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+ let G be a fixed family of functions
- given a family of functions F, consider all sets X such that

(Vfe F)(3geg) fIX=glX

- given a family of sets X, consider all functions f such that

VXeX)3Tge§) fIX=9glX

+ we study the above described relation between families of
functions and families of sets

+ we restrict ourselves to continuous real functions and closed
sets of reals
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+ C(X,Y): the family of all continuous functions from X to Y
« CLx(Z): the family of all subsets of Z closed in X
- we write CL(Z) instead of CLg(Z)

Let F be a family of functions, E be a set. Denote:

« FIE={f|E:feF}
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Galois connection

Let G C C(R,R). For £ C CL(R) and F C C(R,R) denote:

. Eg(F)={E € CLR): (Vf€ F) f|E€ G | E}
- Fg(§)={fe CR,R): VE€ &) fIE€G | E}

Maps Eg: P(C(R,R)) — P(CL(R)), Fg: P(CL(R)) = P(C(R,R))
form a Galois connection between partial orders (P(C(R,R)), Q)
and (P(CL(R,R)), Q).

+ Eg, Fg are inclusion-reversing

« £ C Eg(F)ifandonly if F C Fg(€)

« Ego Fg: P(CL(R)) — P(CL(R)) and

Fgo Eg: P(C(R,R)) — P(C(R,R)) are closure operators

Denote:

* Kg ={€ C CLR): € = Eg(Fg(€))} = {Eg(F): F C C(R,R))}

* Lo ={F C CR,R): F = Fg(Eg(F))} = {Fg(£): £ € CL(R))}
Then (Kg,C) and (Lg, C) are dually isomorphic complete lattices in
which A coincides with .
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The least elements of lattices K¢, £

Fact
Forevery G C C(R,R), A Lg = Fg({R}) = G.

Corollary
Any F C C(R,R) is the least element of some lattice Lg.
Which £ C CL(R) do admit G C C(R,R) such that A Kg = €7

Theorem
Let £ C CL(R). The following conditions are equivalent.

1. There exists G C C(R,R) such that £ € Kg.
2. There exists G C C(R,R) such that & = A\ Kg.
3. £ is hereditary, that is, CL(E) C £ forall E € E.

To prove 3 = 2 we have to “fool” the Intermediate Value Theorem.
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Theorem
There exists G C C(R,R) such that £ € K¢ for every nonempty
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Lattice ; containing all nonempty hereditary families

Theorem
There exists G C C(R,R) such that £ € K¢ for every nonempty
hereditary family & C CL(R).

Sketch of the proof

Let {E,: a < 2¥} be an enumeration of all nonempty closed sets.
For every o < 2%, define z,,y, € R and g,,, € C(R,R) so that for
every interval I with E, N I# () there is n € w such that g, »,(2) = ya
forall z ¢ I and go n(23) # ys forall 8 < a.

Let G = {ga.n: @ < 2¥, n € w}. For every nonempty hereditary family

&£ C CL(R), let F be the family consisting of all constant functions
with values y, where E, € CL(R) \ €. Then £ = Eg(F). g.e.d.

Problem
Can one define such G in some more constructive way?
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determined by a single function




Denote R* = RU {—o0, 00}.
For f, g € C(R,R*), let us write:
+ < g for (Vo € R) f(a) < g(a),
« f<gfor(VzeR) flz) < g(z).
Define intervals of functions:
* (f,9) ={he C(R,R): f<h < g},
“[fi9l ={he CR,R): f<h< g},
. etc.
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Lattice Ky,

Theorem
Let G C C(R,R), G # (. The following conditions are equivalent.

1. Kg C{CL(E): E € CL(R)}.
2. There exist hy, hy € C(R,R*) such that G = [hy, hs].

Corollary
Let G C C(R,R), G # (. The following conditions are equivalent.

1. Kg = {CL(E): E € CL(R)}.
2. There exist hy, hy € C(R,R*) such that hy < hy,
h;l[R] U }LEI[R] =R, and G = [hy, ha).

Corollary
Let g € C(R,R). Then
/C(_Oqg] = /C[gpo) = /C{g} = {CL(E): E e CL(R)}.
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_
=N

[h1 ho] = {CL : Fe CL
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Recall that CL(X) = CLg(X) ={F € CL(R): E C X}.

Theorem
Let g€ C(R,R). Then K(_o 4) = {CL(X): X CR}.

Theorem
Let G C C(R,R), G # (. The following conditions are equivalent.

1. Kg 2 {CL(X): X CR}.
2. Forevery zc R, CL(R\ {z}) € Kg.
3. For every z € R there exists f € C(R,R) such that

CL(R\ {z}) = Eg({f}).

The family { CL(R \ {z}): z € R} in condition 2 is minimal, that is, by
excluding any set we obtain a strictly weaker condition.
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We identify a function f: R — R and its graph f C R2.
Definition
A family G C C(R,R) is:

- complete if forany g € C(R,R), if gC |JGthenge G

- connected if for any (z, y), (z/,3') € |JG such that z # 1/, there
exists g € G such that g(z) = y and g(z’) = '

Theorem
Let G C C(R,R), G # (. The following conditions are equivalent.

