COFINALITY OF THE LAVER IDEAL

MIROSLAV REPICKY

ABSTRACT. Yurii Khomskii observed that cof(I?) > ¢ assuming b = ¢ and he
asked whether the inequality cof(I°) > ¢ is provable in ZFC. We find several
conditions that imply some variants of this inequality for tree ideals. Apply-
ing a recent result of J. Brendle, Y. Khomskii, and W. Wohofsky we show
that {0 satisfies some of these conditions and consequently, cof(19) = d(¢I%) >
0(“c) > ¢. We also prove that if the cellularity of a Boolean algebra B is hered-
itarily > &, then every s-sequence in BT has a s-subsequence with a disjoint
refinement.

1. INTRODUCTION

Yurii Khomskii [5] observed that assuming b = ¢, the cofinality of the Laver
ideal 1° is > ¢, i.e., cof(I%) > c¢. He asked whether the inequality cof(l®) > ¢ is
provable in ZFC. After writing a previous version of this paper Yurii Khomskii
kindly informed us about the proof of cof(I’) > ¢. It is contained in the paper of
J. Brendle, Y. Khomskii, and W. Wohofsky [2]. We find several conditions that
imply this and also a bit stronger inequalities for tree ideals. Applying a result of [2]
we prove that cof(1°) = 2(°1°) > 0(°c) > ¢. We deal also with disjoint refinements
in Boolean algebras. We prove that if the cellularity of a Boolean algebra B is
hereditarily > &, then every x-sequence in Bt has a x-subsequence with a disjoint
refinement. This result helps to classify the considered conditions.

Throughout this paper PP, is the system of all Laver perfect sets in “w (i.e., the
sets of the form [T] = {z € “w : (Vn € w) z[n € p} where T' C <“w is a Laver tree)
and Pgs is the system of all perfect sets in “w. We are primarily interested in the
Laver ideal [° but most of the assertions hold also for other tree ideals and also in
a more general context: For a family P C P(“w) let s(P) = {X C “w : (Vp € P)
(J3geP)gCpand gNX =0} and sT(P) = P(“w) \ s(P). Hence s(P) is an ideal
associated to the poset (P,C). In particular, [° = s(PL) is the Laver ideal and
5% = s(Ps) is the Marczewski ideal. Let [T = sT(Pr) and st = st (Pg). We assume
that P is a family with the following properties:

(a) P is a separable family of sets (see [8, 10]), i.e., P C dec(P) where dec(P) =
{X C¥w: (VpeP)(JqeP)qCpand either g C X or ¢N X = 0}.
(b) Every p € P has ¢ pairwise disjoint subsets in P.
(c) s(P)[p = s(P)NP(p) is isomorphic to s(P) for every p € P.
Note that dec(P) is an algebra of sets, s(P) C dec(P), and by (a), p,q € P are
incompatible if and only if pNg € s(P). By (b), non(s(P)) = ¢; (c) is necessary
only for cof(s(P)) = a(“s(IP)).
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Recall that for an ideal I on a set X, non(I) = min{|A| : A C X and A ¢ I},
cov(I) = min{|lp| : Iy C I and |JIy = X}, cof(I) = min{|Iy| : Ip C I and (VA € I)
(3B € Iy) A C B}. If P is a partially ordered set then 9(P) denotes the least
cardinality of a dominating subset of P and b(P) is the least cardinality of an
unbounded subset of P.

If X is a family of sets and p,q € "X, then p < ¢ means (Va < k) po C ¢u
and we say that p refines ¢ (we identify p € *X with (p, : @ < k)). We say that
p quasi-refines ¢ if there is a one-to-one function f : kK — k such that (Va < k)

Pa € 4f(a)-

Lemma 1.1. Let & be an infinite cardinal and let I C P(k) \ {k} be a family of
sets, e.g., a proper ideal on k. The following holds:
(i) & <o("K).
(ii) If & C 1, then d("k) <0("I).
(iil) If [k]<* C I, then rk < o(*W) 1) < o(*I).

Proof. If F = {fo : @ < k} C "k, then F' is not cofinal in *x because the function
f(a) = fa(a) + 1 is not dominated by any member of F'. Therefore k < ?("k).

If k C I, then there is a pair of functions (Galois—Tukey embedding) ¢ : “x — ~T
and ¢ : "I — "k such that o(f) < g implies f < ¥(g) (define o(f) = f and
Y(g)(a) =sup{€ < k: & C g(a)}). It follows that 0("k) < o(*I).

