# Preserving and changing the type of convergence of a series

Peter Eliaš

#### Mathematical Institute, Slovak Academy of Sciences, Košice, Slovakia

25<sup>th</sup> International Summer Conference on Real Functions Theory Złoty Potok, 2011

(日) (四) (三) (三) (三)

## Theorem (R. Rado)

Let  $f : \mathbb{R} \to \mathbb{R}$ . The following conditions are equivalent.

- **1.** f preserves the convergence of series, i.e., for every  $\{x_n\}_{n\in\mathbb{N}}$ , if  $\sum x_n$  converges then  $\sum f(x_n)$  converges,
- **2.**  $\exists a \in \mathbb{R} \ \exists \delta > 0 \ \forall x \in (-\delta, \delta) \ f(x) = ax.$

・ロト ・回ト ・ヨト ・ヨト

## Theorem (R. Rado)

Let  $f : \mathbb{R} \to \mathbb{R}$ . The following conditions are equivalent.

- **1.** f preserves the convergence of series, i.e., for every  $\{x_n\}_{n \in \mathbb{N}}$ , if  $\sum x_n$  converges then  $\sum f(x_n)$  converges,
- **2.**  $\exists a \in \mathbb{R} \ \exists \delta > 0 \ \forall x \in (-\delta, \delta) \ f(x) = ax.$

・ロト ・回ト ・ヨト ・ヨト

# A graph of convergence preserving function



イロト イヨト イヨト

DQC

E

Let  $f : \mathbb{R} \to \mathbb{R}$  be continuous at 0. Then the following conditions are equivalent.

- **1.** f(x+y) = f(x) + f(y) holds on some nbhd of 0,
- **2.** there is  $a \in \mathbb{R}$  such that f(x) = ax holds on some nbhd of 0.

**Proof.**  $2 \Rightarrow 1$  is trivial. To prove  $1 \Rightarrow 2$ :

- show that f is continuous on some nbhd of 0,
- prove that on some nbhd of 0, f(rx) = rf(x) holds for every rational r,
- use the continuity of f to show that f(rx) = rf(x) holds true on some nbhd of 0 for all  $r \in \mathbb{R}$ .

・ロト ・回ト ・ヨト ・ヨト

Let  $f : \mathbb{R} \to \mathbb{R}$  be continuous at 0. Then the following conditions are equivalent.

- **1.** f(x+y) = f(x) + f(y) holds on some nbhd of 0,
- **2.** there is  $a \in \mathbb{R}$  such that f(x) = ax holds on some nbhd of 0.

**Proof.**  $2 \Rightarrow 1$  is trivial. To prove  $1 \Rightarrow 2$ :

- show that f is continuous on some nbhd of 0,
- prove that on some nbhd of 0, f(rx) = rf(x) holds for every rational r,
- use the continuity of f to show that f(rx) = rf(x) holds true on some nbhd of 0 for all  $r \in \mathbb{R}$ .

・ロト ・回ト ・ヨト ・ヨト

Let  $f : \mathbb{R} \to \mathbb{R}$  be continuous at 0. Then the following conditions are equivalent.

- **1.** f(x+y) = f(x) + f(y) holds on some nbhd of 0,
- **2.** there is  $a \in \mathbb{R}$  such that f(x) = ax holds on some nbhd of 0.

**Proof.**  $2 \Rightarrow 1$  is trivial. To prove  $1 \Rightarrow 2$ :

- show that f is continuous on some nbhd of 0,
- prove that on some nbhd of 0, f(rx) = rf(x) holds for every rational r,
- use the continuity of f to show that f(rx) = rf(x) holds true on some nbhd of 0 for all  $r \in \mathbb{R}$ .

(日) (四) (三) (三) (三)

Let  $f : \mathbb{R} \to \mathbb{R}$  be continuous at 0. Then the following conditions are equivalent.

- **1.** f(x+y) = f(x) + f(y) holds on some nbhd of 0,
- **2.** there is  $a \in \mathbb{R}$  such that f(x) = ax holds on some nbhd of 0.

**Proof.**  $2 \Rightarrow 1$  is trivial. To prove  $1 \Rightarrow 2$ :

- show that f is continuous on some nbhd of 0,
- prove that on some nbhd of 0, f(rx) = rf(x) holds for every rational r,
- use the continuity of f to show that f(rx) = rf(x) holds true on some nbhd of 0 for all  $r \in \mathbb{R}$ .

