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Notation

T – the unit circle – Polish topological group

multiplicative notation: T = {z ∈ C : |z| = 1}
x ∈ R 7→ e2πix ∈ T
multiplication and topology inherited from C

additive notation: T = R/Z
x ∈ R 7→ φ(x) = [x]∼ where x ∼ y ⇔ x− y ∈ Z
addition modulo integers, quotient topology
‖t‖ = min{|x| : φ(x) = t}, ‖·‖ : T→

[
0, 12
]

%(x, y) = ‖x− y‖ is a metric on T

For X,Y metric spaces, C(X,Y ) is space of all continuous
functions f : X → Y with the topology of uniform convergence.

Characters of T, i.e., group homomorphisms χ ∈ C(T,T), are
exactly functions χn(x) = nx for n ∈ Z.
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Dirichlet’s and Kronecker’s Theorems

Dirichlet’s Theorem
Let x1, . . . , xk ∈ T, ε > 0, m ∈ N.
There exists n > m such that ‖nxi‖ < ε for i = 1, . . . , k.

Kronecker’s Theorem
Let x1, . . . , xk ∈ T are independent, i.e., `1x1 + · · ·+ `kxk = 0
implies `1 = · · · = `k = 0, for all `1, . . . , `k ∈ Z.
Let y1, . . . , yk ∈ T, ε > 0, m ∈ N.
Then there exists n > m such that ‖nxi − yi‖ < ε for i = 1, . . . , k.
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Kronecker sets

Definition (Hewitt, Kakutani (1960), Rudin (1962))

A closed set E ⊆ T is a Kronecker set if
∀f∈C(T,T) ∀ε>0 ∀m ∃n>m ∀x∈E ‖nx− f(x)‖ < ε.

Every finite independent set is Kronecker.

Every Kronecker set is independent.

(Hewitt, Kakutani, 1960) There exists a perfect Kronecker set.

(Kaufman, 1967) If P is a perfect totally disconnected set
then {f ∈ C(P,T) : f [P ] is Kronecker} is comeager in
C(P,T).
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Dirichlet sets

Definition (Kahane (1969))

A closed set E ⊆ T is a Dirichlet set if
∀ε>0 ∀m ∃n>m ∀x∈E ‖nx‖ < ε.

Every Kronecker set is Dirichlet.

Every Dirichlet set has Lebesgue measure zero.

A shift of a Dirichlet set (i.e., a+ E where a ∈ T and E is
Dirichlet) is a Dirichlet set.

If E is a Dirichlet set then E + E is a Dirichlet set.
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Kronecker and Dirichlet sets

For E ⊆ T, denote UA(E) the set of all functions that are
uniformly approximable by characters on E, i.e.,
UA(E) = {f ∈ C(E,T) : ∀ε>0 ∀m ∃|n|>m ∀x∈E ‖nx− f(x)‖ < ε}

= limit points of {χn � E : n ∈ Z} in C(E,T).

Then E is a Kronecker set iff UA(E) = C(E,T),
E is a Dirichlet set iff 0E ∈ UA(E).

(Körner, 1970) There exists a countable independent Dirichlet
set which is not Kronecker.

(Körner, 1974) For every perfect set P ⊆ T there exists a
perfect Kronecker set K such that P +K = T.
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strong Dirichlet sets

E ⊆ T is a Dirichlet set iff
∀a∈T ∀ε>0 ∀m ∃n>m ∀x∈E ‖n(x+ a)‖ < ε.

Can we omit the parentheses?

Definition
A closed set E ⊆ T is a strong Dirichlet set if

∀a∈T ∀ε>0 ∀m ∃n>m ∀x∈E ‖nx+ a‖ < ε.

Then E is a strong Dirichlet set iff UA(E) contains all constant
functions.
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Affinely independent sets

Fact
1. Every strong Dirichlet set E is affinely independent, i.e.,
`1x1 + . . . `kxk = 0 implies `1 + · · ·+ `k = 0, for all
x1, . . . , xk ∈ E and `1, . . . , `k ∈ Z.

2. Every finite affinely independent set is strong Dirichlet.

For E ⊆ T, denote

Aff(E) = {x ∈ T : (∃x1, . . . , xk ∈ E)(∃`, `1, . . . , `k ∈ Z)
n = `1 + · · ·+ `k 6= 0 ∧ `x = n1x1 + · · ·+ `kxk}.

Then E is affinely independent iff E ⊆ Aff(F ) for some
independent set F .

Theorem
If E ⊆ T is Kronecker then Aff(E) is strong Dirichlet.

Peter Eliaš Variations on Kronecker and Dirichlet sets on the circle



Affinely independent sets

Fact
1. Every strong Dirichlet set E is affinely independent, i.e.,
`1x1 + . . . `kxk = 0 implies `1 + · · ·+ `k = 0, for all
x1, . . . , xk ∈ E and `1, . . . , `k ∈ Z.

