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Introduction

let G be a fixed family of functions

given a family of functions F , consider all sets X such that

(∀f ∈ F)(∃g ∈ G) f �X = g �X

given a family of sets X , consider all functions f such that

(∀X ∈ X )(∃g ∈ G) f �X = g �X

we want do study the above described relation between families of

functions and families of sets

we restrict ourselves to continuous real functions and closed sets of

reals



For f, g : R→ R, denote Ef,g = {x ∈ R : f(x) = g(x)}.

if f, g are continuous then Ef,g is closed

for any closed set E ⊆ R there exist continuous f, g such that

Ef,g = E

for any closed set E ⊆ R and any continuous function f : E → R
there exists a continuous extension g : R→ R

Denote CL(X) the family closed subsets of X, C(X,Y ) the family of all

continuous functions from X to Y .



Let G be a fixed family of real continuous functions.

Define a binary relation between continuous functions and closed sets:

(f,E) ∈ RG ⇐⇒ (∃g ∈ G) f �E = g �E

Possible tasks/questions:

describe the family Ef = {E ∈ CL(R) : (f,E) ∈ RG}
characterize all families of the form Ef
given E ⊆ CL(R), does there exist F ⊆ C(R,R) such that

{E ∈ CL(R) : (∀f ∈ F) (f,E) ∈ RG} = E ?

if yes, find the minimum size of such F
etc.



Galois connections

Let G ⊆ C(X,Y ).

For f ∈ C(X,Y ), E ∈ CL(X), define RG as before:

(f,E) ∈ RG ⇐⇒ (∃g ∈ G) f �E = g �E

For F ⊆ C(X,Y ), E ⊆ CL(X) denote:

E(F) = {E ∈ CL(X) : (∀f ∈ F) (f,E) ∈ RG}
F (E) = {f ∈ C(X,Y ) : (∀E ∈ E) (f,E) ∈ RG}

Pair of mappings E,F forms an antitone Galois connection between

ordered sets (P(C(R,R)),⊆) and (P(CL(R)),⊆).



Recall:

(f,E) ∈ RG ⇐⇒ (∃g ∈ G) f �E = g �E

E(F) = {E ∈ CL(X) : (∀f ∈ F) (f,E) ∈ RG}
F (E) = {f ∈ C(X,Y ) : (∀E ∈ E) (f,E) ∈ RG}

E,F are order-reversing

E ⊆ E(F) iff F ⊆ F (E), for all E ⊆ CL(X), F ⊆ C(X,Y )

compound mappings EF , FE are closure operators

E ⊆ CL(X) is closed iff E = E(F) for some F ⊆ C(X,Y )

F ⊆ C(X,Y ) is closed iff F = F (E) for some E ⊆ CL(X)

families {E(F) : F ⊆ C(X,Y )}, {F (E) : E ⊆ CL(X)} ordered by ⊆
form dually isomorphic complete lattices



Our aim

Our aim is to study the structure of the lattices

KG = {E ⊆ CL(R) : EF (E) = E} = {E(F) : F ⊆ C(R,R)}
LG = {F ⊆ C(R,R) : FE(F) = F} = {F (E) : E ⊆ CL(R)}

in the case of various simple families G ⊆ C(R,R).



First results

Proposition

K∅ = {∅, CL(R)}, L∅ = {∅, C(R,R)}
KC(R,R) = {CL(R)}, LC(R,R) = {C(R,R)}
The top elements of KG and LG are CL(R) and C(R,R), resp.

The least element of KG is

EG(C(R,R)) = {E ∈ CL(R) : G �E = C(E,R)}.
The least element of LG is FG(CL(R)) = FG({R}) = G.

Corollary

If G 6= C(R,R) then |KG | ≥ 2.

Any family F ⊆ C(R,R) is an element of some lattice LG .



Proposition

Let E ⊆ CL(R). The following conditions are equivalent.

1. There exists G ⊆ C(R,R) such that E ∈ KG .

2. E is hereditary, i.e., CL(E) ⊆ E for any E ∈ E .

Elements of lattices KG are exactly hereditary families of closed sets.

Problem

Is every hereditary family E ⊆ CL(R) the least element of some lattice

KG?



Proposition

If G = {g} then KG = {CL(E) : E ∈ CL(R)} and

LG = {[g �E] : E ∈ CL(R)}.

Corollary

If |G| = 1 then KG is isomorphic to the lattice of all closed sets of reals.

The same lattice KG is obtained, e.g., for G = C(R, [0, 1]).

Problem

Characterize all families G such that KG = {CL(E) : E ∈ CL(R)}.

Proposition

Let G ⊆ C(R,R) be nonempty. The following conditions are equivalent.

1. KG ⊇ {CL(E) : E ∈ CL(R)}.
2. The least element of KG is {∅}.
3. For each x ∈ R, {g(x) : g ∈ G} 6= R.



Proposition

If 1 ≤ |C(R,R) \ G| < c then

KG = {CL(R) \ {R}, CL(R)} and LG = {G, C(R,R)}.

