COFINALITY OF THE LAVER IDEAL

MIROSLAV REPICKÝ

ABSTRACT. Yurii Khomskii observed that $cof(l^0) > \mathfrak{c}$ assuming $\mathfrak{b} = \mathfrak{c}$ and he asked whether the inequality $cof(l^0) > \mathfrak{c}$ is provable in ZFC. We find several conditions that imply some variants of this inequality for tree ideals. Applying a recent result of J. Brendle, Y. Khomskii, and W. Wohofsky we show that l^0 satisfies some of these conditions and consequently, $cof(l^0) = \mathfrak{d}({}^{\mathfrak{c}} l^0) \geq \mathfrak{d}({}^{\mathfrak{c}} c) > \mathfrak{c}$. We also prove that if the cellularity of a Boolean algebra B is hereditarily $b \in \mathcal{K}$, then every $b \in \mathcal{K}$ -sequence in $b \in \mathcal{K}$ -subsequence with a disjoint refinement.

1. Introduction

Yurii Khomskii [5] observed that assuming $\mathfrak{b} = \mathfrak{c}$, the cofinality of the Laver ideal l^0 is $> \mathfrak{c}$, i.e., $\operatorname{cof}(l^0) > \mathfrak{c}$. He asked whether the inequality $\operatorname{cof}(l^0) > \mathfrak{c}$ is provable in ZFC. After writing a previous version of this paper Yurii Khomskii kindly informed us about the proof of $\operatorname{cof}(l^0) > \mathfrak{c}$. It is contained in the paper of J. Brendle, Y. Khomskii, and W. Wohofsky [2]. We find several conditions that imply this and also a bit stronger inequalities for tree ideals. Applying a result of [2] we prove that $\operatorname{cof}(l^0) = \mathfrak{d}({}^{\mathfrak{c}}l^0) \geq \mathfrak{d}({}^{\mathfrak{c}}\mathfrak{c}) > \mathfrak{c}$. We deal also with disjoint refinements in Boolean algebras. We prove that if the cellularity of a Boolean algebra B is hereditarily $\geq \kappa$, then every κ -sequence in B^+ has a κ -subsequence with a disjoint refinement. This result helps to classify the considered conditions.

Throughout this paper $\mathbb{P}_{\mathbb{L}}$ is the system of all Laver perfect sets in ${}^{\omega}\omega$ (i.e., the sets of the form $[T] = \{x \in {}^{\omega}\omega : (\forall n \in \omega) \ x \! \upharpoonright \! n \in p \}$ where $T \subseteq {}^{<\omega}\omega$ is a Laver tree) and $\mathbb{P}_{\mathbb{S}}$ is the system of all perfect sets in ${}^{\omega}\omega$. We are primarily interested in the Laver ideal l^0 but most of the assertions hold also for other tree ideals and also in a more general context: For a family $\mathbb{P} \subseteq \mathcal{P}({}^{\omega}\omega)$ let $s(\mathbb{P}) = \{X \subseteq {}^{\omega}\omega : (\forall p \in \mathbb{P}) \ (\exists q \in \mathbb{P}) \ q \subseteq p \text{ and } q \cap X = \emptyset \}$ and $s^+(\mathbb{P}) = \mathcal{P}({}^{\omega}\omega) \setminus s(\mathbb{P})$. Hence $s(\mathbb{P})$ is an ideal associated to the poset (\mathbb{P}, \subseteq) . In particular, $l^0 = s(\mathbb{P}_{\mathbb{L}})$ is the Laver ideal and $s^0 = s(\mathbb{P}_{\mathbb{S}})$ is the Marczewski ideal. Let $l^+ = s^+(\mathbb{P}_{\mathbb{L}})$ and $s^+ = s^+(\mathbb{P}_{\mathbb{S}})$. We assume that \mathbb{P} is a family with the following properties:

- (a) \mathbb{P} is a separable family of sets (see [8, 10]), i.e., $\mathbb{P} \subseteq \operatorname{dec}(\mathbb{P})$ where $\operatorname{dec}(\mathbb{P}) = \{X \subseteq {}^{\omega}\omega : (\forall p \in \mathbb{P})(\exists q \in \mathbb{P}) \ q \subseteq p \text{ and either } q \subseteq X \text{ or } q \cap X = \emptyset\}.$
- (b) Every $p \in \mathbb{P}$ has \mathfrak{c} pairwise disjoint subsets in \mathbb{P} .
- (c) $s(\mathbb{P}) \upharpoonright p = s(\mathbb{P}) \cap \mathcal{P}(p)$ is isomorphic to $s(\mathbb{P})$ for every $p \in \mathbb{P}$.

