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Introduction

• let G be a fixed family of functions
• given a family of functions F , consider all sets X such that

(∀f ∈ F)(∃g ∈ G) f �X = g �X

• given a family of sets X , consider all functions f such that

(∀X ∈ X )(∃g ∈ G) f �X = g �X

• we study the above described relation between families of
functions and families of sets

• we restrict ourselves to continuous real functions and closed
sets of reals
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Notation

Let X,Y be topological spaces, Z ⊆ X.

• C(X,Y) : the family of all continuous functions from X to Y
• CLX(Z) : the family of all subsets of Z closed in X
• we write CL(Z) instead of CLR(Z)

Let F be a family of functions, E be a set. Denote:

• F �E = {f �E : f ∈ F}
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Galois connection

Let G ⊆ C(R,R). For E ⊆ CL(R) and F ⊆ C(R,R) denote:

• EG(F) = {E ∈ CL(R) : (∀f ∈ F) f �E ∈ G �E}
• FG(E) = {f ∈ C(R,R) : (∀E ∈ E) f �E ∈ G �E}

Maps EG : P(C(R,R)) → P(CL(R)), FG : P(CL(R)) → P(C(R,R))
form a Galois connection between partial orders (P(C(R,R)),⊆)

and (P(CL(R,R)),⊆).

• EG , FG are inclusion-reversing
• E ⊆ EG(F) if and only if F ⊆ FG(E)
• EG ◦ FG : P(CL(R)) → P(CL(R)) and

FG ◦ EG : P(C(R,R)) → P(C(R,R)) are closure operators

Denote:

• KG = {E ⊆ CL(R) : E = EG(FG(E))} = {EG(F) : F ⊆ C(R,R))}
• LG = {F ⊆ C(R,R) : F = FG(EG(F))} = {FG(E) : E ⊆ CL(R))}

Then (KG ,⊆) and (LG ,⊆) are dually isomorphic complete lattices in
which

∧
coincides with

∩
.
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The least elements of lattices KG,LG

Fact
For every G ⊆ C(R,R),

∧
LG = FG({R}) = G.

Corollary
Any F ⊆ C(R,R) is the least element of some lattice LG .

Which E ⊆ CL(R) do admit G ⊆ C(R,R) such that
∧
KG = E?

Theorem
Let E ⊆ CL(R). The following conditions are equivalent.

1. There exists G ⊆ C(R,R) such that E ∈ KG .
2. There exists G ⊆ C(R,R) such that E =

∧
KG .

3. E is hereditary, that is, CL(E) ⊆ E for all E ∈ E .

To prove 3⇒ 2 we have to “fool” the Intermediate Value Theorem.
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Lemma
Let a < b , u < v . There exists an increasing (hence continuous)
surjection f : [a, b ] → [u, v ] such that for every x ∈ (a, b) ,
f(x) /∈ Q+

√
2χQ(x).

Sketch of the proof
Let (u, v) ∩

(
Q+ {0,

√
2}
)
= {yn : n ∈ ω}.

(a, u)

(b, v)

y0

y1

y2

y3

x0x ′
0

find x ′
0 near x0 such that

y0 /∈ Q+
√

2χQ(x ′
0)

x1x ′
1

find x ′
1 near x1 such that

y1 /∈ Q+
√

2χQ(x ′
1)

x2x ′
2

find x ′
2 near x2 such that

y2 /∈ Q+
√

2χQ(x ′
2)

f is obtained at the limit

q.e.d.
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Theorem
Let E ⊆ CL(R). The following conditions are equivalent.

1. There exists G ⊆ C(R,R) such that E ∈ KG .
2. There exists G ⊆ C(R,R) such that E =

∧
KG .

3. E is hereditary.

Sketch of the proof of 3⇒ 2
Let E ⊆ CL(R) be hereditary. We have to find G ⊆ C(R,R) such that
E = EG(C(R,R)).

Let g ∈ G if and only if

(∀E ∈ CL(R)\E)(∃U open, E∩U ̸= ∅)(∀x ∈ E∩U) g(x) /∈ Q+
√

2χQ(x).

If E ∈ E and f ∈ C(R,R) then let g be as in Corollary. Then g ∈ G and
f �E ∈ G �E. Hence, E ∈ EG(C(R,R)).

