
IDEAL GENERALIZATIONS OF EGOROFF’S THEOREM

MIROSLAV REPICKÝ

Abstract. We investigate the classes of ideals for which the Egoroff’s theo-
rem or the generalized Egoroff’s theorem holds between ideal versions of point-
wise and uniform convergences. The paper is motivated by considerations of
Michał Korch in [3].

1. Introduction

Egoroff’s theorem states that for every sequence of measurable functions fn :
[0, 1] → [0, 1] for n ∈ ω which is pointwise convergent on [0, 1] and for every ε > 0
there is such a measurable set A ⊆ [0, 1] with µ(A) > 1 − ε that the sequence
of functions converges uniformly on A (here µ denotes the Lebesgue measure and
µ∗ denotes the Lebesgue outer measure). The generalized Egoroff’s theorem states
that for every sequence of real functions (possibly non-measurable) which is point-
wise convergent on [0, 1] and for every ε > 0 there is such a set A ⊆ [0, 1] with
µ∗(A) > 1− ε that the sequence of functions converges uniformly on A.

The independence of the generalized Egoroff’s theorem was obtained by Weiss [8]
and then Pinciroli [7] showed its relevance to cardinal invariants b and non(N ).
Michał Korch [3] considered variants of these theorems for ideal generalizations of
the pointwise convergence and of the uniform convergence. Analyzing the Pinciroli’s
approach to the generalized Egoroff’s theorem in [7], Korch isolated two properties
for a pair of convergences, denoted below by (H) and (H̄), which ensure that all
Pinciroli’s arguments work for this pair of convergences. In fact, (H) implies the
consistency of the generalized Egoroff’s theorem and (H̄) implies the consistency
of the negation the generalized Egoroff’s theorem for a pair of convergences, see
Theorem 1.3. Following are the notation and terminology that we will use.

In the sets of functions of the form Sω and T (Sω) we consider the partial or-
derings, denoted in all cases by the same symbol as for the ordering of natural
numbers ≤, given by x ≤ y, if x(s) ≤ y(s) for all s ∈ S where x, y ∈ Sω; and ϕ ≤ ψ,
if ϕ(t) ≤ ϕ(t) for all t ∈ T where ϕ,ψ ∈ T (Sω). We also consider the eventual
quasi-ordering ≤∗ on ωω defined by x ≤∗ y, if x(n) ≤ y(n) for all but finitely many
n ∈ ω. The quasi-ordering ≤∗ on [0,1](ωω) is defined by ϕ ≤∗ ψ, if ϕ(t) ≤∗ ψ(t) for
all t ∈ [0, 1] where ϕ,ψ ∈ [0,1](ωω).

We say that a function o : X → P from a set X into a partially ordered set P is
cofinal if for every p ∈ P there exists x ∈ X such that p ≤ o(x).

By a sequence of real functions fn : [0, 1] → [0, 1] for n ∈ ω we understand
a mapping f : ω → [0,1][0, 1] where we let f(n) = fn for n ∈ ω. It will be useful to
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consider sequences f : S → [0,1][0, 1] for arbitrary infinite countable sets S. We say
that f is measurable, if fs : [0, 1]→ [0, 1] is measurable for all s ∈ S.

A mapping o : S([0,1][0, 1]) → [0,1]X, where X is a topological space, is said to
be a measurability preserving mapping, if o(f) : [0, 1]→ X is measurable for every
measurable f .

Assume that there are given two notions of convergence of sequences of functions
f  0 and f # 0 on sets A ⊆ [0, 1]. We assume that the convergence on a set
implies the convergence on a subset. Usually we assume that f # 0 on A implies
f  0 on A, i.e., # is stronger than  (however, this is not necessary because
we can replace # by conjuncion of # and  ). We are not especially interested in
the results of the convergences and term 0 in the formulas f  0 and f # 0 can
represent anything or nothing to which the sequence f converges. Denote

F = {f ∈ ω([0,1][0, 1]) : f  0}

and consider the following hypotheses between  and #:
(M) There exists a measurability preserving mapping o : S([0,1][0, 1])→ [0,1](Tω)

with |S| = |T | = ω such that for every measurable f  0 and measurable
A ⊆ [0, 1], if o(f)[A] is bounded in (Tω,≤), then f # 0 on A.

(H) There exists o : S([0,1][0, 1]) → [0,1](Tω) with |S| = |T | = ω such that for
every f  0 and A ⊆ [0, 1], if o(f)[A] is bounded in (Tω,≤), then f # 0
on A.

(H̄) There exists cofinal o : F → ([0,1](ωω),≤∗) such that for every f ∈ F 
and A ⊆ [0, 1], if f # 0 on A, then o(f)[A] is bounded in (ωω,≤∗).

Obviously we can put S = T = ω in the conditions but sometimes definitions of
functions o are easier to read if they do not contain enumerations of countable sets.
Like in condition (H̄), to verify (M) and (H) it is sufficient to define the restriction
o : F → [0,1](ωω) because o(f) can be arbitrary for f ∈ ω([0,1][0, 1)) \ F .

In Korch’s notation (H) means (H⇒(F ,#)) for F = F (where F identi-
fies  ). On the other hand, (H̄) is a weakening of Korch’s condition (H⇐(F ,#))
for F = F using the structures (ωω,≤∗) and ([0,1](ωω),≤∗) instead of (ωω,≤) and
([0,1](ωω),≤).

Lemma 1.1 (Korch). Conditions (M), (H), (H̄) hold between the pointwise con-
vergence → and the uniform convergence ⇒.

Proof. Take the measure preserving mapping o : ω([0,1][0, 1])→ [0,1](ωω) defined so
that o(f)(x)(n) = min{m ∈ ω : (∀k ≥ m) fk(x) ≤ 2−n}, if f → 0, x ∈ [0, 1] and
n ∈ ω. �

Recall that N is the σ-ideal of sets of reals of measure zero, non(N ) is the least
cardinality of a set of reals not of measure zero, and b is the least cardinality of
a ≤∗-unbounded subset of ωω.

The main motivation for [3] and also for the present paper relies on Korch’s
extraction of Theorem 1.2 and Theorem 1.3 from Pinciroli’s arguments applied
with the pair of the pointwise and the uniform convergences.

Theorem 1.2 (Korch). Let Φ : [0, 1]→ ωω.
(1) If Φ is measurable, then for every ε > 0 there exists A ⊆ [0, 1] such that

µ(A) ≥ 1− ε and Φ[A] is bounded in (ωω,≤).
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(2) If non(N ) < b, then for every ε > 0 there exists A ⊆ [0, 1] such that
µ∗(A) ≥ 1− ε and Φ[A] is bounded in (ωω,≤).

Proof. (1) Since Φ is measurable we have [0, 1] =
⋂
n∈ω

⋃
k∈ω An,k with measurable

sets An,k = {x ∈ [0, 1] : Φ(x)(n) = k}. For every n ∈ ω let ϕ(n) ∈ ω be minimal
such that µ(

⋃
k<ϕ(n)An,k) ≥ 1 − ε2−(n+1) and let A =

⋂
n∈ω

⋃
k<ϕ(n)An,k. Then

Φ[A] is bounded by ϕ and µ(A) ≥ 1− ε
∑
n∈ω 2−(n+1) = 1− ε.

(2) Since non(N ) < b there is a set Y ⊆ [0, 1] such that |Y | < b and µ∗(Y ) = 1.
Since |Φ[Y ]| < b there is a sequence of compact sets Bn ⊆ ωω for n ∈ ω such
that Φ[Y ] ⊆

⋃
n∈ω Bn. Denote An = Φ−1(

⋃
i<nBi) and find n ∈ ω such that

µ∗(An) ≥ 1 − ε. Let A = An. Then Φ[A] is bounded because it is included in
a compact set and µ∗(A) ≥ 1− ε. �

Theorem 1.3 (Korch). Let  and # be arbitrary convergences.

(1) Assume that (M) holds between  and #. Then for every measurable
f  0 on [0, 1] and ε > 0 there exists a measurable set A ⊆ [0, 1] such that
µ(A) ≥ 1− ε and f # 0 on A.

(2) Assume that (H) holds between  and #. If non(N ) < b, then for every
f  0 on [0, 1] and ε > 0 there exists A ⊆ [0, 1] such that µ∗(A) ≥ 1 − ε
and f # 0 on A.

(3) Assume that (H̄) holds between  and #, non(N ) = c and there exists a c-
Lusin set. Then there exists f  0 on [0, 1] such that for all sets A ⊆ [0, 1]
with µ∗(A) > 0, f 6# 0 on A.

Proof. (1)–(2) Take Φ = o(f) in Theorem 1.2.
(3) Let Z ⊆ ωω be a c-Lusin set of cardinality c, i.e., |B∩Z| < c for every meager

set B ⊆ ωω. Choose a bijection ϕ : [0, 1] → Z. Applying (H̄) let f ∈ F be such
that ϕ ≤∗ o(f). Let A ⊆ [0, 1] be arbitrary such that f # 0 on A. By (H̄), o(f)[A]
is ≤∗-bounded and then also ϕ[A] is ≤∗-bounded because ϕ ≤∗ o(f). Therefore
ϕ[A] is meager and |A| = |ϕ[A]| < c because ϕ[A] ⊆ Z. Then µ(A) = 0 because
non(N ) = c. �

Note that the classical Egoroff’s theorem and the generalized Egoroff’s theorem
are respectively the conclusions of Theorem 1.3 (1) and (2) between the pointwise
and the uniform convergences. The ideal generalizations of these theorems were
studied before Korch [3] by Das, Dutta, and Pal [1] and Mrożek [5, 6].

