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Abstract Categorical approach to probability leads to better understanding of basic
notions and constructions in generalized (fuzzy, operational, quantum) probability, where
observables—dual notions to generalized random variables (statistical maps)—play a major
role. First, to avoid inconsistencies, we introduce three categories L, S, and P, the objects
and morphisms of which correspond to basic notions of fuzzy probability theory and oper-
ational probability theory, and describe their relationships. To illustrate the advantages of
categorical approach, we show that two categorical constructions involving observables
(related to the representation of generalized random variables via products, or smearing
of sharp observables, respectively) can be described as factorizing a morphism into com-
position of two morphisms having desired properties. We close with a remark concerning
products.

Keywords Generalized probability · Categorical approach · Observable · Statistical map ·
Smearing · Effect algebra

1 Introduction

A fuzzification of the classical (Boolean) random events initiated by L. A. Zadeh [28],
i.e., the transition from σ -fields of sets to measurable fuzzy sets, underwent a consider-
able evolution [2, 21, 24, 25]. In a broader context, fuzzy random events can be viewed
as a particular case of effect algebras, D-posets, and other quantum structures [7]. Cate-
gorical methods help to understand the transition from classical probability theory to fuzzy
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Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10773-017-3436-1&domain=pdf
mailto:elias@saske.sk
mailto:fric@saske.sk


4074 Int J Theor Phys (2017) 56:4073–4083

probability theory, lead to a simplification and offer a more consistent terminology and
notation [10–19].

In [20], R. J. Greechie and D. J. Foulis have proposed to study “lifting problems for
morphisms and measures”. Roughly, if A,B,C are mathematical structures, φ : A −→ B

and ι : A −→ C are mappings, the problem is to find a mapping φ∗ : C −→ B that makes
the underlying diagram commutative in the sense that φ = φ∗ ◦ ι. If φ∗ can be found, it is
said to be obtained by lifting φ through ι to φ∗, see Fig. 1a.

Along these lines, we are interested in situations where (in a given category) we have a
morphism h : A −→ B and we are looking for two morphisms g : A −→ C and f : C −→
B such that h factorizes into the composition h = f ◦ g, see Fig. 1b. Additionally (see
Construction I in Section 2), we may require, for example, that g is injective and f is
conservative (standard).

The classical probability theory starts with a probability space (�, A, p), where � is
the set (universe) of outcomes (elementary events) of a random experiment, A is a σ -field
of random events (subsets of �), p is a probability measure on A, and p(A), A ∈ A,
measures how big (relatively to the sure event) A is. In a minimal categorical upgrading
of the classical probability theory [18, 19], each probability space (�, A, p) is replaced
by its fuzzification

(
�,M(A),

∫
(·)dp

)
, where M(A) is the full Łukasiewicz tribe of all

measurable functions into [0,1] (fuzzy random events) and
∫
(·)dp is the probability integral

with respect to p. A fundamental role is played by observables, for example, probability
measures and probability integrals are observables into a special object M(T), where T is
the trivial σ -field {∅, �}, card(�) = 1 (cf. [10]). Clearly, M(T) and [0,1] can be identified.

Recall that M(A) is a subalgebra of M(T)�, equipped with the usual partial (pointwise)
order, Łukasiewicz operations defined pointwise: (u⊕v)(ω) = u(ω)⊕v(ω) = min{1, u(ω)+
v(ω)}, (u � v)(ω) = u(ω) � v(ω) = max{0, u(ω) + v(ω) − 1}, u∗(ω) = 1 − u(ω), ω ∈ �,
and pointwise sequential convergence. In what follows, we identify A ∈ A and its indicator
function χA ∈ M(A).

