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ABSTRACT. We outline the transition from classical probability space (Ω,A, p) to its “divisible”

extension, where (as proposed by L. A. Zadeh) the σ-field A of Boolean random events is extended to

the class M(A) of all measurable functions into [0,1] and the σ-additive probability measure p on A

is extended to the probability integral
∫
(·) dp on M(A). The resulting extension of (Ω,A, p) can be

described as an epireflection reflecting A to M(A) and p to
∫
(·) dp.

The transition from A to M(A), resembling the transition from whole numbers to real numbers,

is characterized by the extension of two-valued Boolean logic on A to multivalued  Lukasiewicz logic

on M(A) and the divisibility of random events: for each random event u ∈ M(A) and each positive

natural number n we have u/n ∈ M(A) and
∫
(u/n) dp = (1/n)

∫
u dp.

From the viewpoint of category theory, objects are of the form M(A), morphisms are observables

from one object into another one and serve as channels through which stochastic information is con-

veyed.

We study joint random experiments and asymmetrical stochastic dependence/independence of one

constituent experiment on the other one. We present a canonical construction of conditional probability

so that observables can be viewed as conditional probabilities.

In the present paper we utilize various published results related to “quantum and fuzzy” general-

izations of the classical theory, but our ultimate goal is to stress mathematical (categorical) aspects of

the transition from classical to what we call divisible probability.

c©2020
Mathematical Institute

Slovak Academy of Sciences

1. Introduction

There are numerous attempts to upgrade the classical probability space (Ω,A, p) introduced by
A. N. Kolmogorov in [16]. For example, in order to capture fuzzy phenomena, L. A. Zadeh in [23]
proposed to replace it by (Ω,M(A),

∫
(·) dp), where M(A) is the class of all A-measurable fuzzy

subsets of Ω and
∫
(·) dp is the probability integral with respect to p. In [20], M. Navara observed

that no justification to define the probability of a fuzzy event f ∈ M(A) by the formula
∫
(f)dp was

given by Zadeh and he discussed two distinct approaches to generalized probability, probability
on tribes and probability on MV-algebras with products ([22]). Another supportive argument for

2010 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n: Primary 60A02, 60A05, 60A86; Secondary 28A35.
K e y w o r d s: Divisible probability, full  Lukasiewicz tribe, observable, probability integral, state, statistical map,

stochastic channel, fuzzy outcome, degenerated observable, g-joint experiment, stochastic independence, conditional

probability, conditional expectation.
The authors acknowledge the support by the grant of the Slovak Research and Development Agency under contract

[APVV-16-0073], by the grant of the Slovak Scientific Grant Agency under contract [VEGA project 2/0097/20], and

by the Faculty of Education, Catholic University in Ružomberok, grant [GAPF 2/27/2017].
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the transition from (Ω,A, p) to (Ω,M(A),
∫
(·)dp) can be found in [1] (cf. [12, 14]): categorical

approach.

In a series of papers ([1, 2, 8, 12–14], see also papers cited therein) we have investigated various
generalizations of the classical probability space, where the fuzzy and quantum aspects are dual
faces of the same generalized probability space. In the present paper we describe a canonical
extension of (Ω,A, p) and its basic stochastic properties which can be viewed as a “mathematical
optimization” respecting the following principles:

1. Systems of generalized random events constitute objects of a category and classical Boolean
random events are treated as a special case.

2. Relevant maps are morphisms of the category in question.

3. Relevant stochastic notions can be defined in terms of morphisms and relevant stochastic
constructions can be described via diagrams.

4. The resulting extension of (Ω,A, p) is determined by canonical mathematical properties
(divisibility, logic, and closedness with respect to sequential limits) and can be described as an
epireflection reflecting A to M(A) and p to

∫
(·) dp.

Basic category theory makes the transition more transparent. Relevant maps, in particular
probability measures, become morphisms, relevant constructions can be schematized via simple
diagrams, and the transition can be characterized via epireflection.

Morphisms, called observables, represent channels through which stochastic information flows
from one object M(A) to another object M(B). Observables can be interpreted via Markov
kernels or via suitable conditional probabilities. The added value is a construction of conditional
probability on full  Lukasiewicz tribes and that “the flow of no relevant stochastic information”
yields asymmetrical stochastic independence of M(B) on M(A); it amounts to the independence
of the outcomes of M(B) on the outcomes of M(A).

Answering a problem put forward by B. Riečan and D. Mundici ([22]), conditional probabilities
for σ-complete MV-algebras were studied by A. Dvurečenskij and S. Pulmannová ([6]) and for
σ-complete MV-algebras with products by T. Kroupa ([17]). This yields, as a special case, con-
ditional probabilities on  Lukasiewicz tribes, where the product is the usual product of functions.
Our construction of conditional probability sheds light on this special case (interpretation and the
role of product).

In the extended theory, some nonclassical, namely, “quantum and fuzzy” phenomena can be
modeled. In particular, an observable can map a classical random event B ∈ B ⊂ M(B) to a
nonclassical event u ∈ M(A) r A and a classical outcome ω ∈ Ω, viewed as the Dirac probability
measure δω, can “correspond” to a genuine probability measure q on B.

