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Abstract

This is a survey paper on some classical trigonometric families of
thin sets (Dirichlet sets, weak Dirichlet sets, N-sets, N0-sets, A-sets,
U-sets, and two recently introduced families of B-sets and of B0-sets),
the relationships between them, and basic closure properties of these
families, presented as complete answers to ten questions. However, a
large part of the paper is devoted to presentation of new results. In
addition, we tried to give an overview of the best known estimates for
cardinal characteristics for these families and for the families of par-
ticularly “permitted” sets, using small uncountable cardinals recently
studied in infinite combinatorics. Almost all results are accompanied
by brief notes on the investigations preceding them. Finally, we study
properties of families of thin sets related to the Rademacher and Walsh
orthogonal systems of functions. Some of these families are studied for
the first time.
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The paper is intended to be a survey of the topics announced in the title,
starting with the very beginning of the research area, giving a brief survey of
its development, and including recent unpublished results. The first section
contains a brief survey of the results which started the investigation of thin
sets. Sections 3–5 summarize the recent tools and results of set theory which
will be used in our considerations. Sections 6–9 present rather classical results
concerning thin sets of trigonometric series, in spite of the fact that some of
them are quite recent. Section 10 is an interlude showing that we did not
forget any reasonable type of thin set. In Section 11 we give complete answers
to a set of ten basic questions about classical families of thin sets. Sections
12–16 and 18 are devoted to the computation of cardinal characteristics of
these families of thin sets and present some related results. They contain both
recent and new results. Actually, the results presented in Sections 12 (12.2–
12.6), 13 (13.3–13.5), 14, 15, 16 (16.1–16.4) and 18 (18.3–18.7) are published
for the first time. Some of them were presented at the conferences “Problems
in Real Analysis” in ÃLodź, July, 1994 [BL2] and “Summer School on Real
Functions Theory” in Liptovský Ján, September, 1994.

We tried to ascribe each result to its author or authors by indicating the
corresponding bibliographic source preceding its formulation (either as a quo-
tation or as a theorem).

1 Brief history

In 1807, Joseph Fourier submitted a basic paper on heat conduction to the
Academy of Sciences of Paris. The paper was judged by J. L. Lagrange,
P. S. Laplace and A. M. Legendre and was rejected. In 1811, Fourier submitted
a revised paper for a competition of the Academy. He won the prize, but the
paper was not published at that time because of a lack of rigor. The first part
of this revised paper was incorporated into one of the classics of mathematics,
Théorie analytique de la chaleur [Fou] (see [Kli] for more details). In this book
(and already in the 1807 paper), using some geometrical reasoning, Fourier
concluded that every function could be represented as

(1.1)
a0

2
+

∞∑
n=1

(an cos 2πnx + bn sin 2πnx),

for x ∈ (0, 1). He also claimed that this series is convergent for any function
f , whether or not one can assign an analytic expression to f and whether
or not f follows any regular law. Of course, that is not true. Nor did the
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mathematical authorities of that time believe it—that was one of the reasons
Lagrange rejected the paper. However, mathematicians of the 19th century
started to study the possibility of such a representation (1.1). Let us remark
that B. Riemann introduced his notion of integral while studying Fourier series,
and many important results by U. Dini, P. G. Lejeune Dirichlet, and others
are connected with this topic.

A series (1.1), where1 an, bn ∈ R, n = 0, 1, . . ., is called a trigonometric
series.

In 1870 G. Cantor [Ca1] proved the first uniqueness result:

If the trigonometric series (1.1) converges to 0 for all x ∈ [0, 1],
then all an, bn, n = 0, 1, . . ., are equal to 0.

Later, Cantor realized that the theorem remains true when the words “for
all” are replaced by “for all but finitely many”. Finally, Cantor extended the
theorem to the case of a countable set of finite Cantor-Bendixson rank of ex-
ceptions, introducing in [Ca3] the notions of “Wertmenge” and “Punktmenge”.
This paper actually started the development of set theory.

Cantor’s result was generalized by W. H. Young [You]:

Young Theorem 1.1 If the trigonometric series (1.1) converges to 0 for ev-
ery x ∈ [0, 1] outside a countable set, then all an, bn, n = 0, 1, . . ., are equal
to 0.

In 1871 Cantor [Ca2] proved for a closed interval, and H. Lebesgue proved
in the general case (for the proof see [Ba2, KL, Zy1]):

Cantor-Lebesgue Theorem 1.2 If the trigonometric series (1.1) converges
on a set of positive Lebesgue measure, or even if

lim
n→∞

(an cos 2πnx + bn sin 2πnx) = 0

on a set of positive Lebesgue measure, then

lim
n→∞

(|an|+ |bn|) = 0.

In 1912 A. Denjoy [Den] and N. N. Luzin [Lu1] independently proved the
following

Denjoy-Luzin Theorem 1.3 If the trigonometric series (1.1) converges ab-
solutely on a set of positive Lebesgue measure, then

∞∑
n=1

(|an|+ |bn|) < ∞,

i.e. the trigonometric series (1.1) converges absolutely everywhere.
1For simplicity, in the whole paper, we assume b0 = 0.
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In 1915 Luzin [Lu2] showed

Luzin Theorem 1.4 If the trigonometric series (1.1) converges absolutely
on a non-meager set then

∞∑
n=1

(|an|+ |bn|) < ∞.

An obvious question to ask is: are the results presented in these theorems
in some sense the best possible? Does the conclusion of Young’s theorem hold
true for some uncountable set? Do the conclusions of the Cantor-Lebesgue
and Denjoy-Luzin theorems hold true for some set of measure zero? Does
the conclusion of Luzin’s theorem hold true for some meager set? Is there a
convenient characterization of the sets for which the assumption of convergence
in each of the above four theorems is sufficient for the conclusion?

2 Notations and terminology

We work in Zermelo-Fraenkel axiomatic set theory with the axiom of choice,
ZFC; see e.g. [Jech]. We believe that this theory is consistent; i.e. one cannot
prove in ZFC both a sentence and its negation. Then for any sentence ϕ we
have three mutually exclusive possibilities: (1) ϕ can be proved in ZFC, (2) its
negation ¬ϕ can be proved in ZFC, or (3) neither ϕ nor its negation ¬ϕ can
be proved in ZFC. If we want to show that some ϕ can be proved in ZFC, we
simply write the proof or give an adequate reference for such a proof. If we
want to show that ϕ cannot be proved in ZFC, usually we construct a model of
ZFC in which ¬ϕ holds true. As is customary in contemporary mathematics,
by saying “holds true” we mean “can be proved in ZFC”.

We use standard set-theoretic terminology and notations such as those
of [Jech, Vau]. If ϕ is a formula and X is a set then the set of all elements of
X satisfying the formula ϕ will be denoted by

{x ∈ X : ϕ(x)},

and the set of all subsets of X satisfying the formula ϕ will be denoted by

{x ⊆ X : ϕ(x)}.

Similarly, if f is a function defined for all x which satisfy ϕ, we denote the set
(if it does exist) of those f(x)’s by

{f(x) : ϕ(x)}.
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The set of all natural numbers 0, 1, 2, . . . will be denoted by ω. If n ∈ ω,
then we identify n with the set of all smaller natural numbers, i.e.

n = {i ∈ ω : i < n}.
The set of all functions defined on the set X with values in the set Y is denoted
by XY . For example, ω2 is the set of all infinite sequences of 0’s and 1’s. |X|
is the cardinality of the set X. In particular, ℵ0 = |ω| and c = |R|. The set X
is said to be finite (countable) if |X| < ℵ0 (|X| ≤ ℵ0).

Let us recall that a sequence of real-valued functions {fn}∞n=0 quasinor-
mally converges to a function f on a set X if there exists a sequence of
positive reals {εn}∞n=0 converging to zero such that

(∀x ∈ X)(∃k)(∀n > k) |fn(x)− f(x)| ≤ εn.

Quasinormal convergence2 was introduced and studied in [BZ2, CL]. The
main property of quasinormal convergence that we shall need is the following
simple

Theorem 2.1 If the sequence of real-valued functions {fn(x)}∞n=0 quasinor-
mally converges to 0 on a set X, then there is a strictly increasing sequence
{nk}∞k=0 of natural numbers such that the series

∑∞
k=0 fnk

(x) absolutely con-
verges on X.

We denote by ‖x‖ the distance of the real x to the nearest integer, i.e.

‖x‖ = min{{x}, 1− {x}},
where {x} is the fractional part of the real x. One can easily see that

‖x + y‖ ≤ ‖x‖+ ‖y‖,
2‖x‖ ≤ | sin πx| ≤ π‖x‖

for any reals x, y. So, we can in our considerations mutually replace the
functions ‖x‖ and | sin πx|.

We shall need a modification of the classical Dirichlet-Minkowski Theorem
(which is a special case of the following theorem with ni = i, see e.g. [Ba2, LP]).

Theorem 2.2 Let {ni}∞i=0 be a strictly increasing sequence of natural num-
bers. For any ε > 0 and any reals x1, . . . , xk, there are i, j such that 0 ≤ i <
j ≤ (1/ε)k and

(2.1) ‖(nj − ni)xl‖ < 2ε for l = 1, 2, . . . , k.

2Á. Császár and M. Laczkovich call it equal convergence.
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Proof. We can assume that ε < 1/2. Let m ∈ ω be such that ε ≤ 1/m < 2ε.
We divide the k-dimensional cube [0, 1]k into t = mk equal cubes of side 1/m.
By the pigeon-hole principle, from the t + 1 elements

({nix1}, . . . , {nixk}), i = 0, 1, . . . , t

at least two are in the same cube; i.e., there are i 6= j such that (2.1) holds
true and |j − i| ≤ mk ≤ (1/ε)k.

2

For a subset A of [0, 1] and a real x, we denote the shift of A by

x + A = {{x + a} : a ∈ A}
and the expansion of A by

xA = {{xa} : a ∈ A}.

3 Small and thin sets

Let F be a family of subsets of a set X. A subfamily G ⊆ F is called a basis
of F iff

(∀A ∈ F)(∃B ∈ G) A ⊆ B.

If F is a family of subsets of a topological space, then we speak about a Borel
basis, an Fσ basis, etc., if the basis G consists of Borel sets, Fσ sets, etc.,
respectively. From the family F , we may construct a new family Fσ by

Fσ = {
⋃
n∈ω

An : An ∈ F for n ∈ ω}.

The typical small subsets of the real line or the unit interval [0, 1] are the
meager (= of the first Baire category) sets or the negligible sets (= sets of
Lebesgue measure zero). Since we shall use them often, we denote

K = {A ⊆ [0, 1] : A is meager},
L = {A ⊆ [0, 1] : A is negligible}.

The families K and L have an Fσ basis and a Gδ basis, respectively.
Other small sets of real analysis are the porous sets. We assume that

the reader is familiar with L. Zaj́ıček’s paper [Zaj], and we use its terminology
(actually we need only three notions: porous, bilaterally porous and σ-porous).
The family of porous subsets of [0, 1] will be denoted by P. The family of σ-
porous sets is Pσ. Every σ-porous set is contained in a σ-porous Gδσ set; i.e.,
Pσ has a Gδσ basis, see e.g. [FH].
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A. Rajchman [Raj] introduced the notion of an H-set (H in honour of
G. H. Hardy and J. E. Littlewood, who considered this kind of set): a set A
is called an H-set if there are an increasing sequence of integers {nk}∞k=0 and
0 ≤ a, b < 1 such that

0 ≤ {nkx− a} ≤ b, for x ∈ A and k = 0, 1, 2, . . ..

One can easily see that an H-set is a nowhere dense set of measure zero. On
the other hand, every H-set is contained in a perfect H-set. If H denotes the
family of all H-sets, then Hσ denotes the family of all countable unions of
H-sets. Thus we have

Hσ ⊆ K ∩ L.

N. K. Bary [Ba2] presents an unpublished result of I. I. Piatetskĭı-Shapiro
which implicitly contains (see also [Zaj])

Theorem 3.1 Every H-set is (bilaterally) porous.

Let us recall that a family F of subsets of a set X is an ideal on X if

a) ∅ ∈ F , X /∈ F ,

b) if A ∈ F , B ⊆ A, then B ∈ F ,

c) if A,B ∈ F , then A ∪B ∈ F .

