k-ary regular operation f,
what is the maximal number of states
in the minimal automaton for $f\left(L\left(A_{1}\right), \ldots, L\left(A_{k}\right)\right)$, considered as a function of n_{i} 's?'"

In this paper:

- automata are boolean or alternating
- f : boolean operations, reversal, star, left and right quotients

Known Results

- Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite automata. Int. J. Comput. Math. 35(1-4), 117-132 (1990)
- Jirásková, G.: Descriptional complexity of operations on alternating and boolean automata. CSR 2012.
- Hospodár, M., Jirásková, G.: Concatenation on deterministic and alternating automata. NCMA 2016.
- Krajňáková, I., Jirásková, G.: Square on deterministic, alternating, and boolean finite automata. DCFS 2017.

	AFA (FJY90)	AFA (known)	$\|\Sigma\|$	BFA (known)	$\|\Sigma\|$
concatenation	$\leq 2^{m}+n+1$	$2^{m}+n+1$	2	$2^{m}+n$	2
square	$\leq 2^{n}+n+1$	$2^{n}+n+1$	2	$2^{n}+n$	2
star	$\leq 2^{n}+1$	$2^{n} \leq \cdot \leq 2^{n}+1$	2	$2^{n} \leq \cdot \leq 2^{n}+1$	2
reversal	$\leq 2^{n}+1$	$2^{n} \leq \cdot \leq 2^{n}+1$	2	2^{n}	2
complement	$\leq n$				
intersection	$\leq m+n+1$	$m+n+1$	2	$m+n$	2
union	$\leq m+n+1$	$m+n+1$	2	$m+n$	2

Known Results: BFA/AFA for L vs. DFA for L^{R}

Brzozowski, Leiss (1980); Fellah, Jürgensen, Yu (1990)
Lemma (BFA for L vs. DFA for L^{R})
(1) If L is recognized by a BFA with n states, then L^{R} is recognized by a DFA with 2^{n} states.
(2) If L is recognized by a DFA with 2^{n} states, then L^{R} is recognized by a BFA with n states.

Lemma (AFA for L vs. DFA for L^{R})

(1) If L is recognized by an AFA with n states, then L^{R} is recognized by a DFA with 2^{n} states and 2^{n-1} final states.
(2) If L is recognized by a DFA with 2^{n} states and 2^{n-1} final states, then L^{R} is recognized by an AFA with n states.

Lower Bound Method for AFAs

Lemma (AFA for L vs. DFA for L^{R}; BL80, FJY90)

(1) If L is recognized by an AFA with n states, then L^{R} is recognized by a DFA with 2^{n} states and 2^{n-1} final states.
(2) If L is recognized by a DFA with with 2^{n} states and 2^{n-1} final states, then L^{R} is recognized by an AFA with n states.

Example (Square on AFAs: Lower Bound $2^{n}+n+1$)

- start with K recognized by a 2^{n}-state DFA with 2^{n-1} final states that is hard for square on DFAs, that is, K^{2} requires many states on DFAs
- take $L=K^{R} \stackrel{(2)}{\Rightarrow} L$ is recognized by an n-state AFA
- $\left(L^{2}\right)^{R}=\left(L^{R}\right)^{2}=K^{2}$ requires $\frac{3}{4} 2^{2^{n}} 2^{n}$-state DFA
$\stackrel{(1)}{\Rightarrow} L^{2}$ requires $\left(2^{n}+n\right)$-state AFA
- minimal DFA for $\left(L^{2}\right)^{R}$ has more then $\frac{1}{2} 2^{2^{n}+n}$ final states $\stackrel{(1)}{\Rightarrow} L^{2}$ requires $\left(2^{n}+n+1\right)$-state AFA

Lower Bounds for Operations on AFAs and BFAs

- Worst-case examples from the literature: star, reversal

Example (Palmovský, M.: RAIRO - Theor. Inform. Appl. (2016))

star

- Our new worst-case examples: quotients, boolean operations

Example

right quotient by Σ^{*}

- All witnesses for AFAs work for BFAs.

Upper Bounds for Reversal and Star

Reversal: 2^{n}

L is recognized by n-state BFA
$\stackrel{(1)}{\Rightarrow} L^{R}$ is recognized by 2^{n}-state DFA which is also an AFA.

