A Galois connection related to restrictions of continuous real functions

Peter Eliaš Mathematical Institute, Slovak Academy of Sciences

32nd International Summer Conference on Real Functions Theory September 2–7, 2018, Stará Lesná, Slovakia

Outline

1. Introduction

- notation and terminology
- Galois connection
- + lattices $\mathcal{K}_{\mathcal{G}}$, $\mathcal{L}_{\mathcal{G}}$

Outline

1. Introduction

- notation and terminology
- Galois connection
- + lattices $\mathcal{K}_{\mathcal{G}}$, $\mathcal{L}_{\mathcal{G}}$
- 2. Elements of lattices $\mathcal{K}_\mathcal{G}$, $\mathcal{L}_\mathcal{G}$
 - + bottom elements of lattices $\mathcal{K}_\mathcal{G}$
 - + lattice $\mathcal{K}_\mathcal{G}$ containing all elements of all lattices $\mathcal{K}_{\mathcal{G}'}$

Outline

1. Introduction

- notation and terminology
- Galois connection
- + lattices $\mathcal{K}_{\mathcal{G}}$, $\mathcal{L}_{\mathcal{G}}$
- 2. Elements of lattices $\mathcal{K}_\mathcal{G}$, $\mathcal{L}_\mathcal{G}$
 - + bottom elements of lattices $\mathcal{K}_\mathcal{G}$
 - + lattice $\mathcal{K}_\mathcal{G}$ containing all elements of all lattices $\mathcal{K}_{\mathcal{G}'}$
- 3. Lattices $\mathcal{K}_\mathcal{G}$ for \mathcal{G} determined by a single continuous function
 - $\mathcal{G} = \{g\}$
 - $\mathcal{G} = (-\infty, g)$
 - $\mathcal{G} = (-\infty, g) \cup (g, \infty)$

- let ${\mathcal G}$ be a fixed family of functions
- given a family of functions \mathcal{F} , consider all sets X such that

 $(\forall f \in \mathcal{F}) (\exists g \in \mathcal{G}) \ f \upharpoonright X = g \upharpoonright X$

- let ${\mathcal G}$ be a fixed family of functions
- given a family of functions \mathcal{F} , consider all sets X such that

 $(\forall f \in \mathcal{F}) (\exists g \in \mathcal{G}) \ f \upharpoonright X = g \upharpoonright X$

• given a family of sets \mathcal{X} , consider all functions f such that

 $(\forall X \in \mathcal{X}) (\exists g \in \mathcal{G}) f \upharpoonright X = g \upharpoonright X$

- let ${\mathcal G}$ be a fixed family of functions
- given a family of functions \mathcal{F} , consider all sets X such that

 $(\forall f \in \mathcal{F}) (\exists g \in \mathcal{G}) \ f \upharpoonright X = g \upharpoonright X$

• given a family of sets \mathcal{X} , consider all functions f such that

$$(\forall X \in \mathcal{X}) (\exists g \in \mathcal{G}) f \upharpoonright X = g \upharpoonright X$$

 we study the above described relation between families of functions and families of sets

- let ${\mathcal G}$ be a fixed family of functions
- given a family of functions \mathcal{F} , consider all sets X such that

 $(\forall f \in \mathcal{F}) (\exists g \in \mathcal{G}) \ f \upharpoonright X = g \upharpoonright X$

• given a family of sets \mathcal{X} , consider all functions f such that

$$(\forall X \in \mathcal{X}) (\exists g \in \mathcal{G}) f \upharpoonright X = g \upharpoonright X$$

- we study the above described relation between families of functions and families of sets
- we restrict ourselves to continuous real functions and closed sets of reals

Let X, Y be topological spaces, $Z \subseteq X$.

- C(X, Y): the family of all continuous functions from X to Y
- $CL_X(Z)$: the family of all subsets of Z closed in X
- we write CL(Z) instead of $CL_{\mathbb{R}}(Z)$

Let X, Y be topological spaces, $Z \subseteq X$.

- C(X, Y): the family of all continuous functions from X to Y
- $CL_X(Z)$: the family of all subsets of Z closed in X
- we write CL(Z) instead of $CL_{\mathbb{R}}(Z)$

Let \mathcal{F} be a family of functions, E be a set. Denote:

• $\mathcal{F} \upharpoonright E = \{f \upharpoonright E : f \in \mathcal{F}\}$

Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$. For $\mathcal{E} \subseteq CL(\mathbb{R})$ and $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ denote:

- $E_{\mathcal{G}}(\mathcal{F}) = \{ E \in CL(\mathbb{R}) : (\forall f \in \mathcal{F}) \ f \upharpoonright E \in \mathcal{G} \upharpoonright E \}$
- $F_{\mathcal{G}}(\mathcal{E}) = \{ f \in C(\mathbb{R}, \mathbb{R}) : (\forall E \in \mathcal{E}) \ f \upharpoonright E \in \mathcal{G} \upharpoonright E \}$

Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$. For $\mathcal{E} \subseteq CL(\mathbb{R})$ and $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ denote:

- $E_{\mathcal{G}}(\mathcal{F}) = \{ E \in CL(\mathbb{R}) : (\forall f \in \mathcal{F}) \ f \upharpoonright E \in \mathcal{G} \upharpoonright E \}$
- $F_{\mathcal{G}}(\mathcal{E}) = \{ f \in C(\mathbb{R}, \mathbb{R}) : (\forall E \in \mathcal{E}) f \upharpoonright E \in \mathcal{G} \upharpoonright E \}$

Maps $E_{\mathcal{G}} : \mathcal{P}(C(\mathbb{R},\mathbb{R})) \to \mathcal{P}(CL(\mathbb{R})), F_{\mathcal{G}} : \mathcal{P}(CL(\mathbb{R})) \to \mathcal{P}(C(\mathbb{R},\mathbb{R}))$ form a Galois connection between partial orders $(\mathcal{P}(C(\mathbb{R},\mathbb{R})), \subseteq)$ and $(\mathcal{P}(CL(\mathbb{R},\mathbb{R})), \subseteq)$.

Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$. For $\mathcal{E} \subseteq CL(\mathbb{R})$ and $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ denote:

- $E_{\mathcal{G}}(\mathcal{F}) = \{ E \in CL(\mathbb{R}) : (\forall f \in \mathcal{F}) \ f \upharpoonright E \in \mathcal{G} \upharpoonright E \}$
- $F_{\mathcal{G}}(\mathcal{E}) = \{ f \in C(\mathbb{R}, \mathbb{R}) : (\forall E \in \mathcal{E}) f \upharpoonright E \in \mathcal{G} \upharpoonright E \}$

Maps $E_{\mathcal{G}} : \mathcal{P}(C(\mathbb{R},\mathbb{R})) \to \mathcal{P}(CL(\mathbb{R})), F_{\mathcal{G}} : \mathcal{P}(CL(\mathbb{R})) \to \mathcal{P}(C(\mathbb{R},\mathbb{R}))$ form a Galois connection between partial orders $(\mathcal{P}(C(\mathbb{R},\mathbb{R})),\subseteq)$ and $(\mathcal{P}(CL(\mathbb{R},\mathbb{R})),\subseteq)$.