An ideal F is called a σ-ideal if

d) whenever An ∈ F for n ∈ ω, then
⋃

n∈ω An ∈ F .

It is well known that K, L, Hσ, Pσ are σ-ideals.
We usually say that a set A ⊆ X is small with respect to some ideal F on

X if A ∈ F .
A very important indication of the bigness of a set A ⊆ [0, 1] is whether

or not it contains a perfect subset. However, this property is not preserved by
intersection, and some perfect sets are small (meager, measure zero, porous).
A set A ⊆ [0, 1] is called a Bernstein set if neither A nor [0, 1] \A contain a
perfect subset. It is well known that

the axiom of choice implies the existence of Bernstein sets.

The notion of a Bernstein set is not a notion of smallness in the above sense.
As we shall see, the families of exceptional sets considered in trigonometric

series theory usually do not form ideals, although the sets contained in them
are often (not always) small in the above-mentioned sense. With these families
in mind, we define: a family F of subsets of a set X (we consider only the case
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X = [0, 1]) is called a family of thin sets if F satisfies conditions a) and b)
of the above definition.

Let F be a family of thin subsets of X. Let A,B ⊆ X. According to
J. Arbault [Arb], the set A is said to be F-permitted for the set B iff
A∪B ∈ F . The set A is F-permitted iff it is F-permitted for every B ∈ F .
We denote

Prm(F) = {A ⊆ X : A is F-permitted}.
The following simple facts are implicitly contained in [Arb]:

1) Prm(F) is an ideal,

2) Prm(F) ⊆ F ,

3) Prm(F) = F if and only if F is an ideal.

4 Cardinal characteristics

Let F be a family of subsets of a set X. The cardinal characteristics of the
family F are defined as follows:

non(F) = min{|A| : A ⊆ X & A /∈ F},
add(F) = min{|G| : G ⊆ F &

⋃
G /∈ F},

cov(F) = min{|G| : G ⊆ F & X ⊆
⋃
G},

cof(F) = min{|G| : G ⊆ F & G is a basis of F}.

If the family F contains all singletons, X /∈ F and
⋃F = X, then one can

easily show that add(F) ≤ cov(F) ≤ cof(F) and add(F) ≤ non(F) ≤ cof(F).
The other cardinal characteristics we will consider are defined using par-

tially ordered sets without minimal elements. A subset A of a partially ordered
set P,≤ is open if for every x ∈ A and y ∈ P , if x ≥ y then y ∈ A. A subset
A of a partially ordered set P,≤ is dense in P if for every x ∈ P there exists
a y ≤ x, y ∈ A. A subset G of P is called a filter if for any x, y ∈ G there
exists a z ∈ G such that z ≤ x and z ≤ y; and, for any x ∈ G if x ≤ z, then
z ∈ G. Two elements x, y of a partially ordered set P,≤ are called disjoint if
there is no z ∈ P such that z ≤ x and z ≤ y. A partially ordered set P,≤ is
said to be C.C.C. if every subset of P consisting of pairwise disjoint elements
is countable.

We recall that m is the least cardinal κ for which there exists a C.C.C.
partially ordered set P,≤ and a family {Aξ : ξ < κ} of dense subsets of P
such that there is no filter on P meeting every Aξ, ξ < κ.
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It is easy to show that ℵ0 < m ≤ c, see e.g. [Fr1]. The assumption m = c
is called Martin’s Axiom.

The family of all infinite sets of natural numbers is denoted by

[ω]ω = {A ⊆ ω : A infinite}.
If L ∈ [ω]ω we denote by L(n) the nth element of L (starting from 0); i.e.,
L = {L(n) : n ∈ ω} and L(n) < L(n + 1) for every n ∈ ω. For X,Y ⊆ ω
let X ⊆∗ Y denote that the set X \ Y is finite. Let F ⊆ [ω]ω be a family of
infinite sets of natural numbers. We say that an infinite set B ⊆ ω is a pseudo-
intersection of the family F if B ⊆∗ A for all A ∈ F . The family F has the
finite intersection property , f.i.p. if for any finite system A1, . . . , An ∈ F ,
the intersection

⋂n
i=1 Ai is infinite. A family F of infinite subsets of ω is called

a tower if the partially ordered set F , ∗⊇ is well-ordered and has no infinite
pseudo-intersection. If A,B are subsets of ω we say that B splits A if both
A ∩B and A \B are infinite.

Generally, we say that some property of natural numbers “eventually holds
true” if it is true for all but finitely many natural numbers. For example,
A ⊆∗ B if the implication n ∈ A ⇒ n ∈ B eventually holds true. The set ωω
of all infinite sequences of natural numbers is partially quasi-ordered by the
eventual dominating relation

f ≤∗ g ≡ (∃k ∈ ω)(∀n ∈ ω)(n ≥ k ⇒ f(n) ≤ g(n)).

We need the following small uncountable cardinals which are cardinal char-
acteristics of the structure of P(ω):

p is the least size of a family F ⊆ [ω]ω with f.i.p. such that F has no
infinite pseudo-intersection,

t is the least size of a tower,
s is the least size of a splitting family, i.e. the least size of a family F ⊆ [ω]ω

such that every infinite subset of ω is split by some set from F ,
r is the least size of a family F ⊆ [ω]ω such that no infinite subset of ω

splits every member of F .
h is the least size of a family of open dense subsets of [ω]ω,⊆∗ such that

its intersection is not dense, or equivalently, it is the least κ such that the
Boolean algebra [ω]ω/finite is not κ-distributive.

b is the least size of an unbounded subfamily of ωω,≤∗,
d is the least size of an cofinal (dominating) subfamily of ωω,≤∗ .
For basic information see e.g. [vDw, Vau].
We shall need [Boo]

Booth Lemma 4.1 A set X has cardinality smaller than s if and only if
the following holds true: if {fn}∞n=0 is a sequence of functions defined on the
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set X with values in [0, 1], then there exists an increasing sequence {nk}∞k=0

of natural numbers such that the sequence {fnk
(x)}∞k=0 converges for every

x ∈ X.

Proof. Suppose |X| < s and {fn}∞n=0 is a sequence of functions defined on
X with values in [0, 1]. For q ∈ [0, 1] ∩Q and x ∈ X, let

Lq,x = {n ∈ ω : fn(x) ≤ q}.

Since the family F = {Lq,x : q ∈ [0, 1] ∩Q, x ∈ X} cannot be splitting, there
exists an infinite set K ⊆ ω such that for every L ∈ F either K ⊆∗ L or
K ⊆∗ ω \ L. Then for each x ∈ X,

lim
n∈K

fn(x) = inf{q ∈ [0, 1] ∩Q : K ⊆∗ Lq,x}.

Conversely, if F is a splitting family with |F| = s, we define the functions
fn : F −→ [0, 1] by

fn(L) =
{

1, if n ∈ L,
0, if n /∈ L.

It is easy to see that no subsequence of the sequence {fn}∞n=0 is convergent.
2

Corollary 4.2 Let {fn,0}∞n=0,. . . , {fn,m}∞n=0 be sequences of functions de-
fined on a set X with values in a closed interval [a, b]. If |X| < s, then there
exists an increasing sequence {nk}∞k=0 such that all sequences {fnk,0}∞k=0,. . . ,
{fnk,m}∞k=0 converge on X.

5 Diagrams

Now we present the main known relations between the cardinal characteristics
of L and K and/or those of the structure of P(ω). An arrow from a cardinal
e to a cardinal f means that in ZFC the inequality e ≤ f is provable. We start
with the Cichoń diagram [Fr2, Vau]:

ℵ1 add(L) add(K) cov(K) non(L)

b d

cov(L) non(K) cof(K) cof(L) c

- - - -

- - - -

-
6 6

6 6

6 6
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It is worth to note that the equalities add(K) = min{b, cov(K)} and cof(K) =
max{d, non(K)} hold true. Moreover, it is known [BJS] that no equality can
be proved; i.e., for every arrow e → f in this diagram, there exists a model of
ZFC in which e < f.

The cardinal characteristics of the structure P(ω) are related as indicated
in the following diagram:

ℵ1 m p t add(K) cov(K)

add(L) h b r

s d c

- - - - -

- -

- -

6 6 6 6

6 6 6

It is known for almost all these inequalities that the equality cannot be proved.
However, the situation is not as simple as in the Cichoń diagram, see e.g. [Vau].
We add some relations between cardinals from both diagrams:

s ≤ non(K), cov(K) ≤ r,

s ≤ non(L), cov(L) ≤ r.

Let us remark that some symmetry appears in both diagrams. This is a
consequence of two kinds of dualities: Rothberger duality for cardinal char-
acteristics of K and L based on the decomposition of the unit interval as the
union of a meager and a negligible set [Rot], and the duality between charac-
teristics based on the inverse relation, see e.g. P. Vojtáš [Vo2].

6 Sets of uniqueness

For a recent and rather systematic treatment of sets of uniqueness, we rec-
ommend the book by A. Kechris and A. Louveau, [KL]. Following Cantor’s
results, we define: a set A ⊆ [0, 1] is said to be a set of uniqueness or U-set
if every trigonometric series (1.1) converging to zero outside A is identically
zero. The family of all U-sets will be denoted by U .

So, Young’s Theorem 1.1 can be formulated as “every countable set is a U-
set”. Using this result and the Alexandroff-Hausdorff Theorem, which asserts
that every uncountable Borel set contains a perfect subset, (see e.g. [Jech, The-
orem 94]) we can easily prove the following theorem: For a proof of assertions
(1)–(5) see e.g. [KL]; assertion (6) can be obtained by a simple computation.
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Theorem 6.1

(1) If A ⊆ [0, 1] does not contain a perfect subset, then A is a U-set.

(2) Every Bernstein set is a U-set.

(3) There are two U-sets such that their union is the whole interval [0, 1].

(4) Every set of cardinality smaller that c is a U-set.

(5) There exists a U-set which is neither meager nor has measure zero (and
so is not σ-porous).

(6) Shifts of U-sets are again U-sets.

What will happen in the case of a nice U-set, say with the property of
Baire or being Lebesgue measurable? Using some elementary facts about
trigonometric series one can prove the folklore result (for a proof see e.g. [Ba2,
KL])

Theorem 6.2 If a U-set is Lebesgue measurable, then it has measure zero.

In 1916 D. E. Menchoff [Men] distinguished U-sets and Lebesgue measure
zero sets by proving

Theorem 6.3 There is a perfect set of Lebesgue measure zero which is not a
U-set.

The case of Baire property waited several years for the answer . In 1986
G. Debs and J. Saint-Raymond [DSR], using methods of descriptive set theory,
proved

Theorem 6.4 Every U-set which has the property of Baire is meager.

The existence of a perfect U-set has been shown by N. K. Bary [Ba1].
Independently, A. Rajchman [Raj] proved

Theorem 6.5 Every Hσ-set is a U-set.

In 1952 I. I. Piatetskĭı-Shapiro [PS] proved that the opposite is not true;
actually, he proved the following (see [Ba2]):

Theorem 6.6 There is a closed U-set which cannot be covered by a sequence
of closed porous sets and hence is not an Hσ-set.

By Theorem 6.1 (3), the union of two U-sets need not be a U-set. However,
in some important special cases, it is. N. K. Bary [Ba1] proved that
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the union of countably many closed U-sets is also a U-set.

N. N. Kholshchevnikova [Kh1] remarked that actually

Theorem 6.7 The union of less than add(K) closed U-sets is a U-set.

By Theorem 6.7 the union of two Fσ sets of uniqueness is also a U-set. A
partial extension has been proved by N. N. Kholshchevnikova [Kh1]:

The union of two disjoint Gδ U-sets is a U-set.
If G,H are U-sets and G is both Fσ and Gδ, then G∪H is a U-set.

Thus, a U-set which is simultaneously Fσ and Gδ, is U-permitted. These
results were generalized by C. Carlet and G. Debs [CD] as

Theorem 6.8 Let An, n ∈ ω, be U-sets that are closed relative to the union
A =

⋃∞
n=0 An. Then A is also a U-set.

Let us remark that every countable set of finite Cantor-Bendixson rank is
both Fσ and Gδ. In particular,

Corollary 6.9 By adding a finite set to a U-set, one again obtains a U-set.