In fuzzy probability theory, as developed by S. Gudder in [21, 22], M(A) is studied
as an effect algebra, denoted by E(�, A), and effect σ -homomorphisms play a key role.
The notation and terminology in [22] is not strictly consistent (albeit standard). For exam-
ple, M+

1 (�, A) denotes the set of all probability measures on A, but the same symbol also
denotes states, i.e., the probability integrals

∫
(·)dp on E(�, A). Similarly, in theorems and

their proofs a probability measure p is treated as
∫
(·)dp (the notion of a probability mea-

sure on p. 879, resp. the notion of a distribution, p. 880). Likewise, an observable (effect
σ -homomorphism) is a map on B into E(�, A), but often it is understood as its unique
sequentially continuous extension over E(�, B). Further, a statistical map is defined as a

(a) (b)

Fig. 1 Lifting (a), factorization (b)
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special map on M+
1 (�, A) into M+

1 (�, B), but often treated as a map on states on E(�, A)

into states on E(�, B).
In operational probability theory, as developed by S. Bugajski in [2, 3], the fundamental

role is played by statistical maps (generalized random variables) mapping M+
1 (�, A) into

M+
1 (�, B).
It is known that D-posets and effect algebras are isomorphic structures [4, 7, 8, 26, 27].

It is also known that effect σ -homomorphisms can be viewed as sequentially continuous
D-homomorphisms, i.e., maps preserving partial order, the top and the bottom elements
(constant functions 0� and 1� in case of M(A)), and the partial operation of difference
(u 	 v is defined iff v ≤ u). Note that the sequential continuity of probability measures and
integrals follows from the Lebesgue dominated convergence theorem. An interested reader
can find details about effect algebras, D-posets, and their relationship in [4, 7, 26]. To avoid
inconsistencies, in the next section we introduce three categories L, S, and P, the objects and
morphisms of which correspond to basic notions of fuzzy probability theory and operational
probability theory. We describe their relationships. In the present paper we utilize only very
basic notions of the category theory (objects are structured sets and morphisms are structure
preserving maps). Additional information can be found, for example, in [1, 5].

2 Three Categories

Definition 1 Let (�, A) and (�, B) be measurable spaces. A sequentially continuous D-
homomorphism h : M(B) −→ M(A) is said to be an observable. Moreover, if h(B) ∈ A
for all B ∈ B, then h is said to be conservative.

Denote L the category of full Łukasiewicz tribes as objects (i.e., objects are of the form
M(A) for some σ -field of sets A) and observables as morphisms.

As stated in the introduction, observables into M(T) = [0, 1] are exactly probability
integrals; they are called states. Denote S(M(A)) the set of all states on M(A).

Let h : M(B) −→ M(A) be an observable. The compositions s ◦ h, where s is a state
on M(A), define a map Th on the set S(M(A)) into the set S(M(B)), i.e., Th(s) = s ◦ h.
The “overlined” symbol Th is used to distinguish such maps from statistical maps.

Definition 2 Let h : M(B) −→ M(A) be an observable. Then Th : S(M(A)) −→
S(M(B)) is said to be a state map.

Denote S the category of states on full Łukasiewicz tribes (i.e., sets of the form
S(M(A))) as objects and state maps as morphisms.

There are equivalent ways how to define a statistical map (cf. [2]), e.g., via a Markov
kernel.

Recall that a map K on � × B into [0,1] is said to be a Markov kernel (also prob-
ability kernel) if, for each B ∈ B, K(·, B) is A-measurable and, for each ω ∈ �,
K(ω, ·) is a probability measure on B. Observe that K yields a map K : B −→ M(A),
K(B) = K(·, B). Since each K(ω, ·) is a probability measure on B, K is a sequentially con-
tinuous D-homomorphism on B into M(A). Conversely, to each sequentially continuous
D-homomorphism k on B into M(A) there corresponds a unique Markov kernel K such that
K = k. In our notation, if h : M(B) −→ M(A) is an observable, then the restriction h|B of
h to B is a sequentially continuous D-homomorphism and, for each ω ∈ �, ((h|B)(·)) (ω)

is a probability measure on B (as a composition of h|B and the probability point-measure
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δω), hence a Markov kernel. Since h (as a sequentially continuous D-homomorphism) is
the unique extension of h|B and since each Markov kernel corresponds to a unique sequen-
tially continuous D-homomorphism on B into M(A) there is a one-to-one correspondence
between observables and Markov kernels (cf. [22]). Even though two Markov kernels can-
not be composed, hence cannot be explicitly used in categorical constructions, they can be
advantageously used in some calculations.