In the present paper we extend the Korch’s results for pairs of convergences of
the form (→I ,⇒I) and (→I∗ ,⇒I∗) which are defined in Section 2. By Lemma 2.1,
(H̄) holds for many pairs of ideal convergences, and in particular, (H̄) holds for
all pairs of the form (→I ,⇒I) and (→I∗ ,⇒I∗). In many cases Korch’s conditions
(H⇒) and (H⇐) and therefore also (H) and (H̄) can be witnessed by the same
function o (see the proofs of the results of [3] which include, e.g., the proof of
Lemma 1.1). By Lemma 2.1 it follows that this regularity is limited in some way.

In Section 3 we prove closure properties of the systems of ideals I such that (M)
or (H) holds between →I and ⇒I or between →I∗ and ⇒I∗ (Theorems 3.2–3.5).

In Section 4 we give several examples of ideals I such that that the Egoroff’s
theorem and the generalized Egoroff’s theorem (hence also (M) and (H)) do not
hold for the above mentioned pairs of ideal convergences.
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2. Pairs of ideal convergences satisfying (H̄)

By an ideal I on an infinite set S we mean a family of subsets of S such ∅ ∈ I, S /∈
I, [S]<ω ⊆ I, and I is closed under subsets and finite unions. Hence Fin = [S]<ω is
the smallest ideal on S. For f ∈ S([0,1][0, 1]) we denote f(s)(x) by fs(x); hence if
S = ω, f = 〈fm : m ∈ ω〉 is a sequence of real functions. For a sequence ε ∈ S [0, 1]
we write ε →I 0, if for every δ > 0, {s ∈ S : εs ≥ δ} ∈ I. We recall definitions of
pointwise I-convergence, quasinormal I-convergence, and uniform I-convergence of
a sequence of real functions on a set A ⊆ [0, 1]:

(i) f →I 0 on A if (∀x ∈ A)(∀ε > 0) {s ∈ S : fs(x) ≥ ε} ∈ I;
(ii) f QN−→I 0 on A if (∃ε ∈ S [0, 1]) [ε→I 0 and (∀x ∈ A) {s ∈ S : fs(x) ≥ εs} ∈

I];
(iii) f ⇒I 0 on A if (∀ε > 0) {s ∈ S : supx∈A fs(x) ≥ ε} ∈ I.
We recall another three kinds of convergences called I∗-pointwise convergence,

I∗-quasinormal convergence, and I∗-uniform convergence, respectively:
(i) f →I∗ 0 on A if (∀x ∈ A)(∃M ∈ I)(∀ε > 0) |{s ∈ S : fs(x) ≥ ε} \M | < ω;
(ii) f QN−→I∗ 0 on A if (∃M ∈ I)(∃ε ∈ S [0, 1]) [ε→Fin 0 and (∀x ∈ A) |{s ∈ S :

fs(x) ≥ εs} \M | < ω];
(iii) f ⇒I∗ 0 on A if (∃M ∈ I)(∀ε > 0) |{s ∈ S : supx∈A fs(x) ≥ ε} \M | < ω.
The above convergences were all studied in [1] but the notation used here co-

incides with [3]. Let K ⊆ I be two ideals on S. The above convergences are the
limiting cases of the following two-ideal convergences (with K = I and K = Fin):

(i) f →K,I 0 on A if (∀x ∈ A)(∃M ∈ I)(∀ε > 0) {s ∈ S : fs(x) ≥ ε} \M ∈ K;

(ii) f QN−→K,I 0 on A if (∃M ∈ I)(∃ε ∈ S [0, 1]) [ε →K 0 and (∀x ∈ A) {s ∈ S :
fs(x) ≥ εs} \M ∈ K];

(iii) f ⇒K,I 0 on A if (∃M ∈ I)(∀ε > 0) {s ∈ S : supx∈A fs(x) ≥ ε} \M ∈ K.
Recall that an ideal I on ω is a P -ideal, if for every sequence Cn for n ∈ ω of sets

from I there is a set C ∈ I such that Cn \C is finite for all n ∈ ω. If I is a P -ideal,
then →I∗ = →I and ⇒I∗ = ⇒I . Moreover, if K ⊆ I is a P -ideal (or contained in
a P -ideal that is a subideal of I), then →I∗ =→K,I and ⇒I∗ =⇒K,I .

The implications between the convergences are summarized in the following di-
agram where “stronger” implies “weaker”:

→Fin −−−−→ →I∗ −−−−→ →K,I −−−−→ →Ix x x x
QN−→Fin −−−−→

QN−→I∗ −−−−→
QN−→K,I −−−−→

QN−→Ix x x x
⇒Fin −−−−→ ⇒I∗ −−−−→ ⇒K,I −−−−→ ⇒I

By  ∪# we mean the convergence defined by f  ∪# 0, if f  0 or f # 0.
By next lemma many pairs of ideal convergences satisfy (H̄):

Lemma 2.1. Let  and # be any convergences such that  is weaker than →Fin

and # is stronger than ⇒I ∪
QN−→I∗ for an ideal I on ω. Then (H̄) holds between

 and #. In particular, (H̄) holds between →I and ⇒I and (H̄) holds between
→I∗ and ⇒I∗ for every ideal I on ω.
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Proof. For f ∈ F , x ∈ [0, 1], and n ∈ ω let Cf,x,n = {m ∈ ω : fm(x) < 2−n}
and define o : F → [0,1](ωω) by o(f)(x)(n) = min(Cf,x,n), if Cf,x,n 6= ∅, and
o(f)(x)(n) = 0, otherwise.

We prove that o is cofinal. Given ϕ : [0, 1] → ωω define fϕ ∈ FFin ⊆ F by
fϕm(x) = max{2−n : m ≤ ϕ(x)(n) + n}. For all m ≤ ϕ(x)(n), fϕm(x) ≥ 2−n and
therefore o(fϕ)(x)(n) > ϕ(x)(n) because Cfϕ,x,n 6= ∅.

Let f ∈ F and f # 0 on A ⊆ [0, 1]. Then f ⇒I 0 on A or f QN−→I∗ 0 on A.
If f ⇒I 0 on A, then the set Cf,n = {m ∈ ω : supx∈A fm(x) < 2−n} is in the

dual filter for every n ∈ ω. Since ∅ 6= Cf,n ⊆ Cf,x,n for all x ∈ A, the function
ϕ(n) = min(Cf,n) is an upper bound of o(f)[A] in (ω,≤). Therefore (H̄) holds
between  and #.

Assume that f QN−→I∗ 0 on A. Then A =
⋃
k∈ω Ak with f ⇒I∗ 0 on Ak for all

k ∈ ω (this is an observation of Remark 3.2 in [1]). Since ⇒I∗ is stronger than ⇒I ,
by previous case there is an upper bound ϕk ∈ ωω of o(f)[Ak] in (ωω,≤) for all
k ∈ ω. Then the function ϕ ∈ ωω defined by ϕ(n) = max{ϕk(n) : k ≤ n} is an
upper bound of o(f)[A] in (ωω,≤∗). �

3. Pairs of ideal convergences satisfying (M) and (H)

Let I be an ideal on a set S (support of I), i.e., S =
⋃
I and [S]<ω ⊆ I. The

restriction of the ideal I onto a set T ∈ P(S) \ I is the ideal I�T = I ∩ P(T ). We
denote Fin = FinS = [S]<ω and 〈B〉 = 〈B〉S = {E ⊆ S : |E \ B| < ω} for B ⊆ S;
we omit the subscript S if the support S of the ideals is known from the context.

The join of a family of ideals I, denoted by
∨
I, is the least ideal containing⋃

I. The intersection
⋂
I is an ideal, provided that the intersection of supports of

ideals in I is not a member of
⋂
I.

Let T be a finite or infinite set and for every t ∈ T let It be an ideal on some
set St. The set S = {(t, s) : t ∈ T and s ∈ St} is the disjoint sum of the family
of sets {St : t ∈ T}. The ideal

∑
t∈T It = {A ⊆ S : (∀t ∈ T ) At ∈ It} is the

direct sum of the system of ideals {It : t ∈ T}, where At = {s ∈ St : (t, s) ∈ A};
I0 ⊕ I1 =

∑
i∈{0,1} Ii. If T is infinite and J is an ideal on T , then the ideal∑J

t∈T It = {A ⊆ S : {t ∈ T : At /∈ It} ∈ J} is the sum of the system of ideals
{It : t ∈ T} with respect to the ideal J . The ideal J × I =

∑J
t∈T I is the product

of J and I. These definitions correspond with definitions of sums and products of
filters in [2].

Countable sums of Borel ideals on ω are Borel and countable sums of analytic
ideals on ω are analytic.

Let J be an ideal on T and for every t ∈ T let It be an ideal on St. Define
limJ

t∈T St = {s : {t ∈ T : s /∈ St} ∈ J} and limJ
t∈T It = {E : {t ∈ T : E /∈ It} ∈ J}.

Since T /∈ J , limJ
t∈T St ⊆

⋃
t∈T St and limJ

t∈T It is a family of subsets of limJ
t∈T St.

Moreover, if limJ
t∈T St /∈ limJ

t∈T It, then limJ
t∈T It is an ideal on limJ

t∈T St. For
J = Fin this definition gives limn∈ω In =

⋃
m∈ω

⋂
n>m In.

We consider the following partial orderings of ideals on ω:
(1) Rudin-Keisler partial ordering: I ≤RK J if there is g : ω → ω such that

I = {E ⊆ ω : g−1(E) ∈ J}.
(2) Rudin-Blass partial ordering: I ≤RB J if there is a finite-to-one g : ω → ω

such that I = {E ⊆ ω : g−1(E) ∈ J}.
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Remark 3.1. The partial orderings ≤RK and ≤RB are used also for ideals with
different supports. Let I, J and In for n ∈ ω be ideals on ω.