Let {&n @ a < cf(k)} be a cofinal sequence of ordinals in x and assume that
[K]<F CI. f F = {fo: a <k} C I then F is not cofinal in ™I because
there is f : cf(k) — [k]<" C I such that (Vo < cf(k))(VE < &) f(a) \ fe(a) # 0
f is not dominated by any member of F'. ([l

In this section as well as in the next section the letter u denotes the cofinality of
the continuum, i.e., p = cf(c). By previous lemma the following inequalities hold:

¢ <3(c) <o(*s(P)), ¢ <o("s(P)) < 0o(*s(P)),
¢ < () < (“([c]7)), ¢ <d("([e]=%)) < o(“([e]=))-

Below we list several conditions and later we show that each of them imply that
cof(s(P)) is above some of the cardinals ¢, 9(°c), 9(°s(P)), o(*s(P)) that are all
bigger than ¢ (on the other hand we have no comparison between cof (s(P)) and the
cardinals 0(#([¢c] <)) < 9(°([¢c]<°)) provided that ¢ is singular).

(1) There exists a maximal antichain A C P of cardinality ¢ with pairwise
disjoint sets.
(2) There exists a maximal antichain {p, : @ < ¢} C P such that (Va < ¢)
(FgeP) gNUseaps =0
(3) There exists a maximal antichain {p, : @ < ¢} C P such that (Va < ¢)
90\ Upeaps € 5 (P).
(4) (Vp € °P)[p is an antichain — (A € s(P))(Va < ¢) ANp, # 0].
(5) (Fp e P)(Vge {p € P:p <p})(3A € s(P)(Va <c) ANq, # 0.
The strengthening of condition (4) by removing the requirement that a c-se-
quence p € ‘P is an antichain is false (consider an enumeration of P).
Let us consider also the following selection and refinement properties for P:

(02) There is p € ‘P such that |J,,_. Aa € s(P) whenever (Va < ¢) A, C p, and
A, € s(P).

a<c
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(01) There is p € "I such that J, ., Aa € s(P) whenever (Va < ) Aa C pa
and A, € s(P).
(08) There is p € ‘P such that |J

) A, € s(P) whenever (Va < ¢) A, € [pa]~°
0o) There is p € ‘P such that J

)

)

ace Aa € s(P) whenever (Vo < ¢) Aq € [pa]=t.
(Fp e P)(VgeP)(3q €P) ¢’ Cqand {a<c:q¢ Npa# 0} < 1.
(Fp e "P)(VgeP)(T¢ €P) ¢ Cqgand [{a < pu:¢ Npy # 0} < 1.

0) (Fp € P)(VgeP)(F¢ €P) ¢ Cqgand [{a<c:q Npy # 0} <c.

If = ¢, then o1 < 02 and p; < ps.

By Theorem 3.3 below for every p € ‘P there is an antichain g € ‘P and a one-to-
one function f : ¢ — ¢ such that g, C py(a) for a < ¢ (it is said that the antichain ¢
pseudo-refines p). Hence, the witnessing sequences for o; and p; can be pseudo-
refined by antichains of P. Moreover, the witnessing sequences for o3, o1, pa2, p1
can be pseudo-refined so that the sets p, will be pairwise disjoint.

If p € °P is a witnessing sequence for og, then {x € “w: |[{a < c: 2z € po}| =
c} € s(P). To see this let a, = {&a < ¢: @ € po} for x € “w and let A = {z €

w : lag] = ¢}. Let f: A — ¢ be a one-to-one function such that f(z) € a, for
all z € A. Define Ay,) = {z} for z € A and A, = 0 for o € ¢\ rng(f). Then
A=, Aa € s(P) by the assumption on p.

a<c

P2

(
(
(p1
(p

Theorem 1.2. The implications of Figure 1 hold. If ¢ is reqular, then Figure 1
“reduces” to Figure 2.

cof (s(P)) » cof(s(P)) > ¢

cof (s(P)) «L— cof (s( ]P’)) =0("s(P))
/ "
/S @)

(1) — p2 - — (2) — (3) A

- 70— (5)

/

b::c b cov(M) =c¢

FIGURE 1. Implications between the assertions about P (og < ps
and o1 < p1). Dotted arrows are stated for Pp, only.

cof(s(P)) = 9(“s(P)) ————  cof(s(P)) > 2(‘c) ———— cof(s(P)) > ¢

(3) ‘ > (5)
(4)
)
b=c¢ b<cov(i/\/l):c

FIGURE 2. Implications between the assertions assuming p = ¢
(p2 < p1 <> 09 < 01). Dotted arrows are stated for Py, only.
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Corollary 1.3.

