Decomposing the domains of continuous real functions

Peter Eliaš

Mathematical Institute, Slovak Academy of Sciences, Košice, Slovakia

 31^{st} International Summer Conference on Real Functions Theory 15.9.2017, Ustka, Poland

Introduction

- $\hfill\blacksquare$ let ${\mathcal G}$ be a fixed family of functions
- given a family of functions \mathcal{F} , consider all sets X such that

$$(\forall f \in \mathcal{F})(\exists g \in \mathcal{G}) \ f \upharpoonright X = g \upharpoonright X$$

• given a family of sets \mathcal{X} , consider all functions f such that

$$(\forall X \in \mathcal{X}) (\exists g \in \mathcal{G}) \ f \upharpoonright X = g \upharpoonright X$$

- we want do study the above described relation between families of functions and families of sets
- we restrict ourselves to continuous real functions and closed sets of reals

For $f, g: \mathbb{R} \to \mathbb{R}$, denote $E_{f,g} = \{x \in \mathbb{R}: f(x) = g(x)\}.$

- if f, g are continuous then $E_{f,g}$ is closed
- for any closed set $E\subseteq \mathbb{R}$ there exist continuous f,g such that $E_{f,g}=E$
- for any closed set $E \subseteq \mathbb{R}$ and any continuous function $f \colon E \to \mathbb{R}$ there exists a continuous extension $g \colon \mathbb{R} \to \mathbb{R}$

Denote CL(X) the family closed subsets of X, C(X, Y) the family of all continuous functions from X to Y.

Let \mathcal{G} be a fixed family of real continuous functions. Define a binary relation between continuous functions and closed sets:

 $(f, E) \in R_{\mathcal{G}} \iff (\exists g \in \mathcal{G}) \ f \restriction E = g \restriction E$

Possible tasks/questions:

- describe the family $\mathcal{E}_f = \{ E \in CL(\mathbb{R}) \colon (f, E) \in R_{\mathcal{G}} \}$
- characterize all families of the form \mathcal{E}_f
- given $\mathcal{E} \subseteq CL(\mathbb{R})$, does there exist $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\{E \in CL(\mathbb{R}) : (\forall f \in \mathcal{F}) \ (f, E) \in R_{\mathcal{G}}\} = \mathcal{E}$?
- $\hfill \ensuremath{\,\,^{\circ}}$ if yes, find the minimum size of such ${\cal F}$
- etc.

Let $\mathcal{G} \subseteq C(X, Y)$. For $f \in C(X, Y)$, $E \in CL(X)$, define $R_{\mathcal{G}}$ as before:

 $(f,E) \in \mathbf{R}_{\mathcal{G}} \quad \Longleftrightarrow \quad (\exists g \in \mathcal{G}) \ f \upharpoonright E = g \upharpoonright E$

For $\mathcal{F} \subseteq C(X, Y)$, $\mathcal{E} \subseteq CL(X)$ denote:

 $E(\mathcal{F}) = \{ E \in CL(X) : (\forall f \in \mathcal{F}) \ (f, E) \in R_{\mathcal{G}} \}$ $F(\mathcal{E}) = \{ f \in C(X, Y) : (\forall E \in \mathcal{E}) \ (f, E) \in R_{\mathcal{G}} \}$

Pair of mappings E, F forms an antitone Galois connection between ordered sets $(\mathcal{P}(C(\mathbb{R},\mathbb{R})), \subseteq)$ and $(\mathcal{P}(CL(\mathbb{R})), \subseteq)$.

Recall:

$$(f, E) \in \mathbb{R}_{\mathcal{G}} \iff (\exists g \in \mathcal{G}) \ f \upharpoonright E = g \upharpoonright E$$
$$E(\mathcal{F}) = \{E \in CL(X) : (\forall f \in \mathcal{F}) \ (f, E) \in R_{\mathcal{G}}\}$$
$$F(\mathcal{E}) = \{f \in C(X, Y) : (\forall E \in \mathcal{E}) \ (f, E) \in R_{\mathcal{G}}\}$$