(1) J ≤RK
∑J
n∈ω In is witnessed by the function g : ω × ω → ω defined by

g(m,n) = m. In particular, J ≤RK J × I.
(2) If

⋂
n∈ω In 6= Fin, then

⋂
n∈ω In ≤RB

∑
n∈ω In; if limJ

n∈ω In 6= Fin, then
limJ

n∈ω In ≤RB
∑J
n∈ω In. Hence, if I 6= Fin, then I ≤RB

∑
n∈ω I and I ≤RB J × I.

Proof of (2). The set Z = {(m,n) ∈ ω×ω : m ≤ n} belongs to dual filters to both
ideals

∑
n∈ω In ⊆

∑J
n∈ω In. Define a finite-to-one function g : ω × ω → ω so that

g(m,n) = n for (m,n) ∈ Z and g maps (ω × ω) \ Z injectively onto an infinite set
from the ideal

⋂
n∈ω In or from the ideal limJ

n∈ω In, respectively. In this way we
get the relations

⋂
n∈ω In ≤RB

∑
n∈ω In and limJ

n∈ω In ≤RB
∑J
n∈ω In. �

Theorem 3.2. Let I be the class of ideals I on countable sets such that (M) holds
between →I and ⇒I .

(1) Fin ∈ I and 〈B〉 ∈ I for coinfinite B ⊆ ω.
(2) I is closed under restrictions of ideals.
(3) I is downward ≤RK-closed.
(4) I is closed under direct sums

∑
n∈ω In, where In ∈ I for all n ∈ ω.

(5) I is closed under ideals that are intersections of countable subfamilies of I.
(6) I is closed under increasing countable unions of analytic ideals from I.
(7) I is closed under sums

∑J
n∈ω In, where J, In ∈ I and In are analytic for

all n ∈ ω.
(8) I is closed under ideals of the form limJ

n∈ω In, where J, In ∈ I and In are
analytic for all n ∈ ω.

Theorem 3.3. Let I be the class of ideals I on countable sets such that (H) holds
between →I and ⇒I .

(1) Fin ∈ I and 〈B〉 ∈ I for coinfinite B ⊆ ω.
(2) I is closed under restrictions of ideals.
(3) I is downward ≤RK-closed.
(4) I is closed under direct sums

∑
n∈ω In, where In ∈ I for all n ∈ ω.

(5) I is closed under ideals that are intersections of countable subfamilies of I.
(6) (a) If I ∈ I and K ∈ I is a P -ideal, then I ∨K ∈ I.

(b) I is closed under increasing countable unions of ideals from I.
(7) I is closed under sums

∑J
n∈ω In where J, In ∈ I for all n ∈ ω.

(8) I is closed under ideals of the form limJ
n∈ω In, where J, In ∈ I for all n ∈ ω.

Theorem 3.4. Let I be the class of ideals I on countable sets such that (M) holds
between →I∗ and ⇒I∗ .

(1) Fin ∈ I and 〈B〉 ∈ I for coinfinite B ⊆ ω.
(2) I is closed under restrictions of ideals.
(3) I is downward ≤RB-closed.
(4) I is closed under direct sums

∑
n∈ω In, where In ∈ I for all n ∈ ω.

(5) I is closed under ideals that are intersections of countable subfamilies of I.
(6) I is closed under increasing countable unions of analytic ideals from I.
(7) I is closed under sums

∑J
n∈ω In where J, In ∈ I and In are analytic for all

n ∈ ω.
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(8) I is closed under ideals of the form limJ
n∈ω In, where J, In ∈ I and In are

analytic for all n ∈ ω.

Theorem 3.5. Let I be the class of ideals I on countable sets such that (H) holds
between →I∗ and ⇒I∗ .

(1) Fin ∈ I and 〈B〉 ∈ I for coinfinite B ⊆ ω.
(2) I is closed under restrictions of ideals.
(3) I is downward ≤RB-closed.
(4) I is closed under direct sums

∑
n∈ω In, where In ∈ I for all n ∈ ω.

(5) I is closed under ideals that are intersections of countable subfamilies of I.
(6) I is closed under ideals that are joins of countable subfamilies of I.
(7) I is closed under sums

∑J
n∈ω In where J, In ∈ I for all n ∈ ω.

(8) I is closed under ideals of the form limJ
n∈ω In, where J, In ∈ I for all n ∈ ω.

Proof of the theorems. The assertions of theorems follow by the following lemmas:
(1) Lemma 3.6; (2) Lemma 3.7; (3) Lemma 3.9; (4) Lemma 3.10; (5) Lemma 3.11;
(6) Lemma 3.12 and Lemma 3.13; (7) Lemma 3.15; (8) Lemma 3.16. �

To simplify speaking we use the following phrases:
“I satisfies (M ′)”, if “(M) holds between →I and ⇒I ”,
“I satisfies (H ′)”, if “(H) holds between →I and ⇒I ”,
“I satisfies (M ′′)”, if “(M) holds between →I∗ and ⇒I∗ ”,
“I satisfies (H ′′)”, if “(H) holds between →I∗ and ⇒I∗ ”.

The following lemma consists of special cases of paper [3] results.

Lemma 3.6. The ideals Fin and 〈B〉 on ω satisfy (M ′), (H ′), (M ′′), (H ′′) for all
coinfinite sets B ⊆ ω.

Proof. Since the ideal I = 〈B〉 is a P -ideal, it is enough to verify (M ′) and (H ′)
for I because →I = →I∗ and ⇒I = ⇒I∗ . Define o : ω([0,1][0, 1]) → [0,1](ωω) for
f →I 0 by o(f)(x)(n) = min{k ∈ ω : {m ≥ k : fm(x) ≥ 2−n} ⊆ B}.

Obviously, o is measurability preserving. If ϕ ∈ ωω is a bound of o(f)[A] where
f →I 0 and A ⊆ [0, 1], then {m ≥ ϕ(n) : supx∈A fm(x) ≥ 2−n} ⊆ B for every
n ∈ ω, i.e., f ⇒I 0 on A. �

Lemma 3.7. Let I be an ideal on ω and S ∈ P(ω) \ I. The restriction I�S has
any of the properties (M ′), (H ′), (M ′′), (H ′′), whenever I has the same property.

Proof. Let z denote the constant real function with value 0. For f ∈ S([0,1][0, 1])
define f̄ ∈ ω([0,1][0, 1]) by f̄m = fm for m ∈ S and f̄m = z for m ∈ ω \ S. For
both ideal convergences, f̄ converges with respect to I if and only if f converges
with respect to I�S. It is easy to verify that whenever oI : ω([0,1][0, 1])→ [0,1](ωω)
is a witness for a particular property concerning to I required by the lemma, then
o : S([0,1][0, 1]) → [0,1](ωω) defined by o(f) = oI(f̄) is a witness for the same
property concerning to I�S. �

Remark 3.8. Let I ≤RK J be ideals on ω and let I = {E ⊆ ω : g−1(E) ∈ J}
for some g : ω → ω. If Fin ( J , then there is a surjection h : ω → ω such that
I = {E ⊆ ω : h−1(E) ∈ J}, and moreover, h is finite-to-one, if g is finite-to-one,
and h is injective, if g is injective. To see this we find B ∈ J either finite or infinite
such that |B| = |ω \ g(ω \ B)|. Then for any bijection π : B → ω \ g(ω \ B) the
function h = π ∪ g�(ω \B) has the required properties.
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Choose an infinite set B0 ∈ J and let A0 = {x ∈ g(B0) : g−1({x}) ⊆ B0} and
A1 = {x ∈ g(B0) : g−1({x}) \ B0 6= ∅}. Then g(B0) = A0 ∪ A1. If |A0| = ω, then
let B = g−1(A0). If |A1| = ω, then choose B ⊆ B0 such that |B| = |ω \ rng(g)| and
g(B) ⊆ A1. If |A0∪A1| < ω, then choose an x ∈ g(B0) such that |g−1({x})∩B0| = ω
and choose B ( g−1({x}) ∩B0 such that |B| = |ω \ rng(g)|.

Lemma 3.9. Let I and J be ideals on ω.

(1) If I ≤RK J , then
(a) I satisfies (M ′), whenever J satisfies (M ′);
(b) I satisfies (H ′), whenever J satisfies (H ′).

(2) If I ≤RB J , then
(a) I satisfies (M ′′), whenever J satisfies (M ′′);
(b) I satisfies (H ′′), whenever J satisfies (H ′′).

Proof. Let I = {E ⊆ ω : g−1(E) ∈ J} for a function g : ω → ω that is finite-to-one
in case (2). If J = Fin, then the set E = ω \ rng(g) is in I because g−1(E) = ∅, and
for every E ∈ I, |E ∩ rng(g)| < ω because |g−1(E)| < ω. Hence I = 〈ω \ rng(g)〉
and both assertions of the lemma follow by Lemma 3.6. Therefore we can assume
that J 6= Fin and by Remark 3.8 we can moreover assume that g is a surjection.
For f ∈ ω([0,1][0, 1]) define f̄ ∈ ω([0,1][0, 1]) by f̄m = fg(m) for m ∈ ω.

If f →I 0, then f̄ →J 0 because for x ∈ [0, 1] and ε > 0, {m ∈ ω : f̄m(x) ≥ ε} =
g−1({k ∈ ω : fk(x) ≥ ε}) ∈ J .