• $E_{\mathcal{G}}$, $F_{\mathcal{G}}$ are inclusion-reversing

Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$. For $\mathcal{E} \subseteq CL(\mathbb{R})$ and $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ denote:

- $E_{\mathcal{G}}(\mathcal{F}) = \{ E \in CL(\mathbb{R}) : (\forall f \in \mathcal{F}) \ f \upharpoonright E \in \mathcal{G} \upharpoonright E \}$
- $F_{\mathcal{G}}(\mathcal{E}) = \{ f \in C(\mathbb{R}, \mathbb{R}) : (\forall E \in \mathcal{E}) f \upharpoonright E \in \mathcal{G} \upharpoonright E \}$

Maps $E_{\mathcal{G}} : \mathcal{P}(C(\mathbb{R},\mathbb{R})) \to \mathcal{P}(CL(\mathbb{R})), F_{\mathcal{G}} : \mathcal{P}(CL(\mathbb{R})) \to \mathcal{P}(C(\mathbb{R},\mathbb{R}))$ form a Galois connection between partial orders $(\mathcal{P}(C(\mathbb{R},\mathbb{R})),\subseteq)$ and $(\mathcal{P}(CL(\mathbb{R},\mathbb{R})),\subseteq)$.

- $E_{\mathcal{G}}$, $F_{\mathcal{G}}$ are inclusion-reversing
- $\mathcal{E} \subseteq E_{\mathcal{G}}(\mathcal{F})$ if and only if $\mathcal{F} \subseteq F_{\mathcal{G}}(\mathcal{E})$

Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$. For $\mathcal{E} \subseteq CL(\mathbb{R})$ and $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ denote:

- $E_{\mathcal{G}}(\mathcal{F}) = \{ E \in CL(\mathbb{R}) : (\forall f \in \mathcal{F}) \ f \upharpoonright E \in \mathcal{G} \upharpoonright E \}$
- $F_{\mathcal{G}}(\mathcal{E}) = \{ f \in C(\mathbb{R}, \mathbb{R}) : (\forall E \in \mathcal{E}) f \upharpoonright E \in \mathcal{G} \upharpoonright E \}$

Maps $E_{\mathcal{G}} : \mathcal{P}(C(\mathbb{R},\mathbb{R})) \to \mathcal{P}(CL(\mathbb{R})), F_{\mathcal{G}} : \mathcal{P}(CL(\mathbb{R})) \to \mathcal{P}(C(\mathbb{R},\mathbb{R}))$ form a Galois connection between partial orders $(\mathcal{P}(C(\mathbb{R},\mathbb{R})),\subseteq)$ and $(\mathcal{P}(CL(\mathbb{R},\mathbb{R})),\subseteq)$.

- $E_{\mathcal{G}}$, $F_{\mathcal{G}}$ are inclusion-reversing
- $\mathcal{E} \subseteq E_{\mathcal{G}}(\mathcal{F})$ if and only if $\mathcal{F} \subseteq F_{\mathcal{G}}(\mathcal{E})$
- $E_{\mathcal{G}} \circ F_{\mathcal{G}} \colon \mathcal{P}(CL(\mathbb{R})) \to \mathcal{P}(CL(\mathbb{R}))$ and $F_{\mathcal{G}} \circ E_{\mathcal{G}} \colon \mathcal{P}(C(\mathbb{R},\mathbb{R})) \to \mathcal{P}(C(\mathbb{R},\mathbb{R}))$ are closure operators

Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$. For $\mathcal{E} \subseteq CL(\mathbb{R})$ and $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ denote:

- $E_{\mathcal{G}}(\mathcal{F}) = \{ E \in CL(\mathbb{R}) : (\forall f \in \mathcal{F}) \ f \upharpoonright E \in \mathcal{G} \upharpoonright E \}$
- $F_{\mathcal{G}}(\mathcal{E}) = \{ f \in C(\mathbb{R}, \mathbb{R}) \colon (\forall E \in \mathcal{E}) \ f \upharpoonright E \in \mathcal{G} \upharpoonright E \}$

Maps $E_{\mathcal{G}} : \mathcal{P}(C(\mathbb{R},\mathbb{R})) \to \mathcal{P}(CL(\mathbb{R})), F_{\mathcal{G}} : \mathcal{P}(CL(\mathbb{R})) \to \mathcal{P}(C(\mathbb{R},\mathbb{R}))$ form a Galois connection between partial orders $(\mathcal{P}(C(\mathbb{R},\mathbb{R})),\subseteq)$ and $(\mathcal{P}(CL(\mathbb{R},\mathbb{R})),\subseteq)$.

- $E_{\mathcal{G}}$, $F_{\mathcal{G}}$ are inclusion-reversing
- $\mathcal{E} \subseteq E_{\mathcal{G}}(\mathcal{F})$ if and only if $\mathcal{F} \subseteq F_{\mathcal{G}}(\mathcal{E})$
- $E_{\mathcal{G}} \circ F_{\mathcal{G}} \colon \mathcal{P}(CL(\mathbb{R})) \to \mathcal{P}(CL(\mathbb{R}))$ and $F_{\mathcal{G}} \circ E_{\mathcal{G}} \colon \mathcal{P}(C(\mathbb{R},\mathbb{R})) \to \mathcal{P}(C(\mathbb{R},\mathbb{R}))$ are closure operators

Denote:

- $\mathcal{K}_{\mathcal{G}} = \{ \mathcal{E} \subseteq CL(\mathbb{R}) \colon \mathcal{E} = E_{\mathcal{G}}(F_{\mathcal{G}}(\mathcal{E})) \} = \{ E_{\mathcal{G}}(\mathcal{F}) \colon \mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})) \}$
- $\mathcal{L}_{\mathcal{G}} = \{ \mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R}) : \mathcal{F} = F_{\mathcal{G}}(E_{\mathcal{G}}(\mathcal{F})) \} = \{ F_{\mathcal{G}}(\mathcal{E}) : \mathcal{E} \subseteq CL(\mathbb{R})) \}$

Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$. For $\mathcal{E} \subseteq CL(\mathbb{R})$ and $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ denote:

- $E_{\mathcal{G}}(\mathcal{F}) = \{ E \in CL(\mathbb{R}) : (\forall f \in \mathcal{F}) \ f \upharpoonright E \in \mathcal{G} \upharpoonright E \}$
- $F_{\mathcal{G}}(\mathcal{E}) = \{ f \in C(\mathbb{R}, \mathbb{R}) \colon (\forall E \in \mathcal{E}) \ f \upharpoonright E \in \mathcal{G} \upharpoonright E \}$

Maps $E_{\mathcal{G}} : \mathcal{P}(C(\mathbb{R},\mathbb{R})) \to \mathcal{P}(CL(\mathbb{R})), F_{\mathcal{G}} : \mathcal{P}(CL(\mathbb{R})) \to \mathcal{P}(C(\mathbb{R},\mathbb{R}))$ form a Galois connection between partial orders $(\mathcal{P}(C(\mathbb{R},\mathbb{R})),\subseteq)$ and $(\mathcal{P}(CL(\mathbb{R},\mathbb{R})),\subseteq)$.