2. Bottom-up

In this section, we recall some properties of probability measures and probability integrals, resp.
random variables and measurable maps which lead to the fixing of objects and morphisms in the
next section.

2.1. Probability measures and probability integrals

Let (Ω,A, p) be a classical probability space, where Ω is the set of outcomes, A is a σ-field of
subsets of Ω, and p is a probability measure on A. Let M(A) be the set of all A-measurable
functions on Ω into [0, 1], equipped with pointwise operations, pointwise partial order, pointwise
sequential convergence, and let

∫
(·) dp be the probability integral on M(A). For A ⊂ Ω, denote
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χA ∈ [0, 1]Ω the indicator function of A (χA(ω) = 1 for ω ∈ A and χA(ω) = 0 otherwise). Observe
that if |Ω| = 1, {a} = Ω, then A reduces to the trivial σ-field T = {∅, {a}} and [0, 1] can be viewed
as M(T) (we identify r ∈ [0, 1] and the function rχ{a} ∈ M(T)). Clearly, the following hold:

(i)
∫
χ∅ dp = 0,

∫
χΩ dp = 1;

(ii) If u, v ∈ M(A), v ≤ u, then
∫
v dp ≤

∫
u dp and

∫
(u−v) dp =

∫
u dp−

∫
v dp (subtractivity);

(iii)
∫

(·) dp is sequentially continuous (with respect to the pointwise sequential convergence of
functions in M(A)).

Hence, the probability integral as a map of M(A) into M(T) ≡ [0, 1] has the following proper-
ties: “preserves constants, partial order, subtraction and it is sequentially continuous” (sequential
continuity follows from the Dominated Lebesgue Convergence Theorem). The properties charac-
terize probability integrals on M(A) and the corresponding theorem (cf. [9: Corollary 4.2]) is a
cornerstone of the categorical approach to generalized probability. Its proof can be divided into
two steps. First, from [21: Lemma 3.3] follows

❚❤❡♦r❡♠ 2.1✳ Probability measures on A are exactly subtractive and sequentially continuous maps
of A into M(T) which preserve constants and partial order.

Second, using the Dominated Lebesgue Convergence Theorem (see [9: Lemma 4.1 and Corol-
lary 4.2]) we get

❚❤❡♦r❡♠ 2.2✳ Let h be a map of M(A) into M(T). If h preserves constants, partial order, it
is subtractive, and sequentially continuous, then there exists a unique probability measure p on A

such that h =
∫

(·) dp.

2.2. Random variables and measurable maps

A random variable f is a measurable map sending Ω into the real line R. It “pushes forward” p
into the distribution Pf , a probability measure on the real Borel sets BR defined by Pf

(
(−∞, r)

)
=

p
(
f←((−∞, r))

)
= p

(
{ω ∈ Ω; f(ω) < r}

)
. The corresponding preimage f← yields a map of BR

into A.

In what follows, we identify each subset A ⊆ X and its indicator function χA : X → {0, 1}; 0X
and 1X will denote the indicator functions of the empty set and the universe, respectively.

Let (Ω,A, p) and (Ξ,B, q) be classical probability spaces and let f be a measurable map of Ω
into Ξ. Then f , in a natural way, “pushes forward” p into a probability measure Pf = p ◦ f←

on B, and if q = Pf , then f might be called a generalized random variable. In fact, f defines a
distribution map Df , Df (p) = Pf , of the set P(A) of all probability measures on A into the set
P(B) of all probability measures on B. Note, that if we identify each ω ∈ Ω and the corresponding
Dirac probability measure δω, δω(A) = 1 for ω ∈ A and δω(A) = 0 otherwise, A ∈ A (in general,
points and Dirac probability measures), then Df ↾ Ω = f . The preimage map f← sending B ∈ B

to its preimage f←(B) = {ω ∈ Ω; f(ω) ∈ B} ∈ A is a Boolean homomorphism (the preimage
map f← preserves set operations) and it can be uniquely extended to a map f⊳ on M(B) into
M(A) satisfying suitable conditions. Unlike in the “divisible” probability theory, in the classical
probability theory f← plays only an auxiliary role. Using χB ◦ f = χf←(B), the measurability
of f can be reformulated as follows: f is measurable iff for each B ∈ B there exists A ∈ A such
that χB ◦ f = χA. Consequently, the preimage map f← preserves constants, partial order, it is
subtractive, and sequentially continuous.

The pair (f, f←) can be seen as a stochastic channel through which stochastic information flows
from (Ω,A, p) to (Ξ,B, q).

The divisible extension of classical probability ([16,18]) can be viewed as a quantum modification
of f and a fuzzy modification of f←. Surprisingly, the two modifications “are dual”! The duality
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has two meanings. Categorical: the two generalizations are morphisms in two dually equivalent
categories related by a pair of contravariant functors. Real: the two generalizations represent two
dual and equivalent faces of the resulting stochastic channel, fuzzy and quantum. They can be
studied in two dual languages.