If f →I∗ 0 and g is finite-to-one, then f̄ →J∗ 0. To see this assume that for every
x ∈ [0, 1] there is Mx ∈ I such that {k ∈ ω : fk(x) ≥ ε} \Mx ∈ Fin for all ε > 0.
Then {m ∈ ω : f̄m(x) ≥ ε} \ g−1(Mx) = g−1({k ∈ ω : fk(x) ≥ ε} \Mx) ∈ Fin for
all ε > 0 because g is finite-to-one.

Assume that oJ : ω([0,1][0, 1]) → [0,1](ωω) witnesses any of the properties (M ′),
(H ′), (M ′′), (H ′′) for J and define o : ω([0,1][0, 1])→ [0,1](ωω) by o(f) = oJ(f̄); o is
measurability preserving, whenever oJ is such.

(1) If f →I 0 and A ⊆ [0, 1] are such that o(f)[A] = oJ(f̄)[A] is bounded
in ωω, then (in cases of (M ′) and (H ′) for J) f̄ ⇒J 0 on A and hence for ε > 0,
g−1({k ∈ ω : supx∈A fk(x) ≥ ε}) = {m ∈ ω : supx∈A f̄m(x) ≥ ε} ∈ J . Therefore
f ⇒I 0 on A.

(2) Assume that f →I∗ 0 and A ⊆ [0, 1] are such that o(f)[A] = oJ(f̄)[A] is
bounded in ωω. Let Mε = {k ∈ ω : supx∈A fk(x) ≥ ε} and Nε = {m ∈ ω :
supx∈A f̄m(x) ≥ ε} = g−1(Mε) for ε > 0. Since (in cases of (M ′′) and (H ′′)
for J) f̄ ⇒J∗ 0 on A, there is N ∈ J such that Nε \ N ∈ Fin for all ε > 0. Let
M = {k ∈ ω : g−1({k}) ⊆ N}. Then M ∈ I and g−1({k}) ∩ (Nε \ N) 6= ∅ for all
k ∈Mε \M . Therefore Mε \M ∈ Fin for all ε > 0 and f ⇒I∗ 0 on A. �

Lemma 3.10. The direct sum
∑
t∈T It of a countable family of ideals on countable

sets satisfies any of the properties (M ′), (H ′), (M ′′), (H ′′), whenever all ideals It
for t ∈ T satisfy the same property.

Proof. Let I =
∑
t∈T It; I is an ideal on the set S =

⋃
t∈T {t} × St. For f :

S → [0,1][0, 1] define f̂ t : St → [0,1][0, 1] by (f̂ t)s(x) = ft,s(x). For every t ∈ T , if
f →I 0, then f̂ t →It 0; if f →I∗ 0, then f̂ t →I∗ 0; if f is measurable, then f̂ t is
measurable. For any of the required properties it is easy to verify that whenever
ot : St([0,1][0, 1]) → [0,1](Stω) witnesses this property for It for all t ∈ T , then the
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function o : S([0,1][0, 1])→ [0,1](Sω) defined by o(f)(x)(t, s) = ot(f̂
t)(x)(s) witnesses

the same property for I. �

Lemma 3.11. If an intersection
⋂
n∈ω In of a sequence of ideals on countable sets

is an ideal, then it has any of the properties (M ′), (H ′), (M ′′), (M ′′), whenever all
ideals In have the same property.

Proof. The ideal I =
⋂
n∈ω In is an ideal on an infinite countable set S and since

I =
⋂
n∈ω In�S, by Remark 3.1, I = Fin or I ≤RB

∑
n∈ω In�S. Therefore the

lemma is a consequence of Lemma 3.6, Lemma 3.9, and Lemma 3.10. �

For example, the P -ideal of pseudo-intersections of a countable sequence of infi-
nite subsets of ω satisfies (M ′), (H ′), (M ′′), (H ′′).

Let I and J be ideals on ω and g : [0, 1]→ I∨J be measurable. In general we can
say nothing about the existence of a measurable function h : [0, 1] → J such that
g(x)\h(x) ∈ I and h(x) ⊆ g(x). This is one of the reasons why measurable variants
are omitted in next lemma (they hold for analytic ideals due to Σ1

2-uniformization
provided that Σ1

2 sets are Lebesgue measurable).

Lemma 3.12. Let I and J be ideals on countable sets.
(1) I ∨ J satisfies (H ′), whenever I and J satisfy (H ′) and J is a P -ideal.
(2) I ∨ J satisfies (H ′′), whenever I and J satisfy (H ′′).

Proof. Let I, J , and K = I ∨J be ideals on sets S, T , and U = S ∪T , respectively.
For functions f : U → [0,1][0, 1] and ε > 0 denote Uf,x,ε = {m ∈ U : fm(x) ≥ ε}.

(1) If f →K 0, then Uf,x,ε ∈ K. Since J is a P -ideal, for every x ∈ [0, 1] we
can find Mf,x ∈ J (hence Mf,x ⊆ T ) such that Uf,x,ε \Mf,x ∈ I ∨ [T \ S]<ω for all
ε > 0. Let us define f I : S → [0,1][0, 1] and fJ : T → [0,1][0, 1] by

f Im(x) =

{
fm(x), if m ∈ S \Mf,x,
0, if m ∈ S ∩Mf,x,

fJm(x) =

{
fm(x), if m ∈ T \ (S \Mf,x),
0, if m ∈ T ∩ (S \Mf,x).

Then f I →I 0 and fJ →J 0 because for all ε > 0,

{m ∈ S : f Im(x) ≥ ε} = Uf,x,ε ∩ (S \Mf,x) = (Uf,x,ε \Mf,x) ∩ S ∈ I,
{m ∈ T : fJm(x) ≥ ε} ⊆ Uf,x,ε \ (S \Mf,x) ⊆ (Uf,x,ε \ S) ∪Mf,x ∈ J.

Let oI : S([0,1][0, 1]) → [0,1](ωω) and oJ : T ([0,1][0, 1]) → [0,1](ωω) witness (H ′)
for I and J . Define o : U ([0,1][0, 1])→ [0,1](ωω) for f →K 0 by

o(f)(x)(n) = max{oI(f I)(x)(n), oJ(fJ)(x)(n)}.
Assume that f →K 0 and A ⊆ [0, 1] are such that o(f)[A] is bounded in ωω.

Then oI(f
I)[A] and oJ(fJ)[A] are bounded and applying (H ′) we have f I ⇒I 0

on A and fJ ⇒J 0 on A. Denote Eε = {m ∈ S : supx∈A f
I
m(x) ≥ ε} and

Fε = {m ∈ T : supx∈A f
J
m(x) ≥ ε} for ε > 0; hence Eε ∈ I and Fε ∈ J . Then for

every ε > 0, {m ∈ U : supx∈A fm(x) ≥ ε} = Eε ∪ Fε ∈ K because supx∈A fm(x) =
max{supx∈A f

I
m(x), supx∈A f

J
m(x)}, where every missing term f Im(x) for m ∈ T \ S

and fJm(x) for m ∈ S \ T is replaced by 0. Hence f ⇒K 0.
(2) If f →K∗ 0, then for every x ∈ [0, 1] fix Nf,x ∈ I and Mf,x ∈ J such that

Nf,x ∩ Mf,x = ∅ and Uf,x,ε \ (Nf,x ∪ Mf,x) ∈ Fin for all ε > 0. Let us define
9



f I : S → [0,1][0, 1] and fJ : T → [0,1][0, 1] by the same formula as in case (1). Then
f I →I∗ 0 and fJ →J∗ 0 because for all ε > 0 the following sets are finite:

{m ∈ S : f Im(x) ≥ ε} \Nf,x ⊆ Uf,x,ε \ (Mf,x ∪Nf,x),

{m ∈ T : fJm(x) ≥ ε} \Mf,x ⊆ (Uf,x,ε \ (S \Mf,x)) \Mf,x = Uf,x,ε \ (S ∪Mf,x).

Let oI : S([0,1][0, 1]) → [0,1](ωω) and oJ : T ([0,1][0, 1]) → [0,1](ωω) witness (H ′′)
for I and J . Define o : U ([0,1][0, 1])→ [0,1](ωω) by

o(f)(x)(n) = max{oI(f I)(x)(n), oJ(fJ)(x)(n)}.
Assume that f →K∗ 0 and A ⊆ [0, 1] are such that o(f)[A] is bounded in ωω.

Then oI(f
I)[A] and oJ(fJ)[A] are bounded and applying (H ′′) we get f I ⇒I∗ 0

on A and fJ ⇒J∗ 0 on A. Hence, if we denote Eε = {m ∈ S : supx∈A f
I
m(x) ≥ ε}

and Fε = {m ∈ T : supx∈A f
J
m(x) ≥ ε}, then there are N ∈ I and M ∈ J such

that Eε \ N and Fε \M are finite for all ε > 0. Then {m ∈ U : supx∈A fm(x) ≥
ε} \ (N ∪M) = (Eε ∪ Fε) \ (N ∪M) is finite for all ε > 0 because supx∈A fm(x) =
max{supx∈A f

I
m(x), supx∈A f

J
m(x)}, where every missing term f Im(x) for m ∈ T \ S

and fJm(x) for m ∈ S \ T is replaced by 0. �

Korch [3] proved that countably generated ideals satisfy (H ′) and (H ′′). The fol-
lowing lemma together with Lemma 3.6 and Lemma 3.12 gives much more. A proof
of assertion (1a) for analytic ideals and proof of assertions (1b), (2a), (2b) can be
obtained also by Lemma 3.16 below.