7 Thin sets related to the convergence and the absolute
convergence of trigonometric series

J. Marcinkiewicz [Ma1], in honour of V. V. Niemytzkĭı, introduced the notion
of an N-set (investigated earlier by P. Fatou [Fat] and A. Rajchman [Raj]):
a set A ⊆ [0, 1] is an N-set if there is a trigonometric series (1.1) absolutely
converging on A with

∑∞
n=0(|an| + |bn|) = ∞ (i.e. not converging absolutely

everywhere). The family of all N-sets will be denoted by N . In 1941 R. Salem
proved the first three parts of the following theorem, the parts (1) and (2)
in [Sa1] and the part (3) in [Sa2]; later, J. Arbault [Arb] proved the last one.

Theorem 7.1

(1) Whenever the set of absolute convergence of the trigonometric series
(1.1) is non-empty, then it is a shift of the set of absolute convergence
of the series

∑∞
n=1 ρn sin 2πnx, where ρn =

√
a2

n + b2
n.

(2) A set A ⊆ [0, 1] is an N-set if and only if there are non-negative reals ρn,
n = 1, 2, . . ., such that

∑∞
n=1 ρn = ∞ and the series

∑∞
n=1 ρn sin πnx

absolutely converges for x ∈ A.

(3) By adding a point, consequently a finite set, to an N-set, one again
obtains an N-set.
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(4) A set A ⊆ [0, 1] is an N-set if and only if there are reals ρn ≥ 0, kn ≥ 1,
n = 1, 2, . . ., such that

∑∞
n=1 ρn = ∞ and the series

∑∞
n=1 ρn sin πknx

absolutely converges for x ∈ A.

Let us recall that a set of reals A is called a Z-basis if every real x can be
written in the form

x =
n∑

i=1

kiai,

for some ai ∈ A and suitable integers ki, i = 1, . . . , n. A well known result
of H. Steinhaus says that if a set A contains a Borel subset which either has
positive measure or is non-meager, then the set A − A = {x − y : x, y ∈ A}
contains an interval and consequently A is a Z-basis. From this point of
view, the following result3 of V. V. Niemytzkĭı [Nie] is a common extension of
theorems 1.3 and 1.4.

Theorem 7.2 If the series
∑∞

n=1 bn sin 2πnx absolutely converges on a Z-
basis, then

∑∞
n=1 |bn| < ∞.

Combining this result with Theorem 7.1 we obtain

Corollary 7.3

(1) A Z-basis is not an N-set.

(2) Every N-set is meager and has Lebesgue measure zero.

(3) Shifts and expansions of N-sets are N-sets again.

Then, J. Arbault [Arb] and independently P. Erdös4 proved

Arbault-Erdös Theorem 7.4 By adding a countable set to an N-set, one
again obtains an N-set.

J. Arbault [Arb] remarks that when constructing an N-set, one usually
chooses the coefficients as 0 or 1. Therefore, he defined: a set A ⊆ [0, 1] is
called an N0-set if there exists an increasing sequence {nk}∞k=0 of natural
numbers such that

(7.1)
∞∑

k=0

sin πnkx

3Perhaps it is due to the above mentioned result on Z-bases why J. Arbault [Arb] at-
tributes this theorem to H. Steinhaus.

4J. Arbault in [Arb, pp. 271–2] writes that “M. R. Salem m’a signalé que ce théorème a
été démontré par M. P. Erdös, mais non publié.” Let us remark that the notes of J. Arbault
about the Erdös’ proof are sufficient for reconstructing it.
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converges absolutely for every x ∈ A. As before, N0 will denote the family of
all N0-sets. Evidently, every N0-set is an N-set. He also introduced the notion
of a set “admettend suite de limite nulle” that was named later A-set in his
honour: a set A is called an A-set if there is an increasing sequence of integers
{nk}∞k=0 such that the sequence {sin nkπx}∞k=0 converges to 0 for every x ∈ A.
It is easy to see that

N0 ⊆ A ⊆ Hσ.

In [Arb] he gave the following answers to fundamental questions about N0-sets
and A-sets:

Theorem 7.5

(1) Every countable set of reals is an N0-set.

(2) By adding a point to an N0-set or an A-set, one obtains an N0-set or an
A-set, respectively.

(3) Shifts and expansions of N0-sets and A-sets are N0-sets and A-sets, re-
spectively.

Moreover, he gives an important example

Theorem 7.6 If an are positive reals, limn→∞ an = 0 and
∑∞

n=1 an = ∞,
then the N-set

{x ∈ [0, 1] :
∞∑

n=1

an| sin 2nπx| < ∞}

is not an A-set. Consequently, there exists an N-set that is not an N0-set.

By the Piatetskĭı-Shapiro Theorem 3.1, every A-set is σ-porous. In 1985
S. V. Konyagin (unpublished?) showed that (for a proof see [Zaj])

Theorem 7.7 The N-set

{x ∈ [0, 1] :
∞∑

n=1

1
n
| sin n!πx| ≤ 1}

is not σ-porous.

It is easy to see that Niemytzkĭı’s result can be extended to A-sets: a Z-
basis is not an A-set. H. Steinhaus proved that the Cantor set is a Z-basis.
J. Arbault showed that the Cantor set cannot be covered by countable many
N-sets. On the other hand, the Cantor set is an H-set and therefore porous.
Thus

P * Nσ, P * A, H * A.
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In connection with the Cantor-Lebesgue Theorem 1.2, R. Salem [Sa3] in-
troduced the notion of an R-set (R in honour of A. Rajchman according to
his result quoted below): a set A is called an R-set if there is a trigonometric
series (1.1) converging on A with coefficients not converging to zero; R is the
family of all R-sets.

A. Rajchman [Raj] has shown (using other notions) that

every R-set is an Hσ-set.

In 1990 S. Kahane [Ka2] proved thatR ⊆ A. In 1991 S. V. Konyagin5 [Kon]
proved the converse. Thus

Theorem 7.8 A = R.

Using this result, N. N. Kholshchevnikova [Kh4] proved

Theorem 7.9 By adding a countable set to an A-set one obtains again an
A-set.

From now on, we will prefer the name “A-set”.

8 Other trigonometric thin sets

A set A is called a Dirichlet set or shortly a D-set if there is an increasing
sequence of integers {nk}∞k=0 such that {sin nkπx}∞k=0 uniformly converges to
zero on A. The family of all Dirichlet sets is denoted by D. A set A is called
an almost Dirichlet set or shortly an aD-set if every proper subset B of
A which is closed in A is a Dirichlet set: the corresponding family is denoted
by aD. A set A is called a pseudo Dirichlet set6 or shortly a pD-set if
there is an increasing sequence of integers {nk}∞k=0 such that {sin nkπx}∞k=0

quasinormally converges to zero on A. The corresponding family is denoted
by pD. By Theorem 2.1 we have

pD ⊆ N0.

Evidently, every Dirichlet set is an almost Dirichlet set, i.e.

D ⊆ aD.

One can easily see that every Dirichlet set is an H-set. By the definition of
an almost Dirichlet set, small neighbourhoods of points are Dirichlet sets and

5The title of S. V. Konyagin’s paper [Kon] is misleading—he proves actually the opposite
inclusion.

6This notion has been introduced under the name D-set in [BZ1]. S. Kahane [Ka2]
independently introduced the notion of a pseudo Dirichlet set.
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so porous by Theorem 3.1. Since porosity at a point is a local property of a
set, we obtain that every almost Dirichlet set is porous7.

Z. Bukovská [BZ1] proved

Theorem 8.1

(1) A set A is pseudo Dirichlet if and only if it is the union of an increasing
sequence of Dirichlet sets.

(2) aD ⊆ pD ⊆ Dσ.

(3) Every almost Dirichlet subset of [0, 1] which is a subgroup of R/Z is
finite.

By Theorem 2.2 and Theorem 8.1 we obtain (the proof of the fifth part is
similar to that of Theorem 7.5 (3), see [Arb])

Theorem 8.2

(1) Every finite set is Dirichlet.

(2) Every countable set is pseudo Dirichlet.

(3) Adding a finite set to a Dirichlet set one obtains a Dirichlet set.

(4) Adding a countable set to a pseudo Dirichlet set one obtains a pseudo
Dirichlet set.

(5) Shifts and expansions of Dirichlet sets and pseudo Dirichlet sets are
Dirichlet sets and pseudo Dirichlet sets, respectively.

We do not know to whom the following result should be ascribed. For a
proof, see e.g. [Kah].

Theorem 8.3 If P1, . . . , Pn are pairwise disjoint perfect subsets of [0, 1], then
there exists a Dirichlet (even Kronecker) set P such that P ∩Pi is (non-empty)
perfect for i = 1, . . . , n.

Summarizing the preceding results, we obtain the following chain of inclu-
sions:

(8.1) D ⊆ aD ⊆ pD ⊆ N0 ⊆ A = R ⊆ Hσ ⊆ U .

Let us note that every Hσ-set is σ-porous and so is meager and has mea-
sure zero. All inclusions in the chain (8.1) are proper. T. W. Körner [Kor]

7Actually, Dirichlet sets are strongly symmetrically porous and hence almost Dirichlet
sets are such too.
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constructed a perfect non-Dirichlet set, all of whose proper closed subsets are
Dirichlet (even Kronecker). By theorems 8.1 (3) and 8.2 (2), every infinite
countable subgroup of R/Z is a pseudo Dirichlet set which is not an almost
Dirichlet set.

J. Arbault [Arb] proved

Theorem 8.4 The A-set

(8.2) {x ∈ [0, 1] : lim
n→∞

sin 22n

πx = 0}

in not an N-set. Moreover, its subset

{x ∈ [0, 1] :
∞∑

n=0

| sin 22n

πx|2 < ∞}

is not an N0-set.

S. Kahane [Ka2] proved

Theorem 8.5 If the increasing sequence of natural numbers {nk}∞k=0 is such
that limk→∞(nk+1 − nk) = ∞, then the compact N0-set

{x ∈ [0, 1] :
∞∑

k=0

| sin 2nkπx| ≤ 1}

is not in Dσand therefore not a pseudo Dirichlet set. Moreover, if the sequence
{nk+1 − nk}∞k=0 is strictly increasing, then the A-set

{x ∈ [0, 1] :
∞∑

k=0

sin 2nkπx converges}

is not an Nσ-set.

By theorems 7.6 and 8.5, we have

N0 $ N * A, A * N

and by theorems 3.1 and 7.7, we have

Hσ $ Pσ, N * Pσ.

If L ⊆ ω, we denote

KL = {x ∈ [0, 1] : there are xi = 0, 1 such that x =
∑

i∈L
xi

2i+1 }.
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One can easily see that the set KL is perfect, assuming that L is infinite. The
union KL ∪Kω\L is a Z-basis. It is easy to see that if the complement of L
contains segments of consecutive integers of unbounded length (such a set is
called colacunary), then KL is a Dirichlet set. So, we obtain the result proved
by J. Marcinkiewicz [Ma2]:

Marcinkiewicz Theorem 8.6 One can choose the set L in such a way that
both sets KL and Kω\L are D-sets.

Corollary 8.7 There are two perfect D-sets such that their union is a Z-basis
and so neither an N-set nor an A-set.

To define a new type of thin set, we first recall that a Borel measure µ
on [0, 1] is a finite σ-additive measure defined on a σ-algebra S containing all
Borel sets. We assume that all Borel measures are complete (see e.g. [Fr1]),
in the sense that every set of outer µ-measure zero is in S. A set A ⊆ [0, 1] is
universally measurable iff A is measurable for every Borel measure on [0, 1].
In particular, every analytic and so every Borel set is universally measurable.
A set A ⊆ [0, 1] is said to have universal measure zero if for each non-atomic,
non-negative Borel measure µ on [0, 1], µ(A) = 0.

We define the notion of a weak Dirichlet set in two steps:
i) A universally measurable set A ⊆ [0, 1] is weak Dirichlet if for every

positive Borel measure µ on [0, 1], there exists an increasing sequence {nk}∞k=0

such that

lim
k→∞

∫

A

|e2πi nkx − 1| dµ(x) = 0.

ii) Generally, a (non-universally measurable) set is weak Dirichlet if it is
contained in some universally measurable weak Dirichlet set.