The generalization of f , called statistical map, or operational random variable, can map a Dirac
probability measure (a point of Ω) to a probability measure q (remember, a classical f maps points
to points). The generalization of f←, called observable, can map a crisp ({0,1}-valued) random
event to a genuine fuzzy random event (remember, f← maps crisp sets to crisp sets). Strange, but
f← does not have a name in the classical probability.

As indicated, maps “preserving constants, partial order, subtractive, and sequentially continu-
ous” will play an important role and will be called observables. The composition of observables is
defined as the composition of maps and this makes the calculations with observables (diagrams)
transparent.

The next theorem guarantees that the generalized probability extends the classical one.

❚❤❡♦r❡♠ 2.3✳ Let (Ω,A), (Ξ,B) be measurable spaces. Let hB be an observable which maps B

into M(A).

(i) There exists a unique observable h mapping M(B) into M(A) such that hB is the restriction
h ↾ B of h to B;

(ii) If hB(B) ∈ A for all B ∈ B, then hB preserves set operations: complement, union, intersec-
tion.

P r o o f. (i) follows directly from [10: Theorem 4.1] and (ii) can be verified by straightforward
calculations. �

Observe that a nondegenerated probability q on B is an observable mapping B into M(T) and
there exists B ∈ B such that 0 < q(B) < 1, hence q(B) /∈ {0, 1}.

Next, we recall the notion of  Lukasiewicz tribe – a generalization of Boolean algebra and a
mathematical must to understand the transition from Boolean to multivalued logic and from
classical to divisible probability theory ([5,19,20]). A Boolean random event A ∈ A can be viewed
as a classical propositional function χA (having a stochastic interpretation). A generalized random
event can be viewed as a manyvalued propositional function u ∈ M(A). Since the  Lukasiewicz
logic extends the Boolean one and probability integrals and probability measures are in one-to-one
correspondence, the divisible probability theory can be viewed as an extension of the classical one.

Recall that a bold algebra is a system X ⊆ [0, 1]Ω containing the constant functions 0X , 1X and
closed with respect to the usual  Lukasiewicz operations: for u, v ∈ X put (u⊕ v)(ω) = u(ω)⊕ v(ω)
= min{1, u(ω) + v(ω)}, u∗(ω) = 1 − u(ω), ω ∈ Ω. Each bold algebra X ⊆ [0, 1]Ω is a lattice,
where for u, v ∈ X we have (u ∨ v)(ω) = u(ω) ∨ v(ω) and (u ∧ v)(ω) = u(ω) ∧ v(ω), ω ∈ Ω. If
for each u ∈ X and for each (positive) natural number n we have u/n ∈ X , then X is said to be
divisible. If a bold algebra X ⊆ [0, 1]Ω is sequentially closed in [0, 1]Ω (with respect to the pointwise
sequential convergence), then X is said to be a  Lukasiewicz tribe (X is closed not only with respect
to finite, but also with respect to countable  Lukasiewicz sums). It is known that if X ⊆ [0, 1]Ω is a
 Lukasiewicz tribe then there is a unique σ-field AX of subsets of Ω such that AX ⊆ X ⊆ M(AX ).
Hence, with respect to inclusion, σ-fields of sets and measurable functions into [0, 1] are extremal
objects. Extremal  Lukasiewicz tribes form a distinguished category and play an important role in
the next section. Further, X = M(AX ) iff X contains all constant [0, 1]-valued functions; such
 Lukasiewicz tribes are called full (generated). Clearly, a  Lukasiewicz tribe is full iff it is divisible.
Observe that σ-fields of sets are exactly {0, 1}-valued  Lukasiewicz tribes.
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3. Top-down

Taking into account previous arguments, in this section we outline our categorical approach to
probability.

3.1. Probability domains

Fields of random events and their generalizations are called probability domains. In plain words,
a probability domain can be described as follows.

• Start with a “system A of events”;

• Choose a separating set X of “characteristic properties” of the events;

• Choose an “evaluator” E – a suitable set for evaluating the properties (e.g., {0, 1} in case of
Boolean events, or [0, 1] in case of fuzzy events);

• Represent each event a ∈ A via the “evaluation” of A into the set EX of all maps of X into
E sending a ∈ A to evX(a) ∈ EX , evX(a) ≡ {evx(a); x ∈ X};

• Equip EX with a suitable algebraic structure and form the minimal “subalgebra” containing
{aX ; a ∈ A} so that the resulting object D, called probability domain, has nice categorical
properties.

Extending a σ-field A of Boolean events to M(A) we get a probability domain which is divisible,
M(T) is the evaluator, and each probability integral on M(A) is a morphism into the evaluator
M(T).

The Boolean logic can be extended to fuzzy events in many ways. In particular, via the
 Lukasiewicz logic. The transition from A to M(A) guarantees that “no stochastic information is
lost”: A is “dense” in M(A) (the embedding is an epimorphism) and M(A) is an epireflection
of A (cf. [1]).

