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Abstract

In [13] we gave combinatorial characterizations of non(P ) for var-
ious properties P of spaces expressing non-distinguishability of some
ideal convergences and semi-convergences of sequences of continuous
functions. In the present paper we study three of these invariants:
non((I, JQN)-space), non((I,≤KJQN)-space), and non(w(I, JQN)-spa-
ce). We study them in connection with partial orderings of ωω re-
stricted to relations between I-to-one functions and J-to-one functions.
In particular we prove that non(w(I, JQN)-space) ≤ b for every ca-
pacitous ideal J on ω. This generalizes the same result of Kwela for
ideals J contained in an Fσ-ideal. If J is a capacitous P -ideal, then
non((I, JQN)-space) = non((I,≤KJQN)-space) = b for every ideal
I ⊆ J and non(w(I, JQN)-space) = b for every ideal I below J in
the Katětov partial quasi-ordering of ideals.

Introduction

For an ideal I on ω, a sequence of reals ξ = 〈ξn : n ∈ ω〉 is said to I-converge
to 0, we write ξ I→ 0, if for every ε > 0, {n ∈ ω : |ξn| ≥ ε} ∈ I (we will not
use a convergence to a non-zero value).

For ideals I, J , K on ω and for a sequence of real-valued functions f =
〈fn : n ∈ ω〉 defined on a set X we consider the following ideal convergences:
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f
I→ 0, if for every x ∈ X, 〈fn(x) : n ∈ ω〉 I→ 0 (the I-pointwise convergence).

f
JKQN−→ 0, if there exists an ε ∈ ω[0,∞) such that ε K→ 0 and for every x ∈ X,

{n ∈ ω : |fn(x)| ≥ εn} ∈ J (the JK-quasi-normal convergence).

f
JQN−→ 0, if f

JJQN−→ 0; i.e., if there exists an ε ∈ ω[0,∞) such that ε J→ 0 and for
every x ∈ X, {n ∈ ω : |fn(x)| ≥ εn} ∈ J (the J-quasi-normal convergence).

The I-convergence and the JQN-convergence are the same as in [4, 6]. The
JKQN-convergence was introduced in [9] under the name “the (J,K)-equal
convergence”. This two-ideal convergence was introduced because different
authors defined the “J-equal convergence” meaning the (J,K)-equal conver-
gence with K = Fin or with K = J .

Let X be a topological space and let C(X) be the family of continuous
real-valued functions on X. We define ([13]):

(A) X is an (I, JQN)-space, if for every f ∈ ωC(X), if f I→ 0, then f
JQN−→ 0.

(B) X is a w(I, JQN)-space, if for every f ∈ ωC(X), if f I→ 0, then there is

ϕ ∈ ωω such that 〈fϕ(n) : n ∈ ω〉 JQN−→ 0.

These properties are generalizations of the notions of a QN-space and a wQN-
space introduced in [5]: a QN-space means a (Fin,FinQN)-space and a wQN-
space means a w(Fin,FinQN)-space, where Fin denotes the ideal of finite sets.
The definitions of an (I, JQN)-space and a w(I, JQN)-space coincide with
the definitions of an (I, J)QN-space and an (I, J)wQN-space in [4], respec-
tively. Some authors (see [6, 10, 16]) use a similar definition to (B) with the
requirement that ϕ is strictly increasing.

We use (A) and (B) as general schemes which can be used for arbitrary
pair of convergences. For example:

– X is an (I, JKQN)-space, if for every f ∈ ωC(X), if f I→ 0, then

f
JKQN−→ 0 (hence an (I, JQN)-space is an (I, JJQN)-space).

– X is a w(I, JKQN)-space, if for every f ∈ ωC(X), if f I→ 0, then there

is ϕ ∈ ωω such that 〈fϕ(n) : n ∈ ω〉 JKQN−→ 0 (hence a w(I, JQN)-space is
a w(I, JJQN)-space).

– X is a w(I, J)-space, if for every f ∈ ωC(X), if f I→ 0, then there is
ϕ ∈ ωω such that 〈fϕ(n) : n ∈ ω〉 J→ 0.

The question whether the property of a w(I, JQN)-space is the right gen-
eralization of a wQN-space led us in [13] to this definition:
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(C) X is an (I,≤KJQN)-space, if for every f ∈ ωC(X), if f I→ 0, then there

exists an ideal J ′ ≤K J such that f
J′QN−→ 0.

Recall that ≤K is the Katětov partial quasi-ordering of ideals defined by
J ′ ≤K J , if (∃ϕ ∈ ωω)(∀a ∈ J ′) ϕ−1(a) ∈ J . For the non-tall ideals J ,
an (I,≤KJQN)-space means the same as a w(I, JQN)-space (see [13, Corol-
lary 4.5 (a2) and (c1)]). For f ∈ ω(XR) we define the following two semi-
convergences:

f
≤KJQN−→ 0 ⇔ (∃J ′ ≤K J) f

J′QN−→ 0, f
≤KJ−→ 0 ⇔ (∃J ′ ≤K J) f J′→ 0.

Definition (C) can be obtained from the scheme (A) by substituting the

semi-convergence f
≤KJQN−→ 0 for f

JQN−→ 0. In [13] we classified 2× 16 modifica-

tions of (A) and (B) for all pairs of semi-convergences J→,
JQN−→, ≤KJ−→,

≤KJQN−→ .
Each of these properties is equivalent to one of the following 9 properties:

(≤KIQN,≤KJQN) ⇒ (IQN,≤KJQN) ⇒ w(IQN, JQN) ⇒ w(IQN, J)
⇑ ⇑ ⇑ ⇑

(≤KI,≤KJQN) ⇒ (I,≤KJQN) ⇒ w(I, JQN) ⇒ w(I, J)
⇑

(I, JQN)

Recall that non(P ) denotes the minimal cardinality of a space not having the
property P . The cardinal invariants non(P ) for the above properties P are
reduced to 5 cardinals because non(P ) = non(w(I, J)-space) = kI,J for P in
the top row (see [13, Theorem 3.11]), where

kI,J = min{|X| : X ⊆ I and (∀ϕ ∈ ωω)(∃a ∈ X) ϕ−1(a) /∈ J}, if I 6≤K J ,

and kI,J = ∞, if I ≤K J . By the convention, non(P ) = ∞ means that
every space has the property P . For every property P in the diagram, if
non(P ) 6= ∞, the value of non(P ) is witnessed by a set of reals not having the
property P .

There is no complete characterization of pairs of ideals for which the above
properties are different. There are only some isolated examples: There is
an ideal I such that every space is a w(I, IQN)-space but there is a space
that is not an (I, IQN)-space (a consequence of [13, Theorem 3.4 (a), (b)
and Example 3.3 (2b)]). Assuming p = c, Šupina ([16, Theorem 1.5]) proved
that there is an ideal I such that not every space is a (Fin, IQN)-space and
there is a (Fin, IQN)-space which is not a QN-space. Kwela ([10, Theo-
rem 2.11]) proved that consistently there is an ideal I such that not every
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space is a w(Fin, IQN)-space and there is a w(Fin, IQN)-space which is not
a wQN-space. The ideal I in the last two results must be a weak P -ideal
(Definition 1.2).

In the present paper we continue investigation of the cardinal invariants

non((I, JQN)-space), non((I,≤KJQN)-space), non(w(I, JQN)-space). (∗)

In Section 2, we express the cardinals (∗) as bounding numbers of relations
connected with restrictions of the partial ordering ≤J of ωω defined by f ≤J g
if ‖f < g‖ ∈ J for f, g ∈ ωω where ‖f < g‖ = {k ∈ ω : f(k) < g(k)}. In
particular, ≤J is considered between the set F (I) of I-to-one functions and
the set F (J) of J-to-one functions. The inequalities between the cardinals
are expressed by morphisms between the relations. The bounding number of
(F (I),≤J) is a natural lower estimation of the cardinals (∗) provided that
I ⊆ J and we show that the cardinals (∗) have upper bounds in the form of
dominating numbers of the partially ordered sets (F (I),≤J) and (ωI,≤1

Fin),
where f ≤1

Fin g means that f(n) ⊆ g(n) for all but finitely many n ∈ ω (see
Theorem 2.12).

Kwela [10] proved that non(w(I, JQN)-space) ≤ b for every ideal J on ω
that is contained in an Fσ-ideal. His proof is based on the fact that every
Fσ-ideal is determined by a lower semi-continuous submeasure on ω. We
were successful to find a similar proof for analytic P -ideals. The question
whether it is possible to unify these two results in a single one led us to
the notion of a capacitous ideal in Section 3. Main results of this section
state that every Fσ-ideal and every analytic P -ideal is capacitous, the prop-
erty “to be a capacitous ideal” is hereditary with respect to Katětov partial
quasi-ordering ≤K, and non(w(I, JQN)-space) ≤ b if J is capacitous (Theo-
rem 3.5). As a consequence we prove that if J is a capacitous P -ideal, then
non((I, JQN)-space) = non((I,≤KJQN)-space) = non(w(I, JQN)-space) = b
for every ideal I ⊆ J and non(w(I, JQN)-space) = b for every ideal I ≤K J .

In Section 4, we present lower and upper estimations of invariants (∗) by
bounding and dominating numbers of partial orders as general as possible.
The lower estimations are uncountable cardinals.

1 Notation and terminology

We use the same notation as in [13]. By an ideal on a set S we mean any
collection I ⊆ P(S) such that I contains all finite subsets of S, S /∈ I, and I is
closed under finite unions and subsets of its elements. If I is an ideal on S,
then I+ = P(S) \ I is a family of all I-positive sets and I∗ = {S \ a : a ∈ I}
is the dual filter to the ideal I. If I and J are ideals on S and a ⊆ S, then
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by I ∨ J and I ∨ 〈a〉 we denote the smallest ideals on S containing I ∪ J and
I ∪ {a}, respectively, if such ideals exist. Let Fin = [ω]<ω.

For an ideal I on ω and ϕ ∈ ωω we define

ϕ→(I) = {a ⊆ ω : ϕ−1(a) ∈ I},
ϕ←(I) = {a ⊆ ω : ϕ(a) ∈ I},
F (I) = {α ∈ ωω : (∀n ∈ ω) α−1({n}) ∈ I}.

Clearly, ϕ→(I) is an ideal on ω if and only if Fin ⊆ ϕ→(I) if and only if
ϕ ∈ F (I); and ϕ←(I) is an ideal on ω if and only if ω /∈ ϕ←(I) if and only if
rng(ϕ) ∈ I+. The meaning of α ∈ F (I) is α I→∞.