We will use this simple fact: If g : [0, 1] → X is a measurable function into
a Polish space X, then there is a Borel set B ⊆ [0, 1] of full measure such that g�B
is Borel.

Lemma 3.13. Let the ideal I =
⋃
k∈ω Ik be the union of an increasing sequence of

ideals on countable sets.
(1) (a) I satisfies (M ′), whenever the ideals Ik for k ∈ ω are analytic and

satisfy (M ′).
(b) I satisfies (H ′), whenever the ideals Ik for k ∈ ω satisfy (H ′).

(2) (a) I satisfies (M ′′), whenever the ideals Ik for k ∈ ω are analytic and
satisfy (M ′′).

(b) I satisfies (H ′′), whenever the ideals Ik for k ∈ ω satisfy (H ′′).

Proof. For every k ∈ ω, Ik is an ideal on some countable set Sk and Sk ⊆ Sk+1.
Let S =

⋃
k∈ω Sk and let I ′k = {A ⊆ S : A ∩ Sk ∈ Ik and |A ∩ (S \ Sk)| < ω}.

Then I =
⋃
k∈ω I

′
k. If |S \ Sk| = ω, then I ′k is an isomorphic copy of Ik ⊕ Fin;

if |S \ Sk| < ω, then I ′k is the restriction of a copy of Ik ⊕ Fin onto S. If Ik has
any of the properties (M ′), (H ′), (M ′′), (H ′′), then I ′k has the same property by
Lemma 3.7, Lemma 3.9, and Lemma 3.10. Therefore without loss of generality we
can assume that all ideals I and Ik are ideals on ω, excluding the trivial case we
can assume that I 6= Ik for all k ∈ ω, and passing to a subsequence, if necessary,
we can assume that Ik 6= Ik+1 for all k ∈ ω.

(1) If f →I 0, denote Bf,x,n = {m ∈ ω : fm(x) > 2−n} for x ∈ [0, 1] and n ∈ ω,
and define ψ(f) : [0, 1]→ ωω and f̄k : ω → [0,1][0, 1] for k ∈ ω by

ψ(f)(x)(n) = min{k ∈ ω : Bf,x,n ∈ Ik},

(f̄k)m(x) =

{
fm(x), if (∃n ∈ ω) 2−n < fm(x) ≤ 2−(n−1) and ψ(f)(x)(n) ≤ k,
0, otherwise.
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Then f̄k →Ik 0 because for every x ∈ [0, 1] and n ∈ ω, {m ∈ ω : (f̄k)m(x) > 2−n} =
{m ∈ ω : (∃i ≤ n) 2−i < fm(x) ≤ 2−(i−1) and ψ(f)(x)(i) ≤ k} ⊆

⋃
{Bf,x,i : i ≤ n

and Bf,x,i ∈ Ik} ∈ Ik.
Assume that for every k ∈ ω, ok : ω([0,1][0, 1])→ [0,1](ωω) witnesses (M ′) or (H ′)

for Ik and define o : ω([0,1][0, 1])→ [0,1](ω×ωω) for f →I 0 by

o(f)(x)(k, n) = max{ok(f̄k)(x)(n), ψ(f)(x)(n)}.
If f is measurable and Ik are analytic ideals for all k ∈ ω, then all f̄k are measurable
(there is a Borel set B ⊆ [0, 1] of full measure such that fm�B are Borel as well as the
restriction of the measurable mapping x 7→ 〈Bf,x,n : n ∈ ω〉 onto B, then ψ(f)�B
and (f̄k)m�B are analytic, and then f̄k is measurable). Hence o is measurability
preserving, whenever all ok are such.

Let f →I 0 and A ⊆ [0, 1] be such that o(f)[A] is bounded by a function
ϕ : ω× ω → ω. Then ok(f̄k)[A] is bounded by ϕk ∈ ωω defined by ϕk(n) = ϕ(k, n)
and therefore f̄k ⇒Ik 0 on A for all k ∈ ω. We apply this fact for all k of the form
k = ϕ0(n) for n ∈ ω. For every x ∈ A and n ∈ ω, {m ∈ ω : fm(x) > 2−n} = {m ∈
ω : (∃i ≤ n) 2−i < fm(x) ≤ 2−(i−1)} ⊆ {m ∈ ω : (f̄ϕ0(n))m(x) > 2−n} because
ψ(f)(x)(i) ≤ ψ(f)(x)(n) ≤ ϕ0(n) for all i ≤ n. Therefore {m ∈ ω : supx∈A fm(x) >

2−n} ⊆ {m ∈ ω : supx∈A(f̄ϕ0(n))m(x) > 2−n} ∈ Iϕ0(n) ⊆ I for all n ∈ ω.
(2) If f →I∗ 0, denote Bf,x,n = {m ∈ ω : fm(x) > 2−n} for x ∈ [0, 1] and n ∈ ω,

and define ψ(f) : [0, 1]→ ωω and f̄k : ω → [0,1][0, 1] for k ∈ ω by

ψ(f)(x) = min{k ∈ ω : (∃M ∈ Ik)(∀n ∈ ω) |Bf,x,n \M | < ω},

(f̄k)m(x) =

{
fm(x), if ψ(f)(x) ≤ k,
0, otherwise.

We show that if f →I∗ 0, then f̄k →I∗k
0. For every x ∈ [0, 1] chooseMf,x ∈ Iψ(f)(x)

such that |Bf,x,n \Mf,x| < ω for all n ∈ ω. Either ψ(f)(x) ≤ k and then Mf,x ∈ Ik
and {m ∈ ω : (f̄k)m(x) > 2−n} \Mf,x = Bf,x,n \Mf,x ∈ Fin, or ψ(f)(x) > k and
{m ∈ ω : (f̄k)m(x) > 2−n} = ∅.

Assume that for every k ∈ ω, ok : ω([0,1][0, 1])→ [0,1](ωω) witnesses (M ′′) or (H ′′)
for Ik and define o : ω([0,1][0, 1])→ [0,1](ω×ωω) for f →I∗ 0 by

o(f)(x)(k, n) = max{ok(f̄k)(x)(n), ψ(f)(x)}.

If f is measurable and Ik are analytic ideals for all k ∈ ω, then all f̄k are measurable
(same as in the previous case). Hence o is measurability preserving, whenever all ok
are such.

Let f →I∗ 0 and A ⊆ [0, 1] be such that o(f)[A] is bounded by a function
ϕ : ω× ω → ω. Then ok(f̄k)[A] is bounded by ϕk ∈ ωω defined by ϕk(n) = ϕ(k, n)
and therefore f̄k ⇒I∗k

0 on A. Let k = ϕ(0, 0) and let M ∈ Ik be such that
|{m ∈ ω : supx∈A(f̄k)m(x) > 2−n} \M | < ω for all n ∈ ω. For x ∈ A and n ∈ ω,
ψ(f)(x) ≤ k and hence, {m ∈ ω : fm(x) > 2−n} = {m ∈ ω : (f̄k)m(x) > 2−n}.
Therefore {m ∈ ω : supx∈A fm(x) > 2−n} \M ∈ Fin for all n ∈ ω. �

Lemma 3.14. Let J be an ideal on ω, let It be ideals on St for t ∈ ω, let I =∑J
t∈ω It be the ideal on S =

⋃
t∈ω{t} × St, and let a ∈ S [0, 1], f ∈ S([0,1][0, 1]),

A ⊆ [0, 1].
(1) a→I∗ 0 if and only if {t ∈ ω : 〈at,s〉s∈St 6→I∗t

0} ∈ J .
(2) f →I∗ 0 on A if and only if (∀x ∈ A) {t ∈ ω : 〈ft,s(x)〉s∈St 6→I∗t

0} ∈ J .
11



(3) f ⇒I∗ 0 on A if and only if {t ∈ ω : 〈ft,s〉s∈St 6⇒I∗t
0 on A} ∈ J .

Proof. (1) Denote E = {t ∈ ω : 〈at,s〉s∈St 6→I∗t
0}.

Assume a →I∗ 0. Let M ∈ I be such that |{(t, s) ∈ S : at,s ≥ ε} \M | < ω for
all ε > 0. Denote Mt = {s ∈ St : (t, s) ∈ M} and N = {t ∈ ω : Mt /∈ It}. Then
N ∈ J . If t ∈ ω \N , then Mt ∈ It and for every ε > 0, |{s ∈ St : at,s ≥ ε} \Mt| ≤
|{(u, s) ∈ S : au,s ≥ ε} \M | < ω and hence t /∈ E. Therefore E ⊆ N ∈ J .

Assume E ∈ J . For each t ∈ ω \ E let Mt ∈ It be such that Ft,n = {s ∈ St :
at,s ≥ 2−n} \ Mt is finite for all n ∈ ω. The set M = {(t, s) : t ∈ ω \ E and
s ∈ Mt ∪ Ft,t} belongs to I and {(t, s) ∈ S : at,s ≥ 2−n} \M ⊆ {(t, s) ∈ S : t < n
and s ∈ Ft,n} are finite sets for all n ∈ ω. Therefore a→I∗ 0.

(2) Use (1) with at,s = ft,s(x) for x ∈ A.
(3) Use (1) with at,s = supx∈A ft,s(x); a→I∗ 0 if and only if f ⇒I∗ 0 on A. �

Mrożek [6] and Korch [3] showed that for iterations Finα, α < ω1 of the ideal Fin
obtained by repeating the operation

∑Fin, the Egoroff’s theorem and the gener-
alized Egoroff’s theorem hold between →Finα and ⇒Finα . The following lemma
generalizes both these results.

Lemma 3.15. Let J be an ideal on T , let It be ideals on St for t ∈ T , where T
and all sets St are infinite countable, and let I =

∑J
t∈T It be the ideal on the set

S =
⋃
t∈T {t} × St.