(i) (b=¢)— (cof(I°) =2(1%)).
(i) (b-cov(M) =c) — (cof(I°) > ).

Proof. These are the implications of Figure 1 or Figure 2. (]

Let D C I° denote the o-ideal on “w consisting of sets that are not strongly
dominating. Recall that a set A C “w is strongly dominating if for every function
f: “Yw — w there is © € A such that xz(k) > f(x[k) for all but finitely many
k € w. Then add(D) = cov(D) = b and cof (D) = non(D) =0 (see [4, Lemma 2.4])
and b < b - cov(M) <.

Corollary 1.4. cov(I°) < cof(1?).

Proof. 1f cov(I°) < ¢, then cov(®) < ¢ = non(I%) < cof(I°). If cov(l’) = ¢, then
b = cov(D) > cov(l®) = ¢, and then by Corollary 1.3 (i), cof(I°) = 2(“I°) > ¢ =
cov(19). O

Example 1.5. Let W, be a generic extension of a transitive model V' of ZFC by
finite support iterations of £ many Cohen reals for an uncountable cardinal x. Then
W, E “cov(l’) = cov(s?) = b = w; and 0 > k7 (recall that s° is the Marczewski
ideal). The equality cov(l?) = w; holds because whenever u € “w is an unbounded
real over W, then RNW,, € [°: Every Laver perfect set p has a Laver perfect subset
P ={x€p:(Vn €w)x(n) >u(n)} that contains no real from W,. If C\, denotes
the notion of forcing for adding o many Cohen reals, then C,, ~ C, xC,,, for x > wy.
Similarly the equality cov(s®) = w; holds in W,,, and hence also in W, because
“2NW, € s” in W, for every a < w;. We prove that “2N W, € s® in W,,,. Let
p C “2 be arbitrary perfect set coded in W,,,. The Borel code of p belongs to W for
some countable 3 > a. Let f : “2x“2 — p be an homeomorphism coded in W3 and
let p' = f4*2x {r}) for an r € “2\ W3. Then p'N(¥2NW,) Cp'N(¥2NW3) =10
because r ¢ Wy can be defined from any element of p’ by means of f.

Fact 1.6. Conditions (1) and (4) hold in ZFC for P = Ps.

Proof. We prove that for every maximal antichain A C Pg there exists a maximal
antichain {p, : @ < ¢} C Pg refining A consisting of pairwise disjoint sets. (The
term “refining family” is used here in the sense that every p, is a subset of some
q € A. This differs from the already mentioned “refining sequence”.) To prove this,
let {r¢ : £ < ¢} be an enumeration of Ps. By splitting one element of the partition
if necessary we can assume without loss of generality that |A| = ¢. By induction
on a < ¢ define {p, : a < ¢} as follows: Let &, be the least £ such that r¢ is
incompatible with all pg, 8 < a, i.e., all [re N pg| < w for all B < a (such § exists
because by the induction hypothesis {pg : § < a} refines A and |A| = ¢). Chose
g € A compatible with ¢, and let p, € P be a subset of r¢, N ¢ disjoint from the
s0-set Up<alre. Npp). The sets p, are pairwise disjoint by the construction. The
sequence of ordinals £,, a < c¢ is strictly increasing, hence cofinal in ¢. Therefore
every r¢ is compatible with some p,. Hence {pa : @ < ¢} is a maximal antichain
refining A with pairwise disjoint sets. This gives (1). One can easily verify that
every selector for {p, : @ < ¢} is an s%-set that meets every ¢ € A. Then (4) follows,
too, because every antichain can be extended to a maximal one. [
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Therefore cof(s?) = 2(°s”) > 0(°c¢) > ¢ holds in ZFC (in fact, the inequality
cof (s%) > ¢ was observed by Khomskii [5]). For P = Py, in [2] the following was
proved:

(p) There is a system {p, : a < ¢} C P of pairwise disjoint sets such that for
every q € P there is ¢’ C ¢ in P such that either there is o < ¢ such that
¢ Cpaor|¢d Npsl <1forall a<c.