3.2. From extremal to full  Lukasiewicz tribes

❉❡❢✐♥✐t✐♦♥ 3.1✳ Let X ⊆ [0, 1]Ω be a  Lukasiewicz tribe. If X = AX or X = M(AX ), then X is
said to be extremal. Let h be a map of an extremal  Lukasiewicz tribe Y ⊆ [0, 1]Ξ into an extremal
 Lukasiewicz tribe X ⊆ [0, 1]Ω. If h(0Ξ) = 0Ω, h(1Ξ) = 1Ω, h is subtractive, sequentially continuous
with respect to the pointwise convergence of sequences and preserves order, then h is said to be
an observable. If for each u ∈ Y, h(u) ∈ X is a constant function, then h is said to be degenerated.

Clearly, the identity map is an observable and the composition of two observables is an observ-
able. Denote EL the category consisting of extremal  Lukasiewicz tribes as objects and observables
as morphisms. Let FEL be the subcategory of EL the objects of which are full  Lukasiewicz tribes.
Then, according to Theorem 2.3, every observable hB : B → M(A) can be uniquely extended to an
observable h : M(B) → M(A). Consequently (cf. [1]), if two observables on M(B) to M(A) coin-
cide on B, then they are equal, i.e., the embedding of B into M(B) is an epimorphism. Hence, for
each q ∈ P(B), the probability integral

∫
(·) dq is the unique observable into M(T) which extends

q. This fact is very useful in some calculations related to stochastic independence/dependence.

As a corollary we get the following theorem (cf. [1]).

❚❤❡♦r❡♠ 3.2✳ FEL is an epireflective subcategory of EL.

3.3. Random experiment and stochastic channel

❉❡❢✐♥✐t✐♦♥ 3.3✳ Let A be a σ-algebra of subsets of a set Ω and let M(A) be the corresponding
full  Lukasiewicz tribe of measurable functions into [0,1]. An observable on M(A) into M(T) is
said to be a state on M(A).

1449
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For a full  Lukasiewicz tribe M(A), denote S(A) the set of all states on M(A). Since states are
exactly probability integrals (Theorem 2.2), there is a one-to-one correspondence between S(A)
and P(A), sending

∫
(·) ds to s; denote

∫
(·) ds = s.

Let (Ω,A), (Ξ,B) be measurable spaces, let M(A), M(B) be the corresponding full  Lukasiewicz
tribes, and let h : M(B) → M(A) be an observable. For each state s ∈ S(A), the composition s◦h
is a state on M(B). Consequently, h defines the dual map Th : P(A) → P(B), Th(s) = t, where for
u ∈ M(B) we have

∫
u dt =

∫
h(u) ds; it will be called a statistical map. If g, h : M(B) → M(A) are

distinct observables, i.e., (g(u))(ω) 6= (h(u))(ω) for some u ∈ M(B) and ω ∈ Ω, then
∫
g(u) dδω 6=∫

h(u) dδω implies
∫
u d(Tg(δω)) 6=

∫
u d(Th(δω)) and hence Tg 6= Th. In the opposite direction,

if Tg(δω) = Th(δω) for all ω ∈ Ω, then from
∫
u d(Tg(δω)) =

∫
u d(Th(δω)) we get (g(u))(ω) =∫

g(u) dδω =
∫
h(u) dδω = (h(u))(ω), u ∈ M(B), and hence g = h.

Observe that statistical maps and their products can be defined in terms of Markov kernels
([3, 4, 15]) and the definitions are equivalent to the corresponding notions defined as dual maps to
observables ([2, 7, 8]).

❉❡❢✐♥✐t✐♦♥ 3.4✳ Let (Ω,A) be a measurable space and let p ∈ P(A). Then (Ω,M(A), p) is said to
be a random experiment and v ∈ M(A) is said to be a random event. Let (Ξ,M(B), q) be another
random experiment and let h : M(B) → M(A) be an observable such that Th(p) = q. Then
(h, Th) is said to be a stochastic channel from (Ω,M(A), p) to (Ξ,M(B), q). If h is degenerated,
then (h, Th) is said to be degenerated.

Let (Ω,M(A), p) be a random experiment. Having in mind “quantum” aspects of “divisible”
probability theory, we will view P(A) as the (generalized) outcomes and Ω, considered as a subset
of P(A), it will represent the classical outcomes. Having in mind “fuzzy” aspects of “divisible”
probability theory, we will view pairs (ω, a), ω ∈ Ω, a ∈ (0, 1], as fuzzified classical outcomes;
accordingly, ω ∈ Ω will be viewed as (ω, 1). For v ∈ M(A) the set Sv = {(ω, a); ω ∈ Ω, 0 < a ≤
v(ω)} will be viewed as fuzzified outcomes supporting the event v and

∫
v dp measures how “big”

the set Sv is.

Let (h, Th) be a stochastic channel from (Ω,M(A), p) to (Ξ,M(B), q). Then the stochastic
information is transmitted from the former to the latter experiment via (h, Th). First, for u ∈ M(B)
we get

∫
u dq by sending u to h(u) and measuring h(u) by p. Second, to each outcome s ∈ P(A) of

the former experiment we assign the corresponding outcome t ∈ P(B), where t = s ◦ h ∈ S(B). If
h is degenerated, then each h(u) ∈ M(A), u ∈ M(A), is a constant function the value of which is∫
u dq. Since for each s ∈ P(A) we have

∫
h(u) ds =

∫
u dq, Th maps all outcomes s ∈ P(A) to q.