- $E_{\mathcal{G}}$, $F_{\mathcal{G}}$ are inclusion-reversing
- $\mathcal{E} \subseteq E_{\mathcal{G}}(\mathcal{F})$ if and only if $\mathcal{F} \subseteq F_{\mathcal{G}}(\mathcal{E})$
- $E_{\mathcal{G}} \circ F_{\mathcal{G}} \colon \mathcal{P}(CL(\mathbb{R})) \to \mathcal{P}(CL(\mathbb{R}))$ and $F_{\mathcal{G}} \circ E_{\mathcal{G}} \colon \mathcal{P}(C(\mathbb{R},\mathbb{R})) \to \mathcal{P}(C(\mathbb{R},\mathbb{R}))$ are closure operators

Denote:

- $\mathcal{K}_{\mathcal{G}} = \{ \mathcal{E} \subseteq CL(\mathbb{R}) \colon \mathcal{E} = E_{\mathcal{G}}(F_{\mathcal{G}}(\mathcal{E})) \} = \{ E_{\mathcal{G}}(\mathcal{F}) \colon \mathcal{F} \subseteq C(\mathbb{R},\mathbb{R})) \}$
- $\mathcal{L}_{\mathcal{G}} = \{ \mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R}) : \mathcal{F} = F_{\mathcal{G}}(E_{\mathcal{G}}(\mathcal{F})) \} = \{ F_{\mathcal{G}}(\mathcal{E}) : \mathcal{E} \subseteq CL(\mathbb{R})) \}$

Then $(\mathcal{K}_{\mathcal{G}}, \subseteq)$ and $(\mathcal{L}_{\mathcal{G}}, \subseteq)$ are dually isomorphic complete lattices in which \bigwedge coincides with \bigcap .

Elements of lattices $\mathcal{K}_{\mathcal{G}}, \mathcal{L}_{\mathcal{G}}$

The least elements of lattices $\mathcal{K}_{\mathcal{G}}, \mathcal{L}_{\mathcal{G}}$

Fact

For every $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$, $\bigwedge \mathcal{L}_{\mathcal{G}} = \mathcal{F}_{\mathcal{G}}(\{\mathbb{R}\}) = \mathcal{G}$.

The least elements of lattices $\mathcal{K}_\mathcal{G}, \mathcal{L}_\mathcal{G}$

Fact

For every
$$\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$$
, $\bigwedge \mathcal{L}_{\mathcal{G}} = \mathcal{F}_{\mathcal{G}}(\{\mathbb{R}\}) = \mathcal{G}$.

Corollary

Any $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ is the least element of some lattice $\mathcal{L}_{\mathcal{G}}$.

The least elements of lattices $\mathcal{K}_\mathcal{G}, \mathcal{L}_\mathcal{G}$

Fact

For every
$$\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$$
, $\bigwedge \mathcal{L}_{\mathcal{G}} = \mathcal{F}_{\mathcal{G}}(\{\mathbb{R}\}) = \mathcal{G}$.

Corollary

Any $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ is the least element of some lattice $\mathcal{L}_{\mathcal{G}}$.

Which $\mathcal{E} \subseteq CL(\mathbb{R})$ do admit $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\bigwedge \mathcal{K}_{\mathcal{G}} = \mathcal{E}$?

The least elements of lattices $\mathcal{K}_{\mathcal{G}}, \mathcal{L}_{\mathcal{G}}$

Fact

For every
$$\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$$
, $\bigwedge \mathcal{L}_{\mathcal{G}} = \mathcal{F}_{\mathcal{G}}(\{\mathbb{R}\}) = \mathcal{G}$.

Corollary

Any $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ is the least element of some lattice $\mathcal{L}_{\mathcal{G}}$.

Which $\mathcal{E} \subseteq CL(\mathbb{R})$ do admit $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\bigwedge \mathcal{K}_{\mathcal{G}} = \mathcal{E}$?

Theorem

Let $\mathcal{E} \subseteq CL(\mathbb{R})$. The following conditions are equivalent.

- 1. There exists $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$.
- 2. There exists $\mathcal{G} \subseteq C(\mathbb{R},\mathbb{R})$ such that $\mathcal{E} = \bigwedge \mathcal{K}_{\mathcal{G}}$.
- 3. \mathcal{E} is hereditary, that is, $CL(E) \subseteq \mathcal{E}$ for all $E \in \mathcal{E}$.

The least elements of lattices $\mathcal{K}_{\mathcal{G}}, \mathcal{L}_{\mathcal{G}}$

Fact

For every
$$\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$$
, $\bigwedge \mathcal{L}_{\mathcal{G}} = \mathcal{F}_{\mathcal{G}}(\{\mathbb{R}\}) = \mathcal{G}$.

Corollary

Any $\mathcal{F} \subseteq C(\mathbb{R}, \mathbb{R})$ is the least element of some lattice $\mathcal{L}_{\mathcal{G}}$.

Which $\mathcal{E} \subseteq CL(\mathbb{R})$ do admit $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\bigwedge \mathcal{K}_{\mathcal{G}} = \mathcal{E}$?

Theorem

Let $\mathcal{E} \subseteq CL(\mathbb{R})$. The following conditions are equivalent.

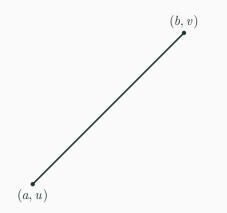
- 1. There exists $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$.
- 2. There exists $\mathcal{G} \subseteq C(\mathbb{R},\mathbb{R})$ such that $\mathcal{E} = \bigwedge \mathcal{K}_{\mathcal{G}}$.
- 3. \mathcal{E} is hereditary, that is, $CL(E) \subseteq \mathcal{E}$ for all $E \in \mathcal{E}$.

To prove 3 \Rightarrow 2 we have to "fool" the Intermediate Value Theorem.

Let a < b, u < v. There exists an increasing (hence continuous) surjection $f: [a, b] \rightarrow [u, v]$ such that for every $x \in (a, b)$, $f(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.

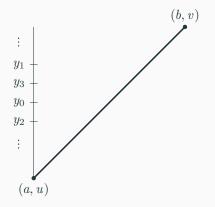
Let a < b, u < v. There exists an increasing (hence continuous) surjection $f: [a, b] \rightarrow [u, v]$ such that for every $x \in (a, b)$, $f(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.

Sketch of the proof



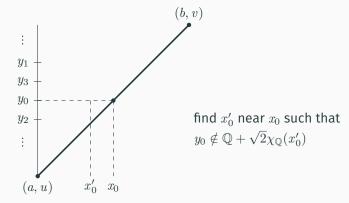
Let a < b, u < v. There exists an increasing (hence continuous) surjection $f: [a, b] \rightarrow [u, v]$ such that for every $x \in (a, b)$, $f(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.