1. Kg C{CL(X): X CR}.
2. G is complete and connected.
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Corollary
Let G C C(R,R), G # (. The following conditions are equivalent.

1. Kg = {CL(X): X C R}
2. G is complete, connected, and for every z € R there exists
f € C(R,R) such that f\|JG = f | {z}.
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Corollary
Let G C C(R,R), G # (. The following conditions are equivalent.

1. Kg = {CL(X): X C R}
2. G is complete, connected, and for every z € R there exists
f € C(R,R) such that f\|JG = f | {z}.

Corollary
Let g C(R,R). Then K4 o0) = K(—o0,g) = {CL(X): X CR}.
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Definition

A family X C P(R) is separated if for any distinct sets X, Y e X
there exist disjoint open sets U, V C R such that:

- XCUAYCV
- (VZEX)ZC UV ZCV
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Definition
A family X C P(R) is separated if for any distinct sets X, Y e X
there exist disjoint open sets U, V C R such that:

s XCUNYCV

- (VZeX)ZC UV ZCV

Theorem
Let g € C(R,R). Then
K(—o0,9)U(gi00) = {UX€X CL(X): X CP(R) s separated}.
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For any open set U C R denote U’ =R\ clU.

Fact

If U is a reqular open set then U’ is a reqular open set and
unu =0.
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For any open set U C R denote U’ =R\ clU.

Fact
If Uis a regular open set then U’ is a regular open set and
unu =0.

Theorem
Let G C C(R,R), G # (. The following conditions are equivalent.

1. Kg 2 CL(X): X CP(R) is separated ;.
Xex
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For any open set U C R denote U’ =R\ clU.

Fact

If U is a reqular open set then U’ is a reqular open set and
unu =0.

Theorem

Let G C C(R,R), G # (. The following conditions are equivalent.

1. Kg 2 CL(X): X CP(R) is separated ;.
Xex

2. (2a) Foreveryz€ R, CL(R\ {z}) € Kg, and
(2b) for every regular open set U C R, CL(U) U CL(U’) € Kg.
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For any open set U C R denote U’ =R\ clU.

Fact
If U is a reqular open set then U’ is a reqular open set and
unu =0.

Theorem
Let G C C(R,R), G # (. The following conditions are equivalent.

1. Kg 2 {UXGX CL(X): X CP(R)is separated}.
2. (2a) Foreveryz€ R, CL(R\ {z}) € Kg, and
(2b) for every regular open set U C R, CL(U) U CL(U’) € Kg.

3. (3a) For every z c R there exists f € C(R,R) such that
CL(R \ {1}) = FEg ({f}), and
(3b) for any z,y € R and any reqular open set U C R such that z € U
and y € U, there exists f € Fg(CL(U) U CL(U")) such that

fiH{z,y} ¢ G [{zy}
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Theorem
Let G C C(R,R), G # (. The following conditions are equivalent.

1. Kg iU CL(X): X C P(R) is separated ;.
Xex
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Theorem
Let G C C(R,R), G # (. The following conditions are equivalent.
1. Kg C {UXGX CL(X): X CP(R)is separated}.

2. There exists a linearly ordered set (I, <) and an indexed system
{G;: i€ I} such that
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Theorem
Let G C C(R,R), G # (. The following conditions are equivalent.

1. Kg<CiU CL(X): X C P(R) is separated ;.
Xex

2. There exists a linearly ordered set (I, <) and an indexed system
{G;: i€ I} such that

(@) G = UiEI Gi,
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Theorem
Let G C C(R,R), G # (. The following conditions are equivalent.

1. Kg C {UXGX CL(X): X CP(R)is separated}.
2. There exists a linearly ordered set (I, <) and an indexed system
{G;: i€ I} such that

(@) G = UiEI Tl
(b) foreveryic I, G; C C(R,R) is complete and connected,
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Theorem
Let G C C(R,R), G # (. The following conditions are equivalent.

1. Kg C {UXGX CL(X): X CP(R)is separated}.
2. There exists a linearly ordered set (I, <) and an indexed system
{G;: i€ I} such that

(a) g = Uig]gi’
(b) foreveryic I, G; C C(R,R) is complete and connected,
(c) forevery i€ I there exist functions g; , g € C(R,R*) such that

UgJ Oof]z ) gtg(gjm(,h ) and Ugj Lv

Jj<i i>i
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Some open problems

What about the complements of families {g}, (—, g),



Some open problems

What about the complements of families {g}, (—, g),

Fact
Let g € C(R,R). Then Kc@ep (g = {CL(R) \ {R}, CL(R)}.



Some open problems

What about the complements of families {g}, (—, g),
(=00, 9) U (g,00)?

Fact
Let g € C(R,R). Then K¢z (g = {CL(R) \ {R}, CL(R)}.

Problem
Characterize families G C C(R,R) such that Kg satisfies one of

these conditions:
" Kg = {CL[R) \ {R}, CL(R)},
+ Kg has exactly two elements,
« Kg is finite,
« Kg is linearly ordered.
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