Let us recall Rudin-Keisler (≤RK), Rudin-Blass (≤RB), Katětov (≤K), and
Katětov-Blass (≤KB) partial quasi-orderings of ideals I and J on ω:

I ≤RK J ⇔ (∃ϕ ∈ F (J)) I = ϕ→(J),
I ≤RB J ⇔ (∃ϕ ∈ F (Fin)) I = ϕ→(J),
I ≤K J ⇔ (∃ϕ ∈ F (J)) I ⊆ ϕ→(J),
I ≤KB J ⇔ (∃ϕ ∈ F (Fin)) I ⊆ ϕ→(J).

For α, ϕ ∈ ωω, like in [13], the composition ϕ ◦ α ∈ ωω is defined by

(ϕ ◦ α)(k) = α(ϕ(k)), k ∈ ω.

Then (ϕ ◦ α)−1(a) = ϕ−1(α−1(a)) for a ⊆ ω.
If ψ is a formula with parameters α, β, · · · ∈ ωω, then we denote

‖ψ‖ = {k ∈ ω : ψ(α(k), β(k), . . . )}.

In particular for α, β, ϕ ∈ ωω and n ∈ ω, ‖β < α‖ = {k ∈ ω : β(k) < α(k)},
‖α = n‖ = α−1({n}), ‖ϕ ◦ β < ϕ ◦ α‖ = {k ∈ ω : β(ϕ(k)) < α(ϕ(k))} =
ϕ−1(‖β < α‖). Consequently, ϕ ◦ α ∈ F (I) ⇔ α ∈ F (ϕ→(I)) and ‖ϕ ◦ β <
ϕ ◦ α‖ ∈ I ⇔ ‖β < α‖ ∈ ϕ→(I).

Lemma 1.1. If α ∈ F (I), ϕ, β ∈ ωω, and ‖ϕ ◦ β < α‖ ∈ I, then ϕ ∈ F (I).

Proof. Let ψ = ϕ ◦ β. Then ψ−1({n}) = ‖ψ = n‖ ∩ (‖α ≤ n‖ ∪ ‖n < α‖) ⊆
‖α ≤ n‖ ∪ ‖ψ < α‖ ∈ I. Hence ψ ∈ F (I) and ψ ∈ F (I) implies ϕ ∈ F (I).

An ideal J is said to be a P (I)-ideal for an ideal I, if for every partition
{an : n ∈ ω} ⊆ J of ω there exists c ∈ J∗ such that an ∩ c ∈ I for all n ∈ ω.

A partitions {an : n ∈ ω} of ω can be expressed by the function α ∈ ωω
defined by α(k) = n for k ∈ an and n ∈ ω. Conversely, every function α ∈ ωω
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determines a partition {an : n ∈ ω} of ω by an = ‖α = n‖ for n ∈ ω. Moreover,
{an : n ∈ ω} ⊆ J if and only if α ∈ F (J).

We prefer using functions instead of partitions. In particular, an ideal J is
a P (I)-ideal if and only if (∀α ∈ F (J))(∃c ∈ J∗)(∀n ∈ ω) ‖α = n‖ ∩ c ∈ I.

Definition 1.2. Let I, J , K be ideals on ω.

J is a weak P -ideal, if (∀α ∈ F (J))(∃c ∈ J+)(∀n ∈ ω) ‖α = n‖ ∩ c ∈ Fin.

J is a weak P (I)-ideal, if (∀α ∈ F (J))(∃c ∈ J+)(∀n ∈ ω) ‖α = n‖ ∩ c ∈ I.

J is a W (I)-ideal, if (∀α ∈ F (J))(∀ϕ ∈ F (J))(∃c ∈ J+)(∀n ∈ ω)
ϕ(‖α = n‖ ∩ c) ∈ I.

K is a weak P (I, J)-ideal if (∀α ∈ F (K))(∃c ∈ J+)(∀n ∈ ω) ‖α = n‖ ∩ c ∈ I.

K is a W (I, J)-ideal if (∀α ∈ F (K))(∀ϕ ∈ F (J))(∃c ∈ J+)(∀n ∈ ω)
ϕ(‖α = n‖ ∩ c) ∈ I.

Hence, J is a weak P -ideal ⇔ J is a weak P (Fin)-ideal; J is a weak P (I)-
ideal ⇔ J is a weak P (I, J)-ideal; J is a W (I)-ideal ⇔ J is a W (I, J)-ideal.

The notion of a P (I)-ideal was introduced in [9], the notion of a weak
P (I)-ideal was introduced in [16] as a generalization of the dual property to
a weak P -filter from [11]. The notions of a W (I)-ideal, a weak P (I, J)-ideal,
a W (I, J)-ideal were introduced in [13]. The notion of a W (I, J)-ideal is
related to the property W (I, J,K) in [15] (if K ⊆ J , then W (J,K, I) ⇔ K is
a P (I, J)-ideal, see [13]).

Lemma 1.3. An ideal J is a W (Fin)-ideal if and only if J is a weak P -ideal.

Proof. Every W (I)-ideal is a weak P (I)-ideal. Conversely, a weak P -ideal
is a W (Fin)-ideal: If ‖α = n‖ ∩ c ∈ Fin, then also ϕ(‖α = n‖ ∩ c) ∈ Fin.

Recall that p is the pseudo-intersection number, b is the bounding number,
d is the dominating number (see [7]). If P is a property of topological spaces,
then non(P ) is the minimal cardinality of a space not having the property P .

By idX we denote the identity on X and by idX,Y we denote the identity
function from X into Y provided that X ⊆ Y . We use the symbol idX,Y as an
evidence about the inclusion X ⊆ Y to improve the readability of formulas.

2 Bounding and dominating cardinal numbers

We say that a class of spaces is reasonable, if it contains all separable metric
spaces and it is closed under homeomorphisms.
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Theorem 2.1 ([13, Theorem 3.6 and Theorem 3.11]). For all ideals I,
J , and K ⊆ J on ω and for all reasonable classes of spaces the following holds:

(a) If K is a weak P (I, J)-ideal, then

non((I, JKQN)-space) = min{|X| : X ⊆ F (I) and
(∀α ∈ F (K))(∃β ∈ X) ‖β < α‖ /∈ J} ≤ c,

otherwise, every space is an (I, JKQN)-space.
(b) If K is a W (I, J)-ideal, then

non(w(I, JKQN)-space) = min{|X| : X ⊆ F (I) and
(∀α ∈ F (K))(∀ϕ ∈ F (J))(∃β ∈ X) ‖ϕ ◦ β < α‖ /∈ J} ≤ c,

otherwise, every space is a w(I, JKQN)-space.
(c) If every ideal ≤K-below J is a weak P (I)-ideal, then

non((I,≤KJQN)-space) = min{|X| : X ⊆ F (I) and (∀J ′ ≤RK J on ω)
(∀α ∈ F (J ′))(∃β ∈ X) ‖β < α‖ /∈ J ′} ≤ c,

otherwise, every space is an (I,≤KJKQN)-space.
(d) non(w(I, J)-space) = kI,J .

An inequality between cardinal invariants of two binary relations is some-
times a side effect of the existence of a morphism between the relations. The
advantage may be the existence of the dual morphism and an inequality for
the dual invariants.

We select suitable binary relations from the equalities in Theorem 2.1 and
find morphisms to express known as well as some new results for the cardinals

non((I, JQN)-space), non((I,≤KJQN)-space), non(w(I, JQN)-space).

Following [2], a binary relation is a triple (R−, R+, R) with R ⊆ R−×R+.
If there is no doubt about the sets R− and R+ we simply write R instead of the
triple (R−, R+, R). The dual relation is (R+, R−, R

⊥) where R⊥ = ¬(R−1);
i.e., x R⊥ y if and only if ¬(y R x). A morphism (Φ,Ψ) : (R−, R+, R) →
(S−, S+, S) is a pair of functions Φ : S− → R− and Ψ : R+ → S+ such
that Φ(x) R y ⇒ x S Ψ(y); then (Ψ,Φ) : (S−, S+, S)⊥ → (R−, R+, R)⊥

is a (dual) morphism because Ψ(y) S⊥ x ⇒ y R⊥ Φ(x). The composition
(Φ1,Ψ1) ◦ (Φ2,Ψ2) of morphisms (Φ1,Ψ1) : (R−, R+, R) → (S−, S+, S) and
(Φ2,Ψ2) : (S−, S+, S) → (T−, T+, T ) is the morphism (Φ2 ◦ Φ1,Ψ1 ◦ Ψ2) :
(R−, R+, R) → (T−, T+, T ) (recall that, e.g., Φ2 ◦ Φ1(x) = Φ1(Φ2(x))).
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We write R 4 S, if there is a morphism from R to S and we write R ≈ S,
if R 4 S and S 4 R. We define

d(R) = min{|D| : D ⊆ R+ and (∀x ∈ R−)(∃y ∈ D) x R y},

if dom(R) = R−, and let d(R) = ∞, otherwise (in [2], this invariant is denoted
by ‖R‖). Obviously d(R) < ∞ ⇔ d(R) ≤ |R+|. Dually, let b(R) = d(R⊥). If
b(R) <∞, then

b(R) = min{|B| : B ⊆ R− and (∀x ∈ R+)(∃y ∈ B) ¬(y R x)}.

A set D ⊆ R+ is R-dominating, if (∀x ∈ R−)(∃y ∈ D) x R y. A set B ⊆ R−
is R-unbounded, if it is R⊥-dominating; i.e., (∀x ∈ R+)(∃y ∈ B) ¬(y R x).

If R 4 S, then d(S) ≤ d(R) because, if D ⊆ R+ is R-dominating, then
{Ψ(y) : y ∈ D} is S-dominating. In particular, if there is no S-dominating set,
then there is no R-dominating set; i.e., d(S) = ∞⇒ d(R) = ∞. Dually, since
S⊥ 4 R⊥, if B ⊆ S− is S-unbounded, then {Φ(y) : y ∈ B} is R-unbounded,
hence b(R) ≤ b(S), and in particular, b(R) = ∞⇒ b(S) = ∞.

If R is a partial ordering ≤ on a set P without maximal elements, then
R 4 R⊥ and therefore b(R) ≤ d(R) (for x ∈ P let Φ(x) > x; then (Φ, idP ) :
R → R⊥ is a morphism because Φ(x) ≤ y ⇒ x 6≥ y). If Q is a cofinal subset
of P , then R ≈ R�Q (for x ∈ P let x ≤ Φ(x) ∈ Q; then (Φ, idQ,P ) : R�Q→ R
and (idQ,P ,Φ) : R → R�Q are morphisms). If R is a total ordering, then
R⊥ ≈ R and therefore b(R) = d(R) (x 6≥ y ⇒ x ≤ y; i.e., (idP , idP ) : R⊥ → R
is a morphism).