- E, F are order-reversing
- $\mathcal{E} \subseteq E(\mathcal{F})$ iff $\mathcal{F} \subseteq F(\mathcal{E})$, for all $\mathcal{E} \subseteq CL(X)$, $\mathcal{F} \subseteq C(X,Y)$
- compound mappings EF, FE are closure operators
- $\mathcal{E} \subseteq CL(X)$ is closed iff $\mathcal{E} = E(\mathcal{F})$ for some $\mathcal{F} \subseteq C(X,Y)$
- $\mathcal{F} \subseteq C(X,Y)$ is closed iff $\mathcal{F} = F(\mathcal{E})$ for some $\mathcal{E} \subseteq CL(X)$
- families $\{E(\mathcal{F}): \mathcal{F} \subseteq C(X, Y)\}$, $\{F(\mathcal{E}): \mathcal{E} \subseteq CL(X)\}$ ordered by \subseteq form dually isomorphic complete lattices

Our aim is to study the structure of the lattices

$$\mathcal{K}_{\mathcal{G}} = \{ \mathcal{E} \subseteq CL(\mathbb{R}) \colon EF(\mathcal{E}) = \mathcal{E} \} = \{ E(\mathcal{F}) \colon \mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R}) \}$$
$$\mathcal{L}_{\mathcal{G}} = \{ \mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R}) \colon FE(\mathcal{F}) = \mathcal{F} \} = \{ F(\mathcal{E}) \colon \mathcal{E} \subseteq CL(\mathbb{R}) \}$$

in the case of various simple families $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$.

First results

Proposition

- $\mathcal{K}_{\emptyset} = \{\emptyset, CL(\mathbb{R})\}, \mathcal{L}_{\emptyset} = \{\emptyset, C(\mathbb{R}, \mathbb{R})\}$
- $\mathcal{K}_{C(\mathbb{R},\mathbb{R})} = \{ CL(\mathbb{R}) \}, \ \mathcal{L}_{C(\mathbb{R},\mathbb{R})} = \{ C(\mathbb{R},\mathbb{R}) \}$
- The top elements of $\mathcal{K}_{\mathcal{G}}$ and $\mathcal{L}_{\mathcal{G}}$ are $CL(\mathbb{R})$ and $C(\mathbb{R},\mathbb{R})$, resp.
- The least element of $\mathcal{K}_{\mathcal{G}}$ is $E_{\mathcal{G}}(C(\mathbb{R},\mathbb{R})) = \{ E \in CL(\mathbb{R}) : \mathcal{G} \upharpoonright E = C(E,\mathbb{R}) \}.$
- The least element of $\mathcal{L}_{\mathcal{G}}$ is $F_{\mathcal{G}}(CL(\mathbb{R})) = F_{\mathcal{G}}(\{\mathbb{R}\}) = \mathcal{G}$.

Corollary

- If $\mathcal{G} \neq C(\mathbb{R}, \mathbb{R})$ then $|\mathcal{K}_{\mathcal{G}}| \geq 2$.
- Any family $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ is an element of some lattice $\mathcal{L}_{\mathcal{G}}$.

Let $\mathcal{E} \subseteq CL(\mathbb{R})$. The following conditions are equivalent.

- **1.** There exists $\mathcal{G} \subseteq C(\mathbb{R},\mathbb{R})$ such that $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$.
- **2.** \mathcal{E} is hereditary, i.e., $CL(E) \subseteq \mathcal{E}$ for any $E \in \mathcal{E}$.

Elements of lattices $\mathcal{K}_\mathcal{G}$ are exactly hereditary families of closed sets.

Problem

Is every hereditary family $\mathcal{E}\subseteq CL(\mathbb{R})$ the least element of some lattice $\mathcal{K}_{\mathcal{G}}$?

If
$$\mathcal{G} = \{g\}$$
 then $\mathcal{K}_{\mathcal{G}} = \{CL(E) : E \in CL(\mathbb{R})\}$ and
 $\mathcal{L}_{\mathcal{G}} = \{[g \upharpoonright E] : E \in CL(\mathbb{R})\}.$

Corollary

If $|\mathcal{G}| = 1$ then $\mathcal{K}_{\mathcal{G}}$ is isomorphic to the lattice of all closed sets of reals.

The same lattice $\mathcal{K}_{\mathcal{G}}$ is obtained, e.g., for $\mathcal{G} = C(\mathbb{R}, [0, 1])$.

Problem

Characterize all families \mathcal{G} such that $\mathcal{K}_{\mathcal{G}} = \{ CL(E) \colon E \in CL(\mathbb{R}) \}.$

Proposition

Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ be nonempty. The following conditions are equivalent.

