Permitted sets are perfectly meager in transitive sense

Peter Eliaš

Mathematical Institute, Slovak Academy of Sciences, Košice, Slovakia

For $x \in \mathbb{R}$, let $||x|| = \min\{|x - k| : k \in \mathbb{Z}\}$.

Definition. A set $X \subseteq \mathbb{R}$ is called:

- an *N-set* (a set of absolute convergence) if there exists a trigonometric series absolutely converging on *X* which does not absolutely converge everywhere \iff if there exists $\{r_n\}_{n\in\mathbb{N}}$ such that $r_n \ge 0$, $\sum r_n = \infty$, and for all $x \in X$, $\sum r_n ||nx|| < \infty$;
- an N_0 -set if there exists increasing $\{n_k\}_{k \in \mathbb{N}}$ such that for all $x \in X$, $\sum ||n_k x|| < \infty$;
- an A-set (an Arbault set) if there exists increasing $\{n_k\}_{k\in\mathbb{N}}$ such that for all $x \in X$, $\lim ||n_k x|| = 0$.

Let \mathcal{N} , \mathcal{N}_0 , \mathcal{A} denote the families of all N-, N_0-, and A-sets, respectively.

Facts. 1. $\mathcal{N}_0 \subseteq \mathcal{N} \cap \mathcal{A}, \ \mathcal{N} \cup \mathcal{A} \subseteq \mathbb{K} \cap \mathbb{L}$;

- 2. families \mathcal{N} , \mathcal{N}_0 , \mathcal{A} are closed under taking subsets, linear transformations, and generating subgroups of $\langle \mathbb{R}, + \rangle$;
- 3. $\mathcal{N},~\mathcal{N}_0,~\mathcal{A}$ are not ideals.

Definition. For a family \mathcal{F} , we say that a set X is \mathcal{F} -permitted if $X \cup Y \in \mathcal{F}$ for all $Y \in \mathcal{F}$. We denote $\text{Perm}(\mathcal{F})$ the family of all \mathcal{F} -permitted sets.

Theorem. (Arbault, Erdös, Kholshchevnikova) Any countable set is permitted for families \mathcal{N} , \mathcal{N}_0 , \mathcal{A} .

Theorem. (Bukovský, Kholshchevnikova, Repický) Any γ -set is permitted for families $\mathcal{N}, \mathcal{N}_0, \mathcal{A}$.

Problem. (Bary) Does there exists a perfect \mathcal{N} -permitted set?

Conjecture. (Bukovský) If X is \mathcal{N} -, \mathcal{N}_0 -, or \mathcal{A} -permitted then X is perfectly meager, i.e. meager relatively to any perfect subset of \mathbb{R} .

Definition. Let $a \in \mathbb{N}^{\mathbb{N}}$ be increasing, $m \in \mathbb{Z}$, $z \in \mathbb{Z}^{\mathbb{N}}$. We say that z is a *good expansion* of m by a if

$$m = \sum_{n \in \mathbb{N}} z(n) \, a(n)$$

and for all n,

$$\left|\sum_{j< n} z(j) \, a(j)\right| \leq \frac{a(n)}{2}.$$

Facts.

- 1. For any $m \in \mathbb{Z}$ and any increasing $a \in \mathbb{N}^{\mathbb{N}}$ such that a(0) = 1, there exists a good expansion of m by a, possibly more than one.
- 2. If z is a good expansion then supp $(z) = \{n : z(n) \neq 0\}$ is finite.
- 3. If z is a good expansion by a then for all n,

$$|z(n)| \le \frac{1}{2} \left(1 + \frac{a(n+1)}{a(n)} \right).$$

Notation. For $a \in \mathbb{N}^{\mathbb{N}}$, let

$$A(a) = \left\{ x : \lim_{n \to \infty} \|a(n) x\| = 0 \right\}.$$

Let

$$S = \left\{ a \in \mathbb{N}^{\mathbb{N}} : a \text{ is increasing, } a(0) = 1, \text{ and} \\ \lim_{n \to \infty} \frac{a(n)}{a(n+1)} = 0 \right\}.$$

Fact. Family $\{A(a) : a \in S\}$ is a base of A.

Theorem. For $a, b \in S$, $k \in \mathbb{N}$, let z_k be a good expansion of b(k) by a. Then $A(a) \subseteq A(b)$ if and only if

(1) $\forall n \exists j \forall k \geq j \ z_k(n) = 0$, and (2) $\exists m \forall k \ \sum_{n \in \mathbb{N}} |z_k(n)| \leq m$.

Problem. Is there an analogue of the previous theorem for the families \mathcal{N} and \mathcal{N}_0 ?

Notation. For $a, b \in S$, let $a \prec b$ denote that for any sequence $\{z_k\}_{k \in \mathbb{N}}$ of good expansions of b(k)'s by a, the conditions (1) and (2) hold true.

Corollary. A set X is A-permitted if and only if for every $a \in S$ there exists $b \in S$ such that $a \prec b$ and $X \subseteq A(b)$. **Definition.** A subset X of a topological space H is *perfectly meager* if for every perfect set $P \subseteq H$, $X \cap P$ is meager in the relative topology of P.

Theorem. (Bartoszyński) For $X \subseteq 2^{\omega}$, X is perfectly meager if and only if for every perfect set P there exists an F_{σ} -set F such that $X \subseteq F$ and F is meager in P.

Definition. (Nowik, Weiss) A subset X of a topological group H is *perfectly meager in transitive sense* if for any perfect set $P \subseteq H$ there exists an F_{σ} -set F such that $X \subseteq F$ and for all $t \in H$, $(F + t) \cap P$ is meager in P.

Theorem. Every \mathcal{N}_0 - or \mathcal{A} -permitted set is perfectly meager in transitive sense.

Problem. Is the same true for \mathcal{N} -permitted sets?

Problem. Can one prove that the families $Perm(\mathcal{N})$, $Perm(\mathcal{N}_0)$, and $Perm(\mathcal{A})$ are the same?