Note that $\operatorname{dec}(\mathbb{P})$ is an algebra of sets, $s(\mathbb{P}) \subseteq \operatorname{dec}(\mathbb{P})$, and by (a), $p, q \in \mathbb{P}$ are incompatible if and only if $p \cap q \in s(\mathbb{P})$. By (b), $\operatorname{non}(s(\mathbb{P})) = \mathfrak{c}$; (c) is necessary only for $\operatorname{cof}(s(\mathbb{P})) = \mathfrak{d}({}^{\mathfrak{c}}s(\mathbb{P}))$.

 $^{2000\} Mathematics\ Subject\ Classification.\ {\it Primary}\ 03E17; Secondary\ 03E15,\ 03E35.$

Key words and phrases. Laver ideal, cardinal invariants, disjoint refinements.

The author was supported by grants APVV-0269-11 and VEGA 1/0097/16.

Recall that for an ideal I on a set X, $non(I) = min\{|A| : A \subseteq X \text{ and } A \notin I\}$, $\operatorname{cov}(I) = \min\{|I_0| : I_0 \subseteq I \text{ and } \bigcup I_0 = X\}, \operatorname{cof}(I) = \min\{|I_0| : I_0 \subseteq I \text{ and } (\forall A \in I)\}$ $(\exists B \in I_0)$ $A \subseteq B$. If P is a partially ordered set then $\mathfrak{d}(P)$ denotes the least cardinality of a dominating subset of P and $\mathfrak{b}(P)$ is the least cardinality of an unbounded subset of P.

If X is a family of sets and $p, q \in {}^{\kappa}X$, then $p \leq q$ means $(\forall \alpha < \kappa)$ $p_{\alpha} \subseteq q_{\alpha}$ and we say that p refines q (we identify $p \in {}^{\kappa}X$ with $\langle p_{\alpha} : \alpha < \kappa \rangle$). We say that p quasi-refines q if there is a one-to-one function $f: \kappa \to \kappa$ such that $(\forall \alpha < \kappa)$ $p_{\alpha} \subseteq q_{f(\alpha)}$.

Lemma 1.1. Let κ be an infinite cardinal and let $I \subseteq \mathcal{P}(\kappa) \setminus {\kappa}$ be a family of sets, e.g., a proper ideal on κ . The following holds:

- (i) $\kappa < \mathfrak{d}(\kappa \kappa)$.
- (ii) If $\kappa \subseteq I$, then $\mathfrak{d}(\kappa) \leq \mathfrak{d}(\kappa I)$. (iii) If $[\kappa]^{<\kappa} \subseteq I$, then $\kappa < \mathfrak{d}(\mathrm{cf}(\kappa)I) \leq \mathfrak{d}(\kappa I)$.

Proof. If $F = \{f_{\alpha} : \alpha < \kappa\} \subseteq {}^{\kappa}\kappa$, then F is not cofinal in ${}^{\kappa}\kappa$ because the function $f(\alpha) = f_{\alpha}(\alpha) + 1$ is not dominated by any member of F. Therefore $\kappa < \mathfrak{d}(\kappa)$.

If $\kappa \subseteq I$, then there is a pair of functions (Galois–Tukey embedding) $\varphi : {}^{\kappa}\kappa \to {}^{\kappa}I$ and $\psi: {}^{\kappa}I \to {}^{\kappa}\kappa$ such that $\varphi(f) \leq g$ implies $f \leq \psi(g)$ (define $\varphi(f) = f$ and $\psi(g)(\alpha) = \sup\{\xi < \kappa : \xi \subseteq g(\alpha)\}\)$. It follows that $\mathfrak{d}(\kappa) \leq \mathfrak{d}(\kappa)$.

Let $\{\xi_{\alpha}: \alpha < \mathrm{cf}(\kappa)\}\$ be a cofinal sequence of ordinals in κ and assume that $[\kappa]^{<\kappa} \subseteq I$. If $F = \{f_{\alpha} : \alpha < \kappa\} \subseteq {}^{\operatorname{cf}(\kappa)}I$, then F is not cofinal in ${}^{\operatorname{cf}(\kappa)}I$ because there is $f : \operatorname{cf}(\kappa) \to [\kappa]^{<\kappa} \subseteq I$ such that $(\forall \alpha < \operatorname{cf}(\kappa))(\forall \xi < \xi_{\alpha}) \ f(\alpha) \setminus f_{\xi}(\alpha) \neq \emptyset$; f is not dominated by any member of F.