イロト イポト イヨト イヨト 二日

# Some references

- R. Rado, A theorem on infinite series, J. London Math. Soc. 35 (1960), 273–276.
- J. Borsík, J. Červeňanský, T. Šalát, *Remarks on functions preserving convergence of infinite series*, Real Anal. Exchange 21 (1995/96), 725–731.
- **3.** P. Kostyrko, *On convergence preserving transformations of infinite series* Math. Slovaca **46** (1996), 239–243.
- 4. R. J. Grinnell, *Functions preserving sequence spaces*, Real Anal. Exchange 25 (1999/2000), 239–256.
- L. Drewnowski, *Maps preserving convergence of series*, Math. Slovaca 51 (2001), 75–91.
- W. Freedman, Convergence preserving mappings on topological groups, Topology Appl. 154 (2007), 1089–1096.
- 7. J. Borsík, Functions preserving some types of series, J. Appl. Anal. 14 (2008), 149–163.

Let A, B be families of sequences of real numbers. Denote F(A, B) the family of all functions  $f : \mathbb{R} \to \mathbb{R}$  mapping every sequence  $\{x_n\}_{n \in \mathbb{N}} \in A$  to a sequence  $\{f(x_n)\}_{n \in \mathbb{N}} \in B$ .

Consider the following families:

$$C = \{\{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ converges}\},\$$
  

$$AC = \{\{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ absolutely converges}\},\$$
  

$$RC = \{\{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ relatively converges}\} = C \setminus AC,\$$
  

$$D = \{\{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ diverges}\}.$$

In Borsík's paper, all families F(A, B) are characterized, for  $A \in \{C, AC, RC, D\}$ , except F(D, D) and F(RC, D).

San

Let A, B be families of sequences of real numbers. Denote F(A, B) the family of all functions  $f : \mathbb{R} \to \mathbb{R}$  mapping every sequence  $\{x_n\}_{n \in \mathbb{N}} \in A$  to a sequence  $\{f(x_n)\}_{n \in \mathbb{N}} \in B$ .

Consider the following families:

$$C = \{\{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ converges}\},\$$
  

$$AC = \{\{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ absolutely converges}\},\$$
  

$$RC = \{\{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ relatively converges}\} = C \setminus AC,\$$
  

$$D = \{\{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ diverges}\}.$$

In Borsík's paper, all families F(A, B) are characterized, for  $A \in \{C, AC, RC, D\}$ , except F(D, D) and F(RC, D).

《日》《圖》《臣》《臣》 臣

San

Let A, B be families of sequences of real numbers. Denote F(A, B) the family of all functions  $f : \mathbb{R} \to \mathbb{R}$  mapping every sequence  $\{x_n\}_{n \in \mathbb{N}} \in A$  to a sequence  $\{f(x_n)\}_{n \in \mathbb{N}} \in B$ .

Consider the following families:

$$C = \{ \{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ converges} \},\$$
  

$$AC = \{ \{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ absolutely converges} \},\$$
  

$$RC = \{ \{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ relatively converges} \} = C \setminus AC,\$$
  

$$D = \{ \{x_n\}_{n \in \mathbb{N}} : \sum x_n \text{ diverges} \}.$$

In Borsík's paper, all families F(A, B) are characterized, for  $A \in \{C, AC, RC, D\}$ , except F(D, D) and F(RC, D).

◆ロト ◆□ ▶ ◆ 目 ▶ ◆ 目 ▶ ● 目 ● のへで

### Theorem (Rado, Borsík)

**1.** 
$$F(C,C) = F(RC,C) = \{f : \exists a \ \exists b > 0 \ f \subseteq N(a,b)\}$$

**2.** 
$$F(RC, RC) = \{f : \exists a \neq 0 \ \exists b > 0 \ f \subseteq N(a, b)\},\$$

**3.**  $F(C, AC) = F(RC, AC) = \{f : \exists b > 0 \ f \subseteq N(0, b)\},\$ 

where  $N(a, b) = \{(x, y) \in \mathbb{R}^2 : y = ax \lor |x| \ge b\}.$ 



・ロット (日) ・ (日) ・ (日)

3

## Theorem (Borsík, Červeňanský, Šalát)

**4.**  $F(AC, C) = F(AC, AC) = \{f : \exists a \ge 0 \ \exists b > 0 \ f \subseteq X(a, b)\},\$ 

where  $X(a,b) = \{(x,y) \in \mathbb{R}^2 : |y| \le a \, |x| \, \lor \, |x| \ge b\}.$ 