- **1.** $\mathcal{K}_{\mathcal{G}} \supseteq \{ CL(E) \colon E \in CL(\mathbb{R}) \}.$
- **2.** The least element of $\mathcal{K}_{\mathcal{G}}$ is $\{\emptyset\}$.
- **3.** For each $x \in \mathbb{R}$, $\{g(x) : g \in \mathcal{G}\} \neq \mathbb{R}$.

If $1 \leq |C(\mathbb{R}, \mathbb{R}) \setminus \mathcal{G}| < \mathfrak{c}$ then $\mathcal{K}_{\mathcal{G}} = \{CL(\mathbb{R}) \setminus \{\mathbb{R}\}, CL(\mathbb{R})\}$ and $\mathcal{L}_{\mathcal{G}} = \{\mathcal{G}, C(\mathbb{R}, \mathbb{R})\}.$

The same lattice $\mathcal{K}_{\mathcal{G}}$ is obtained, e.g., for the family \mathcal{G} of all functions g for which there exist a < b such that g is linear on [a, b].

Problem

Characterize all families $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $|\mathcal{K}_{\mathcal{G}}| = 2$.

Let $\mathcal{G} = \text{Const}$ be the family of all constant functions.

Proposition

Let $\mathcal{E} \in \mathcal{K}_{Const}$. Then:

- **1.** *E* contains all singletons.
- **2.** If $A, B \in \mathcal{E}$ and $A \cap B \neq \emptyset$ then $A \cup B \in \mathcal{E}$.
- **3.** The family $\mathcal{M}_{\mathcal{E}}$ of all maximal elements of \mathcal{E} is a decomposition of \mathbb{R} into closed sets.
- The equivalence relation corresponding to the decomposition M_E has a closed graph, i.e., it is a closed subset of ℝ × ℝ.

Denote $\sim_{\mathcal{E}}$ the binary relation defined by

 $x \sim_{\mathcal{E}} y \quad \Longleftrightarrow \quad (\exists E \in \mathcal{E}) \{x, y\} \subseteq E$

Theorem

Let $\mathcal{E} \subseteq CL(\mathbb{R})$ be hereditary. The following conditions are equivalent.

1. $\mathcal{E} \in \mathcal{K}_{Const}$.

2. $\sim_{\mathcal{E}}$ is an equivalence relation on \mathbb{R} with a closed graph.

The proof of $2 \Rightarrow 1$ is based on the following theorems.

Theorem

If \sim is an equivalence relation on \mathbb{R} with a closed graph then the quotient space \mathbb{R}/\sim is Tychonoff.

Theorem

Every Tychonoff space can be embedded into the Tychonoff cube $[0,1]^{\kappa}$ for some cardinal κ .

Corollary

Lattice \mathcal{K}_{Const} is isomporphic to the lattice of equivalence relations on \mathbb{R} having closed graphs, ordered by refinement.

For $\mathcal{E} \in \mathcal{K}_{Const}$, denote $\mu_{\mathcal{E}} = \min\{|\mathcal{F}| : \mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R}) \text{ and } \mathcal{E} = E(\mathcal{F})\}.$

- $\mu_{\mathcal{E}}$ is the minimum size of a family of functions generating \mathcal{E}

Examples of various values of $\mu_{\mathcal{E}}$:

- $\mu_{C(\mathbb{R},\mathbb{R})} = 0$
- $\mu_{\mathcal{E}} = n$: $\mathcal{E} = E(\{f_1, \dots, f_n\})$ where f_1, \dots, f_n are projections of a continuous surjection $f : \mathbb{R} \to \mathbb{R}^n$
- $\mu_{\mathcal{E}} = \omega$: $\mathcal{E} = E(\{f_n : n \in \omega\})$, where f_n are projections of a continuous surjection $f : \mathbb{R} \to \{x \in \mathbb{R}^\omega : (\exists m)(\forall n > m) x_n = 0\}$
- μ_ε = ∂: x ~_ε y ⇐⇒ x = y ∨ {x, y} ⊆ Z
 ℝ/~_ε is the real line with all integers glued together
 ∂ is the minimum size of the base of topology of ℝ/~_ε

Problem

Are there any other possible values of $\mu_{\mathcal{E}}$ for $\mathcal{E} \in \mathcal{K}_{Const}$?