Let I, J , K be ideals on ω. Denote

F2(J) = {(ϕ, α) ∈ ωω × ωω : ϕ ◦ α ∈ F (J)}
= {(ϕ, α) ∈ F (J)× ωω : α ∈ F (ϕ→(J))}

and consider the following binary relations:

ZK
I,J ⊆ F (I)× F (K), β ZK

I,J α⇔ ‖β < α‖ ∈ J ;

YK
I,J ⊆ F (I)× (F (J)× F (K)), β YK

I,J (ϕ, α) ⇔ ‖ϕ ◦ β < α‖ ∈ J ;

AI,J ⊆ F (I)× F (I), β AI,J α⇔ ‖β < α‖ ∈ J ;
BI,J ⊆ F (I)× F (J), β BI,J α⇔ ‖β < α‖ ∈ J ;

CI,J ⊆ F (I)× F2(J), β CI,J (ϕ, α) ⇔ ϕ−1(‖β < α‖) ∈ J ;
DI,J ⊆ F (I)× (F (J)× F (J)), β DI,J (ϕ, α) ⇔ ‖ϕ ◦ β < α‖ ∈ J ;

EI,J ⊆ I × ωω, a EI,J ϕ⇔ ϕ−1(a) ∈ J.
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Note that AI,J = ZI
I,J , BI,J = ZJ

I,J , AJ,J = BJ,J = ZJ
J,J , and DI,J = YJ

I,J .
Note that kI,J = b(I, ωω,EI,J); i.e.,

kI,J = min{|X| : X ⊆ I and (∀ϕ ∈ ωω) X \ ϕ→(J) 6= ∅}, if I 6≤K J ,

and kI,J = ∞, if I ≤K J . By [13, Lemma 3.10 (b)], b(I, ωω,EI,J) = b(I, F (J),
EI,J). We prefer (I, ωω,EI,J) to (I, F (J),EI,J) because it is fully monotone
with respect to the Katětov partial ordering of ideals (see Lemma 2.7 (d)).

The following theorem is a reformulation of Theorem 2.1 and translates
the cardinal invariants of the form non(. . . ) into cardinal invariants of binary
relations AI,J , BI,J , . . . , ZI,J and back. We will use it (often without any
reference) throughout the whole paper whenever there will be such connection.

Theorem 2.2. Let I, J , K be ideals on ω and let K ⊆ J (the following
inequalities ≤ c have the same meaning as <∞).

(a) non((I, JKQN)-space) = b(ZK
I,J) and b(ZK

I,J) ≤ c if and only if K is
a weak P (I, J)-ideal. In particular,

– non((I, JQN)-space) = b(ZJ
I,J) = b(BI,J) and b(BI,J) ≤ c if and

only if J is a weak P (I)-ideal;
– non((I, JIQN)-space) = b(ZI

I,J) = b(AI,J) ≤ c, if I ⊆ J .

(b) non(w(I, JKQN)-space) = b(YK
I,J) and b(YK

I,J) ≤ c if and only if K is
a W (I, J)-ideal. In particular,

– non(w(I, JQN)-space) = b(YJ
I,J) = b(DI,J) and b(DI,J) ≤ c if and

only if J is a W (I)-ideal.

(c) non((I,≤KJQN)-space) = b(CI,J) and b(CI,J) ≤ c if and only if every
ideal ≤K-below J is a weak P (I)-ideal.

(d) non(w(I, J)-space) = b(EI,J) = kI,J and kI,J ≤ c if and only if I 6≤K J .

Proof. All assertions are transcriptions of Theorem 2.1. Case (c) needs some
explanation. Theorem 2.1 (c) says: If every ideal ≤K-below J is a weak P (I)-
ideal, then

non((I,≤KJQN)-space) = min{|X| : X ⊆ F (I) and (∀J ′ ≤RK J on ω)
(∀α ∈ F (J ′))(∃β ∈ X) ‖β < α‖ /∈ J ′} ≤ c,

otherwise, non((I,≤KJQN)-space) = ∞. This is equal to b(CI,J) because

(∃J ′ ≤RK J)(∃α ∈ F (J ′))(∀β ∈ X) ‖β < α‖ ∈ J ′

⇔ (∃ϕ ∈ F (J))(∃α ∈ F (ϕ→(J)))(∀β ∈ X) ϕ−1(‖β < α‖) ∈ J
⇔ (∃(ϕ, α) ∈ F2(J))(∀β ∈ X) β CI,J (ϕ, α).
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Lemma 2.3. Consider the functions

Ψ1 : F (J) → F2(J), Ψ1(α) = (idω, α),
Ψ2 : F2(J) → F (J)× F (J), Ψ2(ϕ, α) = (ϕ,ϕ ◦ α),
Φ3 : I → F (I), Φ3(a)(k) = 0, if k ∈ a, and Φ3(a)(k) = k, if k ∈ ω \ a,
Ψ3 : F (J)× F (J) → ωω, Ψ3(ϕ, α) = ϕ.

For any ideals I and J on ω the following pairs of functions are morphisms:

BI,J

(idF (I),Ψ1)−−−−−−−→ CI,J

(idF (I),Ψ2)−−−−−−−→ DI,J
(Φ3,Ψ3)−−−−−→ EI,J .

Consequently, b(BI,J) ≤ b(CI,J) ≤ b(DI,J) ≤ b(EI,J) = kI,J .

Proof. For example, the implication Φ3(a) DI,J (ϕ, α) ⇒ a EI,J Ψ3(ϕ, α)
holds because ‖ϕ ◦ Φ3(a) < α‖ ∈ J implies ϕ−1(a) ⊆ ‖ϕ ◦ Φ3(a) < α‖ ∪
‖α = 0‖ ∈ J .

By [13, Lemma 3.10 (a)], p ≤ kI,J . The value kI,J gives no reasonable
restriction on the value of b(BI,J): If I * J , then b(BI,J) = non((I, JQN)-
space) = 1 and, if I ⊆ J , then kI,J = ∞.

Recall that the symbols idX and idX,Y denote the identity function on X.
The symbol idX,Y serves also as an evidence about the inclusion X ⊆ Y .

Lemma 2.4. The inclusions I ⊆ K, K ⊆ J , and I ⊆ J (separately) imply
that the following pairs of identities are morphisms:

AI,J

(idF (I),idF (I),F (K))−−−−−−−−−−−−−→
I⊆K

ZK
I,J

(idF (I),idF (K),F (J))−−−−−−−−−−−−−→
K⊆J

BI,J

I⊆J

x(idF (I),idF (I),F (J)) I⊆J

x(idF (I),F (J),idF (J))

AI,I AJ,J

Let ≤J denote the partial quasi-ordering of ωω defined by

α ≤J β ⇔ ‖α < β‖ ∈ J, α, β ∈ ωω.

If J is a maximal ideal, then ≤J is a total quasi-ordering.

Lemma 2.5. For any ideals I and J on ω, AJ,J = (F (J),≤J) and AI,J =
(F (I),≤J) are directed partially quasi-ordered sets. AI,J has a largest element
if and only if I ∩ J∗ 6= ∅.
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Proof. Let γα,β be the pointwise minimum of α, β ∈ F (I). Then γα,β ∈ F (I)
because ‖γα,β = n‖ ⊆ ‖α = n‖ ∪ ‖β = n‖ ∈ I for all n ∈ ω and γα,β is an
upper bound of α and β in AI,J because ‖α < γα,β‖ = ‖β < γα,β‖ = ∅ ∈ J .
Any β ∈ F (I) is a largest element in AI,J if and only if ‖β = 0‖ ∈ I ∩ J∗
because for every α ∈ F (I), ‖α < β‖ ⊆ ω \ ‖β = 0‖.

Assuming I ∩ J∗ = ∅ we denote (in most cases I ⊆ J):

bI,J = b(AI,J), dI,J = d(AI,J), bJ = b(AJ,J), dJ = d(AJ,J).

Since AI,J is a partially quasi-ordered set on a subset of ωω, bI,J ≤ dI,J ≤ c
and bJ ≤ dJ ≤ c.

Corollary 2.6. If I ⊆ J are ideals on ω, then ω1 ≤ bJ and ω1 ≤ bI ≤ bI,J .

Proof. By [13, Theorem 2.12 (a)], non((I, JKQN)-space) ≥ ω1, if I ⊆ K∩J .
Therefore by Theorem 2.2 (a), bI = non((I, IIQN)-space) ≥ ω1. Then by
Lemma 2.4, ω1 ≤ bI ≤ bI,J and, in particular for I = J , ω1 ≤ bJ,J = bJ .

We consider also restrictions of two partial quasi-orderings of ωP(ω):

f ≤0
J g ⇔ (∃x ∈ J)(∀n ∈ ω) f(n) ⊆ g(n) ∪ x,

f ≤1
J g ⇔ {n ∈ ω : f(n) * g(n)} ∈ J.

The relations ≤0
J and ≤1

J are natural generalizations of the eventual partial
quasi-ordering ≤∗ on ωω and (ωFin,≤0

Fin) ≈ (ωFin,≤1
Fin) ≈ (ωω,≤∗) because

ωω is cofinal in ωFin. Note that for α, β ∈ ωω, α ≤J β ⇔ β ≤1
J α; i.e., ≤J is

the inverse of the relation ≤1
J .

Be aware that we use bJ and dJ differently from other authors (e.g., [8, 10])
and by definition they are different from b(ωω,≤1

J) and d(ωω,≤1
J).

By the next two lemmas, (ωI,≤1
Fin) 4 AI,I 4 AI,J ≈ (ωI,≤0

J) and hence
Corollary 2.6 can be proved also by the diagonal method.

Lemma 2.7. Let I, J , K, I ′, J ′, J ′′, K ′ be ideals on ω.

(a) ZK
I,J ≈ (ωI, ωK,≤0

J), AI,J ≈ (ωI,≤0
J), and BI,J ≈ (ωI, ωJ,≤0

J).

(b) If I ′ ⊆ I, J ⊆ J ′, and K ⊆ K ′, then ZK
I,J 4 ZK′

I′,J ′ , YK
I,J 4 YK′

I′,J ′ ,
AI,J 4 AI,J ′ , BI,J 4 BI′,J ′ , CI,J 4 CI′,J ′ , DI,J 4 DI′,J ′ , EI,J 4 EI′,J ′

(omitting AI,J 4 AI′,J).

(c) If J ≤KB J ′, then AFin,J 4 AFin,J ′ .