In [9] the following definition has been given.

Definition 3 Let (�, A), (�, B) be measurable spaces. Let T be a map of the set M+
1 (�, A)

of all probability measures on A into the set M+
1 (�, B) of all probability measures on B

such that, for each B ∈ B, the assignment ω �→ (T (δω)) (B) yields a measurable map of �

into [0, 1] and

(T (p)) (B) =
∫

�

(T (δω)) (B)dp (BG)

for all p ∈ M+
1 (�, A) and all B ∈ B. Then T is said to be a statistical map.

Denote P the category having sets of the form M+
1 (�, A) as objects and statistical maps

as morphisms.

Remark 1 Some authors define observable as an effect σ -homomorphism x on the σ -field B
into a suitable effect algebra subjected to some additional assumptions ([6, 23]). As pointed
out in [22], each effect σ -homomorphism x : B −→ M(A) can be uniquely extended
to an effect σ -homomorphism x̃ : M(B) −→ M(A). This way x̃ becomes a morphism
(the domain and the range of x̃ are objects of the same category) and related constructions
become categorical.

Remark 2 There is a one-to-one correspondence between Markov kernels and statistical
maps (cf. Theorem 2.3 in [2]). As pointed out in [22], the assumption that a statistical map
is affine (Definition 2.1 in [2]) is redundant.

Remark 3 Condition (BG) yields a map T on S(M(A)) into S(M(B)). Indeed,
since

∫
χBd (T (p)) = (T (p)) (B), B ∈ B, p ∈ M+

1 (�, A), the system{
(T (p)) (B) = ∫

(T (δω)) (B)dp; B ∈ B
}

uniquely determines the integral
∫
(·)d (T (p)) on

M(B): the T -image of the integral
∫
(·)dp on M(A). It follows from the relationships

between observables, Markov kernels and statistical maps that T is a state map. Observe
that the same system also defines the statistical map T .

In category theory, an equivalence of categories is a relation between two categories that
establishes that these categories are “essentially the same”. If a category is equivalent to the
opposite (or dual) of another category then one speaks of a duality of categories, and says
that the two categories are dually equivalent.

An equivalence of categories consists of a functor between the involved categories, which
is required to have an “inverse” functor. However, in contrast to the situation common for
isomorphisms in an algebraic setting, the composition of the functor and its “inverse” is
not necessarily the identity mapping. Instead it is sufficient that each object be naturally
isomorphic to its image under this composition. Thus one may describe the functors as being
“inverse up to isomorphism”. The concept of isomorphism of categories, where a strict form
of inverse functor is required, is of much less practical use than the equivalence concept.
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In [19] the following theorem has been proved.

Theorem 1 The categories L and S are dually equivalent.

The relationship between P and S is different.

Theorem 2 The categories P and S are isomorphic.

Proof We have to construct two covariant functors F : P −→ S and G : S −→ P such that
G ◦ F = IdP and F ◦ G = IdS.

For each measurable space (�, A) let us define F
(
M+

1 (�, A)
) = S(M(A)) and

G(S(M(A))) = M+
1 (�, A). Clearly, (G ◦ F)

(
(M+

1 (�, A)
) = M+

1 (�, A) and (F ◦
G)(S(M(A))) = S(M(A)).

Let (�, A), (�, B) be measurable spaces. Let T : M+
1 (�, A) −→ M+

1 (�, B) be a sta-
tistical map and let T : S(M(A)) −→ S(M(B)) be the corresponding state map. Define
F(T ) = T and G(T ) = T . Clearly, G(F(T )) = T and F(G(T ) = T .

We have to prove that F and G are covariant functors, namely, that they preserve identity
maps and composition of morphisms.