Lemma 1.7. p — po.

Proof. Let p = (pa : a < ¢) € ‘P be a witness for (p). Let {go : @ < ¢} be
an enumeration of the set {¢ € P : (Va < ¢) |¢ Npo| < 1}. For every a < ¢,
[Pa N Up<q sl < ¢ and [ga N U, psl < ¢ Then for every a < ¢ there are
Tasqy € P such that ro C pa \ Us<, s = 0 and g, € ¢a \ Up<, ps = 0 because
cov(s(P)) = ¢. We claim that the sequence {r, : a < ¢} is a witness for (p2).
Let ¢ € P be given. If there is ¢’ C ¢ in P such that ¢ C p, for some «, then
{8 <c:¢dNps#0} ={a}. Otherwise by (p) there is o < ¢ such that ¢, C gq.
Then g, C ¢ and g, NUs 78 € (26 N Ups<aPs) U (Ga NUssams) = 0, ie.,
{B<c:q,Nps#0}=0. O

Corollary 1.8. cof(1%) =2(“1%) > 0(‘¢c) > «¢. O

Acknowledgement. The author would like to thank the referee for their reading
all versions of this paper carefully and suggestions of improvements.

2. PROOFS
Lemma 2.1. ps — p1 — po-

Proof. The implication ps — p; is trivial. Assume that p € *IP is a witness for p;
and let f : p — ¢ is a cofinal function. For every a < p choose a system {pq ¢ : & <
f(a)} C P of pairwise disjoint subsets of p, and let r = (r,, : & < ¢) be a one-to-one
enumeration of {py ¢ : o < pand £ < f(a)}. Clearly r is a witness for py and hence
p1 — po holds. (]

Lemma 2.2. 0y — 01 — 0o and 0y — 0.

Proof. If p € P is a witness for o1, then any p’ € ‘P obtained from p by splitting
each member of p into < ¢ sets is a witness for og. Therefore o0y — oy holds. The
other implications are trivial. (Il

Lemma 2.3. 03 < p2, 01 <> p1, pog — 0.

Proof. We prove p; — 09 and o9 — pa; proofs of other implications are similar.

Let p € “P be a witness for ps and let A, C p, be arbitrary s(P)-sets for a < c.
We show that A = (J, . Aa is an s(P)-set and hence oy holds. Let ¢ € P be
arbitrary. There is ¢ C ¢ in P and a < ¢ such that ¢’ Npg = 0 for all 8 # a.
Then ANg = A, Nq € s(P) and then there is ¢’ C ¢’ in P such that ¢ N A = 0.
Therefore A € s(P).

Let p € ‘P be a witness for 3. By Theorem 3.4 there is a disjoint pseudo-
refinement r € ‘P of p, ie., for all &« < § < ¢, 7o N7g € s(P) and there is
a one-to-one function f : ¢ — ¢ such that ro C py(y) for all a < ¢. We verify that
r is a witness for py. Let ¢ € P. Since r is an antichain of P and P is separable,
there are ¢ C ¢ in P and o < ¢ such that ¢ Nrg € s(P) for all 8 # «. Then
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q N Uﬁ?éa rg € s(P) by the choice of p. Therefore there is ¢’ C ¢’ in P such that
7" NUgsa s =0 0
The same proof as that of pg — og gives the following;:

Lemma 2.4. If ¢ is regular, then py — 0. (]

Lemma 2.5. (1) — (p2), (p1) — (2) — (po), (2) — (3) — (5), (4) — (5),
(00) = (5).

Proof. The implications (p1) — (2) — (po) and (3) — (5) need some explanation;
the other implications are trivial.

(p1) — (2). Let p € *P be a witness for (p1), i.e., theset D ={¢eP: {a < p:
qNps # 0} < 1} is dense in P. By refining the sets p,, if necessary we can assume
that p, € D and hence they are pairwise disjoint for @ < pu. We can also assume
that the antichain p is not maximal in P. If ¢ € D is incompatible with every p,,
then since g can meet at most one member of p and PP is separable, thereis ¢’ C g in P
such that ¢’ NJ,.,, Pa = 0. Hence there is a maximal antichain A 2 {pa : o < pi}
in D of cardinality ¢ such that ¢ N {J,.,pa = 0 for all ¢ € A\ {p, : @ < p}. The
enumeration of A in which {p, : @ < p} is cofinal is a witness for (2).