The family of all weak Dirichlet sets will be denoted by wD. This def-
inition of weak Dirichlet set was introduced by S. Kahane [Ka2]. B. Host,
J.-F. Méla and F. Parreau [HMP] introduced this notion only for Borel sets,
T. W. Körner [Kor] only for closed sets. Notice that D-sets and pD-sets are
just the sets on which some sequence {e2πi nkx−1}∞k=0 converges to 0 uniformly
and quasinormally, respectively.

Directly from the definition of a weak Dirichlet set, we obtain (part (1) is
mentioned in [BZ1, Ka2], see also [Kor])

Theorem 8.8

(1) Every A-set is weak Dirichlet.

(2) Every universal measure zero set is wD-permitted.
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The following result on weak Dirichlet sets is folklore and the proof uses
ideas which were known already to J. Arbault. The proofs of all analogical
results for D-sets, N0-sets and A-sets are almost the same—the only difference
is in the choice of a convenient convergence of functions. This is one reason
that we give its proof here, the other is that we are not able to give a complete
reference (closure under shifts is proved e.g. in [Ka1]).

Theorem 8.9 Shifts and expansions of weak Dirichlet sets are weak Dirichlet
sets.

Proof. It is easy to see that 0 can always be added to a weak Dirichlet set.
Hence, closure under adding a point will be a consequence of closure under
translations. We use the equality |e2πi nx−1| = 2| sin πnx|. Let A ⊆ [0, 1] be a
weak Dirichlet set, x 6= 0 a real number, and limk→∞

∫
A
| sin nkπy| dµ(y) = 0.

We can easily find an increasing subsequence {nkj}∞j=0 of the sequence {nk}∞k=0

such that ‖(nkj+1 − nkj
)x‖ < 2−j and ‖(nkj+1 − nkj

)x−1‖ < 2−j . Now for
each y ∈ A,

| sin(nkj+1 − nkj )π(x + y)| ≤
≤ | sin(nkj+1 − nkj )πx|+ | sin nkj+1πy|+ | sin nkj πy|
≤ 2−jπ + | sin nkj+1πy|+ | sin nkj πy|.

Integrating over y ∈ A and taking the limit as j → ∞, we get that the set
x + A is a weak Dirichlet set.

Let mj be the nearest integer to (nkj+1−nkj )x−1, i.e. ‖(nkj+1−nkj )x−1‖ =
|mj − (nkj+1 − nkj )x−1|. We can choose nkj so that the sequence {mj}∞j=0 is
increasing. Now for each y ∈ A, |xy| ≤ |x| and

| sin mjπxy| ≤ | sin(nkj+1 − nkj )πy|+ | sin ‖(nkj+1 − nkj )x−1‖πxy|
≤ | sin nkj+1πy|+ | sin nkj πy|+ 2−jπ|x|.

Hence by integration and taking limit in these inequalities we get that xA is
a weak Dirichlet set.

2

B. Host, J.-F. Méla and F. Parreau [HMP] proved the following

Theorem 8.10 A Borel set A is an N-set if and only if there exists an Fσ

weak Dirichlet set B containing A as a subset.

Corollary 8.11 N ∩ Fσ = wD ∩ Fσ.

Let us remark that from this corollary we can obtain many known results on
N-sets, e.g. Salem theorems 7.1 (1), (3), and the Arbault-Erdös Theorem 7.4.

In [Ka2], the following result of G. Debs is presented:
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Theorem 8.12 If A is an analytic (= Σ1
1) weak Dirichlet set, then the group

generated by the set A is also a weak Dirichlet set.

By Theorem 8.12 and Corollary 8.7, we immediately get:

Corollary 8.13

(1) Every analytic weak Dirichlet set is meager and has Lebesgue measure
zero.

(2) There are two perfect Dirichlet sets whose union is not a weak Dirichlet
set. Consequently, Dσ * wD.

In Section 9 we show that the word “analytic” cannot be omitted in the
above corollary.

9 Borel bases

By a simple computation, you can see that every D-set is contained in a closed
D-set. Similarly, every pD-, N0- and N-set is contained in an Fσ set of the
same family. An A-set is always contained in an Fσδ A-set. Thus, the family
D has closed basis, the families pD, N0 and N have Fσ bases, and the family
A has an Fσδ basis.

Can these computations be improved? In other words, can we find bases
of these families consisting of simpler Borel sets? At least in a certain sense,
the answer is “No”.

The case of closed sets cannot be improved by open ones, since open sets
are not small (e.g. they have positive measure). The case of Fσ and Fσδ sets
cannot be improved by Gδ sets: the set [0, 1]∩Q is an Fσ pseudo Dirichlet set,
and every Gδ set containing it is not meager and therefore neither an N-set
nor an A-set.

By Theorem 8.10, any A-set which is not an N-set is not contained in any
Fσ weak Dirichlet set. In particular, the A-set (8.2) is not contained in any
Fσ A-set.

We show that it is consistent with ZFC that wD does not have a Borel basis.
Let M be a transitive model of ZFC and let c be a Cohen real over M (for
the details see e.g. [Jech]). It is well known that the set A = [0, 1] ∩M of the
reals of the ground model has universal measure zero and is not meager in the
generic extension M[c]. So, the set A is weak Dirichlet and, by Corollary 8.13,
cannot be contained in an analytic weak Dirichlet set.
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10 A systematic approach

The definitions of D-, pD-, N0-, N-, R- and A-sets have a common structure:
there exists some sequence of functions which converges on the set in a certain
sense. In his thesis, P. Eliaš [Eli] investigated the possibilities of defining thin
sets related to absolute convergence rather systematically. He considered nine
types of conditions on a sequence {fk}∞k=0 of functions defined on a set A:

(P) {fk}∞k=0 converges pointwise to 0 on A,

(QN) {fk}∞k=0 quasinormally converges to 0 on A,

(U) {fk}∞k=0 uniformly converges to 0 on A,

(PS)
∑∞

k=0 fk(x) converges pointwise on A,

(QNS) the sequence of partial sums of the series
∑∞

k=0 fk(x) quasinormally
converges on A,

(US) the sequence of partial sums of the series
∑∞

k=0 fk(x) uniformly converges
on A,

(PNS)
∑∞

k=0 fk(x) pseudonormally converges on A, i.e. there is a sequence of
positive reals {εk}∞k=0 such that

∑∞
k=0 εk < +∞ and (∀x ∈ A)(∃k0)

(∀k ≥ k0) |fk(x)| ≤ εk,

(NS)
∑∞

k=0 fk(x) normally converges on A, i.e. there is a sequence of positive
reals {εk}∞k=0 such that

∑∞
k=0 εk < +∞ and (∀x ∈ A)(∀k) |fk(x)| ≤ εk,

(BS)
∑∞

k=0 fk(x) is bounded on A.

Four types of sequences of functions {fk}∞k=0 are considered:

(S1) fk(x) = | sin nkπx| for some increasing sequence {nk}∞k=0 of natural num-
bers,

(S2) there exists a sequence {ak}∞k=0 of non-negative real numbers such that∑∞
k=0 ak = +∞ and fk(x) = ak| sin kπx|,

(S3) there exists a sequence {ak}∞k=0 of non-negative real numbers such that
lim supk→∞ ak > 0 and fk(x) = ak| sin kπx|,

(S4) there exists a sequence {ak}∞k=0 of non-negative real numbers such that
lim supk→∞ ak = +∞ and fk(x) = ak| sin kπx|.
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For example, a set A is a pD-set if and only if there exists a sequence of
type (S1) satisfying the condition (QN). In this way, we obtain 36 definitions.
However, it turns out that many of them are equivalent (e.g., (S1) is in our
context equivalent to (S3)), and almost all of them were at least implicitly
known. P. Eliaš [Eli] explicitly defined two new classes of thin sets which were
implicitly considered already by S. Kahane [Ka2]: a set A is a B0-set if there
exists a sequence of type (S1) satisfying the condition (BS). A set A is a B-set
if there exists a sequence of type (S2) satisfying the condition (BS). Evidently,

B0 ⊆ B, B0 ⊆ N0, B ⊆ N .

Modifying some classical reasoning, P. Eliaš [Eli] proved

Theorem 10.1

(1) By adding a point to a B0-set or a B-set, one obtains a B0-set or a B-set,
respectively.

(2) Shifts and expansions of B0-sets and B-sets are B0-sets and B-sets, re-
spectively.

The main result of [Eli] can be expressed by the following table, which
gives the family of thin sets (or the family of all subsets of [0, 1], denoted by
“all”) corresponding to each combination of sequence type (Si) and conver-
gence condition:

(P) (QN) (U) (PS) (QNS) (US) (PNS) (NS) (BS)

(S1) A pD D N0 pD D pD D B
(S2) all all all N N B0 pD D B0

(S3) A pD D N0 pD D pD D B
(S4) pD pD D pD pD D pD D D

The relationships between these families is given by the following diagram,
where the arrow ‘→’ means the inclusion ‘⊆’ and wD∗ denotes the family of
all sets contained in a Σ1

1 weak Dirichlet set.
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D B0 B

pD N0 N

Dσ N0σ Nσ

A wD∗

Hσ K ∩ L

U

- -

- -

- -

-

-

6 6 6

6 6 6

6 6

6

½½> ½½>

½½> ½½>

Additional families:
B0σ = N0σ

Bσ = Nσ

D ⊆ aD ⊆ pD
aD ⊆ P
D ⊆ H ⊆ P
Hσ ⊆ Pσ ⊆ K ∩ L

Note that the restriction to wD∗ in the above picture is necessary since
every Luzin set which is non-meager while having strong measure zero is a
weak Dirichlet set. Recall that an uncountable set X is a Luzin set if every
meager subset of X is countable. Note also that, assuming the continuum
hypothesis, there is a Luzin set X ⊆ [0, 1] such that X − X = [0, 1]. In
particular this means that in Theorem 8.12, the restriction to Σ1

1 sets cannot
be dropped.

In fact, all the inclusions in this diagram are proper, and no other inclusions
between the families included in the diagram hold true. This is a consequence
of these six inequalities: B0 * Dσ (Theorem 8.5), pD * B (by Theorem 8.2 (2)
the set Q ∩ [0, 1] is pseudo Dirichlet and is not a B-set, since the closure of a
B-set is a B-set again), Dσ * wD (Corollary 8.13 (2)), B * Hσ (Theorem 7.7,
since Hσ ⊆ Pσ), A * Nσ (Theorem 8.5), and U * Hσ (Theorem 6.6). One
can also easily see that all the inclusions between the additional families are
proper.

To be sure that we did not forget any possible inclusion between these
families, we will use this auxiliary notion: a family X in the diagram is said
to be OK if for every family Y in the diagram the inclusion X ⊆ Y holds just
in the case that there is a path X → · · · → Y in the diagram.

We start with some simple facts, proving that the families D, B0, pD, Dσ,
B, A, U are OK:

D is OK.

B0 * Dσ implies B0 is OK.

pD * B implies pD is OK.

Dσ * wD implies Dσ is OK.
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B * Hσ implies B is OK.

A * Nσ implies A is OK.

U * Hσ implies U is OK.

Now notice that for each family X in the diagram, either by one of the previous
simple facts, X is OK, or there are at least two families Y,Z so that the arrows
Y → X , Z → X are in the diagram. Moreover, whenever both Y,Z are OK,
then (and this can be easily verified directly in the diagram) also X is OK.
Hence, using this property of the diagram and induction, we can successively
prove that every family in the diagram is OK.

11 Ten questions

Let F be a family of thin subsets of the unit interval [0, 1]. We ask the following
questions:

Q1 Is F an ideal?

Q2 Does F have a Borel basis?

Q3 Is F a subfamily of K?

Q4 Is F a subfamily of L?

Q5 Is every set in F σ-porous?

Q6 Does F contain a perfect set?

Q7 Is every countable subset of [0, 1] in F?

Q8 Is for every A ∈ F and every x ∈ [0, 1] the union A ∪ {x} also in F?

Q9 Is for every A ∈ F and every real x the shift x + A also in F?

Q10 Is for every A ∈ F and every real x the expansion xA also in F?

Since any family F of thin sets satisfies conditions a) and b) of the definition
of an ideal, question Q1 is equivalent to the question of whether F satisfies
condition c). Therefore, question Q1 is often referred to as the union problem.