Star: 2^{n}
L is recognized by n-state BFA
$\stackrel{(1)}{\Rightarrow} L^{R}$ is recognized by 2^{n}-state DFA
$\stackrel{\text { Maslov70 }}{\Rightarrow}\left(L^{R}\right)^{*}$ is recognized by $\frac{3}{4} 2^{2^{n}}$-state DFA with $\frac{1}{4} 2^{2^{n}}$ final states
$\Rightarrow\left(L^{*}\right)^{R}=\left(L^{R}\right)^{*}$ is recognized by $2^{2^{n}}$-state DFA with $\frac{1}{2} 2^{2^{n}}$ final states
$\stackrel{(2)}{\Rightarrow} L^{*}$ is recognized by 2^{n}-state AFA

Summary and Open Problems

Summary

	AFA (FJY90)	AFA (known)	$\|\Sigma\|$	BFA (known)	$\|\Sigma\|$	AFA (new) $\|\Sigma\|$	BFA (new) $\|\Sigma\|$
concatenation	$\leq 2^{m}+n+1$	$2^{m}+n+1$	2	$2^{m}+n$	2		
square	$\leq 2^{n}+n+1$	$2^{n}+n+1$	2	$2^{n}+n$	2		
star	$\leq 2^{n}+1$	$2^{n} \leq \cdot \leq 2^{n}+1$	2	$2^{n} \leq \cdot \leq 2^{n}+1$	2	2^{n}	2
reversal	$\leq 2^{n}+1$	$2^{n} \leq \cdot \leq 2^{n}+1$	2	2^{n}	2^{n}		
complement	$\leq n$			2	2^{n}	2	
intersection	$\leq m+n+1$	$m+n+1$	2	$m+n$	2		1
union	$\leq m+n+1$	$m+n+1$	2	$m+n$	2	n	
difference					$m+n+1$	2	$m+n$
symm. diff.					$m+n$	1	$m+n$
left quotient					$2^{m}+1$	2	2^{m}
right quotient					1		

Known results are from our papers at CSR 2012 (star, reversal, union, intersection), NCMA 2016 (concatenation) and DCFS 2017 (square).

Open Problems

- Is binary alphabet for \cap, \cup, and \backslash on AFAs optimal?
- Unary DFA witnesses with half of states final are not known.
- Some other operations...
- AFAs with existential and universal states?

Thank You for Your Attention

BFA for $L \rightarrow$ DFA for L^{R}

δ	a	b
q_{1}	q_{3}	q_{1}
q_{2}	$q_{1} \vee q_{2}$	q_{3}
q_{3}	$\neg q_{1}$	$q_{1} \wedge \neg q_{2}$

Table: BFA $A=\left(\left\{q_{1}, q_{2}, q_{3}\right\},\{a, b\}, \delta, g_{s}=q_{1} \vee q_{3}, F=\left\{q_{3}\right\}\right)$

Figure: NFA N for language $L(A)$.

Figure: DFA N^{R} for language $L(A)^{R}$.

DFA for $L^{R} \rightarrow$ BFA for L

- $Q^{\prime}=\left\{q_{1}, q_{2}, q_{3}\right\}$
- $F^{\prime}=\left\{q_{i} \mid f_{i}=1\right\}=\left\{q_{3}\right\}$
- $g_{s}=q_{1} \vee q_{3}$
- δ^{\prime} :

$\left(q_{1}, q_{2}, q_{3}\right)$	$\delta^{\prime}\left(q_{1}, a\right)$,	$\delta^{\prime}\left(q_{2}, a\right)$	$\delta^{\prime}\left(q_{3}, a\right)$	$\delta^{\prime}\left(q_{1}, b\right)$	$\delta^{\prime}\left(q_{2}, b\right)$	$\delta^{\prime}\left(q_{3}, b\right)$
000	0	0	1	0	0	0
001	1	0	1	0	1	0
010	0	1	1	0	0	0
011	1	1	1	0	1	0
100	0	1	0	1	0	1
101	1	1	0	1	1	1
110	0	1	0	1	0	0
111	1	0	0	1	1	0

$$
\left(\delta^{\prime}\left(q_{1}, a\right), \delta^{\prime}\left(q_{2}, a\right), \delta^{\prime}\left(q_{3}, a\right)\right)(000)=(001)
$$

In the original automaton N this corresponds to transition $000 \stackrel{a}{\leftarrow} 001$.