(d) If I ′ ≤K I and J ≤K J ′, then BFin,J 4 BFin,J ′ , CI,J 4 CI,J ′ , DI,J 4
DI′,J ′ , EI,J 4 EI′,J ′ .
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Proof. (a) Define ΦI : F (I) → ωI and ΨI : ωI → F (I) by ΦI(α)(n) =
‖α ≤ n‖ and ΨI(f)(n) = min{m ∈ ω : n ∈ m ∪ f(m)} for α ∈ F (I), f ∈ ωI,
and n ∈ ω. We show that the following pairs of functions are morphisms:

(ΦI ,ΨK) : (ωI, ωK,≤0
J) → (F (I), F (K),≤J),

(ΨI ,ΦK) : (F (I), F (K),≤J) → (ωI, ωK,≤0
J).

Assume that α ∈ F (I), f ∈ ωK, and ΦI(α) ≤0
J f . There is an x ∈ J such

that ‖α = n‖ ⊆ f(n) ∪ x for all n ∈ ω and then, α(k) = n and k /∈ x implies
ΨK(f)(k) ≤ n = α(k). Therefore ‖α < ΨK(f)‖ ⊆ x ∈ J ; i.e., α ≤J ΨK(f).

Assume that α ∈ F (K), f ∈ ωI, and ΨI(f) ≤J α, i.e., ‖ΨI(f) < α‖ ∈ J .
Then for every n ∈ ω, f(n) ⊆ ‖ΨI(f) ≤ n‖ ⊆ ‖α ≤ n‖ ∪ ‖ΨI(f) < α‖ =
ΦK(α)(n) ∪ ‖ΨI(f) < α‖. Therefore f ≤0

J ΦK(α).
(b) These morphisms consists of identity functions (similar to Lemma 2.4).
(c)–(d) Let ν ∈ F (I) and η ∈ F (J ′) be such that I ′ ⊆ ν→(I) = {a ⊆ ω :

ν−1(a) ∈ I} and J ⊆ η→(J ′) = {a ⊆ ω : η−1(a) ∈ J ′}.
By (a), to prove BFin,J 4 BFin,J ′ and AFin,J 4 AFin,J ′ we find mor-

phisms (Φ,Ψ) : (ωFin, ωJ,≤0
J) → (ωFin, ωJ ′,≤0

J′) and (Φ,Ψ′) : (ωFin,≤0
J) →

(ωFin,≤0
J′). Define Φ : ωFin → ωFin and Ψ : ωJ → ωJ ′ by Φ(f)(n) = η[f(n)]

and Ψ(g)(n) = η−1(g(n)); if η is finite-to-one, then let Ψ′ = Ψ�(ωFin). If
Φ(f) ≤0

J g and x ∈ J is such that Φ(f)(n) ⊆ g(n) ∪ x for all n ∈ ω, then
f(n) ⊆ η−1(g(n)∪ x) = Ψ(g)(n)∪ η−1(x) for all n ∈ ω and hence, f ≤0

J′ Ψ(g)
because η−1(x) ∈ J ′.

A morphism (idF (I),Ψ) : CI,J → CI,J ′ . Define Ψ : F2(J) → F2(J ′) by
Ψ(ϕ, α) = (η ◦ ϕ, α); if ϕ ◦ α ∈ F (J), then Ψ(ϕ, α) ∈ F (J ′) because (η ◦ ϕ ◦
α)−1({n}) = η−1[(ϕ ◦α)−1({n})]. Now, β CI,J (ϕ, α) ⇒ ϕ−1(‖β < α‖) ∈ J ⊆
η→(J ′) ⇒ η−1(ϕ−1(‖β < α‖)) ∈ J ′ ⇒ β CI,J ′ (η ◦ ϕ, α) ⇒ β CI,J ′ Ψ(ϕ, α).

A morphism (Φ,Ψ) : DI,J → DI′,J ′ . We define Φ : F (I ′) → F (I) and
Ψ : F (J) × F (J) → F (J ′) × F (J ′). For β ∈ F (I ′) let Φ(β) = ν ◦ β and
for ϕ, α ∈ F (J) let Ψ(ϕ, α) = (η ◦ ϕ ◦ ν, η ◦ α), if η ◦ ϕ ◦ ν ∈ F (J ′), and
Ψ(ϕ, α) ∈ F (J ′) be arbitrary, otherwise. Then Φ(β) ∈ F (I) because ‖ν ◦ β =
n‖ = ν−1(‖β = n‖); similarly, η◦α ∈ F (J ′) and Ψ(ϕ, α) ∈ F (J ′)×F (J ′). Now,
Φ(β) DI,J (ϕ, α) ⇒ ‖ϕ ◦ Φ(β) < α‖ ∈ J ⊆ η→(J ′) ⇒ η−1(‖ϕ ◦ Φ(β) < α‖) ∈
J ′ ⇒ ‖η ◦ ϕ ◦ ν ◦ β < η ◦ α‖ ∈ J ′. Hence by Lemma 1.1, if Φ(β) DI,J (ϕ, α),
then η ◦ ϕ ◦ ν ∈ F (J ′) and consequently, Ψ(ϕ, α) = (η ◦ ϕ ◦ ν, η ◦ α) and
β DI,J ′ Ψ(ϕ, α).

A morphism (Φ,Ψ) : EI,J → EI′,J ′ . Let Φ : I ′ → I and Ψ : ωω → ωω
be defined by Φ(a) = ν−1(a) and Ψ(ϕ) = η ◦ ϕ ◦ ν.1 If Φ(a) EI,J ϕ, i.e.,

1The same argument in proving monotonicity of the relation (I, F (J), EI,J ) as opposed
to (I, ωω, EI,J ) requires ν finite-to-one: If ϕ ∈ F (J) and ν ∈ F (Fin), then Ψ(ϕ) ∈ F (J ′).
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ϕ−1(ν−1(a)) ∈ J ⊆ η→(J ′), then η−1(ϕ−1(ν−1(a))) = (η ◦ ϕ ◦ ν)−1(a) ∈ J ′;
i.e., a EI,J Ψ(ϕ).

It seems that the monotonicity of the relations AI,J , BI,J , CI,J with respect
to the ideals I and J in Lemma 2.7 (c)–(d) differs from the monotonicity of
DI,J and EI,J . Some additional monotonicity properties of AI,J and BI,J we
prove in Proposition 2.11 below.

Lemma 2.8. Let I, J , K, L denote ideals on ω.

(a) There are morphisms according to the diagram

AI,I

↑
AI,Fin → (ωI,≤1

Fin) → (ωω,≤∗) → (ωω,≤0
J) ≈ AFin,J

↓ ↓
(ωI,≤1

J) → (ωω,≤1
J)

(b) bFin = b and dFin = d.

(c) If I ⊆ L ⊆ K ⊆ J and K is a P (I)-ideal, then AL,L 4 AI,K ≈ AL,K ≈
AK,K ≈ BI,K ≈ BL,K ≈ BK,K 4 AI,J ≈ AL,J ≈ AK,J 4 BI,J ≈ BL,J ≈
BK,J .

(d) If J is a P -ideal, then b ≤ bJ ≤ dJ ≤ d and for every ideal I ⊆ J on ω,
bI ≤ bJ = bI,J ≤ dI,J = dJ ≤ dI .

Proof. (a) The morphisms (ωI,≤1
Fin) → (ωI,≤0

I), (ωI,≤1
Fin) → (ωI,≤1

J),
(ωω,≤∗) → (ωω,≤0

J), (ωω,≤∗) → (ωω,≤1
J) are created by pairs of identities

and by Lemma 2.7 (a), AI,J ≈ (ωI,≤0
J). Define Ψ1 : ωI → ωI and Ψ2 :

ωI → ωω by Ψ1(f)(n) = f(n) ∪ n and Ψ2(f)(k) = max{m ∈ ω : m ⊆ f(k)}
for f ∈ ωI. Then (idωI ,Ψ1) : (ωI,≤0

Fin) → (ωI,≤1
Fin) and (idωI,ωω,Ψ2) :

(ωI,≤1
J) → (ωω,≤1

J) are morphisms. Taking J = Fin we get also a morphism
(ωI,≤1

Fin) → (ωω,≤∗).
(b) By (a), AFin,Fin ≈ (ωω,≤∗).
(c) Let L and L′ be arbitrary ideals on ω such that I ⊆ L ⊆ K and

I ⊆ L′ ⊆ K. By Lemma 2.4 and Lemma 2.7 (b), AL,L 4 AL,K 4 BL,K and
AL,K 4 AL,J 4 BL,J . We prove AL,J 4 AL′,J , BL,J 4 BL′,J , and BL,K 4
AL′,K . By replacing L and L′ we get the (first two) inverse morphisms and we
get AL,L 4 AL′,K ≈ AL,K ≈ BL′,K ≈ BL,K 4 AL′,J ≈ AL,J 4 BL′,J ≈ BL,J .
For L′ = I and L′ = K we get the remaining equalities.

Let Φ : ωK → ωI be defined as follows: Since K is a P (I)-ideal for every
g ∈ ωK fix a set xg ∈ K such that g(n) \ xg ∈ I for all n ∈ ω and let
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Φ(g)(n) = g(n)\xg. Then g ≤0
K Φ(g). By Lemma 2.7 (a) it is enough to show

that the following pairs of functions are morphisms:

(Φ�(ωL′),Φ�(ωL)) : (ωL,≤0
J) → (ωL′,≤0

J), (2.1)

(Φ�(ωL′), idωJ) : (ωL, ωJ,≤0
J) → (ωL′, ωJ,≤0

J), (2.2)

(Φ�(ωL′),Φ) : (ωL, ωK,≤0
K) → (ωL′,≤0

K). (2.3)

These functions are well defined because ωI ⊆ ωL ⊆ ωK and ωI ⊆ ωL′ ⊆ ωK.
Assume that Φ(g) ≤0

J f for some g ∈ ωL′ and f ∈ ωJ , i.e., there is
x ∈ J such that Φ(g)(n) ⊆ f(n) ∪ x for all n ∈ ω. Then g ≤0

J f because
g(n) ⊆ f(n) ∪ (x ∪ xg) for all n ∈ ω and x ∪ xg ∈ J . This shows that (2.2) is
a morphism. If f ∈ ωL, then g ≤0

J Φ(f) because g ≤0
J f ≤0

K Φ(f) and K ⊆ J .
Therefore (2.1) is a morphism. Taking J = K and f ∈ ωK in the same way
we get g ≤0

K Φ(f) because g ≤0
K f ≤0

K Φ(f). Therefore (2.3) is a morphism.
(d) AFin,Fin 4 AJ,J and AI,I 4 AI,J ≈ AJ,J holds for all I ⊆ J : AI,I 4

AI,J holds by Lemma 2.4 and AI,J ≈ AJ,J holds by (c) because “J is a P (Fin)-
ideal and AI,J ≈ AJ,J” is an instance of “K is a P (I)-ideal and AL,K ≈ AK,K”
in (c) by the substitution (K/J, I/Fin, L/I). Therefore bI ≤ bI,J = bJ ≤ dJ =
dI,J ≤ dI and b = bFin ≤ bJ ≤ dJ ≤ dFin = d (bFin = b and dFin = d by (b);
bJ ≤ dJ because AJ,J is a partially quasi-ordered set).