Sketch of the proof



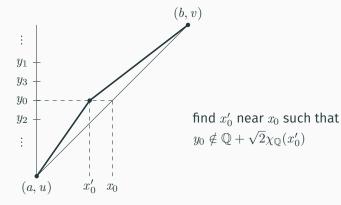
Let a < b, u < v. There exists an increasing (hence continuous) surjection $f: [a, b] \rightarrow [u, v]$ such that for every $x \in (a, b)$, $f(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.

Sketch of the proof



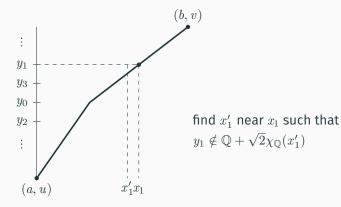
Let a < b, u < v. There exists an increasing (hence continuous) surjection $f: [a, b] \rightarrow [u, v]$ such that for every $x \in (a, b)$, $f(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.

Sketch of the proof



Let a < b, u < v. There exists an increasing (hence continuous) surjection $f: [a, b] \rightarrow [u, v]$ such that for every $x \in (a, b)$, $f(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.

Sketch of the proof



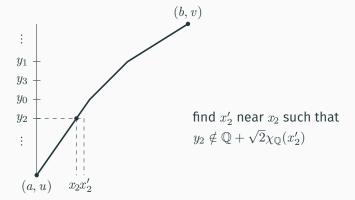
Let a < b, u < v. There exists an increasing (hence continuous) surjection $f: [a, b] \rightarrow [u, v]$ such that for every $x \in (a, b)$, $f(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.

Sketch of the proof



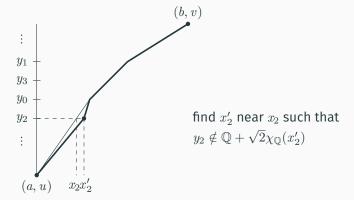
Let a < b, u < v. There exists an increasing (hence continuous) surjection $f: [a, b] \rightarrow [u, v]$ such that for every $x \in (a, b)$, $f(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.

Sketch of the proof



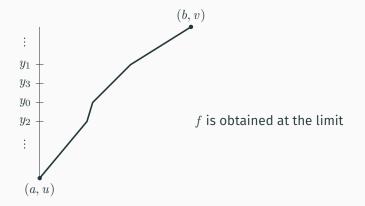
Let a < b, u < v. There exists an increasing (hence continuous) surjection $f: [a, b] \rightarrow [u, v]$ such that for every $x \in (a, b)$, $f(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.

Sketch of the proof



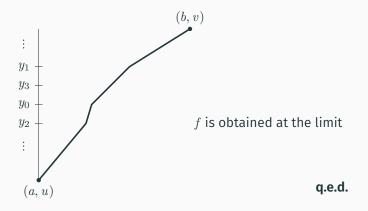
Let a < b, u < v. There exists an increasing (hence continuous) surjection $f: [a, b] \rightarrow [u, v]$ such that for every $x \in (a, b)$, $f(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.

Sketch of the proof



Let a < b, u < v. There exists an increasing (hence continuous) surjection $f: [a, b] \rightarrow [u, v]$ such that for every $x \in (a, b)$, $f(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.

Sketch of the proof



Let a < b, u < v. There exists an increasing (hence continuous) surjection $f: [a, b] \rightarrow [u, v]$ such that for every $x \in (a, b)$, $f(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.

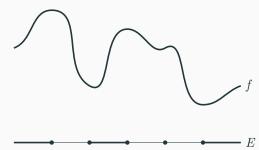
Corollary

Let $f \in C(\mathbb{R}, \mathbb{R})$, $E \in CL(\mathbb{R})$. Then there exists $g \in C(\mathbb{R}, \mathbb{R})$ such that $f \upharpoonright E = g \upharpoonright E$ and for all $x \notin E$, $g(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.

Let a < b, u < v. There exists an increasing (hence continuous) surjection $f: [a, b] \rightarrow [u, v]$ such that for every $x \in (a, b)$, $f(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.

Corollary

Let $f \in C(\mathbb{R}, \mathbb{R})$, $E \in CL(\mathbb{R})$. Then there exists $g \in C(\mathbb{R}, \mathbb{R})$ such that $f \upharpoonright E = g \upharpoonright E$ and for all $x \notin E$, $g(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.



Let a < b, u < v. There exists an increasing (hence continuous) surjection $f: [a, b] \rightarrow [u, v]$ such that for every $x \in (a, b)$, $f(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.

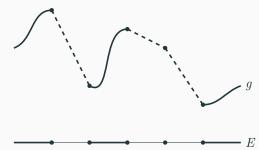
Corollary

Let $f \in C(\mathbb{R}, \mathbb{R})$, $E \in CL(\mathbb{R})$. Then there exists $g \in C(\mathbb{R}, \mathbb{R})$ such that $f \upharpoonright E = g \upharpoonright E$ and for all $x \notin E$, $g(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.

Let a < b, u < v. There exists an increasing (hence continuous) surjection $f: [a, b] \rightarrow [u, v]$ such that for every $x \in (a, b)$, $f(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.

Corollary

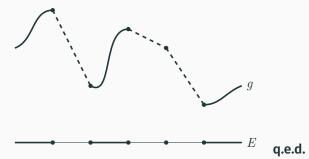
Let $f \in C(\mathbb{R}, \mathbb{R})$, $E \in CL(\mathbb{R})$. Then there exists $g \in C(\mathbb{R}, \mathbb{R})$ such that $f \upharpoonright E = g \upharpoonright E$ and for all $x \notin E$, $g(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.



Let a < b, u < v. There exists an increasing (hence continuous) surjection $f: [a, b] \rightarrow [u, v]$ such that for every $x \in (a, b)$, $f(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.

Corollary

Let $f \in C(\mathbb{R}, \mathbb{R})$, $E \in CL(\mathbb{R})$. Then there exists $g \in C(\mathbb{R}, \mathbb{R})$ such that $f \upharpoonright E = g \upharpoonright E$ and for all $x \notin E$, $g(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x)$.



Let $\mathcal{E} \subseteq \mathit{CL}(\mathbb{R})$. The following conditions are equivalent.

- 1. There exists $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$.
- 2. There exists $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{E} = \bigwedge \mathcal{K}_{\mathcal{G}}$.
- 3. \mathcal{E} is hereditary.

Sketch of the proof of $3 \Rightarrow 2$

Let $\mathcal{E} \subseteq CL(\mathbb{R})$ be hereditary. We have to find $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{E} = E_{\mathcal{G}}(C(\mathbb{R}, \mathbb{R}))$.

Let $\mathcal{E} \subseteq \mathit{CL}(\mathbb{R})$. The following conditions are equivalent.

- 1. There exists $\mathcal{G} \subseteq C(\mathbb{R},\mathbb{R})$ such that $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$.
- 2. There exists $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{E} = \bigwedge \mathcal{K}_{\mathcal{G}}$.
- 3. \mathcal{E} is hereditary.