(1) (a) I satisfies (M ′), whenever J and It for t ∈ T satisfy (M ′) and the
ideals It for t ∈ T are analytic.

(b) I satisfies (H ′), whenever J and It for t ∈ T satisfy (H ′).
(2) (a) I satisfies (M ′′), whenever J and It for t ∈ T satisfy (M ′′) and the

ideals It for t ∈ T are analytic.
(b) I satisfies (H ′′), whenever J and It for t ∈ T satisfy (H ′′).

Proof. (1) For f : S → [0,1][0, 1] we define f̄ : T → [0,1][0, 1] and f̂ t : St → [0,1][0, 1]
for t ∈ T in the following way: Let t ∈ T and x ∈ [0, 1]. If 〈ft,s(x)〉s∈St →It 0, then
for all s ∈ St let

f̄t(x) = 0 and (f̂ t)s(x) = ft,s(x).

Otherwise, let n(f, t, x) be the least n ∈ ω such that {s ∈ St : ft,s(x) ≥ 2−n} /∈ It
and for all s ∈ St let

f̄t(x) = 2−n(f,t,x),

(f̂ t)s(x) =

{
ft,s(x), if ft,s(x) ≥ 2−(n(f,t,x)−1),
0, if ft,s(x) < 2−(n(f,t,x)−1).

If f →I 0, then f̄ →J 0 because for all x ∈ [0, 1] and n ∈ ω, {t ∈ T : f̄t(x) ≥
2−n} = {t ∈ T : n ≥ n(f, t, x)} = {t ∈ T : {s ∈ St : ft,s(x) ≥ 2−n} /∈ It} ∈ J ; and
for every t ∈ T , f̂ t →It 0 because either 〈(f̂ t)s(x)〉s∈St = 〈ft,s(x)〉s∈St →It 0, or
otherwise {s ∈ St : (f̂ t)s(x) > 0} ∈ It.

One can verify that if f is measurable, then f̄ and f̂ t for t ∈ T are measurable: If
f is Borel, the functions f̄ and f̂ t are obtained by changing f in a simple way on sets
Xt = {x ∈ [0, 1] : 〈ft,s(x)〉s∈St →It 0} and Zt,n = {x ∈ [0, 1] \Xt : n(f, t, x) = n}
that are measurable because they belong to the algebra generated by analytic sets
since the ideals It are analytic. If f is measurable, then there is a Borel measure
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zero set B ⊆ [0, 1] such that f�([0, 1] \ B) is Borel and then the sets Xt and Zt,n
are measurable because Xt \B and Zt,n \B are measurable by previous argument.

Assume that oJ : T ([0,1][0, 1]) → [0,1](Tω) and ot : St([0,1][0, 1]) → [0,1](Stω)
are witnesses that the ideals J and It for t ∈ T satisfy (M ′) or (H ′). We define
o : S([0,1][0, 1])→ [0,1](Sω) by

o(f)(x)(t, s) = max{oJ(f̄)(x)(t), ot(f̂
t)(x)(s)}

for f →I 0, x ∈ [0, 1], t ∈ T and s ∈ St. If oJ and ot are all measurability
preserving, then also o is such.

Let f →I 0 and A ⊆ [0, 1] be such that o(f)[A] is bounded in (Sω,≤) by
a function ν : S → ω. Then oJ(f̄)[A] is bounded in (Tω,≤) by the function ν̄ :

T → ω defined by ν̄(t) = ν(t, 0) and ot(f̂ t)[A] is bounded in (Stω,≤) by the function
ν̂t : St → ω defined by ν̂t(s) = ν(t, s). It follows that f̄ ⇒J 0 on A and f̂ t ⇒It 0
on A for all t ∈ T . We show that the set Xn = {(t, s) ∈ S : supx∈A ft,s(x) ≥ 2−n}
is in I for all n ∈ ω and hence f ⇒I 0 on A.

For n ∈ ω and t ∈ T let Tn = {v ∈ T : supx∈A f̄v(x) ≥ 2−n} and St,n = {s ∈
St : supx∈A(f̂ t)s(x) ≥ 2−n}; hence Tn ∈ J and St,n ∈ It. Fix t ∈ T \ Tn and
s ∈ St \ St,n. Then supx∈A f̄t(x) < 2−n and supx∈A(f̂ t)s(x) < 2−n. Let x ∈ A

be arbitrary. If 〈ft,u(x)〉u∈St →It 0, then ft,s(x) = (f̂ t)s(x) < 2−n. Otherwise,
2−n(f,t,x) = f̄t(x) < 2−n. Hence n(f, t, x) > n and, either ft,s(x) ≥ 2−(n(f,t,x)−1)

and then ft,s(x) = (f̂ t)s(x) < 2−n, or ft,s(x) < 2−(n(f,t,x)−1) ≤ 2−n. Therefore
(t, s) /∈ Xn for all t ∈ T \ Tn and s ∈ St \ St,n. It follows that Xn ∈ I.

(2) For f : S → [0,1][0, 1] we define f̄ : T → [0,1][0, 1] and f̂ t : St → [0,1][0, 1] for
t ∈ T by the formulas

f̄t(x) = 0 and (f̂ t)s(x) = ft,s(x), if 〈ft,u(x)〉u∈St →I∗t
0,

f̄t(x) = 1 and (f̂ t)s(x) = 0, otherwise.

If f →I∗ 0, then f̂ t →I∗t
0 for all t ∈ T , and by Lemma 3.14 (2), f̄ →J∗ 0. If f is

measurable, then also f̄ and f̂ t are measurable because the ideals It are analytic.
Assume that oJ : T ([0,1][0, 1]) → [0,1](Tω) and ot : St([0,1][0, 1]) → [0,1](Stω)

are witnesses that the ideals J and It for t ∈ T satisfy (M ′′) or (H ′′) and define
o : S([0,1][0, 1])→ [0,1](Sω) by

o(f)(x)(t, s) = max{oJ(f̄)(x)(t), ot(f̂
t)(x)(s)}

for f →I∗ 0, x ∈ [0, 1], t ∈ T and s ∈ St. If oJ and ot are all measurability
preserving, then also o is such.

Let f →I∗ 0 and A ⊆ [0, 1] be such that o(f)[A] is bounded in (Sω,≤) by
a function ν : S → ω. Then oJ(f̄)[A] is bounded in (Tω,≤) by the function
ν̄ : T → ω defined by ν̄(t) = ν(t, 0) and ot(f̂

t)[A] is bounded in (Stω,≤) by the
function ν̂t : St → ω defined by ν̂t(s) = ν(t, s). It follows that f̄ ⇒J∗ 0 on A and
f̂ t ⇒I∗t

0 on A for all t ∈ T . Let M = {t ∈ T : supx∈A f̄t(x) ≥ 1}. Then M ∈ J ,
M = {t ∈ T : supx∈A f̄t(x) > 0}, and (f̂ t)s(x) = ft,s(x) for all t ∈ T \M , s ∈ St
and x ∈ [0, 1]. Since f̂ t ⇒I∗t

0 on A for all t ∈ T \M , by Lemma 3.14 (3) it follows
that f ⇒I∗ 0 on A. �
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Lemma 3.16. Let J be an ideal on T , let It be ideals on St for t ∈ T , where all
sets T and St are infinite countable, let S = limJ

t∈T St, and let I = limJ
t∈T It. If

S /∈ I, then for the ideal I all conclusions of Lemma 3.15 hold.

Proof. For t ∈ T let I ′t = {A ⊆ S : A∩St ∈ It�(S∩St) and |A∩(S\St)| < ω}. Then
I ′t is an ideal on S and I ′t is isomorphic to an ideal of the form (It⊕Fin)�E for some
set E. By Lemma 3.7 and Lemma 3.10, I ′t satisfies any of the properties (M ′), (H ′),
(M ′′), (H ′′) whenever It satisfies it. Since I = limJ

t∈T I
′
t, by Remark 3.1, I = Fin or

I ≤RB
∑J
t∈T I

′
t. Therefore the lemma is a consequence of Lemma 3.6, Lemma 3.9,

and Lemma 3.15. �

For an ideal I on ω and a family of functions G ⊆ ωω let G←(I) = {E ⊆ ω :
(∀g ∈ G) g(E) ∈ I}. Then G←(I) is an ideal if and only if ω /∈ G←(I) if and
only if (∃g ∈ G) rng(g) /∈ I. If G←(I) is an ideal, then G←(I) = G←0 (I) where
G0 = {g ∈ G : rng(g) /∈ I}. If G = {g}, we write g←(I) instead of G←(I). Hence
G←(I) =

⋂
g∈G g

←(I).

Lemma 3.17. Let I and J be ideals on ω such that J = G←(I) for a countable
family of functions G ⊆ ωω.

(1) J satisfies (M ′) or (H ′), whenever I satisfies the same property.
(2) If G consists of finite-to-one functions, then J satisfies (M ′′) or (H ′′),

whenever I satisfies the same property.

Proof. Since G←(I) =
⋂
g∈G g

←(I), by Lemma 3.11 it is enough to prove the lemma
in the case |G| = 1. So let g ∈ ωω be such that rng(g) /∈ I, g is finite-to-one in
case (2), and let J = g←(I) = {E ⊆ ω : g(E) ∈ I}. For f : ω → [0,1][0, 1] define
f̄ : ω → [0,1][0, 1] by f̄k(x) = sup{fm(x) : m ∈ g−1({k})}, if k ∈ rng(g), and f̄k is
the constant real function with value 0, if k /∈ rng(g).