For each measurable space (�, A) let us define intA : M+
1 (�, A) −→ S(M(A)) so that

intA(p) = ∫
(·)dp, p ∈ M+

1 (�, A). Dually, define measA : S(M(A)) −→ M+
1 (�, A) so

that measA
(∫

(·)dp
) = p, p ∈ M+

1 (�, A), see Fig. 2a.
Then (by Remark 3) the following hold: for each p ∈ M+

1 (�, A) we have
∫
(·)d(T (p))

= T (intA(p)) = intB(T (p)), and for each
∫
(·)dp ∈ S(M(A)) we have T (p) =

T
(
measA

(∫
(·)dp

))
= measB

(
T

(∫
(·)dp

))
, see Fig. 2b, where a �−→ b means that the map

in question maps a to b. Consequently, the diagram in Fig. 2b is commutative.
It follows directly from the two schemes that F and G preserve identity maps. Finally,

let S : M+
1 (�, B) −→ M+

1 (
, C) be some other statistical map and let S : S(M(B)) −→
S(M(C)) be the corresponding state map. Then, repeating each scheme twice, it follows
that F and G preserve compositions of morphisms.

Let us remark that the results in [22] are stated and proved using (implicitly) the fact that
P and S are isomorphic.

3 Construction I

Let T : M+
1 (�, A) −→ M+

1 (�, B) be a statistical map. If T maps each point-probability
measure δω, ω ∈ �, to a degenerated (i.e., {0, 1}-valued) probability measure, then T is

(a) (b)

Fig. 2 The categories P and S are isomorphic
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said to be standard (classical, conservative). In [3, p. 353], S. Bugajski has proved a kind
of “hidden variables” theorem (representation of nonstandard maps by a standard ones). It
is based on the construction of product of statistical maps. It is stated that “a similar result
has been obtained recently by S. Gudder”.

Let Ti : M+
1 (�, A) −→ M+

1 (�i, Bi ), i = 1, 2, be statistical maps and let (�1×�2, B1×
B2) be the usual product of the involved target measurable spaces. Then

((T1 ⊗ T2)(p)) (B1 × B2) =
∫

�

(T1(δω)) (B1) · (T2(δω)) (B2) dp,

B1 ∈ B1, B2 ∈ B2, p ∈ M+
1 (�, A), defines a statistical map T1 ⊗ T2 : M+

1 (�, A) −→
M+

1 (�1 × �2, B1 × B2); it is called the product of T1 and T2 [2, 3, 22].

Theorem 3 Let T : M+
1 (�, A) −→ M+

1 (�, B) be a statistical map. Then there is an injec-
tive statistical map U : M+

1 (�, A) −→ M+
1 (� × �, A × B) and a standard statistical map

S : M+
1 (� × �, A × B) −→ M+

1 (�, B) such that T = S ◦ U .

S. Bugajski has proposed the following interpretation: “The standard map S returns all
probability distributions produced by the original map T on its outcome, so it could be
considered as a faithful representative of T .”

As it follows from Fig. 3, the theorem of S. Bugajski can be viewed in a broader context:
U is the product I ⊗ T of the identity I and T , L1 and L2 are lateral (marginal) projec-
tions, i.e., for q ∈ M+

1 (� × �, A × B), A ∈ A, and B ∈ B, (L1(q)) (A) = q(A × �),
(L2(q)) (B) = q(� × B), and S = L2. So, the statistical map T is factorized into S ◦ U

“via the product space (� × �, A × B)” with U injective and S standard; alternatively, T

is lifted via the product of domain and range.
It is shown in the last section that the notion of products of statistical maps “is not

categorical”. The original proof of Theorem 3 is based on nontrivial measure-theoretic
calculations.

We prove an analogous factorization theorem for observables. However, the construc-
tion is now “categorical”: each observable is factorized/lifted via the categorical product of
domain and range.

Let M(A) ⊆ [0, 1]� and M(B) ⊆ [0, 1]� be objects of L. Along with the natural pro-
jections (observables) pr1 and pr2, the product M(A) ×M(B) consists of all pairs (u, v),
u ∈ M(A), v ∈ M(B), where the structure and convergence is defined coordinatewise;
observe that if � is the disjoint union of � and � (their coproduct in the category of sets and
maps) then each (u, v) can be visualized as a function w on �, where u and v are “glued in
a disjoint way” to form w (pr1(u, v)=u, pr2(u, v)=v).

Fig. 3 Product of I and T
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Theorem 4 Let h : M(B) −→ M(A) be an observable. Then there is an injective observ-
able g : M(B) −→ M(B)×M(A) and a conservative observable f : M(B)×M(A) −→
M(A) such that f ◦ g = h.