Let (Ω,M(A), p) be an experiment. Recall that a fuzzified outcome (ω, a), ω ∈ Ω, a ∈ (0, 1],
supports a random event v ∈ M(A) whenever a ≤ v(ω). Let v ∈ M(A), v = cχΩ, c ∈ [0, 1],
be a constant function. Then the random event v does not discriminate the outcomes ω ∈ Ω
in the following sense: if a fuzzified outcome (ω, a), ω ∈ Ω, a ∈ (0, 1], supports v, then every
fuzzified outcome (ω′, a), ω′ ∈ Ω, supports v and, if (ω, a), ω ∈ Ω, a ∈ (0, 1], does not support v,
then no (ω′, a), ω′ ∈ Ω, supports v. Let (h, Th) be the degenerated stochastic channel from
(Ω,M(A), p) to an experiment (Ξ,M(B), q). Denote Mξ(B) = {u ∈ M(B); 0 < u(ξ)} the set of
all random events in M(B) which are supported by some (ξ, b), b ∈ (0, 1]. Then no v ∈ h[Mξ(B)]
= {h(u) ∈ M(A); u ∈ Mξ(B)} discriminates the outcomes ω ∈ Ω. In this sense, the interpretation
of a degenerated stochastic channel is that the classical outcomes of the second experiment (points
of Ξ) are stochastically independent of the classical outcomes (points of Ω) of the first experiment.
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4. Stochastic dependence via joint experiments

Let (Ω,A) and (Ξ,B) be measurable spaces and let (Ω × Ξ,A × B) be their product. Denote
L1 and L2 the lateral (marginal) projections of P(A × B) into P(A) and P(B), respectively, i.e.,
for r ∈ P(A × B) and A ∈ A, B ∈ B, put (L1(r))(A) = r(A× Ξ) and (L2(r))(B) = r(Ω ×B).

Let (Ω,A, p) and (Ξ,B, q) be classical probability spaces and let r ∈ P(A × B). If L1(r) = p
and L2(r) = q, then we usually identify A ∈ A and A× Ξ, resp. B ∈ B and Ω × B, and then we
consider (Ω × Ξ,A× B, r) as a joint probability space. Denote J (p, q) = {r ∈ P(A× B);L1(r) =
p, L2(r) = q}. Then p × q ∈ J (p, q) and if r = p × q, then (Ω,A, p) and (Ξ,B, q) are said to be
stochastically independent in (Ω × Ξ,A × B, r).

Clearly, the canonical embeddings (constant prolongations) e1 : M(A) → M(A × B) and
e2 : M(B) → M(A×B) defined by ṽ(ω, ξ) = (e1(v))(ω, ξ) = v(ω), ω ∈ Ω, ξ ∈ Ξ, v ∈ M(A), resp.
ũ(ω, ξ) = (e2(u))(ω, ξ) = u(ξ), ω ∈ Ω, ξ ∈ Ξ, u ∈ M(B), are observables.

▲❡♠♠❛ 4.1✳ L1 and L2 are the statistical maps corresponding to e1 and e2, respectively.

We shall show that the classical construction of a conditional expectation (cf. [18]) applied to
a joint probability space (Ω × Ξ,A × B, r) reveals the relationships between r ∈ P(A × B) and
the asymmetrical stochastic dependence of (Ξ,M(B), q) on (Ω,M(A), p) in terms of a stochastic
channel. In particular, to each stochastic channel (g, Tg) from (Ω,M(A), p) to (Ξ,M(B), q) there
corresponds a unique rp ∈ P(A×B) satisfying certain canonical conditions and g can be interpreted
as the conditional probability in the joint probability space (Ω × Ξ,A × B, rp) of (Ω,A, p) and
(Ξ,B, q).

❉❡❢✐♥✐t✐♦♥ 4.2✳ Let (Ω,A, p) and (Ξ,B, q) be classical probability spaces and let r be a proba-
bility measure on A × B such that L1(r) = p and L2(r) = q. Then (Ω × Ξ,M(A × B), r) is said
to be a joint experiment of (Ω,M(A), p) and (Ξ,M(B), q).

Next, we summarize (cf. [2: Proposition 2.8, Proposition 2.10, and Corollary 2.11]) some prop-
erties of a joint experiment needed in the sequel.

❚❤❡♦r❡♠ 4.3✳ Let (Ω,A) and (Ξ,B) be measurable spaces, let (Ω × Ξ,A × B) be their product,
let e1 : M(A) → M(A × B) and e2 : M(B) → M(A × B) be the corresponding embeddings, and
let L1, L2 be the corresponding lateral maps. Let id : M(A) → M(A) be the identity observable,
let g : M(B) → M(A) be an observable, let Tid : P(A) → P(A) and Tg : P(A) → P(B) be the
corresponding statistical maps.