Sketch of the proof of $3 \Rightarrow 2$

Let $\mathcal{E} \subseteq CL(\mathbb{R})$ be hereditary. We have to find $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{E} = E_{\mathcal{G}}(C(\mathbb{R}, \mathbb{R}))$. Let $g \in \mathcal{G}$ if and only if

 $(\forall E \in CL(\mathbb{R}) \setminus \mathcal{E})(\exists U \text{ open}, E \cap U \neq \emptyset) (\forall x \in E \cap U) g(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x).$

Let $\mathcal{E} \subseteq \mathit{CL}(\mathbb{R})$. The following conditions are equivalent.

- 1. There exists $\mathcal{G} \subseteq C(\mathbb{R},\mathbb{R})$ such that $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$.
- 2. There exists $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{E} = \bigwedge \mathcal{K}_{\mathcal{G}}$.
- 3. \mathcal{E} is hereditary.

Sketch of the proof of $3 \Rightarrow 2$

Let $\mathcal{E} \subseteq CL(\mathbb{R})$ be hereditary. We have to find $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{E} = E_{\mathcal{G}}(C(\mathbb{R}, \mathbb{R}))$. Let $g \in \mathcal{G}$ if and only if

 $(\forall E \in CL(\mathbb{R}) \setminus \mathcal{E})(\exists U \text{ open}, E \cap U \neq \emptyset) (\forall x \in E \cap U) g(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x).$

If $E \in \mathcal{E}$ and $f \in C(\mathbb{R}, \mathbb{R})$ then let g be as in Corollary. Then $g \in \mathcal{G}$ and $f \upharpoonright E \in \mathcal{G} \upharpoonright E$. Hence, $E \in E_{\mathcal{G}}(C(\mathbb{R}, \mathbb{R}))$.

Let $\mathcal{E} \subseteq \mathit{CL}(\mathbb{R})$. The following conditions are equivalent.

- 1. There exists $\mathcal{G} \subseteq C(\mathbb{R},\mathbb{R})$ such that $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$.
- 2. There exists $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{E} = \bigwedge \mathcal{K}_{\mathcal{G}}$.
- 3. \mathcal{E} is hereditary.

Sketch of the proof of $3 \Rightarrow 2$

Let $\mathcal{E} \subseteq CL(\mathbb{R})$ be hereditary. We have to find $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{E} = E_{\mathcal{G}}(C(\mathbb{R}, \mathbb{R}))$. Let $g \in \mathcal{G}$ if and only if

 $(\forall E \in CL(\mathbb{R}) \setminus \mathcal{E})(\exists U \text{ open}, E \cap U \neq \emptyset) (\forall x \in E \cap U) g(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x).$

If $E \in \mathcal{E}$ and $f \in C(\mathbb{R}, \mathbb{R})$ then let g be as in Corollary. Then $g \in \mathcal{G}$ and $f \upharpoonright E \in \mathcal{G} \upharpoonright E$. Hence, $E \in E_{\mathcal{G}}(C(\mathbb{R}, \mathbb{R}))$.

If $E \notin \mathcal{E}$ then let $\{x_n \colon n \in \omega\}$ be a countable dense subset of E. There exists $f \in C(\mathbb{R}, \mathbb{R})$ such that $f(x_n) \in \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x_n)$ for all n. Then $f \upharpoonright E \notin \mathcal{G} \upharpoonright E$. Hence, $E \notin E_{\mathcal{G}}(C(\mathbb{R}, \mathbb{R}))$.

Let $\mathcal{E} \subseteq \mathit{CL}(\mathbb{R})$. The following conditions are equivalent.

- 1. There exists $\mathcal{G} \subseteq C(\mathbb{R},\mathbb{R})$ such that $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$.
- 2. There exists $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{E} = \bigwedge \mathcal{K}_{\mathcal{G}}$.

3. \mathcal{E} is hereditary.

Sketch of the proof of $3 \Rightarrow 2$

Let $\mathcal{E} \subseteq CL(\mathbb{R})$ be hereditary. We have to find $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{E} = E_{\mathcal{G}}(C(\mathbb{R}, \mathbb{R}))$. Let $g \in \mathcal{G}$ if and only if

 $(\forall E \in CL(\mathbb{R}) \setminus \mathcal{E})(\exists U \text{ open}, E \cap U \neq \emptyset) (\forall x \in E \cap U) g(x) \notin \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x).$

If $E \in \mathcal{E}$ and $f \in C(\mathbb{R}, \mathbb{R})$ then let g be as in Corollary. Then $g \in \mathcal{G}$ and $f \upharpoonright E \in \mathcal{G} \upharpoonright E$. Hence, $E \in E_{\mathcal{G}}(C(\mathbb{R}, \mathbb{R}))$.

If $E \notin \mathcal{E}$ then let $\{x_n : n \in \omega\}$ be a countable dense subset of E. There exists $f \in C(\mathbb{R}, \mathbb{R})$ such that $f(x_n) \in \mathbb{Q} + \sqrt{2}\chi_{\mathbb{Q}}(x_n)$ for all n. Then $f \upharpoonright E \notin \mathcal{G} \upharpoonright E$. Hence, $E \notin E_{\mathcal{G}}(C(\mathbb{R}, \mathbb{R}))$. **q.e.d.**

Lattice $\mathcal{K}_{\mathcal{G}}$ containing all nonempty hereditary families

Theorem

There exists $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$ for every nonempty hereditary family $\mathcal{E} \subseteq CL(\mathbb{R})$.

There exists $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$ for every nonempty hereditary family $\mathcal{E} \subseteq CL(\mathbb{R})$.

Sketch of the proof

Let $\{E_{\alpha}: \alpha < 2^{\omega}\}$ be an enumeration of all nonempty closed sets. For every $\alpha < 2^{\omega}$, define $x_{\alpha}, y_{\alpha} \in \mathbb{R}$ and $g_{\alpha,n} \in C(\mathbb{R}, \mathbb{R})$ so that for every interval I with $E_{\alpha} \cap I \neq \emptyset$ there is $n \in \omega$ such that $g_{\alpha,n}(x) = y_{\alpha}$ for all $x \notin I$ and $g_{\alpha,n}(x_{\beta}) \neq y_{\beta}$ for all $\beta < \alpha$.

Let $\mathcal{G} = \{g_{\alpha,n} : \alpha < 2^{\omega}, n \in \omega\}$. For every nonempty hereditary family $\mathcal{E} \subseteq CL(\mathbb{R})$, let \mathcal{F} be the family consisting of all constant functions with values y_{α} where $E_{\alpha} \in CL(\mathbb{R}) \setminus \mathcal{E}$. Then $\mathcal{E} = E_{\mathcal{G}}(\mathcal{F})$. **q.e.d.**

There exists $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{E} \in \mathcal{K}_{\mathcal{G}}$ for every nonempty hereditary family $\mathcal{E} \subseteq CL(\mathbb{R})$.