If E /∈ E then let {xn : n ∈ ω} be a countable dense subset of E.
There exists f ∈ C(R,R) such that f(xn) ∈ Q+

√
2χQ(xn) for all n.

Then f �E /∈ G �E. Hence, E /∈ EG(C(R,R)). q.e.d.
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Lattice KG containing all nonempty hereditary families

Theorem
There exists G ⊆ C(R,R) such that E ∈ KG for every nonempty
hereditary family E ⊆ CL(R).

Sketch of the proof
Let {Eα : α < 2ω} be an enumeration of all nonempty closed sets.
For every α < 2ω , define xα, yα ∈ R and gα,n ∈ C(R,R) so that for
every interval I with Eα ∩ I ̸= ∅ there is n ∈ ω such that gα,n(x) = yα
for all x /∈ I and gα,n(xβ) ̸= yβ for all β < α.

Let G = {gα,n : α < 2ω, n ∈ ω}. For every nonempty hereditary family
E ⊆ CL(R), let F be the family consisting of all constant functions
with values yα where Eα ∈ CL(R) \ E . Then E = EG(F). q.e.d.

Problem
Can one define such G in some more constructive way?
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Lattices KG for families G
determined by a single function



Notation

Denote R∗ = R ∪ {−∞,∞}.

For f , g ∈ C(R,R∗), let us write:
• f ≤ g for (∀x ∈ R) f(x) ≤ g(x),
• f < g for (∀x ∈ R) f(x) < g(x).

Define intervals of functions:
• (f , g) = {h ∈ C(R,R) : f < h < g},
• [ f , g ] = {h ∈ C(R,R) : f ≤ h ≤ g},
• etc.



Lattice K{g}

Theorem
Let g ∈ C(R,R). Then K{g} = {CL(E) : E ∈ CL(R)}.

Which families G ⊆ C(R,R) produce the same lattice?

We characterize inclusions KG ⊇ {CL(E) : E ∈ CL(R)} and
KG ⊆ {CL(E) : E ∈ CL(R)} separately.

Theorem
Let G ⊆ C(R,R), G ̸= ∅. The following conditions are equivalent.

1. KG ⊇ {CL(E) : E ∈ CL(R)}.
2. {∅} ∈ KG .
3. For every x ∈ R , {g(x) : g ∈ G} ̸= R.
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Lattice K{g}

Theorem
Let G ⊆ C(R,R), G ̸= ∅. The following conditions are equivalent.

1. KG ⊆ {CL(E) : E ∈ CL(R)}.
2. There exist h1, h2 ∈ C(R,R∗) such that G = [h1, h2].

Corollary
Let G ⊆ C(R,R), G ̸= ∅. The following conditions are equivalent.

1. KG = {CL(E) : E ∈ CL(R)}.
2. There exist h1, h2 ∈ C(R,R∗) such that h1 ≤ h2 ,

h−1
1 [R] ∪ h−1

2 [R] = R , and G = [h1, h2].

Corollary
Let g ∈ C(R,R). Then
K(−∞,g ] = K[g,∞) = K{g} = {CL(E) : E ∈ CL(R)}.
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Lattice K{g}

h1

h2

K[h1,h2] = {CL(E) : E ∈ CL(R)}



Lattice K(−∞,g )

Recall that CL(X) = CLR(X) = {E ∈ CL(R) : E ⊆ X}.

Theorem
Let g ∈ C(R,R). Then K(−∞,g ) = {CL(X) : X ⊆ R}.

Theorem
Let G ⊆ C(R,R), G ̸= ∅. The following conditions are equivalent.

1. KG ⊇ {CL(X) : X ⊆ R}.
2. For every x ∈ R , CL

(
R \ {x}

)
∈ KG .

3. For every x ∈ R there exists f ∈ C(R,R) such that
CL

(
R \ {x}

)
= EG

(
{f}

)
.

The family
{
CL

(
R \ {x}

)
: x ∈ R

}
in condition 2 is minimal, that is, by

excluding any set we obtain a strictly weaker condition.
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Lattice K(−∞,g )

We identify a function f : R → R and its graph f ⊆ R2.