We raise another set of questions: what are the sizes of the cardinal charac-
teristics of considered families of thin sets; i.e., what are the cardinals non(F),
add(F), cov(F) and cof(F) for the investigated families F of thin sets of har-
monic analysis?

The table on page 481 gives complete answers (except one) to questions
Q1–10 about the nine families of thin sets. However, the computation of
cardinal characteristics in the following sections is far from complete.
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12 Replacing countable

The past twenty years of investigations in set theory have showed that very
often the word “countable” can be replaced by “less than a small cardinal
characterizing the structure of P(ω)”. In Section 4, we introduced the small
cardinals m, p, t, s, r, h, b and d. It turns out that they play an important
role in the study of trigonometric thin sets. Now, we present the main recent
results of this kind.

Our story begins in 1985, when N. N. Kholshchevnikova [Kh2] improved
Arbault’s Theorem 7.5 (1) by showing that

every set of cardinality smaller than m is an N0-set.
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Q D pD N0 A N wD B0 B U

1
No No No No No No No No No

8.13 (2) (see also 8.7) 6.1 (3)

2
closed Fσ Fσ Fσδ Fσ

1
2No8 closed closed No

Section 9 6.1 (2)

3
Yes Yes Yes Yes Yes Yes Yes Yes No9

8.13 (1) (see also 1.4 and 3.1) 6.1 (5)

4
Yes Yes Yes Yes Yes Yes Yes Yes No9

8.13 (1) (see also 1.3 and 3.1) 6.1 (5)

5
Yes Yes Yes Yes No No Yes No No

3.1 7.7 3.1 7.7 6.1 (5)

6
Yes Yes Yes Yes Yes Yes Yes Yes Yes

8.3 6.5

7
No Yes Yes Yes Yes Yes No No Yes

Q 8.2 (2) Q Q 1.1

8
Yes Yes Yes Yes Yes Yes Yes Yes Yes

8.2 (3) 8.2 (4) 7.5 (2) 7.1 (3) 8.8 (2) 10.1 (1) 6.9

9
Yes Yes Yes Yes Yes Yes Yes Yes Yes

8.2 (5) 7.5 (3) 7.3 (3) 8.9 10.1 (2) 6.1 (6)

10
Yes Yes Yes Yes Yes Yes Yes Yes No10

8.2 (5) 7.5 (3) 7.3 (3) 8.9 10.1 (2) [Ba2]

8“ 1
2
No” means that the negative answer is consistent with ZFC.

9Compare with Theorem 6.2 and Theorem 6.4, respectively.
10If E ⊆ [0, 1] is a U-set and for each y ∈ E, xy ∈ [0, 1], then the expansion xE is a U-set

(see [MZ] or [Ba2]). Generally this is not true: Let E1, E2 be Bernstein sets covering the
interval [0, 1]. Then the set E = (1/2E1) ∪ (1/2 + 1/2E2) is a U-set but 2E = [0, 1).
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In 1990 Z. Bukovská [BZ1] replaced N0-set by pseudo Dirichlet set and the
cardinal m by the “greater” cardinal p in this result. Actually, she proved a
stronger result:

Theorem 12.1 Let {Bs : s ∈ S} be a family of Dirichlet sets. If |S| < p and
for every finite T ⊆ S the union

⋃
s∈T Bs is a Dirichlet set, then the union⋃

s∈S Bs is a pseudo Dirichlet set.

As a corollary, we obtain (see [BB]) that by adding a set of cardinality
smaller than p to a pD-set one obtains a pD-set, i.e.

non(Prm(pD)) ≥ p.

T. Bartoszyński and M. Scheepers [BS] improved these results by showing that

(12.1) non(Prm(pD)) ≥ h, non(Prm(N0)) ≥ h.

L. Bukovský, I. RecÃlaw and M. Repický [BRR] considered topological
spaces (and sets of reals), not distinguishing between pointwise and quasi-
normal convergence of real valued functions. Let us recall the main notion of
this paper: a set X ⊆ [0, 1] is called a wQN-set if for every sequence {fn}∞n=0

of continuous real-valued functions defined on X and converging to 0 on X,
there exists an increasing sequence {nk}∞k=0 of natural numbers such that the
subsequence {fnk

(x)}∞k=0 quasinormally converges to 0 on X. Let us recall
that the inclusions

wQN ∩A ⊆ pD ⊆ N0

were the motivation for introducing the notion of a wQN-set in [BRR]. We
can prove more.

Theorem 12.2

(1) If E ∈ N0 and X is a wQN-set with |X| < s, then E ∪X ∈ N0.

(2) If E ∈ pD and X is a wQN-set with |X| < s, then E ∪X ∈ pD.

Proof. (1) Let {nk}∞k=0 be an increasing sequence of integers such that the
series (7.1) absolutely converges for x ∈ E.

By Corollary 4.1 to Booth’s Lemma, there exists a subsequence {mk}∞k=0

of the sequence {nk}∞k=0 such that both sequences

{sin mkπx}∞k=0, {cos mkπx}∞k=0

converge on the set X. Without loss of generality we can assume that the
sequence ik = mk+1 −mk, k = 0, 1, . . ., is strictly increasing. Taking limits in
the equality

(12.2) sin ikπx = sin mk+1πx cos mkπx− sin mkπx cos mk+1πx,
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we obtain limk→∞ sin ikπx = 0 for x ∈ X. Since X is a wQN-set, by Theo-
rem 2.1 there is a subsequence {jk}∞k=0 of {ik}∞k=0 such that the series

(12.3)
∞∑

k=0

sin jkπx

absolutely converges for x ∈ X. Using the inequality

| sin ikπx| ≤ | sin mk+1πx|+ | sin mkπx|,

one can easily see that the series (12.3) converges absolutely also on the set
E.

(2) This proof can be deduced from the previous one by replacing each
instance of “the absolute convergence of a series” by “the quasinormal conver-
gence of a sequence”.

2

Every set of reals of cardinality smaller than b is a wQN-set (see [BRR,
p. 35]). Therefore

Corollary 12.3

(1) non(Prm(pD)) ≥ min{s, b},
(2) non(Prm(N0)) ≥ min{s, b}.

Since there is a model of ZFC in which h < min{s, b}, [She], this strength-
ens (12.1). The hypothesis, “countable” in the Arbault-Erdös Theorem 7.4
and in Theorem 7.9 was replaced with a small cardinal by Z. Bukovská and
L. Bukovský [BB] and N. N. Kholshchevnikova [Kh2, Kh5]:

non(Prm(N )) ≥ p, non(Prm(A)) ≥ m.

T. Bartoszyński and M. Scheepers [BS] improved these inequalities as follows:

Theorem 12.4

(1) non(Prm(N )) ≥ t,

(2) non(Prm(A)) ≥ s.

F. Hausdorff [Hau] constructed a universal measure zero set of cardinal-
ity ℵ1. A. W. Miller [Mil] proved that every set of cardinality smaller than
cov(K) has strong measure zero. Since every strong measure zero set has
universal measure zero (see [Lav]), by Theorem 8.8 (2) we obtain
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Theorem 12.5

(1) There is an uncountable wD-permitted set.

(2) non(Prm(wD)) ≥ cov(K).

For the considered families of thin sets, we cannot say whether there exists
a permitted set of power c. A partial answer—a consistency result—will be
given in the next section. J. Arbault [Arb] presented a theorem saying that
there exists a perfect N -permitted set. However, N. K. Bary [Ba2] has found
a gap in his proof.

Now we present some upper estimates for covering numbers of the families
A and D. We need one more small uncountable cardinal.

A family F of subsets of ω is said to be a refining family if for every
A ⊆ ω there exists a B ∈ F such that B ⊆∗ A or B ⊆∗ ω \ A. Thus, r is
the least size of a refining family. A related small cardinal was defined by
P. Vojtáš [Vo1]: rσ is the least size of a family F ⊆ [ω]ω such that for every
sequence An, n ∈ ω of subsets of ω there exists a B ∈ F such that for every
n ∈ ω, either B ⊆∗ An or B ⊆∗ ω \ An. We say that F is a σ-refining
family. It is known [Vo1, Vau] that r ≤ rσ and that ZFC + (d < c) + (rσ < c)
is consistent.

Theorem 12.6

(1) cov(A) ≤ rσ,

(2) cov(D) ≤ max{d, rσ}.
Proof. Let us recall that for an infinite set L ⊆ ω, L(n) denotes the nth

member of L. Let F be a σ-refining family of cardinality rσ. We can assume
that for each L ∈ F the sequence {L(n + 1)− L(n)}∞n=0 is strictly increasing.
For such L, we consider the A-set

VL = {y ∈ [0, 1] : lim
n→∞

sin(L(n + 1)− L(n))πx = 0}.

(1) For x ∈ [0, 1] and q ∈ [−1, 1] ∩Q we define

Lx,q = {k ∈ ω : sin kπx ≤ q}, Kx = {k ∈ ω : cos kπx ≥ 0}.
Let x ∈ [0, 1] be fixed. Then there is an L ∈ F such that for all q ∈

[−1, 1] ∩ Q, either L ⊆∗ Lx,q or L ⊆∗ ω \ Lx,q and either L ⊆∗ Kx or
L ⊆∗ ω \ Kx. Similarly, as in the proof of Booth’s Lemma 4.1, one can
show that {sin kπx}k∈L converges. Moreover, the sequence {cos kπx}k∈L does
not change sign and therefore, also converges. Using equality (12.2) with
mk = L(k), we obtain that x belongs to the set VL.
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Hence [0, 1] =
⋃

L∈F VL is the union of rσ-many A-sets.
(2) Let H ⊆ ωω be a dominating family of size d. For f ∈ H, L ∈ F , and

k ∈ ω we consider the D-set

ZL,f,k = {y ∈ VL : (∀n ≥ k) | sin(L(f(n) + 1)− L(f(n)))πy| ≤ 1/(n + 1)}.
For each x ∈ [0, 1], there is an L ∈ F such that x ∈ VL. We set

g(n) = min{k : (∀m ≥ k) | sin(L(m + 1)− L(m))πx| ≤ 1/(n + 1)}.
Since H is a dominating family, there exists an f ∈ H such that g ≤∗ f ; i.e.,
there exists a k ∈ ω such that g(n) ≤ f(n) for every n ≥ k. Then x ∈ ZL,f,k.

Now the proof is finished since we have

[0, 1] =
⋃

L∈F

⋃

f∈H

⋃

k∈ω

ZL,f,k

and |F ×H × ω| = max{d, rσ}.
2

13 γ-sets are permitted

If X is a subset of [0, 1] (or more generally, a topological space), we consider the
set C(X) of continuous real-valued functions defined on X with the topology
inherited from the product space XR. There exists a basis of this topology
consisting of the sets

{g ∈ C(X) : |g(xi)− f(xi)| < εi, for i = 0, . . . , n},
where f ∈ C(X), xi ∈ X, εi > 0, i = 0, . . . , n, and n ∈ ω. Moreover, a
sequence {fn}∞n=0 of functions from C(X) converges to a function f ∈ C(X)
in this topology if and only if it does so pointwise on X.

F. Gerlits and Z. Nagy [GN] introduced the notion of a γ-set. A set X ⊆
[0, 1] is called a γ-set if C(X) is a Fréchet space; i.e., if for every subset A
of C(X) and every f in the closure of A, there exists a sequence of elements
of A converging (pointwise) to f . A family V of subsets of [0, 1] is called an
ω-cover of a set X if for every finite set X0 ⊆ X there is a set V ∈ V such that
X0 ⊆ V . For the proof of the following characterization of γ-sets see [GN].

Theorem 13.1 A set X is a γ-set if and only if for every open ω-cover V of
X there is a sequence {Vk}k∈ω of sets from V such that X ⊆ ⋃∞

m=0

⋂∞
k=m Vk.

According to [GN] and [GM], we know that

non(γ-sets) = p.

F. Galvin and A. W. Miller [GM] proved
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Theorem 13.2 If p = c, then there exists a γ-set of cardinality c.

The proof of the next result is based on the ideas of J. Arbault [Arb] (see
also [BB]).

Theorem 13.3 γ-sets are N -permitted.