Sketch of the proof

Let $\{E_{\alpha}: \alpha < 2^{\omega}\}$ be an enumeration of all nonempty closed sets. For every $\alpha < 2^{\omega}$, define $x_{\alpha}, y_{\alpha} \in \mathbb{R}$ and $g_{\alpha,n} \in C(\mathbb{R}, \mathbb{R})$ so that for every interval I with $E_{\alpha} \cap I \neq \emptyset$ there is $n \in \omega$ such that $g_{\alpha,n}(x) = y_{\alpha}$ for all $x \notin I$ and $g_{\alpha,n}(x_{\beta}) \neq y_{\beta}$ for all $\beta < \alpha$.

Let $\mathcal{G} = \{g_{\alpha,n} \colon \alpha < 2^{\omega}, n \in \omega\}$. For every nonempty hereditary family $\mathcal{E} \subseteq CL(\mathbb{R})$, let \mathcal{F} be the family consisting of all constant functions with values y_{α} where $E_{\alpha} \in CL(\mathbb{R}) \setminus \mathcal{E}$. Then $\mathcal{E} = E_{\mathcal{G}}(\mathcal{F})$. **q.e.d.**

Problem

Can one define such $\mathcal G$ in some more constructive way?

Lattices $\mathcal{K}_{\mathcal{G}}$ for families \mathcal{G} determined by a single function

Denote $\mathbb{R}^* = \mathbb{R} \cup \{-\infty, \infty\}.$

For $f, g \in C(\mathbb{R}, \mathbb{R}^*)$, let us write:

- $f \leq g$ for $(\forall x \in \mathbb{R}) f(x) \leq g(x)$,
- f < g for $(\forall x \in \mathbb{R}) f(x) < g(x)$.

Define intervals of functions:

•
$$(f, g) = \{h \in C(\mathbb{R}, \mathbb{R}) : f < h < g\},\$$

•
$$[f,g] = \{h \in C(\mathbb{R},\mathbb{R}) : f \le h \le g\}$$
,

• etc.

Let $g \in C(\mathbb{R}, \mathbb{R})$. Then $\mathcal{K}_{\{g\}} = \{CL(E) : E \in CL(\mathbb{R})\}.$

Let $g \in C(\mathbb{R}, \mathbb{R})$. Then $\mathcal{K}_{\{g\}} = \{CL(E) : E \in CL(\mathbb{R})\}.$

Which families $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ produce the same lattice? We characterize inclusions $\mathcal{K}_{\mathcal{G}} \supseteq \{CL(E) \colon E \in CL(\mathbb{R})\}$ and $\mathcal{K}_{\mathcal{G}} \subseteq \{CL(E) \colon E \in CL(\mathbb{R})\}$ separately.

Let $g \in C(\mathbb{R}, \mathbb{R})$. Then $\mathcal{K}_{\{g\}} = \{ CL(E) \colon E \in CL(\mathbb{R}) \}.$

Which families $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ produce the same lattice?

We characterize inclusions $\mathcal{K}_{\mathcal{G}} \supseteq \{ CL(E) \colon E \in CL(\mathbb{R}) \}$ and $\mathcal{K}_{\mathcal{G}} \subseteq \{ CL(E) \colon E \in CL(\mathbb{R}) \}$ separately.

Theorem

```
1. \mathcal{K}_{\mathcal{G}} \supseteq \{ CL(E) \colon E \in CL(\mathbb{R}) \}.
```

```
2. \{\emptyset\} \in \mathcal{K}_{\mathcal{G}}.
```

```
3. For every x \in \mathbb{R}, \{g(x) : g \in \mathcal{G}\} \neq \mathbb{R}.
```

Lattice $\mathcal{K}_{\{g\}}$

Theorem

- 1. $\mathcal{K}_{\mathcal{G}} \subseteq \{ CL(E) \colon E \in CL(\mathbb{R}) \}.$
- 2. There exist $h_1, h_2 \in C(\mathbb{R}, \mathbb{R}^*)$ such that $\mathcal{G} = [h_1, h_2]$.

Lattice $\mathcal{K}_{\{g\}}$

Theorem

Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$, $\mathcal{G} \neq \emptyset$. The following conditions are equivalent.

1. $\mathcal{K}_{\mathcal{G}} \subseteq \{ CL(E) \colon E \in CL(\mathbb{R}) \}.$

2. There exist $h_1, h_2 \in C(\mathbb{R}, \mathbb{R}^*)$ such that $\mathcal{G} = [h_1, h_2]$.

Corollary

- 1. $\mathcal{K}_{\mathcal{G}} = \{ CL(E) \colon E \in CL(\mathbb{R}) \}.$
- 2. There exist $h_1, h_2 \in C(\mathbb{R}, \mathbb{R}^*)$ such that $h_1 \leq h_2$, $h_1^{-1}[\mathbb{R}] \cup h_2^{-1}[\mathbb{R}] = \mathbb{R}$, and $\mathcal{G} = [h_1, h_2]$.

Lattice $\mathcal{K}_{\{g\}}$

Theorem

Let $\mathcal{G} \subseteq C(\mathbb{R},\mathbb{R})$, $\mathcal{G} \neq \emptyset$. The following conditions are equivalent.

1. $\mathcal{K}_{\mathcal{G}} \subseteq \{ CL(E) \colon E \in CL(\mathbb{R}) \}.$

2. There exist $h_1, h_2 \in C(\mathbb{R}, \mathbb{R}^*)$ such that $\mathcal{G} = [h_1, h_2]$.

Corollary

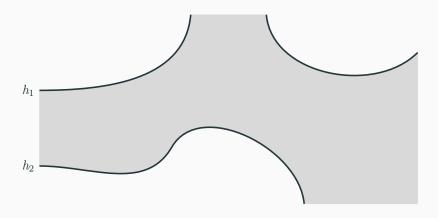
Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$, $\mathcal{G} \neq \emptyset$. The following conditions are equivalent.

1.
$$\mathcal{K}_{\mathcal{G}} = \{ CL(E) \colon E \in CL(\mathbb{R}) \}.$$

2. There exist $h_1, h_2 \in C(\mathbb{R}, \mathbb{R}^*)$ such that $h_1 \leq h_2$, $h_1^{-1}[\mathbb{R}] \cup h_2^{-1}[\mathbb{R}] = \mathbb{R}$, and $\mathcal{G} = [h_1, h_2]$.