(2) = (po). Let {ro : @ < ¢} C P be a maximal antichain such that (Vo < ¢)(3r €
P) rNUgc, s =0 and let f € #c be an increasing cofinal function. By induction
on a < p find g(a) < ¢ and families {ga¢ : § < f(a)} C P of pairwise disjont sets
such that ¢a,e € rg(a) \ Ug<f(a)78- Let p € ‘P be a one-to-one enumeration of
{Ga,e o < pand £ < f(o)}. Then pis a witness for po: If ¢ € P is given find ¢’ C ¢
in P such that ¢’ C rg for some 3 < ¢. Then ¢’ N gae = 0 whenever f(o) > f.

(3) = (5). For X e sT(P)let P(X)={peP:(VgeP)qClp—qgnX #0}.
Assume that (3) holds and let {r, : & < ¢} C P be a maximal antichain such that
the sets Xo = “w \ Uy, 7p are in s7(P) for all @ < ¢. Using the maximality of
the antichain, by induction construct v € #P and an increasing continuous cofinal
function f € #c with f(0) = 0 so that for every { < u, ue € P(X4(¢)) and ug C rg
for some B < f({+1). Define p € ‘P by po = ue for a € [f(€), f(§+1)) and & < p.
Let ¢ € ‘P be arbitrary such that ¢ < p. Take any set A = {z, : a < ¢} with
To € qo N Xjy(ey whenever a € [f(§), f(§+1)). Then ANg, # 0 for all @ < c¢. We
prove that A € s(P) and hence (5) holds. If v € P there are 3, &, and v' € P such
that 8 < f(§) and v' CvNrg. Then ANv C{z,:a < f(§)} has cardinality < ¢
and hence there is v/ C v’ in P such that AN’ = (. O

Lemma 2.6. Let P =1Pp.

(i) (b=1¢)— (1).
(ii) (b-cov(M) =r¢) — (4).

Proof. The proof of (1) and (4) for P = Pr, under the assumption b = ¢ is same as
that for the P = Ps in Fact 1.6. (Following the proof of Fact 1.6 with Py, in the role
of Ps, let &, be the least ordinal such that r¢, Npg € s(PL) for all 8 < . Then
Up<alre. Npg) € s(PL) because add(D) = b and we assume b = ¢. Therefore for
some g € A we can find po C r¢, Mg in Py disjoint from (Js_,(re, Npg). This is
the only distinct point of the proofs.)

Assume cov(M) = ¢. To verify (4) assume that p € ‘Pr, is an antichain and we
find A € [° such that ANp, # 0 for all @ < ¢. Without loss of generality we can
assume that p is a maximal antichain. For every a < ¢ there is 74 € po \ U, Ps
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because p, N pg is nowhere dense in p, whenever o # 3. Let A = {z, : o < ¢}.
We prove that A € [°. Let ¢ € Py, be arbitrary. By maximality of the antichain p
there is o < ¢ and ¢’ € P, such that ¢ C ¢Np,. Then ¢ N A C {z5: 5 < a}, and
since non(1%) = ¢, there is ¢” € P, such that ¢ C ¢’ and ¢" N A = (). O

The following lemma summarizes hypotheses under which cof(s(P)) > «c.

Lemma 2.7. Denote 1 = cf(c).
(i) of — cof(s(P)) > o(c).
ii) po — cof(s(P)) = 0(°s(P)).
i P)) =a("s(P)).

(i)

(iii) p1 — cof(s(
(iv) (5) — cof(s(PP)) > .

(v) If ¢ = p, then (3) — cof(s(P)) > o(‘c).

Proof. (i) Let p € ‘P be such that J, . Ao € s(P) whenever (Va < ¢) A, €
[Da]<¢. There is a pair of functions (Galois—Tukey embedding) ¢ : ‘¢ — s(PP)
and ¢ : s(P) — ‘c such that ¢(f) C A implies f < ¥(A), and consequently,
0(°c) < cof(s(P)). To see this fix an enumeration {z, : @ < ¢} of “Yw and define
(f) = Uppee(pa N : 6 < £(0)}) and 9(A)(a) = min{f < ¢ 25 € pa \ A}.

(ii) Assume that p € ‘PP is a witness for o2 (because py < o2 by Lemma 2.3).
Then cof(s(P)) > o([[cc 5(P)[pa) = 0(°s(P)) > cof(s(P)) because s(P)[p, =
s(P) NP(py) is isomorphic to s(P) for every a. The proof of (iii) is same.