(i) There exists a unique observable h : M(A×B) → M(A) such that h◦e1 = id and h◦e2 = g,
where h is equal to the product id⊗ g of observables id and g defined as follows

(
(id⊗ g)(u)

)
(ω) =

∫
u d(Tid(δω) × Tg(δω)), ω ∈ Ω, u ∈ M(A × B). (⊗)

(ii) Let Th : P(A) → P(A × B) be the statistical map defined by h. Then Th(δω) = Tid⊗ g(δω) =
δω × Tg(δω) and L1 ◦ Th = Tid, L2 ◦ Th = Tg.

(iii) If (g, Tg) is a degenerated stochastic channel from (Ω,M(A), p) to (Ξ,M(B), q), i.e., Tg(t) =
q for all t ∈ P(A), then Th(t) = t× q for all t ∈ P(A) and, in particular, Th(p) = p× q.

A joint experiment (Ω × Ξ,M(A × B), r), r ∈ J (p, q) ⊆ P(A × B), is characterized by the
requirement that it contains all stochastic information about its constituents transmitted via the
lateral stochastic channels (e1, L1) and (e2, L2), respectively. Let g : M(B) → M(A) be an observ-
able such that q = p ◦ g. From Theorem 4.3 it follows that there exists a unique joint experiment
(Ω × Ξ,M(A × B), rp), rp = p ◦ (id⊗ g), which is “the best” of all joint experiments taking into
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account g. It is determined by the observable h : M(A × B) → M(A), h = id⊗ g, and h is the
unique observable satisfying two conditions: (i) h ◦ ev1 = id and (ii) h ◦ ev2 = g. Condition (i)
guarantees that, for each v ∈ M(A), h does not distort the stochastic information rp(e1(v)) = p(v)
about e1(v) ∈ M(A × B), i.e., rp(e1(v)) = p(h(e1(v)) = p(v). Condition (ii) guarantees that, for
each u ∈ M(B), h conveys the same stochastic information rp(e2(u)) = p(h(e2(u))) = q(u) =
p(g(u)) about e2(u) ∈ M(A × B) as g conveys about u.

❉❡❢✐♥✐t✐♦♥ 4.4✳ Let (g, Tg) be a stochastic channel from (Ω,M(A), p) to (Ξ,M(B), q). Then
(Ω × Ξ,M(A × B), rp), rp = p ◦ (id⊗ g), is said to be the g-joint experiment of (Ω,M(A), p) and
(Ξ,M(B), q).

The g-joint experiment is “the best” of all joint experiments reflecting the stochastic information
transmitted via (g, Tg) from (Ω,M(A), p) to (Ξ,M(B), q). In particular, if (g, Tg) is degenerated,
then rp = p × q. Intuitively, h = id ⊗ g is a “prism inside the g-joint experiment changing its
outlook”: if we look at (Ω×Ξ,M(A×B), rp), then “we see (Ω,M(A), p) and within it we see the
g-image of (Ξ,M(B), q)”.

The g-joint experiment is an important auxiliary mathematical tool used in the construction of
conditional probability on full  Lukasiewicz tribes.

❉❡❢✐♥✐t✐♦♥ 4.5✳ Let (g, Tg) be a stochastic channel from an experiment (Ω,M(A), p) to an ex-
periment (Ξ,M(B), q). Let g be degenerated. Then we say that (Ξ,M(B), q) is stochastically in-
dependently joined to (Ω,M(A), p) and (Ξ,M(B), q) is stochastically independent on (Ω,M(A), p)
in their g-joint experiment (Ω × Ξ,M(A × B), rp).

Pr♦♣♦s✐t✐♦♥ 4.6✳ Let (Ω × Ξ,M(A × B), rp), rp = p ◦ (id⊗ g), be the g-joint experiment of
(Ω,M(A), p) and (Ξ,M(B), q).

(i) If (Ξ,M(B), q) is stochastically independently joined to (Ω,M(A), p), then rp = p× q.

(ii) For B ∈ B denote AB = {ω ∈ Ω; (g(χB)(ω) 6= q(B)}. If rp = p× q, then p(AB) = 0.

P r o o f. (i) The assertion follows from the preceding lemma.

(ii) Let rp = p × q. From the previous lemma it follows that for each A ∈ A and B ∈ B we
have rp(A × B) = p(A) · q(B) =

∫
χA · g(χB) dp. Denote A1 = {ω ∈ Ω; (g(χB))(ω) = q(B)},

A2 = {ω ∈ Ω; (g(χB))(ω) < q(B)}, A3 = {ω ∈ Ω; (g(χB))(ω) > q(B)}. Clearly, Ai ∈ M(A),
i = 1, 2, 3. From p(Ai) · q(B) =

∫
χAi

· g(χB) dp, i = 2, 3, we get p(A2) = p(A3) = 0. Hence p(AB)
= p(A2 ∪A3) = 0. �

Recall that r = p × q means that the classical experiments (Ω,A, p) and (Ξ,B, q) are (sym-
metrically) stochastically independent in their joint experiment (Ω × Ξ,A × B, r). The previous
proposition provides an explicit description of the relationships between the (symmetrical) sto-
chastic independence of classical experiments and the asymmetrical stochastic independence of
their fuzzifications (cf. [2: Proposition 3.7]): in the broader context of g-joint experiment, in one
direction, the asymmetrical stochastic independence of (Ξ,M(B), q) on (Ω,M(A), p) implies the
symmetrical stochastic independence of (Ω,A, p) and (Ξ,B, q) and, conversely, the symmetrical
stochastic independence of (Ω,A, p) and (Ξ,B, q) implies “p-almost” asymmetrical stochastic in-
dependence of (Ξ,M(B), q) on (Ω,M(A), p).