Corollary

Let $g \in C(\mathbb{R}, \mathbb{R})$. Then $\mathcal{K}_{(-\infty,g]} = \mathcal{K}_{[g,\infty)} = \mathcal{K}_{\{g\}} = \{CL(E) \colon E \in CL(\mathbb{R})\}.$



 $\mathcal{K}_{[h_1,h_2]} = \{ CL(E) \colon E \in CL(\mathbb{R}) \}$

Recall that $CL(X) = CL_{\mathbb{R}}(X) = \{E \in CL(\mathbb{R}) : E \subseteq X\}.$

Recall that
$$CL(X) = CL_{\mathbb{R}}(X) = \{E \in CL(\mathbb{R}) : E \subseteq X\}.$$

Theorem

Let
$$g \in C(\mathbb{R}, \mathbb{R})$$
. Then $\mathcal{K}_{(-\infty,g)} = \{CL(X) : X \subseteq \mathbb{R}\}.$

Recall that
$$CL(X) = CL_{\mathbb{R}}(X) = \{E \in CL(\mathbb{R}) : E \subseteq X\}.$$

Theorem

Let
$$g \in C(\mathbb{R}, \mathbb{R})$$
. Then $\mathcal{K}_{(-\infty,g)} = \{ CL(X) \colon X \subseteq \mathbb{R} \}.$

Theorem

1.
$$\mathcal{K}_{\mathcal{G}} \supseteq \{ CL(X) \colon X \subseteq \mathbb{R} \}.$$

- 2. For every $x \in \mathbb{R}$, $CL(\mathbb{R} \setminus \{x\}) \in \mathcal{K}_{\mathcal{G}}$.
- 3. For every $x \in \mathbb{R}$ there exists $f \in C(\mathbb{R}, \mathbb{R})$ such that $CL(\mathbb{R} \setminus \{x\}) = E_{\mathcal{G}}(\{f\}).$

Recall that
$$CL(X) = CL_{\mathbb{R}}(X) = \{E \in CL(\mathbb{R}) : E \subseteq X\}.$$

Theorem

Let
$$g \in C(\mathbb{R}, \mathbb{R})$$
. Then $\mathcal{K}_{(-\infty,g)} = \{ CL(X) \colon X \subseteq \mathbb{R} \}.$

Theorem

Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$, $\mathcal{G} \neq \emptyset$. The following conditions are equivalent.

1.
$$\mathcal{K}_{\mathcal{G}} \supseteq \{ CL(X) \colon X \subseteq \mathbb{R} \}.$$

- 2. For every $x \in \mathbb{R}$, $CL(\mathbb{R} \setminus \{x\}) \in \mathcal{K}_{\mathcal{G}}$.
- 3. For every $x \in \mathbb{R}$ there exists $f \in C(\mathbb{R}, \mathbb{R})$ such that $CL(\mathbb{R} \setminus \{x\}) = E_{\mathcal{G}}(\{f\}).$

The family $\{CL(\mathbb{R} \setminus \{x\}) : x \in \mathbb{R}\}$ in condition 2 is minimal, that is, by excluding any set we obtain a strictly weaker condition.

Definition

A family $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ is:

• complete if for any $g \in C(\mathbb{R}, \mathbb{R})$, if $g \subseteq \bigcup \mathcal{G}$ then $g \in \mathcal{G}$

Definition

A family $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ is:

- complete if for any $g \in C(\mathbb{R}, \mathbb{R})$, if $g \subseteq \bigcup \mathcal{G}$ then $g \in \mathcal{G}$
- connected if for any $(x, y), (x', y') \in \bigcup \mathcal{G}$ such that $x \neq x'$, there exists $g \in \mathcal{G}$ such that g(x) = y and g(x') = y'

Definition

A family $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ is:

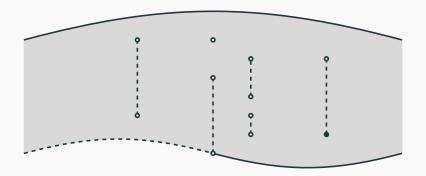
- complete if for any $g \in C(\mathbb{R}, \mathbb{R})$, if $g \subseteq \bigcup \mathcal{G}$ then $g \in \mathcal{G}$
- connected if for any $(x, y), (x', y') \in \bigcup \mathcal{G}$ such that $x \neq x'$, there exists $g \in \mathcal{G}$ such that g(x) = y and g(x') = y'

Theorem

Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$, $\mathcal{G} \neq \emptyset$. The following conditions are equivalent.

1. $\mathcal{K}_{\mathcal{G}} \subseteq \{ CL(X) \colon X \subseteq \mathbb{R} \}.$

2. \mathcal{G} is complete and connected.



Corollary

- 1. $\mathcal{K}_{\mathcal{G}} = \{ CL(X) \colon X \subseteq \mathbb{R} \}.$
- 2. *G* is complete, connected, and for every $x \in \mathbb{R}$ there exists $f \in C(\mathbb{R}, \mathbb{R})$ such that $f \setminus \bigcup \mathcal{G} = f \upharpoonright \{x\}$.

Corollary

Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$, $\mathcal{G} \neq \emptyset$. The following conditions are equivalent.

- 1. $\mathcal{K}_{\mathcal{G}} = \{ CL(X) \colon X \subseteq \mathbb{R} \}.$
- 2. *G* is complete, connected, and for every $x \in \mathbb{R}$ there exists $f \in C(\mathbb{R}, \mathbb{R})$ such that $f \setminus \bigcup \mathcal{G} = f \upharpoonright \{x\}$.

Corollary

Let $g \in C(\mathbb{R}, \mathbb{R})$. Then $\mathcal{K}_{(g,\infty)} = \mathcal{K}_{(-\infty,g)} = \{CL(X) \colon X \subseteq \mathbb{R}\}.$

Definition

A family $\mathcal{X} \subseteq \mathcal{P}(\mathbb{R})$ is separated if for any distinct sets $X, Y \in \mathcal{X}$ there exist disjoint open sets $U, V \subseteq \mathbb{R}$ such that:

- $X \subseteq U \land Y \subseteq V$
- $\bullet \ (\forall Z \in \mathcal{X}) \ Z \subseteq \ U \lor \ Z \subseteq \ V$

Definition

A family $\mathcal{X} \subseteq \mathcal{P}(\mathbb{R})$ is separated if for any distinct sets $X, Y \in \mathcal{X}$ there exist disjoint open sets $U, V \subseteq \mathbb{R}$ such that:

- $X \subseteq U \land Y \subseteq V$
- $(\forall Z \in \mathcal{X}) \ Z \subseteq \ U \lor \ Z \subseteq \ V$

Theorem

Let $g \in C(\mathbb{R}, \mathbb{R})$. Then $\mathcal{K}_{(-\infty,g)\cup(g,\infty)} = \left\{ \bigcup_{X \in \mathcal{X}} CL(X) \colon \mathcal{X} \subseteq \mathcal{P}(\mathbb{R}) \text{ is separated} \right\}.$

For any open set $U \subseteq \mathbb{R}$ denote $U' = \mathbb{R} \setminus \operatorname{cl} U$.

Fact

If U is a regular open set then U' is a regular open set and $U \cap U' = \emptyset$.

For any open set $U \subseteq \mathbb{R}$ denote $U' = \mathbb{R} \setminus \operatorname{cl} U$.

Fact

If U is a regular open set then U' is a regular open set and $U \cap U' = \emptyset$.

Theorem

1.
$$\mathcal{K}_{\mathcal{G}} \supseteq \left\{ \bigcup_{X \in \mathcal{X}} CL(X) \colon \mathcal{X} \subseteq \mathcal{P}(\mathbb{R}) \text{ is separated} \right\}.$$

For any open set $U \subseteq \mathbb{R}$ denote $U' = \mathbb{R} \setminus \operatorname{cl} U$.

Fact

If U is a regular open set then U' is a regular open set and $U \cap U' = \emptyset$.