(iv) Let p € ‘P be a witness for (5). Let {4, : @ < ¢} be arbitrary family of
s(P)-sets of cardinality ¢. Find ¢ € ‘P such that for every a < ¢, g5 C po and
Go N Aq = 0. By (5) there is A € s(IP) such that (Vo < ¢) ANgqq # 0. Then A is
not covered by any set from .A. This proves that cof(s(P)) > c.

(v) Assume that (3) holds and let {p¢ : £ < ¢} C P be a maximal antichain in P
such that all sets Zg = “w \ U 5p¢ for 8 < ¢ are in s*(P). By the maximality
of the antichain for every 8 < ¢ there is £ > 8 such that Zg Npe € sT(P). Hence,
by induction we can define an increasing sequence of ordinals {{, : @ < p} cofinal
in ¢ such that the sets X, = Z¢, \ Z¢,,, are in s7(P). Since non(s(P)) = ¢,

using the maximality of the antichain one can easily verify that |J,., Ao € s(P)
whenever (Vo < p) Ay € [X4]<%. Then the same argument as in case (i) proves
that cof(s(P)) > 0(*¢). O

Question 2.8. Assumimng b < ¢, is cof (1) = 0(°1°)? Notice that cof(1°) = 0(%1°)
whenever 1 < x < b and if b = ¢, then the equality holds also for k = b.

3. REFINEMENS

Let B be a Boolean algebra. For a € B let Bla = {x € B : < a} be the
relativization of B with respect to a and let BT = B\ {0}.

Let x and A be cardinal numbers and let @ = (ay : a < A) and b = (b, : @ < A)
be any A-sequences in BT. We say that a is a disjoint sequence if a, A ag = 0 for
B < a < X We say that a is k-disjoint if (Vo < ) {8 < A :aq Aag # 0} < K
(in particular, 2-disjoint has the same meaning as disjoint and if A < k, then each
A-sequence is k-disjoint). We say that b is a refinement of a, if b, < a, for all
a < A; we say that b is a pseudo-refinement of a, if there is a one-to-one function
f A — X such that by, < ajg(q) for all a < A
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Theorem 3.1 (Balcar-Vojtas; [1, 6]). Assume that k is an infinite cardinal and for
each © € BT there is an antichain of Bz of cardinality k. Then each k-sequence
in Bt has a disjoint refinement. O

This theorem can be expressed in the following form:

Theorem 3.2. Assume that k is a regular cardinal and for each x € BT there
is an antichain of Bz of cardinality k. Then each k-disjoint sequence in BT has
a disjoint refinement.

Proof. Let {(as : o < A) be a k-disjoint sequence in B*. The following are the lines
from [6]. For X C B and a € B let X(a) = {x € X : x Aa # 0}. By induction
on a < A we construct a chain (X, : @ < A\) of antichains of BT increasing with
respect to the inclusion such that for every «, 5 < A,

(i) Xa(ag) =0 or |Xa(ag)| > k and

(il) [Xat1(aa)| > &
Put Xy = 0 and let X, = Uﬁ<a Xp for o limit. Assume that X, has been
constructed. If | X, (aq)| = K, set Xop1 = Xo. Otherwise X, (ay) = ) and hence
a/Nag = 0 for all @ € X,. Choose any antichain ¥ C Bla, of size k and let
Y=Y\ U{Y(ag) : aa ANag # 0 and |Y (ag)| < k}. By regularity of x and because
a is k-disjoint, |Y’'| = k. Define X, = X, UY’. This finishes the construction.

Let X = Uycx Xa- Then |X(an)| = & for all @ < X\. By induction on o < &

choose =4 € X(aq) \ {zg: 8 < o and a, A ag # 0} and define a disjoint refining
sequence (b, : a < A) for (aq : @ < A) by setting by, = Ty, A g O

Theorem 3.3. Assume that k is an infinite cardinal and for each x € Bt there is
an antichain of Bz of cardinality k. Then each k-sequence in BT has a disjoint
pseudo-refinement.

Proof. Let k-sequence a € "(B™) be fixed. There are several cases.

Case 1. & is regular. We claim that there exists a disjoint sequence d € *(B™)
such that for every S € [k]<" there are 8,7 € £\ S such that d, A ag # 0.