2. Every finite affinely independent set is strong Dirichlet.

For E ⊆ T, denote

Aff(E) = {x ∈ T : (∃x1, . . . , xk ∈ E)(∃`, `1, . . . , `k ∈ Z)
n = `1 + · · ·+ `k 6= 0 ∧ `x = n1x1 + · · ·+ `kxk}.

Then E is affinely independent iff E ⊆ Aff(F ) for some
independent set F .

Theorem
If E ⊆ T is Kronecker then Aff(E) is strong Dirichlet.

Peter Eliaš Variations on Kronecker and Dirichlet sets on the circle



Affinely independent sets

Fact
1. Every strong Dirichlet set E is affinely independent, i.e.,
`1x1 + . . . `kxk = 0 implies `1 + · · ·+ `k = 0, for all
x1, . . . , xk ∈ E and `1, . . . , `k ∈ Z.

2. Every finite affinely independent set is strong Dirichlet.

For E ⊆ T, denote

Aff(E) = {x ∈ T : (∃x1, . . . , xk ∈ E)(∃`, `1, . . . , `k ∈ Z)
n = `1 + · · ·+ `k 6= 0 ∧ `x = n1x1 + · · ·+ `kxk}.

Then E is affinely independent iff E ⊆ Aff(F ) for some
independent set F .

Theorem
If E ⊆ T is Kronecker then Aff(E) is strong Dirichlet.

Peter Eliaš Variations on Kronecker and Dirichlet sets on the circle



Affinely independent sets

Fact
1. Every strong Dirichlet set E is affinely independent, i.e.,
`1x1 + . . . `kxk = 0 implies `1 + · · ·+ `k = 0, for all
x1, . . . , xk ∈ E and `1, . . . , `k ∈ Z.

2. Every finite affinely independent set is strong Dirichlet.

For E ⊆ T, denote

Aff(E) = {x ∈ T : (∃x1, . . . , xk ∈ E)(∃`, `1, . . . , `k ∈ Z)
n = `1 + · · ·+ `k 6= 0 ∧ `x = n1x1 + · · ·+ `kxk}.

Then E is affinely independent iff E ⊆ Aff(F ) for some
independent set F .

Theorem
If E ⊆ T is Kronecker then Aff(E) is strong Dirichlet.

Peter Eliaš Variations on Kronecker and Dirichlet sets on the circle



Kronecker vs. strong Dirichlet vs. Dirichlet sets

Theorem
1. There exists a countable independent Dirichlet set which is
not a strong Dirichlet set.

2. There exists a countable independent strong Dirichlet set
which is not a Kronecker set.
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Properties of UA(E)

Let E ⊆ T.

UA(E) is a closed subgroup of C(E,T).
UA(E) = C(E,T) iff E is a Kronecker set.

UA(E) 6= ∅ iff E is a Dirichlet set.

If UA(E) 6= ∅ then {χn � E : n ∈ Z} ⊆ UA(E).

Peter Eliaš Variations on Kronecker and Dirichlet sets on the circle



Properties of UA(E)

Let E ⊆ T.

UA(E) is a closed subgroup of C(E,T).
UA(E) = C(E,T) iff E is a Kronecker set.

UA(E) 6= ∅ iff E is a Dirichlet set.

If UA(E) 6= ∅ then {χn � E : n ∈ Z} ⊆ UA(E).

Peter Eliaš Variations on Kronecker and Dirichlet sets on the circle



Properties of UA(E)

Let E ⊆ T.

UA(E) is a closed subgroup of C(E,T).
UA(E) = C(E,T) iff E is a Kronecker set.

UA(E) 6= ∅ iff E is a Dirichlet set.

If UA(E) 6= ∅ then {χn � E : n ∈ Z} ⊆ UA(E).

Peter Eliaš Variations on Kronecker and Dirichlet sets on the circle



Properties of UA(E)

Let E ⊆ T.

UA(E) is a closed subgroup of C(E,T).
UA(E) = C(E,T) iff E is a Kronecker set.

UA(E) 6= ∅ iff E is a Dirichlet set.

If UA(E) 6= ∅ then {χn � E : n ∈ Z} ⊆ UA(E).

Peter Eliaš Variations on Kronecker and Dirichlet sets on the circle



Stable families of functions

For F ⊆ C(T,T), denote K(F) = {E ⊆ T : F � E ⊆ UA(E)},
where F � E = {f � E : f ∈ F}.

For E ⊆ P(T), denote K(E) =
⋂

E∈E
UAT(E),

where UAT(E) = {f ∈ C(T,T) : f � E ∈ UA(E)}.

K(E) is a closed subgroup of C(T,T), for every E ⊆ P(T).
F ⊆ K(K(F)), for every F ⊆ C(T,T).

Definition
F ⊆ C(T,T) is stable if F = K(K(F)).
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Stable families of functions

Problem
Characterize stable families F ⊆ C(T,T) and the corresponding
families K(F) ⊆ P(T).

Theorem
Family {χn : n ∈ Z} = K(D) is stable, where
D = {E ⊆ T : E is a Dirichlet set}.
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