If f →J 0, then f̄ →I 0 because for x ∈ [0, 1] and ε > 0, {k ∈ ω : f̄k(x) > ε} =
{k ∈ ω : (∃m ∈ g−1({k})) fm(x) > ε} = g({m ∈ ω : fm(x) > ε}) ∈ I.

If f →J∗ 0, then f̄ →I∗ 0. To see this, for every x ∈ [0, 1] choose Mx ∈ J
such that {m ∈ ω : fm(x) > ε} \Mx ∈ Fin for all ε > 0. Then g(Mx) ∈ I and
{k ∈ ω : f̄k(x) > ε} \ g(Mx) ⊆ {k ∈ ω : (∃m ∈ g−1({k}) \Mx) fm(x) > ε} =
g({m ∈ ω : fm(x) > ε} \Mx) ∈ Fin.

Assume that oI : ω([0,1][0, 1]) → [0,1](ωω) witnesses any of the properties for I
mentioned in the lemma. Define o : ω([0,1][0, 1]) → [0,1](ωω) by o(f) = oI(f̄).
Clearly, if oI is measurability preserving, then also o is measurability preserving.

Let f →J 0 and A ⊆ [0, 1] be such that o(f)[A] = oI(f̄)[A] is bounded in ωω.
By (H ′) for I (or by (M ′) in the measurability case) we obtain f̄ ⇒I 0 on A and
hence for every ε > 0, {m ∈ ω : supx∈A fm(x) > ε} ⊆ g−1({k ∈ ω : supx∈A f̄k(x) >
ε}) ∈ J . Therefore f ⇒J 0 on A and (H ′) (or (M ′)) holds for J .

Let f →J∗ 0 and A ⊆ [0, 1] be such that o(f)[A] = oI(f̄)[A] is bounded in ωω.
By (H ′′) for I (or by (M ′′)) we obtain f̄ ⇒I∗ 0 on A and hence there isM ∈ I such
that {k ∈ ω : supx∈A f̄k(x) > ε} \M ∈ Fin for all ε > 0. Then g−1(M) ∈ J and
{m ∈ ω : supx∈A fm(x) > ε}\g−1(M) = g−1({k ∈ ω : supx∈A f̄k(x) > ε}\M) ∈ Fin
because g is finite-to-one. Therefore f ⇒J∗ 0 on A and (H ′′) (or (M ′′)) holds
for J . �

Lemma 3.9 concerns to preservation of properties of ideals ≤RK-downward and
≤RB-downward. In the upward direction we have the following lemma:

14



Lemma 3.18. For ideals I and J on ω there exists an ideal J0 ⊆ J such that:
(1) If I ≤RK J , then I ≤RK J0 and J0 satisfies (M ′) or (H ′) if and only if

I satisfies the same property.
(2) If I ≤RB J , then I ≤RB J0 and J0 satisfies any of the properties (M ′),

(H ′), (M ′′), (H ′′) if and only if I satisfies the same property.

Proof. This is a consequence of Lemma 3.9 and Lemma 3.17 because if g : ω → ω
is such that I = {E ⊆ ω : g−1(E) ∈ J} and J0 = g←(I) = {E ⊆ ω : g(E) ∈ I},
then J0 ⊆ J and I = {E ⊆ ω : g−1(E) ∈ J0}. �

4. Negative results on (M) and (H)

An ideal I on ω is said to be thick, if there is a measurable function g : [0, 1]→ I
such that µ({x ∈ [0, 1] : g(x) ⊆ E}) = 0 for all E ∈ I. In this definition the
interval [0, 1] can be replaced by ω2 since there exists a measure preserving Borel
isomorphism between [0, 1] and ω2. Recall that functions g : [0, 1] → P(ω) and
h : [0, 1] → ωP(ω) are measurable, if the sets {x ∈ [0, 1] : m ∈ g(x)} and {x ∈
[0, 1] : m ∈ hn(x)} are measurable for all m,n ∈ ω.

Lemma 4.1. If I is a thick ideal on ω, then neither the classical Egoroff’s theo-
rem nor the generalized Egoroff’s theorem between →I and ⇒I and between →I∗

and ⇒I∗ holds.

Proof. Let g : [0, 1]→ I be measurable such that µ({x ∈ [0, 1] : g(x) ⊆ E}) = 0 for
all E ∈ I. Define a sequence of measurable functions f : ω → [0,1][0, 1] by

fm(x) =

{
1, if m ∈ g(x),
0, otherwise.

(∗)

Then f →I 0 and f →I∗ 0 on [0, 1] because {m ∈ ω : fm(x) ≥ ε} = g(x) for all
ε > 0. If A ⊆ [0, 1] is arbitrary such that f ⇒I 0 on A, then µ(A) = 0 because the
set E = {m ∈ ω : supz∈A fm(z) ≥ 1} is in I and g(x) ⊆ E for every x ∈ A. The
same argument works for ⇒I∗ because it implies ⇒I . �

Due to Lemma 4.1 the following is a consequence of Theorem 1.3:

Corollary 4.2. Let I be a thick ideal on ω.
(1) (M) holds neither between →I and ⇒I , nor between →I∗ and ⇒I∗ .
(2) If non(N ) < b, then (H) holds neither between →I and ⇒I , nor between
→I∗ and ⇒I∗ . �

Lemma 4.3. Let I, J , and In for n ∈ ω be ideals on ω and let B ∈ P(ω) \ I.
(1) If I�B is thick, then also I is thick.
(2) If J ≤RK I and J is thick, then also I is thick.
(3) If J ≤RK I�B and J is thick, then also I is thick.
(4) If J is thick, then also

∑J
n∈ω In, J × I, I × J are thick.

Proof. (1) is easy; (3) is a consequence of (1) and (2); and by Remark 3.1, (4) is
a consequence of (2). We prove (2).

Let g : ω → ω be such that J = {E ⊆ ω : g−1(E) ∈ I}. Assume that h :
[0, 1] → J is measurable and µ({x ∈ [0, 1] : h(x) ⊆ E}) = 0 for all E ∈ J . The
function g−1 : P(ω)→ P(ω) is continuous and therefore the function h̄ : [0, 1]→ I
defined by h̄(x) = g−1(h(x)) is measurable. Given set F ∈ I let E = {n ∈ ω :
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g−1({n}) ⊆ F}, i.e., E ∈ J and E is the largest subset of ω such that g−1(E) ⊆ F .
Then {x ∈ [0, 1] : h̄(x) ⊆ F} = {x ∈ [0, 1] : g−1(h(x)) ⊆ F} = {x ∈ [0, 1] :
g−1(h(x)) ⊆ g−1(E)} = {x ∈ [0, 1] : h(x) ⊆ E} because ω \ rng(g) ⊆ E. Therefore
µ({x ∈ [0, 1] : h̄(x) ⊆ F}) = 0. �

Now we introduce several ideals and we prove that they are thick.

Example 4.4. (a) Let ϕ : <ω2 → ω be a bijection such that ϕ(s) < ϕ(t) whenever
|s| < |t|. Then 2|s| ≤ ϕ(s)+1 < 2|s|+1 for s ∈ <ω2, i.e., ϕ maps n2 onto the interval
Kn = [2n − 1, 2n+1 − 1) and 2−(n+1) < 1/(k + 1) ≤ 2−n for k ∈ Kn. For x ∈ ω2
let Ex = {ϕ(x�n) : n ∈ ω}. The mapping x 7→ Ex is a homeomorphism of ω2 onto
the family C = {Ex : x ∈ ω2} ⊆ [ω]ω, ω =

⋃
C, and C is a perfect compact almost

disjoint family on ω (shortly, a. d. family, i.e., |Ex∩Ey| < ω for x 6= y). For A ⊆ ω2
denote E(A) =

⋃
x∈AEx. Consider the ideals

I0 = {E ⊆ ω : (∃A ∈ [ω2]<ω) E ⊆ E(A)},
I1 = {E ⊆ ω : (∃A ∈ [ω2]ω) {Ex : x ∈ ω2 \A} ∪ {E} is an a. d. family},
I2 = {E ⊆ ω : (∃A ∈ N ) {Ex : x ∈ ω2 \A} ∪ {E} is an a. d. family},
I3 = {E ⊆ ω :

∑
k∈E 1/(k + 1) <∞},

I4 = {E ⊆ ω : limn→∞ |E ∩ n|/n = 0}
= {E ⊆ ω : limn→∞ |E ∩ [2n, 2n+1)|/2n = 0}.

(b) A family D ⊆ [ω]ω is an independent family, if |
⋂
D0∩

⋂
F∈D1

(ω\F )| = ω for
any two disjoint finite subfamilies D0, D1 ⊆ D. Let D = {Fx : x ∈ ω2} be a perfect
compact independent family on ω such that ω =

⋃
D and the mapping x 7→ Fx

is a homeomorphism. (For example, on the countable set S = {(n, u) : n ∈ ω
and u ⊆ n2} the family of sets F ′x = {(n, u) ∈ S : n ∈ ω and x�n ∈ u} for
x ∈ ω2 is a perfect compact independent family. This is a modification of the
Hausdorff’s construction, see [4].) For A,B1, . . . , Bk ⊆ ω2 denote F (A) =

⋃
x∈A Fx

and F (A;B1, . . . , Bk) = F (A)∪
⋃k
i=1(ω \F (Bi)). Let N+ denote the family of sets

of positive measure in ω2. Consider the ideals

I ′0 = {E ⊆ ω : (∃A ∈ [ω2]<ω) E ⊆ F (A)},
I ′1 = {E ⊆ ω : (∃A ∈ [ω2]<ω)(∃B1, . . . , Bk ∈ N+) E ⊆ F (A;B1, . . . , Bk)},
I ′2 = {E ⊆ ω : (∃A ∈ [ω2]<ω)(∃B1, . . . , Bk ∈ [ω2]ω) E ⊆ F (A;B1, . . . , Bk)}.