Proof. Let X be an infinite γ-set, and let {yk}∞k=0 be a sequence of dis-
tinct elements of X. Let E be the set of absolute convergence of a series∑∞

n=1 ρn| sin nπx| with
∑∞

n=1 ρn = ∞. We prove that E ∪X is an N-set.
Set Sn =

∑n
k=1 ρk. By applying the integral criterion for convergence and

divergence of series to f(x) = 1/x and f(x) = 1/(x1+1/p) we have

∞∑
n=1

ρn

Sn
= ∞ and

∞∑
n=1

ρn

S
1+ 1

p
n

< ∞, for each p > 0.

We can easily find a monotone unbounded sequence of integers {pn}∞n=1 such
that (compare with [Ba2, Zy1])

∞∑
n=1

ρn

S
1+ 1

pn
n

< ∞.

Let us define ρ′n = ρn/Sn, εn = 1/S
1/pn
n and g(n) = min{m :

∑m
k=n ρ′k ≥ 1}.

By Theorem 2.2, for any reals x1, . . . , xpn ∈ [0, 1], there is an integer kn ≤
Sn = (1/εn)pn such that | sin knnπxi| < 2πεn, for i = 1, 2, . . . , pn. For integer
k, let Ωk be the set of all finite sequences of integers λ(k), λ(k+1), . . . , λ(g(k))
such that λ(n) ≤ Sn for n = k, k + 1, . . . , g(k). For k ∈ ω and λ ∈ Ωk, let

Uλ,k = {x ∈ [0, 1] : (∀n ∈ [k, g(k)] ∩ ω) | sin λ(n)nπx| < 2πεn}

and
Vλ,k = Uλ,k \ {yk}.

Clearly, the family V = {Vλ,k : k ∈ ω & λ ∈ Ωk} is an open ω-cover. Hence,
there is a sequence {(λk, nk)}∞k=0 such that X ⊆ ⋃∞

m=0

⋂∞
k=m Vλk,nk

. As
yn ∈ X, the equality n = nk can hold true for at most finitely many k ∈ ω.
Hence, without loss of generality we can assume that nk+1 > g(nk) for all
k ∈ ω. We prove that the series

(13.1)
∞∑

k=0

g(nk)∑
n=nk

ρ′n| sin λk(n)nπx|

converges on E ∪X, and so E ∪X is an N-set.
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For x ∈ E,

ρ′n| sin λk(n)nπx| ≤ ρ′nSn| sin nπx| = ρn| sin nπx|

and so the series (13.1) converges.
For each x ∈ X there is an m such that (∀k ≥ m) x ∈ Vλk,nk

. Hence,

∞∑

k=m

g(nk)∑
n=nk

ρ′n| sin λk(n)nπx| ≤
∞∑

k=m

g(nk)∑
n=nk

ρ′n2πεn = 2π

∞∑

k=m

g(nk)∑
n=nk

ρn

S
1+ 1

pn
n

< ∞.

2

We shall need the following fact [BRR]:

every γ-set is both a wQN-set and a pseudo Dirichlet set.

Now we prove

Theorem 13.4 Every γ-set is permitted for the families pD, N0, A and wD.

Proof. Assume that X is a γ-set and that E is a pD-set. There is a sequence
{‖nkx‖}∞k=0 quasinormally converging to 0 on E. We can assume that nj−ni =
nk − nl if and only if j = k and i = l. Thus, the set of all differences
{nj−ni : (∃k) k ≤ i < j ≤ 2k} can be simply ordered as an increasing sequence
{mk}∞k=0. By Theorem 2.2, the 0-function belongs to the closure of the set
{‖mkx‖ : k ∈ ω} ⊆ C(X). Since X is a γ-set, there exists a subsequence of
this sequence converging pointwise to 0. Without loss of generality we can
assume that ‖mkx‖ → 0 pointwise on X. Since X is a wQN-set, there exists
a subsequence of {‖mkx‖}∞k=0 converging quasinormally to 0 on X. Again, we
can assume that ‖mkx‖ → 0 quasinormally on X. Every mk is of the form
njk

− nik
, ik < jk ≤ 2ik, and so each i can repeat only finitely many times

in the sequence {ik}∞k=0. Hence without loss of generality, we can assume
that the sequences {ik}∞k=0 and {jk}∞k=0 are both increasing. Therefore, since
‖mkx‖ ≤ ‖njk

x‖+‖nik
x‖, ‖mkx‖ → 0 quasinormally also on the union E∪X.

In the cases of E being an N0- or A-set, the proofs proceed in the same
way.

Every γ-set has strong measure zero and consequently universal measure
zero. Hence by Theorem 8.8 (2) it is wD-permitted.

2

Corollary 13.5 One cannot prove that there is no pD-, N0-, N -, A- or wD-
permitted set of cardinality c (provided that ZFC is consistent).
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Proof. Assuming that ZFC is consistent, there is a model of ZFC in which
p = c, (see e.g. [Jech]). By Theorem 13.2, in this model there are γ-sets of
cardinality c which are, according to theorems 13.3 and 13.4, pD-, N0-, N -,
A- and wD-permitted sets.

2

Unfortunately, wQN-sets are perfectly meager ([BRR, p. 31]), and so we
did not obtain an example of a perfect permitted set. Moreover, every γ-set
has strong measure zero [GN]. Thus, in Laver’s model [Lav], every γ-set is
countable. Hence, γ-sets are not the tool for finding big permitted sets in ZFC
alone.

14 Rademacher orthogonal system

Rademacher orthogonal system is the sequence R = {rn}∞n=0 of functions

rn(x) = sgn(sin 2nπx), for x ∈ [0, 1].

For information about the properties of the Rademacher system, we recom-
mend e.g. [Ale, Ba2, Zy1].

For a real x, we denote

Sx = {i ∈ ω : ri(x) = −1}.
S is a mapping from [0, 1) onto {A ∈ P(ω \ {0}) : ω \A is infinite} and it is
one-to-one on the set of all non-dyadic reals.

For a real x ∈ [0, 1], we denote by x(i) the ith digit in the dyadic expansion
of x; i.e.,

x =
∞∑

i=1

x(i)2−i.

If x 6= 1 is a dyadic real, for clarity we assume that x =
∑k

i=1 x(i)2−i, with
x(k) = 1 and x(i) = 0 for i ≥ k. Then for n ≥ 1, we obtain

rn(x) =
{

(−1)x(n), for n = 1, . . . , k − 1,
0, for n ≥ k.

If x is a non-dyadic real then rn(x) = (−1)x(n) for all n ≥ 1. Therefore, for a
dyadic real x, Sx is finite; and for a non-dyadic real x,

Sx = {i ∈ ω : x(i) = 1}.
Since |rn(x)| = 1 for every non-dyadic x ∈ [0, 1], the possibilities of defining

thin sets for the Rademacher system are limited. We introduce the following
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one: a set E ⊆ [0, 1] is an AR-set if there exists an increasing sequence
{nk}∞k=0 of natural numbers such that the sequence {rnk

(x)}∞k=0 converges for
every x ∈ E.

For an infinite subset L of ω, we denote

XL = {x ∈ [0, 1] : L ⊆∗ Sx or L ⊆∗ ω \ Sx}.

Therefore, x ∈ XL if and only if the sequence {x(i)}i∈L is eventually constant
(i.e. constant for every i greater than some k) or, equivalently, if and only if
Sx does not split the set L. In particular XL contains all dyadic reals. This
immediately implies that

XL ⊆ XK if and only if K ⊆∗ L

The sequence {ri(x)}i∈L converges if and only if the sequence {x(i)}i∈L is
eventually constant, and therefore we have

Lemma 14.1

(1) A is an AR-set if and only if there exists an L ∈ [ω]ω such that A ⊆ XL.

(2) Every set XL is Fσ.

Let x ∈ XL be a non-dyadic real. Then either for all but finitely many
n ∈ L, x(n) = 1 and {2n−1x} =

∑∞
i=0 x(n + i)2−i−1 > 1/2 (and so {2n−1x−

1/2} < 1/2), or for all but finitely many n ∈ L, x(n) = 0 and {2n−1x} =∑∞
i=1 x(n + i)2−i−1 < 1/2. It follows that XL is an Hσ-set
Thus, we can summarize:

Theorem 14.2

(1) Every AR-set is an Hσ-set and therefore meager, negligible and σ-porous.

(2) The family {XL : L ∈ [ω]ω} is an Fσ basis of AR.

(3) There are perfect AR-sets.

(4) A set A is AR-permitted if and only if for every infinite L ⊆ ω there
exists an infinite K ⊆ L such that A ⊆ XK .

Next we show

Theorem 14.3

(1) non(AR) = s,

(2) cov(AR) = r.
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Proof. (1) It follows immediately from the definitions that every set A with
|A| < s is an AR-set.

Conversely, let F , |F| = s, be a splitting family; i.e., every infinite subset
of ω is split by some set from F . One can easily check that the set

{∑
i∈K\{0} 2−i : K ∈ F

}

is not a subset of any XL and therefore not an AR-set.
(2) Let F be a refining family of the cardinality r. Let x ∈ [0, 1]. Then

there exists a set L ∈ F such that L ⊆∗ Sx or L ⊆∗ ω \ Sx. In both cases
x ∈ XL. Therefore

[0, 1] =
⋃

L∈F
XL,

and so cov(AR) ≤ r.
Conversely, assume that C ⊆ AR covers the interval [0, 1]. We can assume

that C = {XL : L ∈ F} where F ⊆ [ω]ω. We show that F is a refining family.
Let K ∈ [ω]ω be such that ω \K is infinite. We set x =

∑
i∈K\{0} 2−i. Then

there is a set L ∈ F such that x ∈ XL, and so x(i) is either 1 for all but finitely
many i ∈ L or 0 for all but finitely many i ∈ L. It follows that L ⊆∗ K or
L ⊆∗ ω \K. Hence r ≤ cov(AR).

2

We introduce a new small cardinal:

r′ = min{|K| : (∀L ∈ [ω]ω)(∃F ∈ K)(F is dense in [ω]ω,⊆∗
and (∀K ∈ F)(K ⊆∗ L or K ⊆∗ ω \ L))}.

If you choose one element from every F ∈ K, you obtain a refining family.
Thus r ≤ r′.

Theorem 14.4

(1) non(Prm(AR)) = s,

(2) cov(Prm(AR)) = r′,

(3) h ≤ add(Prm(AR)) ≤ r′.

Proof. (1) Let X ⊆ [0, 1], |X| < s. Let A ∈ AR. By Theorem 14.2 (2) there
exists an infinite K ⊆ ω such that A ⊆ XK . Since {Sx ∩K : x ∈ X} cannot
be a splitting family on K, there exists an L ∈ [ω]ω with L ⊆ K such that
for every x ∈ X either L ⊆∗ Sx ∩K or L ⊆∗ K \ Sx. In both cases, x ∈ XL;
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i.e., X ⊆ XL. Since XK ⊆ XL, we obtain X ∪ A ⊆ XL ∈ AR. The reverse
inequality follows from Theorem 14.3 (1).

(2) By Theorem 14.2 (4), for X ∈ Prm(AR) the set

F(X) = {L ∈ [ω]ω : X ⊆ XL}

is an open dense subset of [ω]ω,⊆∗. If [0, 1] =
⋃

ξ∈κ Xξ, Xξ ∈ Prm(AR), then
the family {F(Xξ) : ξ ∈ κ} satisfies the condition of the definition of r′, i.e.
κ ≥ r′.

Conversely, if F ⊆ [ω]ω is dense, then the set

X(F) = {x ∈ [0, 1] : (∀L ∈ F) L ⊆∗ Sx or L ⊆∗ ω \ Sx}

is AR-permitted. If K is a family from the definition of r′, then one can easily
see that ⋃

F∈K

X(F) = [0, 1],

i.e. cov(Prm(AR)) ≤ r′.
(3) Let X ⊆ Prm(AR), |X | < h. By the definition of h, the set F =⋂

X∈X F(X) is a dense subset of [ω]ω. Since clearly
⋃X ⊆ X(F), the set⋃X is AR-permitted, and therefore add(Prm(AR)) ≥ h.

The second inequality follows from part (2).
2

We show that there are perfect AR-permitted sets. We start with an
auxiliary result.