By lemmas 2.4, 2.7 (b), 2.8 (c), if I ⊆ K ⊆ J and K is a P (I)-ideal, then

bI ≤ bI,K = bK = non((I,KQN)-space) = non((K,KQN)-space)
≤ bI,J = bK,J ≤ non((I, JQN)-space) = non((K,JQN)-space).

The direct product of relations (R−, R+, R) and (S−, S+, S) is the relation
(R− × S−, R+ × S+, R ⊗ S) where (x, u) R⊗ S (y, v) ⇔ (x R y and u R v).
Obviously, R ⊗ S ≈ S ⊗ R 4 R. Note that b(R ⊗ S) = min{b(R), b(S)} and,
if d(R⊗ S) is infinite, then d(R⊗ S) = max{d(R), d(S)}.

An ideal J is a weak P (I1 ∨ I2)-ideal if and only if J is a weak P (I1)-ideal
or J is a weak P (I2)-ideal (see Proposition 2.9 (d) and Theorem 2.2 (a)).

Proposition 2.9. Let I = I1 ∨ I2, K = K1 ∨K2, and J = J1 ∨ J2 be ideals
on ω. Then ZK1

I1,J1
⊗ ZK2

I2,J2
4 ZK

I,J ≈ ZK
I1,J ⊗ ZK

I2,J . Consequently:

(a) min{bI1,J1 , bI2,J2} ≤ bI1∨I2,J1∨J2 and dI1∨I2,J1∨J2 ≤ max{dI1,J1 , dI2,J2}.

(b) min{bI1 , bI2} ≤ bI1∨I2 and dI1∨I2 ≤ max{dI1 , dI2}.

(c) If K ⊆ J , then non((I1 ∨ I2, JKQN)-space) = min{non((I1, JKQN)-
space),non((I2, JKQN)-space)}.
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(d) non((I1 ∨ I2, JQN)-space) = min{non((I1, JQN)-space),non((I2, JQN)-
space)}.

Proof. By Lemma 2.7 (a) we get ZK1
I1,J1

⊗ZK2
I2,J2

4 ZK
I,J , if we find a morphism

(Φ,Ψ) : (ωI1 × ωI2,
ωK1 × ωK2,≤0

J1
⊗≤0

J2
) → (ωI, ωK,≤0

J).

Let Φ = (Φ1,Φ2) : ωI → ωI1 × ωI2 be such that Φ1(f)(n) ∪ Φ2(f)(n) = f(n)
for all f ∈ ω(I1 ∨ I2) and n ∈ ω and let Ψ : ωK1 × ωK2 → ωK be defined
by Ψ(g1, g2)(n) = g1(n) ∪ g2(n) for (g1, g2) ∈ ωK1 × ωK2 and n ∈ ω. Assume
that Φ(f) ≤0

J1
⊗≤0

J2
(g1, g2), i.e., Φ1(f) ≤0

J1
g1 and Φ2(f) ≤0

J2
g2 which

means that there are xi ∈ Ji, i = 1, 2, such that Φ1(f)(n) ⊆ g1(n) ∪ x1 and
Φ2(f)(n) ⊆ g2(n) ∪ x2 for all n ∈ ω. Then x1 ∪ x2 ∈ J and for every n ∈ ω,
f(n) = Φ1(f)(n)∪Φ2(f)(n) ⊆ g1(n)∪g2(n)∪x1∪x2 = Ψ(g1, g2)(n)∪(x1∪x2).
Therefore f ≤0

J Ψ(g1, g2). This proves ZK1
I1,J1

⊗ ZK2
I2,J2

4 ZK
I,J . By substitution

K1 = K2 = K and J1 = J2 = J we get ZK
I1,J ⊗ ZK

I2,J 4 ZK
I,J .

To get ZK
I,J 4 ZK

I1,J ⊗ ZK
I2,J we find a morphism

(Φ′,Ψ′) : (ωI, ωK,≤0
J) → (ωI1 × ωI2,

ωK × ωK,≤0
J ⊗≤0

J).

Define Φ′ : ωI1 × ωI2 → ωI and Ψ′ : ωK → ωK × ωK by Φ′(f1, f2)(n) =
f1(n) ∪ f2(n) and Ψ′(g) = (g, g). Assume that Φ′(f1, f2) ≤0

J g and let x ∈ J
be such that f1(n)∪f2(n) ⊆ g(n)∪x for all n ∈ ω. Then f1 ≤0

J g and f2 ≤0
J g,

i.e., (f1, f2) ≤0
J ⊗≤0

J Ψ′(g).
For (a) take K1 = I1, K2 = I2; for (b) take K1 = J1 = I1, K2 = J2 = I2;

for (c) take K1 = K2 = K; for (d) take J1 = J2 = K1 = K2 = J .

The J-sum of ideals Ln, n ∈ ω, on ω is the ideal
∑J

n∈ω Ln = {a ⊆ ω × ω :
{n ∈ ω : a(n) /∈ Ln} ∈ J} where a(n) = {k ∈ ω : (n, k) ∈ a} for a ⊆ ω × ω.
If J ′ =

∑J
n∈ω Ln, then J ≤RK J ′ and by the next proposition, in this special

case, AJ′,J ′ 4 AJ,J .

Proposition 2.10. Let I, J , K, Ln, n ∈ ω, be ideals on ω and let I ′ =∑I
n∈ω Ln, J ′ =

∑J
n∈ω Ln, and K ′ =

∑K
n∈ω Ln. Then ZK′

I′,J ′ 4 ZK
I,J . In

particular, bI′,J ′ ≤ bI,J and non((I ′, J ′QN)-space) ≤ non((I, JQN)-space).

Proof. Define Φ : ωI → ωI ′ and Ψ : ωK ′ → ωK by Φ(f)(k) = f(k) × ω for
f ∈ ωI and Ψ(g)(k) = {n ∈ ω : g(k)(n) /∈ Ln} for g ∈ ωK ′. Let Φ(f) ≤0

J′ g
(where f ∈ ωI and g ∈ ωK ′) and let x ∈ J ′ be such that f(k)×ω ⊆ g(k)∪x for
all k ∈ ω. Denote y = {n ∈ ω : x(n) /∈ Ln}. Then y ∈ J and for every k ∈ ω,
f(k) ⊆ {n ∈ ω : (g(k) ∪ x)(n) /∈ Ln} = Ψ(g)(k) ∪ y. Therefore f ≤0

J Ψ(g).
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Proposition 2.11 ([13, Lemma 4.1]). Let I, J , K be ideals on ω, η ∈ ωω,
and a = ω \ rng(η).

(a) If η ∈ F (J) and rng(η) ∈ I+, then AI,η→(J) 4 Aη←(I),J and BI,η→(J) 4
Bη←(I),J . More generally:

(1) If η ∈ F (J) and rng(η) ∈ I+ ∩K+, then ZK
I,η→(J) 4 Zη←(K)

η←(I),J .

(2) If η ∈ F (J) ∩ F (K) and rng(η) ∈ I+, then Zη→(K)
I,η→(J) 4 ZK

η←(I),J .

(b) ZK
I,J 4 ZK

I,J∨〈a〉 ≈ ZK∨〈a〉
I,J∨〈a〉 ≈ Zη←(K)

η←(I),η←(J), if rng(η) ∈ I+ ∩ J+ ∩K+.
Consequently, AI,J 4 AI,J∨〈a〉 ≈ Aη←(I),η←(J) and BI,J 4 BI,J∨〈a〉 ≈
Bη←(I),η←(J).

(c) If η is one-to-one, then ZK
I,J ≈ Zη→(K)

η→(I),η→(J) and consequently, AI,J ≈
Aη→(I),η→(J) and BI,J ≈ Bη→(I),η→(J).

(d) If η ∈ F (I) and rng(η) ∈ J+, then BI,η←(J) 4 Bη→(I),J∨〈a〉.

Proof. (a) Define Φ : ω(η←(I)) → ωI and Ψ : ωK → ω(η←(K)) (respectively,
Ψ : ω(η→(K)) → ωK) by Φ(f)(n) = η[f(n)] and Ψ(g)(n) = η−1(g(n)). If
Φ(f) ≤0

η→(J) g, then there is x ⊆ ω such that η−1(x) ∈ J and for every n,
η[f(n)] ⊆ g(n) ∪ x and so, f(n) ⊆ η−1(g(n)) ∪ η−1(x). Therefore f ≤0

J Ψ(g).
(b) ZK

I,J 4 ZK
I,J∨〈a〉 4 ZK∨〈a〉

I,J∨〈a〉 hold by Lemma 2.7 (b). Since J ∨ 〈a〉 =
η→(η←(J)), K ∨ 〈a〉 = η→(η←(K)), and η ∈ F (η←(J))∩F (η←(K)), by (a2),
ZK∨〈a〉

I,J∨〈a〉 = Zη→(η←(K))
I,η→(η←(J)) 4 Zη←(K)

η←(I),η←(J) We prove Zη←(K)
η←(I),η←(J) 4 ZK

I,J∨〈a〉.
Define Φ : ωI → ω(η←(I)) and Ψ : ω(η←(K)) → ωK by Φ(f)(n) = η−1(f(n))
and Ψ(g)(n) = η[g(n)]. If Φ(f) ≤0

η←(J) g, then there is x ⊆ ω such that η[x] ∈
J and for every n ∈ ω, η−1(f(n)) ⊆ g(n)∪x and then f(n) ⊆ η[g(n)]∪η[x]∪a.
Therefore f ≤0

J∨〈a〉 Ψ(g).
(c) For every ideal L on ω, if η ∈ F (L), then rng(η) ∈ η→(L)∗ and η→(L) =

η→(L) ∨ 〈a〉; if η is injective, then η←(η→(L)) = L. Consequently by (b),
Zη→(K)

η→(I),η→(J) = Zη→(K)
η→(I),η→(J)∨〈a〉 ≈ Zη←(η→(K))

η←(η→(I)),η←(η→(J)) = ZK
I,J .

(d) BI,η←(J) 4 Bη←(η→(I)),η←(J) because η←(η→(I)) ⊆ I. Since rng(η) ∈
η→(I)+ ∩ J+, by (b), Bη→(I),J∨〈a〉 ≈ Bη←(η→(I)),η←(J).