Definition
A family G ⊆ C(R,R) is:
• complete if for any g ∈ C(R,R), if g ⊆

∪
G then g ∈ G

• connected if for any (x, y), (x ′, y ′) ∈
∪

G such that x ̸= x ′, there
exists g ∈ G such that g(x) = y and g(x ′) = y ′

Theorem
Let G ⊆ C(R,R), G ̸= ∅. The following conditions are equivalent.

1. KG ⊆ {CL(X) : X ⊆ R}.
2. G is complete and connected.
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Lattice K(−∞,g )

Corollary
Let G ⊆ C(R,R), G ̸= ∅. The following conditions are equivalent.

1. KG = {CL(X) : X ⊆ R}.
2. G is complete, connected, and for every x ∈ R there exists

f ∈ C(R,R) such that f \
∪
G = f �{x}.

Corollary
Let g ∈ C(R,R). Then K(g,∞) = K(−∞,g ) = {CL(X) : X ⊆ R}.



Lattice K(−∞,g )

Corollary
Let G ⊆ C(R,R), G ̸= ∅. The following conditions are equivalent.

1. KG = {CL(X) : X ⊆ R}.
2. G is complete, connected, and for every x ∈ R there exists

f ∈ C(R,R) such that f \
∪
G = f �{x}.

Corollary
Let g ∈ C(R,R). Then K(g,∞) = K(−∞,g ) = {CL(X) : X ⊆ R}.



Lattice K(−∞,g )∪(g,∞)

Definition
A family X ⊆ P(R) is separated if for any distinct sets X ,Y ∈ X
there exist disjoint open sets U,V ⊆ R such that:
• X ⊆ U ∧ Y ⊆ V
• (∀Z ∈ X ) Z ⊆ U ∨ Z ⊆ V

Theorem
Let g ∈ C(R,R). Then
K(−∞,g)∪(g,∞) =

{∪
X∈X CL(X) : X ⊆ P(R) is separated

}
.
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Lattice K(−∞,g )∪(g,∞)

For any open set U ⊆ R denote U ′ = R \ clU.

Fact
If U is a regular open set then U ′ is a regular open set and
U ∩ U ′ = ∅.

Theorem
Let G ⊆ C(R,R), G ̸= ∅. The following conditions are equivalent.

1. KG ⊇
{∪

X∈X CL(X) : X ⊆ P(R) is separated
}
.

2. (2a) For every x ∈ R, CL
(
R \ {x}

)
∈ KG , and

(2b) for every regular open set U ⊆ R, CL(U) ∪ CL(U ′) ∈ KG .
3. (3a) For every x ∈ R there exists f ∈ C(R,R) such that

CL
(
R \ {x}

)
= EG

(
{f}

)
, and

(3b) for any x, y ∈ R and any regular open set U ⊆ R such that x ∈ U
and y ∈ U ′, there exists f ∈ FG

(
CL(U) ∪ CL(U ′)

)
such that

f �{x, y} /∈ G �{x, y}.
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Theorem
Let G ⊆ C(R,R), G ̸= ∅. The following conditions are equivalent.

1. KG ⊆
{∪

X∈X CL(X) : X ⊆ P(R) is separated
}
.

2. There exists a linearly ordered set (I , <) and an indexed system
{Gi : i ∈ I} such that
(a) G =

∪
i∈I Gi ,

(b) for every i ∈ I , Gi ⊆ C(R,R) is complete and connected,
(c) for every i ∈ I there exist functions g−i , g+i ∈ C(R,R∗) such that∪

j< i
Gj ⊆ (−∞, g−i ) , Gi ⊆ (g−i , g+i ) , and

∪
j> i

Gj ⊆ (g+i ,∞) .
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Some open problems

What about the complements of families {g}, (−∞, g),
(−∞, g) ∪ (g,∞)?

Fact
Let g ∈ C(R,R). Then KC(R,R)\{g} = {CL(R) \ {R},CL(R)} .

Problem
Characterize families G ⊆ C(R,R) such that KG satisfies one of
these conditions:

• KG = {CL(R) \ {R},CL(R)} ,
• KG has exactly two elements,
• KG is finite,
• KG is linearly ordered.
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