Proof Consider the commutative diagram shown in Fig. 4. Put g = id × h and f = pr2,
where id×h is the unique categorical arrow defined by (id×h)(u) = (u, h(u)), u ∈ M(B).
Clearly, g is injective and f is conservative.

Since the categories P and S are isomorphic and the categories S and L are dual, we can
form dual commutative diagrams and compare their properties.

Let h : M(B) −→ M(A) be an observable, let T : M+
1 (�, A) −→ M+

1 (�, B) be the
dual statistical map (i.e., T = Th), let k : M(B) −→ M(B × A) be the observable dual
to the statistical map L2 : M+

1 (� × �, B × A) −→ M+
1 (�, B) (i.e., Tk = L2), and let

l : M(B × A) −→ M(A) be the observable dual to the statistical map I ⊗ T : M+
1 (� ×

�, B × A) −→ M+
1 (�, B) (i.e., Tl = I ⊗ T ). Then the resulting dual diagram (see Fig.

5a) commutes, the observable k is injective, but the observable l fails to be conservative
whenever T fails to be standard.

Similarly, let Th : M+
1 (�, A) −→ M+

1 (�, B) be the statistical map dual to the
observable h : M(B) −→ M(A), let Tpr2 : M+

1 (�, A) −→ M+
1 (�,M(B) × M(A))

be the statistical map dual to pr2 : M(B) × M(A) −→ M(A), and let
Tid×h : M+

1 (�,M(B) × M(A)) −→ M+
1 (�, B) be the statistical map dual to id ×

h : M(B) −→ M(B)×M(A). Then the resulting diagram (see Fig. 5) commutes, the sta-
tistical map Tpr2 is injective, but the statistical map Tid×h fails to be standard whenever h

fails to be conservative.
Finally, observe that the factorizations established in Theorem 2.1 and Theorem 2.2 are

not unique. Indeed, the statistical map U = I⊗I⊗T : M+
1 (�, A) −→ M+

1 (�×�×�, A×
A×B) is injective, the statistical map S = L3 : M+

1 (�×�×�, A×A×B) −→ M+
1 (�, B)

is standard, and T = S◦U . Analogously, id×id×h : M(B) −→ M(B)×M(B)×M(A)

is injective, pr3 : M(B)×M(B)×M(A) −→ M(A) is conservative, and h = (id × id ×
h) ◦ pr3.

4 Construction II

In this section we show that if the ranges of observables are full Łukasiewicz tribes, i.e.,
objects of the category L, then the smearing, as constructed in [6, 23], reduces to a rather
trivial commuting diagram. This leads to the following question. How “big and useful” is

Fig. 4 Factorization of an observable

Author's personal copy



4080 Int J Theor Phys (2017) 56:4073–4083

(a) (b)

Fig. 5 Dual commutative diagrams

the class of all effect algebras, satisfying additional conditions related to the generalized
Loomis-Sikorski theorem used in constructions of smearing, and not belonging to L?

First, we cite the original definitions and theorems from [6] and [23] and then we present
a modified construction of smearing (restricted to L).

In [6], an observable on a quantum structure is any σ -homomorphism of quantum struc-
tures from the Borel σ -algebra of the real line into a monotone σ -complete effect algebra
with the RDP (Riesz decomposition property).

In [23], an observable is defined as follows. Let (�, A) be a measurable space. An
(�, A)-observable on a σ -orthocomplete MV-effect algebra E is a mapping ξ : A −→ E

such that

(i) ξ(�) = 1;
(ii) ξ

(⋃∞
i=1 Ai

) = ⊕∞
i=1 ξ(Ai), whenever (Ai)

∞
i=1 is a sequence of mutually disjoint

elements of A.

An observable is sharp if its range consists of sharp elements.
In [6], the following smearing theorem has been proved.