Theorem 2.12. Let I and J be ideals on ω.

(a) If J is a weak P (I)-ideal, then BI,J 4 A⊥I,J and hence,
non((I, JQN)-space) ≤ dI,J .
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(b) If every ideal ≤K-below J is a weak P (I)-ideal, then CI,J 4 (ωI,≤1
Fin)⊥

and hence, non((I,≤KJQN)-space) ≤ d(ωI,≤1
Fin).

(c) If J is a W (I)-ideal, then DI,J 4 (ωI,≤1
Fin)⊥ and hence,

non(w(I, JQN)-space) ≤ d(ωI,≤1
Fin).

Proof. (a) J is a weak P (I)-ideal if and only if (∀α ∈ F (J))(∃β ∈ F (I))
‖β < α‖ /∈ J ([13, Theorem 3.4 (a)]). For every α ∈ F (J) choose Ψ(α) ∈ F (I)
such that Ψ(α) 6≤J α. We show that (idF (I),Ψ) : BI,J → A⊥I,J is a morphism,
i.e., β BI,J α ⇒ β A⊥I,J Ψ(α) for β ∈ F (I) and α ∈ F (J). Let β BI,J α, i.e.,
β ≤J α. Then Ψ(α) 6≤J β by transitivity of ≤J , i.e., β A⊥I,J Ψ(α).

(b)–(c) Under the hypotheses we define Φ : ωI → F (I), Ψ1 : F2(J) → ωI,
and Ψ2 : F (J)× F (J) → ωI such that

Φ(f) CI,J (ϕ, α) ⇒ f 6≥1
Fin Ψ1(ϕ, α), f ∈ ωI, (ϕ, α) ∈ F2(J),

Φ(f) DI,J (ϕ, α) ⇒ f 6≥1
Fin Ψ2(ϕ, α), f ∈ ωI, (ϕ, α) ∈ F (J)× F (J).

Let Φ(f)(k) = min{m ∈ ω : k ∈ m ∪ f(m)} for f ∈ ωI and n ∈ ω. Then
‖Φ(f) ≤ n‖ = n ∪

⋃
m≤n f(m) ∈ I.

If all ideals ≤K-below J are weak P (I)-ideals, then for every (ϕ, α) ∈ F2(J)
there is a set cϕ,α ∈ ϕ→(J)+ such that ‖α = n‖ ∩ cϕ,α ∈ I for all n ∈ ω. Let
Ψ1(ϕ, α)(n) = ‖α ≤ n+ 1‖ ∩ cϕ,α for all n ∈ ω.

Assume that Ψ1(ϕ, α) ≤1
Fin f . There is n0 ∈ ω such that for every n ≥ n0,

‖α = n + 1‖ ∩ cϕ,α ⊆ f(n) ⊆ ‖Φ(f) ≤ n‖ and hence ‖α = n + 1‖ ∩ cϕ,α ⊆
‖Φ(f) < α‖. Then ‖Φ(f) < α‖ ⊇ cϕ,α \ ‖α ≤ n0‖ ∈ ϕ→(J)+ because
‖α ≤ n0‖ ∈ ϕ→(J). Therefore ¬(Φ(f) CI,J (ϕ, α)).

If J is a W (I)-ideal, then for every ϕ, α ∈ F (J) there is a set dϕ,α ∈ J+

such that ϕ(‖α = n‖ ∩ dϕ,α) ∈ I for all n ∈ ω. Let Ψ2(ϕ, α)(n) = ϕ(‖α ≤
n+ 1‖ ∩ dϕ,α) for all n ∈ ω.

Assume that Ψ2(ϕ, α) ≤1
Fin f . Let n0 ∈ ω be such that for every n ≥ n0,

ϕ(‖α = n+ 1‖ ∩ dϕ,α) ⊆ f(n) ⊆ ‖Φ(f) ≤ n‖ and hence ‖α = n+ 1‖ ∩ dϕ,α ⊆
{k ∈ ω : Φ(f)(ϕ(k)) < α(k)} = ‖ϕ ◦ Φ(f) < α‖. Then ¬(Φ(f) DI,J (ϕ, α))
because ‖ϕ ◦ Φ(f) < α‖ ⊇ dϕ,α \ ‖α ≤ n0‖ ∈ J+.

Corollary 2.13 ([10, Theorem 2.7 (a)]). If J is a weak P -ideal, then

b ≤ max{bFin,J , bJ} ≤ non((Fin, JQN)-space)
≤ non((Fin,≤KJQN)-space) ≤ non(w(Fin, JQN)-space) ≤ d.

Proof. Let κ = max{bFin,J , bJ}. By Lemma 2.8 (a), twice, (ωω,≤∗) ≈
AFin,Fin 4 AFin,J and hence, b ≤ bFin,J ≤ κ. By Lemma 2.4, κ ≤ b(BFin,J)
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because AFin,J 4 BFin,J and AJ,J 4 BFin,J . By Lemma 2.3, BFin,J 4 CFin,J 4
DFin,J . By Lemma 1.3, J is a W (Fin)-ideal and by Theorem 2.12 (c) for
I = Fin, DFin,J 4 (ωFin,≤1

Fin)⊥ ≈ (ωω,≤∗)⊥. Therefore κ ≤ b(BFin,J) ≤
b(CFin,J) ≤ b(DFin,J) ≤ d. Now apply Theorem 2.2.

3 Ideals related to submeasures and capacities

Recall that µ : P(ω) → [0,∞] is a submeasure on ω if µ(∅) = 0, µ({n}) < ∞
for all n ∈ ω, and µ(a) ≤ µ(a ∪ b) ≤ µ(a) + µ(b) for all a, b ⊆ ω. Denote
Fin(µ) = {a ⊆ ω : µ(a) < ∞} and Exh(µ) = {a ⊆ ω : limn∈ω µ(a \ n) = 0}.
We say that µ is unbounded on I ⊆ Fin(µ), if for every n ∈ ω there is a ∈ I
such that µ(a) ≥ n; µ is unbounded, if it is unbounded on Fin(µ); µ is lower
semi-continuous, if µ(a) = limn∈ω µ(a ∩ n) for all a ⊆ ω.

Clearly, Exh(µ) is an ideal on ω for every submeasure µ on ω and Fin(µ) is
an ideal if and only if µ(ω) = ∞. For every ideal I there is a {0,∞}-valued
submeasure µ such that I = Fin(µ). However, this submeasure is not un-
bounded. On the other hand, if µ is unbounded, then µ is unbounded on an
ideal I ⊆ Fin(µ) generated by a countable family.

Proposition 3.1. Let I ⊆ J be ideals on ω.

(a) If I ⊆ J ⊆ Fin(µ) for a submeasure µ that is unbounded on I, then
BI,J 4 (ωω,≤∗) and hence, non((I, JQN)-space) ≤ b.

(b) If J =
⋃

n∈ω Jn for an increasing sequence of ideals Jn and for infinitely
many n ∈ ω, I ∩ (Jn+1 \ Jn) 6= ∅, then BI,J 4 (ωω,≤∗) and hence,
non((I, JQN)-space) ≤ b.

Proof. (a) We find a morphism (Φ,Ψ) : (ωI, ωJ,≤0
J) → (ωω,≤∗); this is

sufficient by Lemma 2.7 (a). Fix an ∈ I, n ∈ ω, such that n ≤ µ(an) < ∞.
Define Φ : ωω → ωI and Ψ : ωJ → ωω by Φ(α)(n) = aα(n)+n and Ψ(g)(n) =
dµ(g(n))e where α ∈ ωω, g ∈ ωJ , n ∈ ω. Let Φ(α) ≤0

J g and let x ∈ J be such
that for every n ∈ ω, Φ(α)(n) ⊆ g(n)∪ x and hence α(n) + n ≤ µ(g(n)∪ x) ≤
Ψ(g(n)) + µ(x). Then α ≤∗ Ψ(g) because α(n) ≤ Ψ(g(n)) for all n ≥ µ(x).

(b) Define a submeasure µ on ω by µ(a) = inf{n ∈ ω : a ∈ Jn} for a ⊆ ω
where we let inf ∅ = ∞. Then J = Fin(µ) and µ is unbounded on I.

Mazur [12] proved that an ideal J on ω is an Fσ ideal if and only if J =
Fin(µ) for some lower semi-continuous submeasure µ on ω such that µ(ω) = ∞.
Solecki [14] proved that an ideal J on ω is an analytic P -ideal if and only if
J = Exh(µ) for a bounded lower semi-continuous submeasure µ on ω. Kwela
[10, Theorem 2.7 (b)] proved a result paraphrasing DFin,J 4 (ωω,≤∗) for all
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subideals J of Fσ-ideals (see also weaker Proposition 3.1 (a)). Obviously,
Exh(µ) ⊆ Fin(µ) but Fin(µ) is a proper Fσ ideal only if µ(ω) = ∞ and it
remained open whether this result includes also all analytic P -ideals. This
question led us to the following notion of capacity on ω familiar to the notion
of capacity in topological spaces in sense of [3].

A capacity on ω is a function ν : P(ω) → [0,∞] with these properties:

(i) ν(∅) = 0 and a ⊆ b ⊆ ω implies ν(a) ≤ ν(b).

(ii) ν(a) <∞ and ν(ω \ a) = ∞ for every a ∈ [ω]<ω.

(iii) limn∈ω ν(a ∩ n) = ν(a) for every a ⊆ ω.

We say that an ideal J on ω is capacitous, if there is a capacity ν on ω such
that J ⊆ Fin∗(ν) = {a ⊆ ω : ν(a) <∞ and ν(ω \ a) = ∞}. Condition (iii) is
equivalent to the next condition:

(iii′) ν(
⋃

n∈ω an) = limk∈ω ν(
⋃

n<k an) for any an ∈ [ω]<ω.

Therefore a capacity and capacitous ideals can be considered on any infinite
countable set. The ceiling of a capacity is a capacity and thus it is enough to
consider capacities with values in ω ∪ {∞}.

Lemma 3.2. Let µ be a lower semi-continuous submeasure on ω and let I
and J be ideals on ω.

(1) If ω /∈ Fin(µ), then Fin(µ) is a capacitous ideal on ω.

(2) If ω /∈ Exh(µ), then Exh(µ) is a capacitous ideal on ω.

(3) If J is a capacitous ideal and I ≤K J , then I is a capacitous ideal.

(4) Every capacitous ideal on ω is a meager subset of P(ω) ' ω2.

Proof. (1) If µ(ω) = ∞, then µ is a capacity and Fin(µ) = Fin∗(µ).
(2) By (1) we can assume that µ(ω) < ∞ because Exh(µ) ⊆ Fin(µ).