Lemma 14.5 Let F ⊆ [ω]ω and let xL ∈ Xω\L for each L ∈ F . If F is an
almost disjoint family (i.e. K ∩ L is finite for any different K, L ∈ F), then
the set {xL : L ∈ F} is AR-permitted.

Proof. Let A ∈ AR. Then there exists a K ∈ [ω]ω such that A ⊆ XK . We
have two possibilities.

If for every L ∈ F the intersection L ∩ K is finite, then we set N = K.
Otherwise, there exists an M ∈ F such that the intersection K ∩M is infinite.
In this case, we take an infinite set N ⊆ K ∩ M such that {xM (i)}i∈N is
constant on N , i.e. xM ∈ XN .

In the former case for any L ∈ F and in the latter case for any L ∈ F
except M , the intersection N ∩ L is finite and therefore N ⊆∗ ω \ L. Thus,
xL ∈ Xω\L ⊆ XN for every L ∈ F .

2

Theorem 14.6 There exists a perfect AR-permitted set.
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Proof. Let us fix an enumeration {si : i ∈ ω} of the set <ω2 of all finite
sequences of 0’s and 1’s. For α ∈ ω2, we denote Cα = {i ∈ ω : si ⊆ α}. For
any β 6= α, the intersection Cα∩Cβ is finite. Thus, {Cα : α ∈ ω2} is an almost
disjoint family.

Let g : ω2 → [0, 1] be defined by g(α) =
∑

i∈Cα\{0} 2−i. Then g(α) ∈
Xω\Cα

for every α ∈ ω2, and the set {g(α) : α ∈ ω2}, as a one-to-one con-
tinuous image of a compact space (the set ω2 is endowed with the product
topology), is perfect and by Lemma 14.5 also AR-permitted.

2

For AR-sets, we know more. However, the proof uses some deep methods
of logic (absoluteness). For the notion of a Mathias real, see e.g. [Mat].

Theorem 14.7 Each perfect set P contains a perfect AR-subset.

Proof. Let M be a transitive model of ZFC containing P and let m be a
Mathias real over M. Then in M[m] there is a K ∈ [ω]ω such that

(∀x ∈ P ∩M)(K ⊆∗ Sx or K ⊆∗ ω \ Sx).

Since P ∩M is uncountable in M[m], the Borel set

{x ∈ P : K ⊆∗ Sx or K ⊆∗ ω \ Sx}
is uncountable in M[m]. Therefore it contains a perfect subset. Thus we have
shown that in M[m] the following formula holds:

(∃K ∈ [ω]ω)(∃P ′ perfect)(∀x ∈ P ′)[P ′ ⊆ P & (K ⊆∗ Sx or K ⊆∗ ω \ Sx)].

As this formula is Σ1
2, by the Shoenfield Absoluteness Lemma (see e.g. [Jech]),

it also holds true in M.
2

15 Consistency of r′ < c

About the cardinal characteristic r′, at the moment, we only know that r ≤ r′.
Hence, the equality cov(Prm(AR)) = ℵ1 is not provable. We show that the
equality cov(Prm(AR)) = c also cannot be proved in ZFC. To do this, we
describe a generic model of ZFC in which r′ = ℵ1 < c. For terminology, see
e.g., [Jech].

Let M be a transitive model of ZFC + ℵ1 < c. Given an ultrafilter V ⊆
P(ω), we consider the forcing notion

P (V) = {(a, L) : a ⊆ ω finite, L ∈ V}
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with the ordering

(s, L) ≤ (t,K) iff s ⊇ t & (s \ t) ∪ L ⊆ K.

This forcing notion is C.C.C., so cardinals are not collapsed when forcing with
it. If G is an M-generic filter on P (V), then the infinite set

NG =
⋃
{s : (∃L) (s, L) ∈ G}

is a pseudo-intersection of V. Consequently,

(∀L ∈ P(ω) ∩M) NG ⊆∗ L or NG ⊆∗ ω \ L.

For any infinite L ⊆ ω, L ∈ M, if fL ∈ M is a one-to-one function from ω
onto L (e.g. fL(n) = L(n)), then the set NG,L = fL(NG) ⊆ L is in M[G] and
is such that

(15.1) (∀K ∈ P(ω) ∩M) NG,L ⊆∗ K or NG,L ⊆∗ ω \K.

Now we construct a sequence of models by finite support iteration:

(15.2) 〈Mξ : ξ < ω1〉

such that

(i) M0 = M,

(ii) Mξ+1 = Mξ[Gξ], where Gξ is an Mξ-generic filter over P (Vξ) where
Vξ ∈ Mξ is an ultrafilter on ω, and

(iii) for ξ limit, Mξ is the finite support iteration limit of the sequence 〈Mη :
η < ξ〉.

Let N be the model of ZFC which is the limit of the chain (15.2). Then N
and M have the same cardinals and ℵ1 < c in N.

Now set
Kη = {NGξ,L : L ∈ [ω]ω ∩Mξ & η ≤ ξ}.

Since for each K ∈ N, K ∈ [ω]ω, there exists a ξ < ω1 such that K ∈ Mξ,
all the sets Kη, η < ω1, are dense subsets of ([ω]ω)N, and using (15.1) we can
easily verify that the family {Kη : η < ω1} witnesses the equality r′ = ℵ1 in
N.
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16 Walsh orthogonal system

We denote the support of a natural number n by

Sn = the unique finite set L such that n =
∑

i∈L 2i.

Thus, e.g. S0 = ∅, S2n = {n}.
The Walsh orthogonal system is the sequence W = {wn}∞n=0 of func-

tions defined by

wn(x) =
∏

k∈Sn

rk+1(x), for a non-dyadic x ∈ [0, 1],

and satisfying the equality

wn(x) =
1
2

lim
h→0+

(wn(x− h) + wn(x + h))

for all x ∈ [0, 1], where wn(0− h) = wn(1− h) and wn(1 + h) = wn(0 + h). It
is known (see e.g. [Ale]) that the system W is a complete orthonormal system
in L2([0, 1]). Clearly rn+1 = w2n and r0(x) = w0(x) for x ∈ (0, 1).

As for the Rademacher system, we say that a set E ⊆ [0, 1] is an AW-set
if there exists an increasing sequence {nk}∞k=0 of natural numbers such that
the sequence {wnk

(x)}∞k=0 converges for every x ∈ E. As before, the family of
all AW-sets is denoted by AW.

The values of Rademacher functions for a non-dyadic real x are determined
by the set Sx. Let us introduce similar sets for Walsh functions:

Tx = {n ∈ ω : wn(x) = −1}.
Thus, for any non-dyadic real x we have

wn(x) =
{

+1, if n /∈ Tx,
−1, if n ∈ Tx.

Instead of the set XL, for an infinite L ⊆ ω we introduce the set

YL = {x ∈ [0, 1] : L ⊆∗ Tx ∨ L ⊆∗ ω \ Tx}.
We begin with showing that the set YL is σ-porous. Let

Y +
L,n = {x ∈ [0, 1] : L \ n ⊆ Tx},

Y −
L,n = {x ∈ [0, 1] : L \ n ⊆ ω \ Tx}.

Clearly YL =
⋃

n∈ω Y +
L,n ∪ Y −

L,n. Let nk = L(k) and let mk = max Snk
.

Without loss of generality, we can assume that {mk}∞k=0 is strictly increasing.
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Given n ∈ ω and any k > n (note that mk ≥ k > n) divide the interval [0, 1]
into 2mk equal intervals. Then for each three neighbouring intervals, one is
disjoint from Y +

L,n and one is disjoint from Y −
L,n. Therefore, all the sets Y +

L,n,
Y −

L,n are porous, and consequently YL is σ-porous.

Lemma 16.1 The family

W = {L ∈ [ω]ω : {wn(x)}n∈L converges for every dyadic x ∈ [0, 1]}
is an open dense subset of [ω]ω,⊆∗.
Proof. For x ∈ [0, 1], the set Wx of all sets L ∈ [ω]ω such that {wn(x)}n∈L

converges is an open dense subset of [ω]ω,⊆∗. So the set W, being a countable
intersection of open dense sets Wx for x dyadic, is open dense (see e.g. [Vau]).

2

Now one can easily prove

Theorem 16.2

(1) AR ⊆ AW.

(2) K ⊆∗ L implies YL ⊆ YK .

(3) A ∈ AW if and only if there is an L ∈ W which is not split by any set
Tx for x ∈ A, i.e. if A ⊆ YL.

(4) Every YL is a σ-porous Fσ set and so is meager and negligible.

(5) The family {YL : L ∈ W} is an Fσ basis for AW.

(6) AW ⊆ Pσ.

Note that (3) cannot be reversed: take an infinite set M ⊆ {2n : n ∈ ω}.
Then for any sets L,K such that M ⊆ L,K ⊆ M ∪{M(k)+M(k+1)+M(k+
2) : k ∈ ω}, we have YL = YK = YM (recall that M(k) is the kth element of
M).

There exists a close relationship between AR- and AW-sets, expressed by

Theorem 16.3 There is a Borel mapping h : [0, 1] → [0, 1] which is one-to-
one on the set of all non-dyadic reals and such that for any x ∈ [0, 1] and any
L ∈ W
(16.1) x ∈ YL if and only if h(x) ∈ XL.

Therefore,
AW = {h−1(A) : A ∈ AR}.
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Proof. Let
h(x) =

∑

n∈Tx

2−n, for x ∈ [0, 1].

If x, y ∈ (0, 1) are two distinct non-dyadic reals, then the sets Tx, Ty are also
distinct. As the complement of any of these two sets cannot be a finite set,
h(x) 6= h(y). Clearly, a real x is dyadic if and only if h(x) is dyadic, and h
restricted to the set of all non-dyadic reals is continuous. Therefore h is Borel
measurable. For a non-dyadic real x and n ≥ 1,

rn(h(x)) = (−1)h(x)n =
{

+1, if n /∈ Tx,
−1, if n ∈ Tx,

and so wn(x) = rn(h(x)), for all n ∈ ω. Consequently, using the fact that XL

and YL both contain all dyadic reals for L ∈ W, we obtain (16.1).
2

Theorem 16.4

(1) {h−1(A) : A ∈ Prm(AR)} ⊆ Prm(AW).

(2) Each perfect set P ⊆ [0, 1] contains a perfect AW-subset.

(3) s ≤ non(Prm(AW)) ≤ non(AW).

(4) cov(AW) ≤ cov(Prm(AW)) ≤ r′.

Proof. (1) If A ∈ Prm(AR), then (∀L ∈ [ω]ω)(∃K ∈ [ω]ω)(A ∪XL ⊆ XK).
We can always choose such a K from the family W. Hence (∀L ∈ [ω]ω)(∃K ∈
[ω]ω)(h−1(A) ∪ YL ⊆ YK) and so

h−1(A) ∈ Prm(AW).

(2) Let P be a perfect set. By Theorem 16.3, h(P ) is an uncountable Borel
set, and therefore h(P ) contains a perfect subset. By Theorem 14.7, there is
a perfect AR-set P ′ ⊆ h(P ). Hence by (1), h−1(P ′) is an AW-set, and since it
is uncountable Borel, it contains a perfect subset.

(3) If |X| < s then by Theorem 14.4 (1), h(X) ∈ Prm(AR), and by (1),
X ∈ Prm(AW).

(4) If X ⊆ Prm(AR) is a covering of the interval [0, 1], then by (1),
h−1(X ) ⊆ Prm(AW) is also a covering. Hence the inequality is a consequence
of Theorem 14.4 (2).

2
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17 Sets of uniqueness for Rademacher and Walsh sys-
tems

In Section 6, we defined sets of uniqueness for trigonometric series. Simi-
larly, we define: a set A ⊆ [0, 1] is a UR-set (a UW-set) if the only series∑∞

n=0 anrn(x) (
∑∞

n=0 anwn(x)) converging to zero on the set [0, 1] \ A is the
series with an = 0 for every n = 0, 1, . . ..

S. B. Stechkin and P. L. Ul’yanov [SU] proved the first part and, more
recently, A. V. Bakhsheciyan [Bak] proved the second part of the next theorem.

Theorem 17.1

(1) Whenever A ⊆ [0, 1] and µ(A) < 1/2, A is a UR-set.

(2) Every UR-set A ⊆ [0, 1] of Lebesgue measure < 1 is contained in a UR-
set with countable complement.