Note that N+ can be replaced by the family of closed sets of positive measure in
definition of I ′1. In fact, I0 and I ′i are Σ1

1, I1 and I2 are Σ1
2, I3 is Σ0

2, and I4 is Π0
3.

It follows that I0, I3, I4, I ′0, I ′1, I ′2 are meager and have measure zero.

For E ⊆ ω let XE = {x ∈ ω2 : Ex ⊆ E} and ZE = {x ∈ ω2 : Fx ⊆ E}. Then
XE is closed, X∅ = ∅, Xω = ω2, and X⋂

i Ei
=

⋂
iXEi . The same holds for ZE .

Lemma 4.5. (1) I0, I1, I2, I3, I4, I ′0, I ′1, I ′2 are ideals and I2, I3, I4 are P -ideals.
(2) I0 ⊆ I1 ⊆ I2, I0 ⊆ I3 ⊆ I4, and I ′0 ⊆ I ′1 ⊆ I ′2.

Proof. (1) We show that I ′1 and I ′2 are ideals and that I2 is a P -ideal. The other
facts are obvious or known.

By definition I ′1 and I ′2 are closed under finite unions and subsets. If A ∈ [ω2]<ω

and B1, . . . , Bk are infinite, then there are distinct reals x1 ∈ B1 \ A, . . . , xk ∈
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Bk \ A. Since D is independent, the set
⋂k
i=1 Fxi ∩

⋂
x∈A(ω \ Fx) is infinite and

disjoint from F (A;B1, . . . , Bk). Therefore ω /∈ I ′1 and ω /∈ I ′2.
The sets XE are closed and therefore one can easily verify that

I2 = {E ⊆ ω : limn∈ω µ(X(ω\(E\n)) = 1}.
Assume that En ⊆ En+1 ∈ I2 for all n ∈ ω. Find an increasing sequence 〈kn〉n∈ω
in ω such that µ(X(ω\(En\kn)) ≥ 1 − 2−(n+1) and let E =

⋃
n∈ω(En \ kn). Then

µ(X(ω\(E\kn)) ≥ µ(X(ω\
⋃
i≥n(Ei\ki)) = µ(

⋂
i≥nX(ω\(Ei\ki)) ≥ 1 −

∑
i≥n 2−(i+1) =

1− 2−n. This proves that I2 is a P -ideal.
(2) For every x ∈ ω2 we have 1 =

∑
n∈ω 2−(n+1) <

∑
n∈ω 1/(ϕ(x�n) + 1) =∑

k∈Ex 1/(k + 1) <
∑
n∈ω 2−n = 2 and hence Ex ∈ I3. Therefore I0 ⊆ I3. The

inclusion I3 ⊆ I4 follows by the fact that for E ⊆ ω and n ∈ ω,
∑
k∈E∩Kn 1/(k+1) ≥∑

k∈E∩Kn 2−n = |E ∩Kn|/2n. The remaining inclusions are obvious. �

An ideal I on ω is said to be a summable ideal, if there is a function a : B → [0, 1]
such that

∑
k∈B a(k) =∞ and I = S(a), where

S(a) = {E ⊆ dom(a) :
∑
k∈E a(k) <∞}.

An ideal I on ω is said to be simply summable in a set B ⊆ ω, if there is a function
a : B → [0, 1] such that

∑
k∈B a(k) =∞, limk∈B a(k) = 0, and I�B = S(a).

If I is a summable ideal on ω, then there is B ⊆ ω such that either I = 〈B〉 (this
includes I = Fin), or I is simply summable in B. Really, if I = S(a) for a divergent
series a : ω → [0, 1], then either there is δ > 0 such that

∑
{a(k) : a(k) < δ} < ∞

and then I = 〈B〉 for B = {k ∈ ω : a(k) < δ}, or otherwise by induction find
a decreasing sequence of positive reals δn < 2−n and pairwise disjoint finite sets
Bn such that

∑
k∈Bn ak ≥ 1 and δn+1 ≤ ak < δn for k ∈ Bn. Then I is simply

summable in B =
⋃
n∈ω Bn.

By next theorem simply summable ideals are thick and therefore by Lemma 3.6,
a summable ideal on ω is thick if and only if it is simply summable in a subset of ω.

Theorem 4.6. Let I be an ideal on ω.
(1) If I0 ⊆ I ⊆ I2 or I0 ⊆ I ⊆ I4, then I is thick.
(2) If I is simply summable in a subset of ω, then I is thick.
(3) If I ′0 ⊆ I ⊆ I ′2 or I ′1 ⊆ I, then I is thick. In particular, there are prime

thick ideals on ω.

Proof. (1) Since I0 ⊆ I we can define g : ω2 → I by g(x) = Ex. The function g is
continuous and XE = {x ∈ ω2 : g(x) ⊆ E} for E ⊆ ω.

If E ∈ I2, then XE ∈ N , i.e., µ(XE) = 0, by definition of I2.
If E ∈ I4, then µ(XE) = 0 because XE ⊆

⋃
{[s] : ϕ(s) ∈ E ∩Kn} for all n ∈ ω,

µ([s]) = 1/2n for ϕ(s) ∈ Kn, and limn∈ω |E ∩Kn|/2n = 0.
(2) Assume that an ideal I on ω is simply summable in a set B′ ⊆ ω by a series

a : B′ → [0, 1]. We find an infinite set B ⊆ B′ and an ideal J ≤RB I�B on ω such
that I0 ⊆ J ⊆ I4. Then I is thick by (1) and by Lemma 4.3.

Since a is converging to 0 and
∑
k∈B′ ak is divergent, by induction we can con-

struct a system of pairwise disjoint nonempty finite sets Bn,s ⊆ B′ for n ∈ ω

and s ∈ n2 such that 2−(n+1) ≤
∑
k∈Bn,s a(k) < 2−n. Let B =

⋃
n∈ω

⋃
s∈n2Bn,s

and let ϕ : <ω2 → ω be the bijection from Example 4.4. Define g : B → ω by
g(k) = ϕ(s) for k ∈ B|s|,s and s ∈ <ω2 and let J = {E ⊆ ω : g−1(E) ∈ I�B} where
I�B = S(a�B). Then J ≤RB I�B because g is finite-to-one.
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We show that I0 ⊆ J ⊆ I4. For every x ∈ ω2, Ex ∈ J because g−1(Ex) =⋃
n∈ω Bn,x�n and

∑
n∈ω

∑
k∈Bn,x�n ak <

∑
n∈ω 2−n < ∞. It follows that I0 ⊆ J .

Let E ∈ J be arbitrary, i.e., g−1(E) =
⋃
ϕ(s)∈E B|s|,s =

⋃
n∈ω

⋃
ϕ(s)∈E∩Kn Bn,s ∈ I.

Then∑
n∈ω
|E ∩ Kn|/2n+1 =

∑
n∈ω

∑
ϕ(s)∈E∩Kn

2−(n+1) ≤
∑
n∈ω

∑
ϕ(s)∈E∩Kn

∑
k∈Bn,s

ak < ∞

and hence limn→∞ |E ∩Kn|/2n = 0. Therefore J ⊆ I4.
(3) The function g : ω2 → I ′0 defined by g(x) = Fx is continuous. Then ZE =

{x ∈ ω2 : g(x) ⊆ E} for E ⊆ ω.
Let E ∈ I ′2 be arbitrary, i.e., E ⊆ F (A;B1, . . . , Bk) for some A ∈ [ω2]<ω and

B1, . . . , Bk ∈ [ω2]ω. We show that ZE ⊆ A. Let x ∈ ω2 \ A. Choose distinct
xi ∈ Bi \ (A∪{x}) for i = 1, . . . , k and denote G =

⋂
y∈A(ω \Fy)∩

⋂k
i=1 Fxi . Then

G ∩ Fx 6= ∅ because D is independent. Since G ∩ F (A;B1, . . . , Bk) = ∅ it follows
that Fx * F (A;B1, . . . , Bk) and hence x ∈ ω2\ZE . Therefore ZE is finite for every
E ∈ I ′2. It follows that every ideal I with I ′0 ⊆ I ⊆ I ′2 is thick.

Let I ⊇ I ′1 be an arbitrary ideal. Then µ(ZE) = 0 for every E ∈ I since
otherwise for a closed set B = ZE of positive measure we have F (B) ⊆ E ∈ I and
ω \ F (B) = F (∅;B) ∈ I ′1 ⊆ I. Therefore I is thick. �

Remark 4.7. The conclusion of Corollary 4.2 in case of the thick ideals I = I0 and
I = I ′0 does not require the assumption non(N ) < b and does not need Theorem 1.2.
This is due to the fact that for every function Φ : [0, 1]→ ωω there is an infinite set
A ⊆ [0, 1] such that Φ[A] is bounded (but the sequences of functions (∗) from the
proof of Lemma 4.1 witnessing the thickness of I, I-uniformly converges on a set of
the form A = XE and A = ZE , respectively, only if A is finite): If Z = Φ([0, 1]) is
an uncountable subset of ωω, then Z has an accumulation point z0 which together
with a sequence converging to z0 gives an infinite countable compact set Z0 ⊆ Z.
Then for the infinite set A = Φ−1(Z0), Φ[A] is bounded. If Z is countable, then for
some z0 ∈ Z, the set A = Φ−1({z0}) is infinite and Φ[A] is bounded.
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