5. Conditional probability on full  Lukasiewicz tribes

Answering a problem posed in [22], conditional probabilities have been defined for σ-complete
MV-algebras by A. Dvurečenskij and S. Pulmannová ([6]) and for σ-complete MV-algebras with

1452



 
  

DIVISIBLE EXTENSION OF PROBABILITY

products by T. Kroupa ([17]) and the operation of product plays an important role. As a special
case, this yields a definition of conditional probability for  Lukasiewicz tribes, where the operation of
product coincides with the usual product of functions. Our construction of conditional probability
sheds light on this special case. We start with a stochastic channel (g, Tg) from (Ω,M(A), p) to
(Ξ,M(B), q), form the g-joint experiment (Ω × Ξ,M(A × B), rp) uniquely determined by (g, Tg)
and construct the conditional probability on full  Lukasiewicz tribes (of fuzzy random events in
M(B) conditioned by fuzzy random events in M(A) having positive probability) as the canonical
fuzzification of classical conditional probability related to the g-joint experiment. The product of
fuzzy events extends the intersection of classical (crisp) random events.

We discuss how rp reflects the “stochastic dependence/independence” of experiment
(Ξ,M(B), q) on (Ω,M(A), p). In particular, we are interested in the construction of a “conditional
probability R(u|v) of u ∈ M(B) given v ∈ M(A)”. Using the embeddings e1, e2, we consider the
conditional event u|v as the event e2(u)|e1(v) in the joint experiment (Ω × Ξ,M(A × B), rp) and
we show that this leads to a natural construction of R(u|v).

For u ∈ M(B) and v ∈ M(A) denote ũ = e2(u) ∈ M(A × B) and ṽ = e1(v) ∈ M(A × B) the
corresponding constant prolongations. For w ∈ M(A × B), each pair

(
(ω, ξ), a

)
, 0 < a ≤ w(ω, ξ),

can be considered as a “fuzzy outcome supporting w”. Then the fuzzy event w can be considered
as set Mw = {

(
(ω, ξ), a

)
; 0 < a ≤ w(ω, ξ)} of all fuzzy outcomes supporting w and

∫
w drp measures

“how big” the set Mw is.

For B ∈ B, put χ̃B = e2(χB) = χB×Ω ∈ M(A×B). Then the set MχB ·v = Mχ̃B ·ṽ = Mχ̃B
∩Mṽ =

{
(
(ω, ξ), a

)
; 0 < a ≤ ṽ(ω, ξ), ω ∈ B} can be considered as “the set of all fuzzy outcomes supporting

χ̃B given ṽ”. For 0 <
∫
ṽ drp =

∫
v dp, put

RB(χB |v) =

∫
χ̃B · ṽ drp∫

ṽ drp
.

Clearly, for each v ∈ M(A), 0 <
∫
ṽ drp =

∫
v dp, RB(χB |v) defines a probability measure RB(·|v)

on B. Consequently, the measure can be uniquely extended to a probability integral, i.e., to an
observable over M(B) into M(T). Then

R(u|v) =

∫
ũ · ṽ drp∫
ṽ drp

, u ∈ M(B), (∗)

is the unique extension and it yields the only natural definition of generalized conditional probabil-
ity based on the stochastic channel (g, Tg) and the corresponding g-joint experiment. For v = χA,
A ∈ A, p(A) > 0, and u = χB , B ∈ B, (∗) reduces to the classical conditional probability for crisp
events in (Ω × Ξ,A × B, rp).

❉❡❢✐♥✐t✐♦♥ 5.1✳ Let (Ω × Ξ,M(A × B), rp) be the g-joint experiment of (Ω,M(A), p) and
(Ξ,M(B), q). Let v ∈ M(A), 0 <

∫
ṽ drp =

∫
v dp. Then, the observable R(·|v) : M(B) → M(T)

is said to be the conditional probability on M(B) given v ∈ M(A).