The same lattice KG is obtained, e.g., for the family G of all functions g

for which there exist a < b such that g is linear on [a, b].

Problem

Characterize all families G ⊆ C(R,R) such that |KG | = 2.



Restricting to constant functions

Let G = Const be the family of all constant functions.

Proposition

Let E ∈ KConst. Then:

1. E contains all singletons.

2. If A,B ∈ E and A ∩B 6= ∅ then A ∪B ∈ E .

3. The family ME of all maximal elements of E is a decomposition of R
into closed sets.

4. The equivalence relation corresponding to the decomposition ME has

a closed graph, i.e., it is a closed subset of R× R.

Denote ∼E the binary relation defined by

x ∼E y ⇐⇒ (∃E ∈ E) {x, y} ⊆ E

.



Theorem

Let E ⊆ CL(R) be hereditary. The following conditions are equivalent.

1. E ∈ KConst.

2. ∼E is an equivalence relation on R with a closed graph.

The proof of 2⇒ 1 is based on the following theorems.

Theorem

If ∼ is an equivalence relation on R with a closed graph then the

quotient space R/∼ is Tychonoff.

Theorem

Every Tychonoff space can be embedded into the Tychonoff cube [0, 1]κ

for some cardinal κ.

Corollary

Lattice KConst is isomporphic to the lattice of equivalence relations on R
having closed graphs, ordered by refinement.



For E ∈ KConst, denote µE = min{|F| : F ⊆ C(R,R) and E = E(F)}.

µE is the minimum size of a family of functions generating E

Examples of various values of µE :

µC(R,R) = 0

µE = n: E = E({f1, . . . , fn}) where f1, . . . , fn are projections of a

continuous surjection f : R→ Rn

µE = ω: E = E({fn : n ∈ ω}), where fn are projections of a

continuous surjection f : R→ {x ∈ Rω : (∃m)(∀n > m)xn = 0}
µE = d: x ∼E y ⇐⇒ x = y ∨ {x, y} ⊆ Z
R/∼E is the real line with all integers glued together

d is the minimum size of the base of topology of R/∼E

Problem

Are there any other possible values of µE for E ∈ KConst?



Restricting to linear functions

Let G = Lin = {fa : a ∈ R}, where fa(x) = ax for all x ∈ R.

Proposition

Let E ∈ KLin. Then:

1. {x} ∈ E for every x 6= 0.

2. If A,B ∈ E and (A ∩B) \ {0} 6= ∅ then A ∪B ∈ E .

3. If {0} ∈ E then E ∪ {0} ∈ E for every E ∈ E .

4. If {0} /∈ E then E ∪ {E ∪ {0} : E ∈ E} ∈ KLin.

Problem

Does there exist E ∈ KLin such that {0} ∈ E , 0 is isolated in every

E ∈ E , and {E \ {0} : E ∈ E} /∈ KLin?



Proposition

Let E ∈ KLin. Then:

1. If {0} /∈ E then the family ME of all maximal elements of E is a

decomposition of R \ {0} into closed sets. Moreover, ME ∪ {{0}} is

a decomposition of R with a closed graph.

2. If {0} ∈ E and 0 is isolated in every E ∈ E then the same holds true

for the family ME of all maximal elements of {E \ {0} : E ∈ E}.

Theorem

Let M be a decomposition of R with a closed graph such that

{0} ∈ M. Then E ∈ KLin, where

E = {E ∈ CL(R) : 0 ∈ E ∧ (∃F ∈M)E \ {0} ⊆ F}.



Restricting to polynomial functions

Let G = Poln be the family of all polynomial functions of degree at most

n.

Proposition

Let E ∈ KPoln . Then:

1. E ∈ E for every E ⊆ R such that |E| ≤ n+ 1.

2. If A,B ∈ E and |A ∩B| > n+ 1 then A ∪B ∈ E .

3. (n+ 1)-ary relation R defined by

(x1, . . . , xn+1) ∈ R ⇐⇒ (∃E ∈ E) {x1, . . . , xn+1} ⊆ E

is an (n+ 1)-equivalence on R with a closed graph.



Definition

An n-ary relation R is an n-equivalence on X if

1. (x, . . . , x) ∈ R for every x ∈ X,

2. (x1, . . . , xn) ∈ R⇒ (xσ(1), . . . , xσ(n)) ∈ R for every permutation σ,

3. if x1, . . . , xn−1 are distinct and (x1, . . . , xn−1, yi) ∈ R for every

i ∈ {1, . . . , n}, then (y1, . . . , yn) ∈ R.

Problem

Let R be an (n+ 1)-equivalence on R.

Denote E the family of all sets E ∈ CL(R) such that

(∀x1, . . . , xn ∈ E) (x1, . . . , xn) ∈ R. Is E ∈ KPoln?
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