・ロト ・回ト ・ヨト ・ヨト

### Theorem (Borsík)

**5.** 
$$F(C, D) = F(AC, D) = \{f : \exists b > 0 \ f \subseteq O(b)\},\$$

where  $O(b)=\{(x,y)\in \mathbb{R}^2: |x|\geq b ~\vee~ |y|\geq b\}.$ 



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

## Fact

**6.** 
$$F(D,C) = F(D,AC) = \{f : \forall x \ f(x) = 0\},$$
  
**7.**  $F(C,RC) = F(AC,RC) = F(D,RC) = \emptyset.$ 

In all cases,  ${\cal F}({\cal A},{\cal B})$  was characterized by the condition of the form

# $f \in F(A, B) \iff \exists X \in \mathcal{C} \ f \subseteq X,$

where C is some family of closed subsets of  $\mathbb{R}^2$ .

## Fact

**6.**  $F(D,C) = F(D,AC) = \{f : \forall x \ f(x) = 0\},\$ 

7. 
$$F(C, RC) = F(AC, RC) = F(D, RC) = \emptyset$$
.

In all cases,  ${\cal F}({\cal A},{\cal B})$  was characterized by the condition of the form

$$f \in F(A,B) \Longleftrightarrow \exists X \in \mathcal{C} \ f \subseteq X,$$

where C is some family of closed subsets of  $\mathbb{R}^2$ .

(ロ)、(同)、(E)、(E)、(E)

nan

# Characterization by a family of closed sets

### Fact

Let  $A \in \{C, AC, RC, D\}$ . If  $\{x_n\}_{n \in \mathbb{N}} \in A$  and  $\{y_n\}_{n \in \mathbb{N}} \in AC$  then  $\{x_n + y_n\}_{n \in \mathbb{N}} \in A$ .

### Corollary

Let  $A, B \in \{C, AC, RC, D\}$ .

- **1.** If  $f \in F(A, B)$  and  $g \subseteq cl(f)$  then  $g \in F(A, B)$ .
- **2.** There exists C, a family of closed subsets of  $\mathbb{R}^2$ , such that  $f \in F(A, B) \iff \exists X \in C \ f \subseteq X$ .

<ロト <回ト < 三ト < 三ト

# Characterization by a family of closed sets

### Fact

Let  $A \in \{C, AC, RC, D\}$ . If  $\{x_n\}_{n \in \mathbb{N}} \in A$  and  $\{y_n\}_{n \in \mathbb{N}} \in AC$  then  $\{x_n + y_n\}_{n \in \mathbb{N}} \in A$ .

### Corollary

Let  $A, B \in \{C, AC, RC, D\}$ .

**1.** If  $f \in F(A, B)$  and  $g \subseteq cl(f)$  then  $g \in F(A, B)$ .

**2.** There exists C, a family of closed subsets of  $\mathbb{R}^2$ , such that  $f \in F(A, B) \iff \exists X \in C \ f \subseteq X$ .

イロト イポト イヨト イヨト

### Fact

Let  $A \in \{C, AC, RC, D\}$ . If  $\{x_n\}_{n \in \mathbb{N}} \in A$  and  $\{y_n\}_{n \in \mathbb{N}} \in AC$  then  $\{x_n + y_n\}_{n \in \mathbb{N}} \in A$ .

### Corollary

Let  $A, B \in \{C, AC, RC, D\}$ .

- **1.** If  $f \in F(A, B)$  and  $g \subseteq cl(f)$  then  $g \in F(A, B)$ .
- **2.** There exists C, a family of closed subsets of  $\mathbb{R}^2$ , such that  $f \in F(A, B) \iff \exists X \in C \ f \subseteq X$ .

イロト イポト イヨト イヨト

# Functions preserving the divergence of series

### Theorem (P.E., Stará Lesná 2008)

$$F(D,D) = \{f: \exists a \ \exists b > 0 \ (f \subseteq Y(a,b) \ \lor \ f \subseteq Z(a,b))\},$$

where  $Y(a,b) = \{(x,y) \in \mathbb{R}^2 : x = 0 \lor |y| \ge b \lor |x| \le ay\}$  and  $Z(a,b) = \{(x,y) \in \mathbb{R}^2 : x = 0 \lor |y| \ge b \lor x = ay\}.$ 



Peter Eliaš

Preserving and changing the type of convergence of a series

# Example



・ロト ・四ト ・ヨト ・ヨト

3

# Example



・ロト ・回ト ・ヨト・

3

# Example

Let 
$$f(x) = \begin{cases} x/2 \text{ if } x \ge 0 \text{ and } x \in \mathbb{Q}, \\ 2x \text{ if } x \ge 0 \text{ and } x \notin \mathbb{Q}, \\ x \text{ if } x < 0. \end{cases}$$

Then  $f \notin F(RC, D)$ .