To prove the claim, for every a < k choose an antichain D, C (Blas)" of
size k. Assuming that disjoint sequences d € ®(Blaq)" for any o < k have not
the property in the claim (otherwise there is nothing to prove) we can find for
every a < k a set D/, € [D,]<" and an ordinal g(a) < &k such that d A ag = 0
for all d € D, \ D, and 8 > g(«). Since & is regular and g(a) > « for all @ < K
the function f : k — & inductively defined by f(«a) = g(sup fla) for a < k is
strictly increasing. For a < 8 < &, because f(8) > f(a+ 1) = g(f(a)), for all
d € Dy \D}(a) and e € Df(@)\D}(ﬁ) we have dA\e < dAajz) = 0. It follows that
D = U, (Dy(a) \D}(a)) is an antichain of size xk and each ay,) meets x many
elements of D. Therefore the antichain D (i.e., enumeration of D by k) has the
property in the claim and the proof of the claim is finished.

The claim allows inductively define one-to-one functions f,g: x — k by

fle) =min{B € x \ rng(fla) : (3y € £\ rng(gla)) dy Aag # 0},

g(a) = min{y € 1\ mg(gla) : dy A agey £ 0.
Then the sequence b € "(B™) defined by by = dy(a)Aaf(q) is disjoint and by < af(a),
i.e., b is a disjoint pseudo-refinement of a.

Case 2. k is singular. Let p = cf(k), and let (k¢ : £ < p) be an increasing cofinal
sequence of regular cardinals in k bigger than pu. We consider two subcases.
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Case 2a. There exists a disjoint sequence d € *(B*) with A\ < s such that for
every S’ € [k]<" and every T” € [A\]<# there are 8 € x\ 5" and v € A\ T” such that
dyNag #0. For y < Xlet Sy ={f<rk:dyNag#0},1let T ={y < X:|S,| =k},
and let S =, c\\r Sy

If [T| > p, let (¢ : € < p) be any sequence of distinct elements of T'. For £ < p
we can choose Be € [S,.]"¢ so that the sets B¢’s are pairwise disjoint. This is
possible because r¢ > Zn <¢ Fn- By Balcar—Vojtas theorem, for every £ < p there
is a disjoint refinement (b, : o € Be) of the sequence (d,. A aq : o € Be). Then
(ba : @ € Ug.,, Be) is a disjoint pseudo-refinement of a.

If |T| < p, then |S| = & by the hypothesis for Case 2a. For v € A\ T let
By =85, \U{Ss : 6 <yand d € A\T}. Then S = J, 1 By is a disjoint union
of sets of cardinalities < k. By Balcar—Vojtds theorem, for every v € A\ T there
is a disjoint refinement (b, : @ € B,) of the sequence (dy A aq : @ € B,). Then
(bg : @ € S) is a disjoint pseudo-refinement of a.

Case 2b. For every disjoint sequence d € *(B*) with \ < k there exist S € []<"
and T € [A]<# such that for all 5 € £\ S and v € A\ T we have d, A ag = 0.

By Balcar—Vojtés theorem, for every & < plet (by : & € Key1 \ Ke) be a disjoint
refinement of (aq : @ € Key1 \ Ke). Find Se € [£]<7 and T¢ € [Keq1 \ ke <* such
that b, Aag =0 for all 5 € £\ S¢ and v € keq1 \ (ke UTe). By induction construct
a cofinal subset X C p (the range of an increasing sequence) such that |S,| < k¢
whenever 7 < ¢ are both in X. For § € X let Be = gt \ (ke UTe UU, ¢, e x Sn)-
If n < £ are both in X, then Be C s\ S, and B,, C K41 \ (ky UT;,), and therefore
by Nbg < by Nag = 0 for B € Be and v € By. Then b = (ba : @ € Ugey Be)
is a disjoint sequence in BT and |b| = dex kg1 = K. Therefore b is a disjoint
pseudo-refinement of a. O

A Boolean algebra B is said to be (v, -, k)-distributive if for every v-sequence of
antichains A, C BT, a < v there exists a maximal antichain A C BT such that for
every x € A and every a < v, [{y € Ay : x Ay # 0}] < K (see [7]). We say that B is
(v, -, k)*-distributive if for every v-sequence of antichains 4, C B*, a < v there
exists a maximal antichain A C BT such that [{y € U,., Ao : z Ay # 0}| < K for
every x € A.