Similar results for category were obtained by J. E. Coury [Cou] (the first
part) and by N. N. Kholshchevnikova [Kh5] (the second one):

Theorem 17.2

(1) Every meager set is a UR-set.

(2) Every set A ⊆ [0, 1] which is either meager or |A| < c is contained in a
UR-set with countable complement.

Moreover, N. N. Kholshchevnikova [Kh5] proved

Theorem 17.3

(1) The set [0, 1]\{2−n : n ≥ 1} is a UR-set and the set [0, 1]\{2−n : n ≥ 2}
is not a UR-set.

(2) A set A ⊆ [0, 1] containing all dyadic reals is a UR-set if and only if there
are non-dyadic reals xn, yn ∈ [0, 1] \ A such that rn+1(xn) 6= rn+2(xn)
and rn+1(yn) = rn+2(yn) for all n ∈ ω.

A. A. Shnĕıder [Shn2] obtained the first fundamental results about UW-
sets.

Theorem 17.4

(1) Every countable subset of [0, 1] is a UW-set.

(2) Every UW-set has Lebesgue inner measure zero.
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(3) There exists a Lebesgue measure zero set that is not a UW-set.

(4) There exists a UW-set of cardinality c.

(5) The union of a finite number of closed UW-sets is a UW-set.

W. R. Wade [Wad] improved part (5) by showing that

the union of a countable number of closed UW-sets is a UW-set.

N. N. Kholshchevnikova [Kh4] generalized this result in the style of Theo-
rem 6.8 as

Theorem 17.5 Let An, n ∈ ω be UW-sets that are closed relative to their
union A =

⋃∞
n=0 An. Then A is also a UW-set.

Moreover, N. N. Kholshchevnikova [Kh3] proved an analogous result to
Debs and Saint-Raymond’s theorem 6.4:

Theorem 17.6 Every UW-set with the Baire property is meager.

18 More on non-absolute convergence

The combined results of several authors [Rad, PZ, Kol, Zy2] give the following
classical theorem on Rademacher series (µ means the Lebesgue measure; for
a proof, see e.g. [Ba2]):

Theorem 18.1 Let {cn}∞n=0 be a sequence of reals. Then the following con-
ditions are equivalent:

(1)
∑∞

n=0 c2
n < ∞,

(2) µ({x ∈ [0, 1] :
∑∞

n=0 cnrn(x) converges}) = 1,

(3) µ({x ∈ [0, 1] :
∑∞

n=0 cnrn(x) converges}) > 0.

For category, S. Kaczmarz and H. Steinhaus [KS] obtained a similar result:

Theorem 18.2 The following conditions are equivalent:

(1)
∑∞

n=0 |cn| = ∞,

(2) {x ∈ [0, 1] :
∑∞

n=0 cnrn(x) converges} is meager,

(3) {x ∈ [0, 1] :
∑∞

n=0 cnrn(x) converges} 6= [0, 1].



Thin sets of Harmonic Analysis and Infinite Combinatorics 499

Let {fn}∞n=0 be a sequence of Borel measurable functions defined on the
interval [0, 1] with |fn(x)| ≤ 1. For a real p ≥ 1, we denote by

Σp({fn}∞n=0)

the family of sets A ⊆ [0, 1] for which there exists a sequence {cn}∞n=0 with∑∞
n=0 |cn|p = ∞ such that the series

∑∞
n=0 cnfn(x) converges for all x ∈ A.

Clearly, Σp2({fn}∞n=0) ⊆ Σp1({fn}∞n=0), whenever 1 ≤ p1 < p2.
Using the result of A. A. Shnĕıder [Shn1] which says

the series
∑∞

n=0 cnwn(x) converges on (0, 1) for every non-
increasing sequence {cn}∞n=0 of reals converging to zero,

we obtain that the interval (0, 1) belongs to Σp(W) for every p ≥ 1. Thus, the
family Σp(W) is uninteresting.

By theorems 18.1 and 18.2, Σ2(R) ⊆ L ∩K and Σ1(R) ⊆ K. Immediately
we have

Theorem 18.3

(1) non(Σ1(R)) ≤ non(K),

(2) cov(K) ≤ cov(Σ1(R)),

(3) non(Σ2(R)) ≤ min{non(L), non(K)},
(4) max{cov(L), cov(K)} ≤ cov(Σ2(R)).

The following result is a variation on a Rothberger’s result [Rot] concerning
measure and category.

Theorem 18.4

(1) cov(L) ≤ non(Σ1({fn}∞n=0)),

(2) non(L) ≥ cov(Σ1({fn}∞n=0)).

Proof. Fix a sequence {cn}∞n=0 in `2 \ `1, e.g. cn = 1/(n + 1), and consider
the set

A = {(x, y) ∈ [0, 1]× [0, 1] :
∞∑

n=0

cnfn(x)rn(y) converges}.

By Theorem 18.1, for every x ∈ [0, 1], the set

Ax = {y ∈ [0, 1] : (x, y) ∈ A}
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has Lebesgue measure 1, and for any non-dyadic y ∈ [0, 1], the set

Ay = {x ∈ [0, 1] : (x, y) ∈ A}
is in Σ1({fn}∞n=0).

If X ⊆ [0, 1] with |X| < cov(L) then there is a non-dyadic real y such that
y ∈ Ax for every x ∈ X. Let c′(n) = rn(y)c(n). Then {c′(n)}∞n=0 ∈ `2 − `1

and
∑∞

n=0 c′nfn(x) converges on X. Hence cov(L) ≤ non(Σ1({fn}∞n=0)).
If Y is set of non-dyadic reals, Y /∈ L, then for each x ∈ [0, 1] we have Ax∩

Y 6= ∅; i.e., there exists a real y ∈ Y such that x ∈ Ay. Hence the family {Ay :
y ∈ Y } ⊆ Σ1({fn}∞n=0) is a covering family and therefore cov(Σ1({fn}∞n=0)) ≤
non(L).

2

Theorem 18.5 For p ≥ 1,

AR ⊆ Σp(R).

Proof. Let L be an infinite subset of ω. We set

c(L, n) =
{

(−1)k/ ln k, for n = L(k), k > 1,
0, for n ∈ ω \ L and for n = L(0), n = L(1).

Since the series
∑∞

n=2 1/(ln n)p diverges for any p ≥ 1,
∑∞

n=2 |c(L, n)|p = ∞,
and so the set

BL = {x ∈ [0, 1] :
∞∑

n=0

c(L, n)rn(x) converges}

is in Σp(R). We show that
XL ⊆ BL.

Let x ∈ XL. Then either L ⊆∗ Sx or L ⊆∗ ω \ Sx. Assume first that e.g.
L ⊆∗ Sx. Then there is an n0 such that for every n ≥ n0, n ∈ L, we have
rn(x) = −1. Therefore,

∞∑

n=L(n0)

c(L, n)rn(x) = −
∞∑

n=L(n0)

c(L, n)

and the series on the right side does converge. Thus, x ∈ BL.
In the case L ⊆∗ ω \ Sx we obtain rn(x) = 1 for all but finitely many n’s

(without loss of generality we can assume that x is not a dyadic real), and the
result follows in the same way.

2

So, by Theorem 14.3, we obtain
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Corollary 18.6 For each p ≥ 1,

(1) non(Σp(R)) ≥ s,

(2) cov(Σp(R)) ≤ r.

The next results for the Rademacher system now follow from Theorems
18.3, 18.4 and Corollary 18.6.

Corollary 18.7

(a) For p = 1,

(1) max{s, cov(L)} ≤ non(Σ1(R)) ≤ non(K),

(2) cov(K) ≤ cov(Σ1(R)) ≤ min{r, non(L)}.

(b) For 1 < p < 2,

(1) s ≤ non(Σp(R)) ≤ non(K),

(2) cov(K) ≤ cov(Σ1(R)) ≤ r.

(c) For p ≥ 2,

(1) s ≤ non(Σp(R)) ≤ min{non(K), non(L)},
(2) max{cov(K), cov(L)} ≤ cov(Σp(R)) ≤ r.

19 Some open problems

For the sake of brevity, in this section we understand by a CTTS-family (=
a family of classical trigonometric thin sets) any of the families D, pD, N0, N ,
B, B0, A, wD, U .

In Section 11 we raised ten questions about a family of thin sets. For
the CTTS-families, all, except one of them, were answered. So, we raise one
unanswered and one refining question:

Problem 19.1

(1) Is it consistent with ZFC that wD has a Borel basis?

(2) Are the expansions of Borel U-sets again U-sets?

One can easily see that we have answered questions Q1, Q3–5, Q7–10 for
the families Prm(F), where F is a CTTS-family, with the exceptions
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Problem 19.2

(1) Is every N -permitted or B-permitted or wD-permitted set σ-porous?

(2) Is every countable set U-permitted?

For the remaining questions, we do not know the answers. So

Problem 19.3 Let F be a CTTS-family.

(1) Does the family Prm(F) have a Borel basis?

(2) Does the family Prm(F) contain a perfect set?

In connections with these problems it seems to us that the following holds
true.

Conjecture 19.4 No perfect set is F-permitted for F being a CTTS-family.

We raise three further questions.

Q11 Does every perfect set contain an uncountable subset belonging to F?

Q12 Does every perfect set contain a subset of cardinality c belonging to F?

Q13 Does every perfect set contain a perfect subset belonging to F?

Let us remark on the following fact. Let F be a family of thin sets with a
Borel basis. If a perfect (or Borel) set P contains an uncountable subset B ∈ F
then there exists a perfect subset P ′ of P in F . Therefore, for a family with a
Borel basis, the answers to questions Q11–Q13 are equivalent. For a CTTS-
family, an affirmative answer to questions Q11–Q13 follows from theorems 6.5
and 8.3.

The property “to be a γ-set” is topologically invariant. Therefore, if there
exists a γ-set of cardinality c, then every perfect set contains a γ-subset of
cardinality c. Thus by the results of Section 13, it is consistent (even Martin’s
Axiom implies this) that the answer to question Q12 is affirmative for the
families Prm(F), F = pD,N0,N ,A,wD. We do not know the answers in the
general case.

Problem 19.5 What are the answers to questions Q11–13 for Prm(F), where
F is a CTTS-family?

In Section 10 we collected some inclusions and non-inclusions between the
CTTS-families and/or some families of small sets. To obtain the complete
picture of relationships between all of them, we need to answer the following
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Problem 19.6

(1) B0 ⊆ H, B0 ⊆ P?

(2) aD ⊆ H, aD ⊆ B0, aD ⊆ B?

(3) Pσ ⊆ U?

(4) Is every Borel (in particular closed) U-set σ-porous?

In connection with the results of Section 12, we ask:

Problem 19.7 Let F be a CTTS-family.

(1) Is Prm(F) a σ-ideal?

(2) Is there a convenient characterization of either of the cardinals non(F)
and cov(F)?

(3) Similarly, is there a convenient characterization of either of the cardinals
non(Prm(F)) and cov(Prm(F))?

Although we know answers to more than half of the thirteen questions
Q1–Q13 about the families AR, AW, UR, UW, Σp(R), Prm(AR), Prm(AW),
we are far from being able to give complete answers as we did in the case of
CTTS-families. Here are the questions we are not able to answer.

Problem 19.8

(1) Is the family Σp(R) an ideal?

(2) Do the families Prm(AR), Prm(AW) have Borel bases?

(3) Is every set from Σp(R) σ-porous?

(4) Is the family Σp(R) closed under adding a point?

(5) Are the families AR, AW, UR, UW, Σp(R), Prm(AR), Prm(AW) closed
under shifts and expansions?

(6) Does every perfect set contain an uncountable subset belonging to UW,
Σp(R), Prm(AR), Prm(AW)?

(7) Does every perfect set contain a subset of cardinality c belonging to UW,
Σp(R), Prm(AR), Prm(AW)?

(8) Does every perfect set contain a perfect subset belonging to UW, Σp(R),
Prm(AR), Prm(AW)?
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References

[Ale] Alexits G., Convergence Problems of Orthogonal Series, Akadémiai
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Math. 72 (1870), 139–142.
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Acad. Sci. 163 (1916), 433–436.

[Mil] Miller A. W., Some properties of measure and category, Trans. Amer.
Math. Soc. 226 (1981), 93–144.
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