Denote ε = infn∈ω µ(ω \ n). Since ω /∈ Exh(µ), ε > 0 and we can define
ν(a) = min{n ≤ ω : µ(a \ n) ≤ ε/2} for all a ⊆ ω. Identifying the value ω
with ∞ we show that ν is a capacity on ω. Obviously, ν fulfills (i) and (ii). To
verify (iii) note that, if ν(a) ≥ k + 1, then µ(a \ k) > ε/2 and there is n ∈ ω
such that µ((a \ k) ∩ n) > ε/2, and then ν(a ∩ n) ≥ k + 1.

(3) Let ϕ ∈ ωω be such that I ⊆ ϕ→(J) and assume that J ⊆ Fin∗(ν)
for a capacity ν. Let νϕ : P(ω) → [0,∞] be the capacity on ω defined by
νϕ(a) = ν(ϕ−1(a)) for a ∈ P(ω). Then I ⊆ ϕ→(Fin∗(ν)) = Fin∗(νϕ).
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(4) Let J ⊆ Fin∗(ν) be an ideal on ω. By (ii) and (iii) we can inductively
define a partition {an : n ∈ ω} of ω into finite intervals such that ν(an) > n.
Then

⋃
n∈b an /∈ J for every infinite set b ⊆ ω, i.e., Fin ≤RB J . By Talagrand’s

theorem, Fin ≤RB J ⇔ J has the Baire property (see [1, Theorem 4.1.2]
and [17]; for ideals, meager and the Baire property mean the same).

Theorem 3.3. Every ideal on ω that is ≤K-below of an Fσ-ideal or an analytic
P -ideal is capacitous.

Proof. Lemma 3.2 (1)–(3).

Example 3.4. Let T be a countable set and let It, t ∈ T , be ideals on ω. Define⊕
t∈T It = {a ⊆ T × ω : (∀t ∈ T ) a(t) ∈ It and |{t ∈ T : a(t) 6= ∅}| < ω} and∑
t∈T It = {a ⊆ T × ω : (∀t ∈ T ) a(t) ∈ It}, where a(t) = {k ∈ ω : (t, k) ∈ a}.

For t0 ∈ T let ϕt0 : ω → T ×ω be defined by ϕt0(k) = (t0, k). Then
⊕

t∈T It ⊆∑
t∈T It ⊆ ϕ→t0 (It0) and hence

⊕
t∈T It ≤K

∑
t∈T It ≤K It0 . If |T | = ω, then⊕

t∈T It ≤K Fin because
⊕

t∈T It is not tall. Therefore, by Lemma 3.2 (3),

(1)
⊕

t∈T It is capacitous, if |T | = ω or one of the ideals It is capacitous;

(2)
∑

t∈T It is capacitous, if one of the ideals It is capacitous.

The following theorem generalizes a result of Kwela [10, Theorem 2.7 (b)]
with the same proof:

Theorem 3.5. For every capacitous ideal J on ω,

AFin,J ≈ BFin,J ≈ CFin,J ≈ DFin,J ≈ (ωω,≤∗)

and hence,

bFin,J = non((Fin, JQN)-space) = non((Fin,≤KJQN)-space)
= non(w(Fin, JQN)-space) = b.

Proof. By Lemma 2.8 (a), Lemma 2.3, and Lemma 2.4, (ωω,≤∗) 4 AFin,J 4
BFin,J 4 CFin,J 4 DFin,J . We prove DFin,J 4 (ωω,≤∗). Let ν be a capacity
on ω such that J ⊆ Fin∗(ν). We find Φ : ωω → F (Fin) and Ψ : F (J)×F (J) →
ωω such that Φ(f) DFin,J (ϕ, α) ⇒ f ≤∗ Ψ(ϕ, α).

Define Φ(f)(m) = min{n ∈ ω : m < f(n) + n} for f ∈ ωω and m ∈ ω.
We can define Ψ(ϕ, α)(n) = max{m ∈ ω : ν(‖ϕ < m‖ \ ‖α ≤ n‖) ≤ n} for

(ϕ, α) ∈ F (J)× F (J) and n ∈ ω because limk∈ω ν(k \ ‖α ≤ n‖) = ∞.
Assume that Φ(f) DFin,J (ϕ, α). Then ν(‖ϕ ◦ Φ(f) < α‖) <∞. For every

n ≥ ν(‖ϕ ◦ Φ(f) < α‖) then ν(‖ϕ < f(n) + n‖ \ ‖α ≤ n‖) = ν({k ∈ ω :
Φ(f)(ϕ(k)) ≤ n < α(k)}) ≤ ν(‖ϕ ◦ Φ(f) < α‖) ≤ n and hence f(n) + n ≤
Ψ(ϕ, α)(n). Therefore f ≤∗ Ψ(ϕ, α).
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Corollary 3.6. Let J be a capacitous ideal on ω.

(a) J is a weak P -ideal.

(b) For every ideal I on ω, BI,J 4 CI,J 4 DI,J 4 (ωω,≤∗) and hence,

non((I, JQN-space)) ≤ non((I,≤KJQN-space))
≤ non(w(I, JQN-space)) ≤ b and

max{bI,J , bJ} ≤ non((I, JQN-space)), if I ⊆ J .

(c) If J is a P -ideal, then for every ideal I ⊆ J , AI,J ≈ BI,J ≈ CI,J ≈
DI,J ≈ (ωω,≤∗) and hence,

bI,J = bJ = non((I, JQN)-space) = non((I,≤KJQN)-space)
= non(w(I, JQN)-space) = b.

Moreover for every ideal I ≤K J , DI,J ≈ (ωω,≤∗) and hence,

non(w(I, JQN)-space) = b.

Proof. (a) A capacitous ideal J is a weak P -ideal by Theorem 2.2 (a) because
by Theorem 3.5, b(BFin,J) ≤ c.

(b) By Lemma 2.3 and Lemma 2.7 (b), BI,J 4 CI,J 4 DI,J 4 DFin,J and,
by Theorem 3.5, DFin,J ≈ (ωω,≤∗). If, moreover, I ⊆ J , then by Lemma 2.4,
AI,J 4 BI,J and AJ,J 4 BI,J . This finishes the proof of (b).

(c) Let J be a P (Fin)-ideal and I ⊆ J . By Lemma 2.8 (a) and (c),
(ωω,≤∗) 4 AFin,J ≈ AI,J ≈ BI,J . This together with (b) gives the first
part of (c). In particular, DJ,J ≈ DFin,J ≈ (ωω,≤∗). If I ≤K J , then by
Lemma 2.7 (d), DJ,J 4 DI,J 4 DFin,J and hence DI,J ≈ (ωω,≤∗).

Kwela [10] proved that it is consistent with ZFC to assume the existence of
an ideal J for which c ≥ non(w(Fin, JQN)-space) > b. The next proposition
slightly improves his main argument and allows to prove the consistency of
c ≥ non((Fin,≤KJQN)-space) > b in this way: (1) It is consistent that there
exists an ideal I such that b < b(ωω,≤1

I). (2) By Proposition 3.7 for this
ideal I find an ideal J such that b(ωω,≤1

I) ≤ non((Fin,≤KJQN)-space) ≤ d.
Every such ideal J is a non-capacitous weak P -ideal (J is not capacitous
by Theorem 3.5 because non((Fin,≤KJQN)-space) 6= b; J is a weak P -ideal
by Theorem 2.2 (a) because non((Fin, JQN)-space) ≤ non((Fin,≤KJQN)-
space) ≤ c).
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Proposition 3.7 ([10, Lemma 2.13]). For every ideal I on ω there is a weak
P -ideal J such that (ωω,≤1

I) 4 CFin,J and consequently,

b(ωω,≤1
I) ≤ non((Fin,≤KJQN)-space) ≤ non(w(Fin, JQN)-space) ≤ d.

Proof. Fix α ∈ ωω such that ‖α = n‖ is infinite for every n ∈ ω and denote

J = JI = {x ⊆ ω : α(x) ∈ I and (∀∞n ∈ ω) ‖α = n‖ ∩ x ∈ Fin}.

(i) We show that J is a weak P -ideal. Let β ∈ F (J). By induction define
mn ∈ ‖α = n‖ and kn = β(mn) with an = {k ∈ ω : ‖α = n‖∩‖β = k‖ /∈ Fin}:

mn =

{
min(‖α = n‖ \

⋃
{‖β = ki‖ : i < n}), if ‖α = n‖ *

⋃
i<n ‖β = ki‖,

min(‖α = n‖ ∩
⋃
{‖β = k‖ : k ∈ an}), otherwise.

Let c = {mn : n ∈ ω}. Then c /∈ J because α(c) = ω /∈ I. For every k ∈ ω,
‖β = k‖ ∩ c ∈ Fin because ‖α = n‖ ∩ ‖β = k‖ /∈ Fin only for finitely many n.

(ii) We find a morphism (Φ,Ψ) : (ωω,≤1
I) → CFin,J . For β ∈ F (Fin)

define Φ(β) ∈ ωω by Φ(β)(n) = min{m ∈ ω : ‖β < n‖ ⊆ m}. For g ∈ ωω
find a one-to-one function ϕ ∈ ωω such that for every n ∈ ω, ϕ maps ‖α = n‖
into ‖α = n‖ \ g(n), i.e., ϕ(k) ≥ g(n) for k ∈ ‖α = n‖. Then (ϕ, α) ∈ F2(J)
because ‖ϕ ◦ α = n‖ = ϕ−1(‖α = n‖) = ‖α = n‖ ∈ J . Let Ψ(g) = (ϕ, α).

Let β ∈ F (Fin) and g ∈ ωω be such that Φ(β) ≤1
I g, i.e., y = {n ∈ ω :

Φ(β)(n) > g(n)} ∈ I. We prove β CFin,J Ψ(g), i.e., x = ϕ−1(‖β < α‖) ∈ J
where Ψ(g) = (ϕ, α). By choice of ϕ for every n ∈ ω, ‖α = n‖ ∩ x =
ϕ−1(‖α = n‖ ∩ ‖β < α‖) = ‖α = n‖ ∩ ϕ−1(‖β < n‖) and this set is finite
because β, ϕ ∈ F (Fin). For every n ∈ ω \ y, ‖α = n‖ ∩ ϕ−1(‖β < n‖) = ∅
because for every k ∈ ‖α = n‖, ϕ(k) ≥ g(n) ≥ Φ(β)(n) and hence β(ϕ(k)) ≥ n.
Then x ∈ J because α(x) ⊆ y ∈ I and ‖α = n‖ ∩ x ∈ Fin for all n ∈ ω.