▲❡♠♠❛ 5.2✳ Let R(·|v) : M(B) → M(T), v ∈ M(A), 0 <
∫
ṽ drp =

∫
v dp, be the observable

defined by (∗). Then, for each u ∈ M(B) we have
∫
ũ · ṽ drp =

∫
v · g(u) dp,

∫
ṽ drp =

∫
v dp, and

R(u|v) =

∫
v · g(u) dp∫

v dp
, u ∈ M(B). (∗∗)

P r o o f. First, from rp = p ◦ (id⊗ g) we get
∫
ṽ · ũ drp =

∫
(id⊗ g)(ṽ · ũ) dp. Second, from (⊗) we

get (id⊗ g)(ṽ · ũ) = v · g(u). Thus,
∫
ṽ · ũ drp =

∫
v · g(u) dp. Now, the other assertion follows from

the fact that L1(rp) = p. �
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From (∗∗) it follows that the observable g : M(B) → M(A) can be viewed as a “global”
conditional expectation on M(B) given M(A) via the conditional expectation theory.

Let (Λ,C, P ) be a classical random experiment (probability space), let D be a σ-field contained
in C, and let PD be the restriction of P to D. Let E be the family of all integrable C-measurable
functions. Clearly M(C) ⊂ E . Then (cf. [18]) for each w ∈ E there exists a D-measurable function
EDw, defined up to PD-equivalence by∫

D

(EDw) dPD =

∫

D

w dP, D ∈ D. (CED)

EDw is called the conditional expectation of w given D. The restriction of ED to indicator
functions χC , C ∈ C, is called conditional probability given D and denoted PDC = ED

χC
.

We shall deal with a special case, where Λ = Ω × Ξ, C = A × B, D = A × {∅,Ξ}, P = rp,
and w = ũ = e2(u), u ∈ M(B). Our goal is to describe the relationship between an observable
g : M(B) → M(A) and the conditional expectation ED. In [11] the following proposition has been
proved.

Pr♦♣♦s✐t✐♦♥ 5.3✳ Let (Ω × Ξ,M(A × B), rp) be the g-joint experiment of (Ω,M(A), p) and
(Ξ,M(B), q). For Λ = Ω × Ξ, C = A × B, D = A × {∅,Ξ}, P = rp, let ED be the corresponding
conditional expectation given D. Then (up to PD-equivalence)

EDũ = g̃(u) = e1(g(u)), ũ = e2(u), u ∈ M(B).

Sketch of the proof. Let u ∈ M(B). Since
∫

A×Ξ

(EDũ)dPD =

∫

A×Ξ

ũdP, A ∈ A,

it suffices to prove that for each A ∈ A we have∫

A×Ξ

g̃(u)dPD =

∫

A×Ξ

ũdrp.

Utilizing (⊗) and Fubini theorem, we get
∫

A×Ξ

g̃(u)dPD =

∫
χA · g(u)dp =

∫

A×Ξ

ũdrp.

Since ũ and g̃(u) are canonical embeddings of the events u ∈ M(B) and g(u) ∈ M(A) into
M(A × B), the next definition is quite natural.

❉❡❢✐♥✐t✐♦♥ 5.4✳ Let (Ω × Ξ,M(A × B), rp) be the g-joint experiment of (Ω,M(A), p) and
(Ξ,M(B), q). Then, the observable g : M(B) → M(A) is said to be the conditional probabil-
ity on M(B) given M(A).

Remark 5.5✳ From the viewpoint of conditional expectation, for each classical random vari-
able, the corresponding preimage map can be interpreted as a conditional probability. Indeed, let
(Ω,A, p) be a classical probability space and let f : Ω → R be a classical random variable. Then
the preimage map f← is a sequentially continuous Boolean homomorphism mapping real Borel
sets B into A and it can be uniquely extended to an observable g : M(B) → M(A). Accordingly,
for Ξ = R, B ∈ B, A ∈ A, 0 < p(A), condition (∗∗) gives

R(B|A) =

∫
χA · χf←(B) dp∫

χA dp
=

p(A ∩ f←(B))

p(A)
.
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In view of the previous definition, f← as the restriction of g to B can be interpreted as the
conditional probability on B given A.

In [17] and [6], a generalized conditional probability for MV-algebras with product is constructed.
In particular, for u, v ∈ M(A), 0 <

∫
v dp, P (u|v) is defined via (

∫
v · u dp)/(

∫
v dp). Our construc-

tion fully supports “conditioning via product” and, what is more important, we claim that for full
 Lukasiewicz tribes the “conditioning via product” is canonical.

The following special case might be of interest. Consider a g-joint experiment of (Ω,M(A), p)
and (Ξ,M(B), q), where the two experiments are identical and g ≡ id is the identity observable,
or B ⊂ A and g is an embedding. Let v ∈ M(A), 0 <

∫
v dp. Then, for each u ∈ M(A) we have

R(u|v) =

∫
v · u dp∫
v dp

and for u = χB , v = χA, A,B ∈ A, p(A) > 0, we get

R(u|v) =

∫
v · u dp∫
v dp

=
p(A ∩B)

p(A)
.

As suggested by the referee, the case when v is a constant function is interesting, too. Indeed, then
R(u|v) does not depend on v.

Finally, observe that the usual approach to independence via conditional probability is com-
patible with our approach via stochastic channels. Namely, from R(v|u) = R(v) it follows that
rp = p× q and “g is p-almost degenerated”.

Acknowledgement✳ The authors are indebted to the referee for valuable suggestions to improve
the original text.
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