Theorem

Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$, $\mathcal{G} \neq \emptyset$. The following conditions are equivalent.

1.
$$\mathcal{K}_{\mathcal{G}} \supseteq \left\{ \bigcup_{X \in \mathcal{X}} CL(X) \colon \mathcal{X} \subseteq \mathcal{P}(\mathbb{R}) \text{ is separated} \right\}.$$

2. (2a) For every $x \in \mathbb{R}$, $CL(\mathbb{R} \setminus \{x\}) \in \mathcal{K}_{\mathcal{G}}$, and (2b) for every regular open set $U \subseteq \mathbb{R}$, $CL(U) \cup CL(U') \in \mathcal{K}_{\mathcal{G}}$.

For any open set $U \subseteq \mathbb{R}$ denote $U' = \mathbb{R} \setminus \operatorname{cl} U$.

Fact

If U is a regular open set then U' is a regular open set and $U \cap U' = \emptyset$.

Theorem

1.
$$\mathcal{K}_{\mathcal{G}} \supseteq \left\{ \bigcup_{X \in \mathcal{X}} CL(X) \colon \mathcal{X} \subseteq \mathcal{P}(\mathbb{R}) \text{ is separated} \right\}.$$

- 2. (2a) For every $x \in \mathbb{R}$, $CL(\mathbb{R} \setminus \{x\}) \in \mathcal{K}_{\mathcal{G}}$, and (2b) for every regular open set $U \subseteq \mathbb{R}$, $CL(U) \cup CL(U') \in \mathcal{K}_{\mathcal{G}}$.
- 3. (3a) For every $x \in \mathbb{R}$ there exists $f \in C(\mathbb{R}, \mathbb{R})$ such that $CL(\mathbb{R} \setminus \{x\}) = E_{\mathcal{G}}(\{f\})$, and
 - (3b) for any $x, y \in \mathbb{R}$ and any regular open set $U \subseteq \mathbb{R}$ such that $x \in U$ and $y \in U'$, there exists $f \in F_{\mathcal{G}}(CL(U) \cup CL(U'))$ such that $f \upharpoonright \{x, y\} \notin \mathcal{G} \upharpoonright \{x, y\}.$

1.
$$\mathcal{K}_{\mathcal{G}} \subseteq \left\{ \bigcup_{X \in \mathcal{X}} CL(X) \colon \mathcal{X} \subseteq \mathcal{P}(\mathbb{R}) \text{ is separated} \right\}.$$

Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$, $\mathcal{G} \neq \emptyset$. The following conditions are equivalent.

1.
$$\mathcal{K}_{\mathcal{G}} \subseteq \left\{ \bigcup_{X \in \mathcal{X}} CL(X) \colon \mathcal{X} \subseteq \mathcal{P}(\mathbb{R}) \text{ is separated} \right\}.$$

2. There exists a linearly ordered set (I,<) and an indexed system $\{\mathcal{G}_i\colon i\in I\}$ such that

Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$, $\mathcal{G} \neq \emptyset$. The following conditions are equivalent.

1.
$$\mathcal{K}_{\mathcal{G}} \subseteq \left\{ \bigcup_{X \in \mathcal{X}} CL(X) \colon \mathcal{X} \subseteq \mathcal{P}(\mathbb{R}) \text{ is separated} \right\}.$$

2. There exists a linearly ordered set (I,<) and an indexed system $\{\mathcal{G}_i\colon i\in I\}$ such that

(a)
$$\mathcal{G} = \bigcup_{i \in I} \mathcal{G}_i$$
,

Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$, $\mathcal{G} \neq \emptyset$. The following conditions are equivalent.

1.
$$\mathcal{K}_{\mathcal{G}} \subseteq \left\{ \bigcup_{X \in \mathcal{X}} CL(X) \colon \mathcal{X} \subseteq \mathcal{P}(\mathbb{R}) \text{ is separated} \right\}.$$

2. There exists a linearly ordered set (I,<) and an indexed system $\{\mathcal{G}_i\colon i\in I\}$ such that

(a)
$$\mathcal{G} = \bigcup_{i \in I} \mathcal{G}_i$$
,

(b) for every $i \in I$, $\mathcal{G}_i \subseteq C(\mathbb{R}, \mathbb{R})$ is complete and connected,

Let $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$, $\mathcal{G} \neq \emptyset$. The following conditions are equivalent.

1.
$$\mathcal{K}_{\mathcal{G}} \subseteq \left\{ \bigcup_{X \in \mathcal{X}} CL(X) \colon \mathcal{X} \subseteq \mathcal{P}(\mathbb{R}) \text{ is separated} \right\}.$$

2. There exists a linearly ordered set (I, <) and an indexed system $\{\mathcal{G}_i \colon i \in I\}$ such that

(a)
$$\mathcal{G} = igcup_{i \in I} \mathcal{G}_i$$
,

- (b) for every $i \in I$, $\mathcal{G}_i \subseteq C(\mathbb{R}, \mathbb{R})$ is complete and connected,
- (c) for every $i \in I$ there exist functions $g_i^-, g_i^+ \in C(\mathbb{R}, \mathbb{R}^*)$ such that

$$\bigcup_{j < i} \mathcal{G}_j \subseteq (-\infty, g_i^-), \quad \mathcal{G}_i \subseteq (g_i^-, g_i^+), \quad \text{and} \quad \bigcup_{j > i} \mathcal{G}_j \subseteq (g_i^+, \infty).$$

Some open problems

What about the complements of families $\{g\}$, $(-\infty, g)$, $(-\infty, g) \cup (g, \infty)$?

Some open problems

What about the complements of families $\{g\}$, $(-\infty, g)$, $(-\infty, g) \cup (g, \infty)$?

Fact

Let $g \in C(\mathbb{R}, \mathbb{R})$. Then $\mathcal{K}_{C(\mathbb{R}, \mathbb{R}) \setminus \{g\}} = \{ CL(\mathbb{R}) \setminus \{\mathbb{R}\}, CL(\mathbb{R}) \}.$

What about the complements of families $\{g\}$, $(-\infty, g)$, $(-\infty, g) \cup (g, \infty)$?

Fact

Let $g \in C(\mathbb{R}, \mathbb{R})$. Then $\mathcal{K}_{C(\mathbb{R}, \mathbb{R}) \setminus \{g\}} = \{ CL(\mathbb{R}) \setminus \{\mathbb{R}\}, CL(\mathbb{R}) \}.$

Problem

Characterize families $\mathcal{G} \subseteq C(\mathbb{R}, \mathbb{R})$ such that $\mathcal{K}_{\mathcal{G}}$ satisfies one of these conditions:

- $\mathcal{K}_{\mathcal{G}} = \{ CL(\mathbb{R}) \setminus \{\mathbb{R}\}, CL(\mathbb{R}) \}$,
- + $\mathcal{K}_\mathcal{G}$ has exactly two elements,
- $\mathcal{K}_{\mathcal{G}}$ is finite,
- $\mathcal{K}_{\mathcal{G}}$ is linearly ordered.