Let $\mathcal{G} = \text{Lin} = \{f_a : a \in \mathbb{R}\}$, where $f_a(x) = ax$ for all $x \in \mathbb{R}$.

Proposition

Let $\mathcal{E} \in \mathcal{K}_{Lin}$. Then:

- **1.** $\{x\} \in \mathcal{E}$ for every $x \neq 0$.
- **2.** If $A, B \in \mathcal{E}$ and $(A \cap B) \setminus \{0\} \neq \emptyset$ then $A \cup B \in \mathcal{E}$.
- **3.** If $\{0\} \in \mathcal{E}$ then $E \cup \{0\} \in \mathcal{E}$ for every $E \in \mathcal{E}$.
- **4.** If $\{0\} \notin \mathcal{E}$ then $\mathcal{E} \cup \{E \cup \{0\} : E \in \mathcal{E}\} \in \mathcal{K}_{\mathsf{Lin}}$.

Problem

Does there exist $\mathcal{E} \in \mathcal{K}_{\text{Lin}}$ such that $\{0\} \in \mathcal{E}, 0$ is isolated in every $E \in \mathcal{E}$, and $\{E \setminus \{0\} : E \in \mathcal{E}\} \notin \mathcal{K}_{\text{Lin}}$?

Let $\mathcal{E} \in \mathcal{K}_{Lin}$. Then:

- If {0} ∉ E then the family M_E of all maximal elements of E is a decomposition of ℝ \ {0} into closed sets. Moreover, M_E ∪ {{0}} is a decomposition of ℝ with a closed graph.
- **2.** If $\{0\} \in \mathcal{E}$ and 0 is isolated in every $E \in \mathcal{E}$ then the same holds true for the family $\mathcal{M}_{\mathcal{E}}$ of all maximal elements of $\{E \setminus \{0\} : E \in \mathcal{E}\}$.

Theorem

Let \mathcal{M} be a decomposition of \mathbb{R} with a closed graph such that $\{0\} \in \mathcal{M}$. Then $\mathcal{E} \in \mathcal{K}_{\mathsf{Lin}}$, where

 $\mathcal{E} = \{ E \in CL(\mathbb{R}) \colon 0 \in E \land (\exists F \in \mathcal{M}) E \setminus \{0\} \subseteq F \}.$

Let $\mathcal{G} = \text{Pol}_n$ be the family of all polynomial functions of degree at most n.

Proposition

Let $\mathcal{E} \in \mathcal{K}_{\mathsf{Pol}_n}$. Then:

- **1.** $E \in \mathcal{E}$ for every $E \subseteq \mathbb{R}$ such that $|E| \leq n+1$.
- **2.** If $A, B \in \mathcal{E}$ and $|A \cap B| > n+1$ then $A \cup B \in \mathcal{E}$.
- **3.** (n+1)-ary relation R defined by

 $(x_1,\ldots,x_{n+1}) \in R \quad \iff \quad (\exists E \in \mathcal{E}) \{x_1,\ldots,x_{n+1}\} \subseteq E$

is an (n+1)-equivalence on \mathbb{R} with a closed graph.

Definition

An n-ary relation R is an n-equivalence on X if

1.
$$(x, \ldots, x) \in R$$
 for every $x \in X$,
2. $(x_1, \ldots, x_n) \in R \Rightarrow (x_{\sigma(1)}, \ldots, x_{\sigma(n)}) \in R$ for every permutation σ ,
3. if x_1, \ldots, x_{n-1} are distinct and $(x_1, \ldots, x_{n-1}, y_i) \in R$ for every $i \in \{1, \ldots, n\}$, then $(y_1, \ldots, y_n) \in R$.

Problem

Let R be an (n + 1)-equivalence on \mathbb{R} . Denote \mathcal{E} the family of all sets $E \in CL(\mathbb{R})$ such that $(\forall x_1, \ldots, x_n \in E) \ (x_1, \ldots, x_n) \in R$. Is $\mathcal{E} \in \mathcal{K}_{\mathsf{Pol}_n}$?

- Bourbaki N., General topology. Chapters 1–4. Translated from the French. Reprint of the 1989 English translation. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1998. vii+437 pp.
 - Szmielew W., On *n*-ary equivalence relations and their applications to geometry, Translated from the Polish. With an appendix, "Representation theorem for the theory of E-sequences" by J. Bednarczuk. Dissertationes Math. (Rozprawy Mat.) **191** (1981), 60 pp.