Theorem 4.1, [6] Let M be a monotone σ -complete effect algebra with RDP having at least
one σ -additive state, and let (�,T , h) be the canonical representation of M such that every
f ∈ T is B0(T )-measurable. There is a sharp observable ξ from B0(T ) into M such that
given an observable x on M , m ∈ Sσ (M), and E ∈ B(R),

m(x(E)) =
∫

�

fE(ω) dm ◦ ξ(ω), (*)

where fE is an arbitrary function from T such that h(fE) = x(E).

Without going into details, Sσ (M) denotes the set of all σ -additive states on M and
the assumption that M is a monotone σ -complete effect algebra with RDP having at least
one σ -additive state guarantees the existence of canonical representation (�,T , h) of M

(generalized Loomis-Sikorski theorem) such that every f ∈ T is B0(T )-measurable. T is
a suitable system of measurable functions into [0,1]. Condition (∗) defines the smearing of
sharp observable ξ to get x. The smearing is a map on a suitable set of states on T into
states on B(R), the σ -field of Borel sets on the real line.

The smearing theorem in [23] has the following form.

Theorem 3.4, [23] Every observable on a σ -lattice effect algebra is defined by a smearing
of a sharp observable.
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Again, without going into details, the generalized Loomis-Sikorski theorem is needed to
construct the sharp observable in question. Observe that in the first smearing theorem the
domain of observable is the σ -field of real Borel sets, while in the second smearing theorem
the domain is an arbitrary σ -field of sets.

In case if observables are morphisms of the category L, i.e., sequentially continuous D-
homomorphisms the domain and range of which are full Łukasiewicz tribes, then the two
smearing theorems reduce to a trivial commutative diagram in Fig. 6, where the identity
map id : M(A) −→ M(A) is the desired strict (conservative) observable; each observable
h : M(B) −→ M(A) can be factorized as h = id ◦ h, and the smearing is simply the
corresponding statistical map Th.

This explains the question asked at the beginning of the present section.

5 Remarks on Products

In this section we point out that the notion of products of statistical maps in [2, 3, 22] is not
categorical.

First, we recall the notion of a degenerated statistical map. A classical degenerated
random variable is defined as follows. Fix r ∈ R and define f : � −→ R by putting
f (ω) = r for all ω ∈ �. Then Df (p) = δr for all p ∈ M+

1 (�, A), where the distribu-
tion map Df is defined by Df (p) = p ◦ f ←, and the preimage map f ← sends B ∈ B to
{ω ∈ �; f (ω) ∈ B}.

A degenerated state map is defined analogously: for a fixed q ∈ M+
1 (�, B) the degener-

ated state map sends each probability integral on A to
∫
(·)dq. Finally, we need an observable

h : M(B) −→ M(A) such that the corresponding Th maps each probability integral∫
(·)dp, p ∈ M+

1 (�, A), on M(A) to the probability integral
∫
(·)dq on M(B). It suffices

to define h as follows: for u ∈ M(B) let h(u) be the constant function vq on � the value
of which is

∫
udq. Then, for all p ∈ M+

1 (�, A), we have
∫
h(u)dp =

∫
vqdp =

∫
udq, and

hence Th

(∫
(·)dp

)
=

∫
(·)dq.

The corresponding degenerated statistical map Th maps each p ∈ M+
1 (�, A) into

q ∈ M+
1 (�, B). Observe that each distribution map Df is a statistical map.

Let Ti : M+
1 (�, A) −→ M+

1 (�i, Bi ), i = 1, 2, be statistical maps and let (�1×�2, B1×
B2) be the usual product of the involved target measurable spaces. Recall that the product

T1 ⊗ T2 : M+
1 (�, A) −→ M+

1 (�1 × �2, B1 × B2)

Fig. 6 Trivial smearing
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Fig. 7 The product of two statistical maps fails to be categorical

is defined by

((T1 ⊗ T2)(p)) (B1 × B2) =
∫

�

(T1(δω)) (B1) · (T2(δω)) (B2) dp,

for B1 ∈ B1, B2 ∈ B2, p ∈ M+
1 (�, A). Denote

Li : M+
1 (�1 × �2, B1 × B2) −→ M+

1 (�i, Bi ), i = 1, 2,

the usual lateral (marginal) projections (for each r ∈ M+
1 (�1 × �2, B1 × B2), i.e., L1(r) is

the unique measure p ∈ M+
1 (�1, B1) such that p(B) = r(B × �2), B ∈ B1, analogously

for L2).
It follows from the definition of the product T1 ⊗ T2 (see also condition (BG)), that