(iii) By (ii), b(ωω,≤1
I) ≤ b(CFin,J) = non((Fin,≤KJQN)-space). By Corol-

lary 2.13, non((Fin,≤KJQN)-space) ≤ non(w(Fin, JQN)-space) ≤ d.

The ideal J in the proof of Proposition 3.7 is meager because it is contained
in the Borel ideal {x ⊆ ω : (∀∞n ∈ ω) ‖α = n‖ ∩ x ∈ Fin} ' Fin × Fin. By
Corollary 3.6 (a), Fin×Fin is not capacitous because it is not a weak P -ideal.

Question 3.8. Is there in ZFC a weak P -ideal that is not a capacitous ideal?

4 Estimations by invariants of partial orders

Let I and J be ideals on ω. If I ⊆ J , denote

νI,J = sup{bI′,J : I ⊆ I ′ ⊆ J};
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then bI ≤ bI,J · bJ ≤ νI,J ≤ c. If I ≤K J , then let

κI,J = sup{bI′,J ′ : I ⊆ I ′ ⊆ J ′ ≤K J},
λI,J = sup{bI′,J ′ : I ≤K I ′ ⊆ J ′ ≤K J};

then bI ≤ κI,J ≤ λI,J ≤ c and bI · bJ ≤ λI,J . If I 6≤K J , then let

κI,J = min{κI′∩I,J : I ′ ≤K J},
λI,J = min{λI′∩I,J : I ′ ≤K J};

then κI,J ≤ λI,J ≤ c and bJ ≤ λI,J . By Corollary 2.6 all cardinals bI and bI,J

are uncountable. The following holds:

Lemma 4.1. Let I and J be arbitrary ideals on ω.

(a) κI,J = min{κI′∩I,J : I ′ ≤K J} and λI,J = min{λI′∩I,J : I ′ ≤K J}.

(b) ω1 ≤ κI,J ≤ λI,J ≤ κFin,J = λFin,J ≤ c.

(c) If I ⊆ J , then bI,J · bJ ≤ νI,J ≤ κI,J ≤ λI,J .

(d) If I ≤K J , then bI ≤ κI,J and bI · bJ ≤ λI,J .

(e) If I 6≤K J , then bJ ≤ λI,J .

Obviously, if I ≤K J , then kI,J = ∞ and kI,J can be omitted from the
bounds in the next lemma.

Lemma 4.2. Let I and J be ideals on ω. (a) If I ⊆ J , then νI,J ≤ b(BI,J).
(b) κFin,J ≤ b(BFin,J). (c) min{kI,J , κI,J} ≤ b(CI,J). (d) min{kI,J , λI,J} ≤
b(DI,J).

Proof. (a) If I ⊆ I ′ ⊆ J , then by Lemma 2.4 and Lemma 2.7 (b), bI′,J =
b(AI′,J) ≤ b(BI′,J) ≤ b(BI,J) and hence, νI,J ≤ b(BI,J).

(b)–(c) Assume I ≤K J . By Lemma 2.3, Lemma 2.4, and Lemma 2.7
(b), (d), if I ⊆ I ′ ⊆ J ′ ≤K J , then bI′,J ′ = b(AI′,J ′) ≤ b(BI′,J ′) ≤ b(CI′,J ′) ≤
b(CI,J) and b(BI′,J ′) ≤ b(BFin,J ′) ≤ b(BFin,J). It follows that κI,J ≤ b(CI,J)
and κFin,J ≤ b(BFin,J). This finishes the proof of (b).

Assume I 6≤K J . Let X ⊆ F (I) and |X| < min{kI,J , κI,J} be arbitrary.
Since |X| < kI,J and kI,J ≥ ω1, there is ψ ∈ F (J) such that β−1({n}) ∈ ψ→(J)
for all β ∈ X and n ∈ ω. Denote I ′ = ψ→(J). Then κI,J ≤ κI′∩I,J because
I ′ ∩ I ≤K J and by previous case, κI′∩I,J ≤ b(CI′∩I,J). Since X ⊆ F (I ′ ∩ I)
and |X| < κI,J ≤ b(CI′∩I,J) there is (ϕ, α) ∈ F2(J) such that for all β ∈
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X, ϕ−1(‖β < α‖) ∈ J . Since X ⊆ F (I) was arbitrary this proves that
min{kI,J , κI,J} ≤ b(CI,J).

(d) Similar to (c): If I ≤K J , consider I ≤K I ′ ⊆ J ′ ≤K J and in all
arguments replace CI,J and κI,J by DI,J and λI,J .

In the following theorem the arrow → denotes the inequality ≤ between
the cardinals:

Theorem 4.3. For any ideals I and J on ω the following holds:

non((I,≤KJQN)-space) → non(w(I, JQN)-space) → kI,J →∞
↑ ↑ ↑

ω1 → min{kI,J , κI,J} → min{kI,J , λI,J} → min{kI,J , c}

Proof. By [13, Lemma 3.10 (a)], p ≤ kI,J and by Lemma 4.1 (b), ω1 ≤
κI,J ≤ λI,J ≤ c. This proves the bottom row of the diagram. Lemma 2.3,
b(CI,J) ≤ b(DI,J) ≤ b(EI,J) which by Theorem 2.2 proves the top row. The
vertical inequalities proves Lemma 4.2 (c) and (d).

Theorem 4.4. Let I and J be ideals on ω.

(a) If I ⊆ J and J is a weak P (I)-ideal, then

bI,J · bJ ≤ νI,J ≤ non((I, JQN)-space) ≤ dI,J .

(b) If every ideal ≤K-below J is a weak P (I)-ideal, then

min{kI,J , κI,J} ≤ non((I,≤KJQN)-space) ≤ min{kI,J , d(ωI,≤1
Fin)}.

(c) If J is a W (I)-ideal, then

min{kI,J , λI,J} ≤ non(w(I, JQN)-space) ≤ min{kI,J , d(ωI,≤1
Fin)}.

Proof. By Lemma 2.3, b(CI,J) ≤ b(DI,J) ≤ kI,J . Therefore the upper
bounds follow by Theorem 2.12 and by Theorem 2.2. By Theorem 2.2, the
lower bounds follow by Lemma 4.2 (a), (c), (d) and Lemma 4.1 (c).

For a pair of ideals I, J on ω consider the following conditions:

H1(I, J) ⇔ (∃K a P -ideal) I ⊆ K ⊆ J.

H2(I, J) ⇔ (∀I ′ ≤K J)(∃K a P -ideal) I ′ ∩ I ⊆ K ≤K J.

H3(I, J) ⇔ (∀I ′ ≤K J)(∃K a P -ideal) I ′ ∩ I ≤K K ≤K J.
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Obviously, H1(I, J) ⇒ H2(I, J), H2(I, J) ⇒ H3(I, J) and, if I ≤K J , then

H2(I, J) ⇔ (∃K a P -ideal) I ⊆ K ≤K J,

H3(I, J) ⇔ (∃K a P -ideal) I ≤K K ≤K J.

By [13, Lemma 3.10 (a)], kI,J ≥ p and therefore min{kI,J , b} ≥ p.

Lemma 4.5. Let I and J be ideals on ω.

(a) H1(I, J) implies b ≤ νI,J ≤ non((I, JQN)-space).

(b) H2(I, J) implies b ≤ κI,J and min{kI,J , b} ≤ non((I,≤KJQN)-space).

(c) H3(I, J) implies b ≤ λI,J and min{kI,J , b} ≤ non(w(I, JQN)-space).

Proof. (a) By Lemma 2.8 (a), b ≤ bFin,J . If K is a P -ideal such that
I ⊆ K ⊆ J , then by Lemma 2.8 (c), bFin,J = bI,J while bI,J ≤ νI,J . By
Lemma 4.2 (a), νI,J ≤ non((I, JQN)-space).

(b) The proof of b ≤ κI,J is similar to the proof of b ≤ λI,J in (c)
and we leave it to the reader. Then by Lemma 4.2 (c), min{kI,J , b} ≤
min{kI,J , κI,J} ≤ b(CI,J). Apply Theorem 2.2 (c).

(c) To prove b ≤ λI,J it is enough to prove b ≤ λI′∩I,J for all I ′ ≤K J
because by Lemma 4.1 (a), λI,J = min{λI′∩I,J : I ′ ≤K J}. Let I ′ ≤K J . By
H3(I, J) there is a P -ideal K such that I ∩ I ′ ≤K K ≤K J . Hence bK,K ≤
λI′∩I,J and by Lemma 2.8 (d), b ≤ bK,K . By Lemma 4.2 (d), min{kI,J , b} ≤
min{kI,J , λI,J} ≤ b(DI,J). Apply Theorem 2.2 (b).

Corollary 4.6. Let J be a capacitous ideal on ω.

(a) νI,J ≤ b for every ideal I ⊆ J and κI,J ≤ λI,J ≤ b for every ideal I.

(b) H1(I, J) implies non((I, JQN)-space) = νI,J = b.

(c) H2(I, J) implies κI,J = λI,J = b and

non((I,≤KJQN)-space) = non(w(I, JQN)-space) = min{kI,J , b}.

(d) H3(I, J) implies λI,J = b and non(w(I, JQN)-space) = min{kI,J , b}.
Proof. (a) Each of the cardinals νI,J , κI,J , λI,J is supremum of a subset of
the set {bI′,J ′ : I ′ ⊆ J ′ ≤K J}. By Lemma 3.2 (3) every ideal J ′ ≤K J is
capacitous and, by Corollary 3.6 (b), bI′,J ′ ≤ b for every I ′ ⊆ J ′. Therefore
νI,J ≤ b for every ideal I ⊆ J and κI,J ≤ λI,J ≤ b for every ideal I on ω.

(b) By Lemma 4.5 (a) and Corollary 3.6 (b).
(c) The equalities κI,J = λI,J = b follow by (a) and Lemma 4.5 (b). By

Lemma 4.5 (b), min{kI,J , b} is a lower bound of non(. . . ), by Corollary 3.6 (b),
b is an upper bound, and by Theorem 4.3, kI,J is an upper bound, too.

(d) In the proof of (c) replace Lemma 4.5 (b) by Lemma 4.5 (c).
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[1] T. Bartoszyński and H. Judah, Set Theory: On the Structure of the Real
Line, A K Peters, Ltd., Wellesley, 1995.

[2] A. Blass, Combinatorial cardinal characteristics of the continuum. In:
M. Foreman and A. Kanamori, eds., Handbook of set theory, pp. 395–489,
Springer, 2010.

[3] N. Bourbaki, General Topology, Chapter IX, Elements of Mathematics,
Springer-Verlag, 1989.
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