Let S be an infinite set. For f € B let supp(f) = {s € S : f(s) > 0}. We
say that f € B has a disjoint refinement if f|supp(f) has a disjoint refinement.
Assuming that f € B has no disjoint refinement we define

I(f) ={X C S: fIX has a disjoint refinement}.

a<lv

Theorem 3.4. Assume that k is an infinite cardinal and for each x € B there is
an antichain of Blz of cardinality . If f € °B has no disjoint refinement, then
I(f) is an ideal on S such that [S|<® C I(f) and I(f) N [X]® # 0 for all X € [S]*.
If B is (v, -, k)*-distributive, then I(f) is a v-complete ideal on S.

Proof. Obviously I(f) is closed for subsets. By Balcar—Vojt4s theorem [S]<* C I(f)
and by previous theorem I(f)N[X]" # 0 for all X € [S]*. Every Boolean algebra is
(v, -, 2)-distributive for ¥ < w and therefore the fact that I(f) is an ideal is a special
case of the claim about the additivity of I(f).

Assume that B is (v, -, k)*-distributive and let X; € I(f) for i < v be pairwise
disjoint. We prove that the union X = J;, X; belongs to I(f). Without loss of
generality we can assume that X C supp(f). Because the sets X;’s are pairwise
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disjoint there is ¢ € X(B7*) such that g[X; is a disjoint refinement of f[X; for
i < v. By the distributivity property of B there is a maximal antichain A C BT
such that for every a € A the set Y, = {s € X : g(s) A a # 0} has cardinality < &.
Let < be a well-ordering of A. The sets Y, = Y, \ U,~, Y» for a € A are pairwise
disjoint and by maximality of A we have X = J,c4 Ya = Ugca Ya- Since |Y;| < &,
by Balcar-Vojt4s theorem there is a disjoint refinement f, : Y, — B™ of g|Y, for
every a € A. It follows that (J,c 4 fo € ¥ (BT) is a disjoint refinement of f]X and
hence X € I(f). O

Ezample 3.5. Let R be the disjoint refinement ideal on “2, i.e., the ideal I(f) for the
Boolean algebra B = P(w)/fin and f : “2 — B defined by f(z) = {n € w: z(n) =
1}/fin for z € S. Then [“2]<° C R, RN[X]* # 0 for all X € [*2]¢, and add(R) > b
(recall that b is the least cardinal s such that P(w)/fin is not s-distributive). Let
us recall two other o-ideals Zg C P2 on “2:

Po={AC¥2: (Va € [w]”) Ala # “2},
To={AC“2: (Va € [w]¥)(3b € [a]*) |Alb] < w},

where Ala = {z[a : © € A}. The ideal Py was introduced by Rostanowski [11]
in connection to an infinite game of Mycielski. The ideals Zy and Bs coincide on
analytic sets and add(Zy) > b (see [9]). By Balcar—Vojt4s theorem one can easily
verify that

Ty C{AC“2: (Va e [w]*)(3b e [a*) |AY] < ¢} C R.

On the other hand, R \ B2 # 0, and moreover, there is a closed set A C “2 such
that A € R and (Vb € [w]*)(3c € [b]¥) Alc = 2. To see this, let P C [w]“ be
a compact almost disjoint family. For a € P let A, = {x € “2: (Vn € a) z(n) = 1}
and let A = J,cp Aa- Then the set A is a closed subset of “2 (A is a projection of
the compact set {(a,z):a € P and z € A,}) and A € R (because for every z € A
there is a € P such that a C* {n € w: x(n) = 1} and for every a € A there is an
almost disjoint family of subsets of @ of cardinality ¢). Let b € [w]* be given. Find
a € P such that ¢ = b\ a is infinite. Then Ajc D A,[c = 2.

Ezample 3.6. Every c-sequence B € ‘I has a disjoint refinement by [T-sets. As-
sume that B, € [T for all @« < ¢. For every a < ¢ choose p, € P(B,), i.e.,
g N Byl = ¢ for all ¢ € P with ¢ C p,. Let {pas : B < ¢} be an enumeration
of the set {¢ € P : ¢ C p,} and let m : ¢ X ¢ — ¢ be one-to-one. By induc-
tion on (e, B) choose x5 € Bo NPa,g \ {arp @ 7/, 5") < m(a,3)}. The sets
B!, ={zq,: f < ¢} are pairwise disjoint {*-sets and B}, C B,.
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