Peter Eliaš Preserving and changing the type of convergence of a series

イロト イヨト イヨト イヨト

E

DQC

- Let  $f : \mathbb{R} \to \mathbb{R}$ . The following conditions are equivalent.
  - **1.**  $f \notin F(RC, D)$ ,
  - **2.** there exists a sequence  $\{S_n\}_{n \in \mathbb{N}}$  of nonempty finite subsets of  $\mathbb{R}$  such that
    - $\lim_{n \to \infty} \sum_{x \in S_n} x = \lim_{n \to \infty} \sum_{x \in S_n} f(x) = 0,$ •  $\lim_{n \to \infty} \max_{x \in S_n} |x| = \lim_{n \to \infty} \max_{x \in S_n} |f(x)| = 0,$ •  $\lim_{n \to \infty} \inf_{x \in S_n} \sum_{|x| > 0} |x| = 0,$

• 
$$\liminf_{n \to \infty} \sum_{x \in S_n} |x| > 0.$$

<ロ> (四) (四) (三) (三) (三)

For 
$$f : \mathbb{R} \to \mathbb{R}$$
,  $\varepsilon > 0$  denote

$$\begin{split} D_f^+(\varepsilon) &= (0,\varepsilon) \cap f^{-1}[(0,\varepsilon)], \quad D_f^-(\varepsilon) = (-\varepsilon,0) \cap f^{-1}[(-\varepsilon,0)], \\ H_f^+(\varepsilon) &= \mathrm{cl} \left\{ \sum_{x \in S} f(x) / \sum_{x \in S} x : S \text{ is a nonempty finite subset of } D_f^+ \right\}, \\ H_f^-(\varepsilon) &= \mathrm{cl} \left\{ \sum_{x \in S} f(x) / \sum_{x \in S} x : S \text{ is a nonempty finite subset of } D_f^- \right\}. \end{split}$$

#### Fact

 $H^+_f(arepsilon)$  and  $H^i_f(arepsilon)$  are closed connected sets, i.e., intervals.

Let 
$$H_f^+ = \bigcap_{\varepsilon > 0} H_f^+(\varepsilon)$$
,  $H_f^- = \bigcap_{\varepsilon > 0} H_f^-(\varepsilon)$ .

DQC

For 
$$f : \mathbb{R} \to \mathbb{R}$$
,  $\varepsilon > 0$  denote

$$\begin{split} D_f^+(\varepsilon) &= (0,\varepsilon) \cap f^{-1}[(0,\varepsilon)], \quad D_f^-(\varepsilon) = (-\varepsilon,0) \cap f^{-1}[(-\varepsilon,0)], \\ H_f^+(\varepsilon) &= \mathrm{cl} \left\{ \sum_{x \in S} f(x) / \sum_{x \in S} x : S \text{ is a nonempty finite subset of } D_f^+ \right\}, \\ H_f^-(\varepsilon) &= \mathrm{cl} \left\{ \sum_{x \in S} f(x) / \sum_{x \in S} x : S \text{ is a nonempty finite subset of } D_f^- \right\}. \end{split}$$

## Fact

 $H^+_f(\varepsilon)$  and  $H^i_f(\varepsilon)$  are closed connected sets, i.e., intervals.

$${\rm Let} \ H_f^+ = \bigcap_{\varepsilon > 0} H_f^+(\varepsilon), \ H_f^- = \bigcap_{\varepsilon > 0} H_f^-(\varepsilon).$$

3

## Theorem

Let  $f : \mathbb{R} \to \mathbb{R}$ . The following conditions are equivalent.

- **1.**  $f \notin F(RC, D)$ ,
- **2.**  $H_f^+ \cap H_f^- \neq \emptyset$ ,
- **3.** for every  $\varepsilon > 0$  there are nonempty finite sets  $S_1, S_2 \subseteq D_f^+$ ,  $R \subseteq D_f^-$  such that

$$\sum_{x \in S_1} f(x) / \sum_{x \in S_1} x \leq \sum_{x \in R} f(x) / \sum_{x \in R} x \leq \sum_{x \in S_2} f(x) / \sum_{x \in S_2} x.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・