(T1 ⊗ T2)(p), p ∈ M+
1 (�, A), is determined by values at δω, ω ∈ �. Since (2.2 p. 349

in [3]) (T1 ⊗ T2)(δω) = T1(δω) × T2(δω) is the product measure on B1 × B2, we have
Li ((T1 ⊗ T2)(δω)) = Ti(δω), ω ∈ �, i = 1, 2. Consequently, Li ◦ (T1 ⊗ T2)(p) = Ti(p),
p ∈ M+

1 (�, A), i = 1, 2, see Fig. 7.
Now, contrariwise, assume that T1 ⊗ T2 is the categorical product of T1 and T2, i.e., if

T : M+
1 (�, A) −→ M+

1 (�1 × �2, B1 × B2) is a statistical map such that Li ◦ T = Ti ,
i = 1, 2, then T = T1 ⊗ T2.

Fix pi ∈ M+
1 (�i, Bi ), i = 1, 2. Let Ti : M+

1 (�, A) −→ M+
1 (�i, Bi ), i =

1, 2, be the degenerated statistical map sending each p ∈ M+
1 (�, A) into pi . Then

((T1 ⊗ T2)(p)) (B1 × B2) = p1(B1) · p2(B2), B1 ∈ B1, B2 ∈ B2, and (T1 ⊗ T2)(p) =
p1 × p2.

Let �1 = {a, b}, �2 = {c, d}, let (�1, B1), (�2, B2) be the corresponding discrete
measurable spaces, and let pi ∈ M+

1 (�i, Bi ), i = 1, 2, be the uniform measure (assigning
each singleton measure 1/2). Let p ∈ M+

1 (�1 × �2, B1 × B2) be the uniform measure
(assigning each singleton measure 1/4. Define q ∈ M+

1 (�1 × �2, B1 × B2) as follows:
q(a, c) = q(b, d) = 1/8, q(a, d) = q(b, c) = 3/8. Let (�, A) be a nontrivial measurable
space. Let Ti : M+

1 (�, A) −→ M+
1 (�i, Bi ), i = 1, 2, be the degenerated statistical map

sending each p ∈ M+
1 (�, A) into pi . Clearly Li ◦ (T1 ⊗ T2) = Ti , i = 1, 2. Finally, let

T : M+
1 (�, A) −→ M+

1 (�1 × �2, B1 × B2) be the degenerated statistical map sending
each p ∈ M+

1 (�, A) into q. Clearly, Li ◦ T = Ti , i = 1, 2, and T �= T1 ⊗ T2. This is a
contradiction.

We believe that even modest application of arrows and commuting diagrams leads to sim-
pler and more intuitive ways how to describe rather complex constructions in generalized
probability theory and its applications to quantum structures.
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23. Jencová, A., Pulmannová, S., Vinceková, E.: Observables on σ -MV-algebras and σ -lattice effect

algebras. Kybernetika 47, 541–559 (2011)
24. Mesiar, R.: Fuzzy sets and probability theory. Tatra Mt. Math. Publ. 1, 105–123 (1992)
25. Navara, M.: Probability theory of fuzzy events. In: Montseny, E., Sobrevilla, P. (eds.) Fourth Confer-

ence of the European Society for Fuzzy Logic and Technology and 11 Rencontres Francophones sur la
Logique Floue et ses Applications, pp. 325–329. Universitat Politecnica de Catalunya, Barcelona, Spain
(2005)

26. Papco, M.: On effect algebras. Soft Comput. 12, 373–379 (2008)
27. Papco, M.: Fuzzification of probabilistic objects. In: 8th Conference of the European Society for Fuzzy

Logic and Technology (EUSFLAT 2013), pp. 67–71 (2013). doi:10.2991/eusat.2013.10
28. Zadeh, L.A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23, 421–27 (1968)

Author's personal copy

http://dx.doi.org/10.2991/eusat.2013.10