In this section as well as in the next section the letter μ denotes the cofinality of the continuum, i.e., $\mu = cf(\mathfrak{c})$. By previous lemma the following inequalities hold:

$$\begin{split} \mathfrak{c} &< \mathfrak{d}({}^{\mathfrak{c}}\mathfrak{c}) \leq \mathfrak{d}({}^{\mathfrak{c}}s(\mathbb{P})), & \qquad \qquad \mathfrak{c} &< \mathfrak{d}({}^{\mu}s(\mathbb{P})) \leq \mathfrak{d}({}^{\mathfrak{c}}s(\mathbb{P})), \\ \mathfrak{c} &< \mathfrak{d}({}^{\mathfrak{c}}\mathfrak{c}) \leq \mathfrak{d}({}^{\mathfrak{c}}([\mathfrak{c}]^{<\mathfrak{c}})), & \qquad \qquad \mathfrak{c} &< \mathfrak{d}({}^{\mu}([\mathfrak{c}]^{<\mathfrak{c}})) \leq \mathfrak{d}({}^{\mathfrak{c}}([\mathfrak{c}]^{<\mathfrak{c}})). \end{split}$$

Below we list several conditions and later we show that each of them imply that $\operatorname{cof}(s(\mathbb{P}))$ is above some of the cardinals \mathfrak{c}^+ , $\mathfrak{d}({}^{\mathfrak{c}}\mathfrak{c})$, $\mathfrak{d}({}^{\mathfrak{c}}s(\mathbb{P}))$, $\mathfrak{d}({}^{\mu}s(\mathbb{P}))$ that are all bigger than \mathfrak{c} (on the other hand we have no comparison between $\mathrm{cof}(s(\mathbb{P}))$ and the cardinals $\mathfrak{d}(^{\mu}([\mathfrak{c}]^{<\mathfrak{c}})) \leq \mathfrak{d}(^{\mathfrak{c}}([\mathfrak{c}]^{<\mathfrak{c}}))$ provided that \mathfrak{c} is singular).

- (1) There exists a maximal antichain $A \subseteq \mathbb{P}$ of cardinality \mathfrak{c} with pairwise
- (2) There exists a maximal antichain $\{p_{\alpha}: \alpha < \mathfrak{c}\} \subseteq \mathbb{P}$ such that $(\forall \alpha < \mathfrak{c})$ $(\exists q \in \mathbb{P}) \ q \cap \bigcup_{\beta < \alpha} p_{\beta} = \emptyset.$
- (3) There exists a maximal antichain $\{p_{\alpha}: \alpha < \mathfrak{c}\} \subseteq \mathbb{P}$ such that $(\forall \alpha < \mathfrak{c})$ $^{\omega}\omega\setminus\bigcup_{\beta<\alpha}p_{\beta}\in s^{+}(\mathbb{P}).$
- (4) $(\forall p \in {}^{\mathfrak{c}}\mathbb{P})[p \text{ is an antichain} \to (\exists A \in s(\mathbb{P}))(\forall \alpha < \mathfrak{c}) \ A \cap p_{\alpha} \neq \emptyset].$
- $(5) (\exists p \in {}^{\mathfrak{c}}\mathbb{P})(\forall q \in \{p' \in {}^{\mathfrak{c}}\mathbb{P} : p' \leq p\})(\exists A \in s(\mathbb{P}))(\forall \alpha < \mathfrak{c}) A \cap q_{\alpha} \neq \emptyset.$

The strengthening of condition (4) by removing the requirement that a c-sequence $p \in {}^{\mathfrak{c}}\mathbb{P}$ is an antichain is false (consider an enumeration of \mathbb{P}).

Let us consider also the following selection and refinement properties for \mathbb{P} :

 (σ_2) There is $p \in {}^{\mathfrak{c}}\mathbb{P}$ such that $\bigcup_{\alpha \leq \mathfrak{c}} A_{\alpha} \in s(\mathbb{P})$ whenever $(\forall \alpha < \mathfrak{c}) A_{\alpha} \subseteq p_{\alpha}$ and $A_{\alpha} \in s(\mathbb{P}).$

- (σ_1) There is $p \in {}^{\mu}\mathbb{P}$ such that $\bigcup_{\alpha < \mu} A_{\alpha} \in s(\mathbb{P})$ whenever $(\forall \alpha < \mu) A_{\alpha} \subseteq p_{\alpha}$ and $A_{\alpha} \in s(\mathbb{P})$.
- (σ_0^*) There is $p \in {}^{\mathfrak{c}}\mathbb{P}$ such that $\bigcup_{\alpha < \mathfrak{c}} A_{\alpha} \in s(\mathbb{P})$ whenever $(\forall \alpha < \mathfrak{c}) A_{\alpha} \in [p_{\alpha}]^{<\mathfrak{c}}$.
- (σ_0) There is $p \in {}^{\mathfrak{c}}\mathbb{P}$ such that $\bigcup_{\alpha < \mathfrak{c}} A_{\alpha} \in s(\mathbb{P})$ whenever $(\forall \alpha < \mathfrak{c}) A_{\alpha} \in [p_{\alpha}]^{\leq 1}$. $(\rho_2) (\exists p \in {}^{\mathfrak{c}}\mathbb{P})(\forall q \in \mathbb{P})(\exists q' \in \mathbb{P}) \ q' \subseteq q \ \text{and} \ |\{\alpha < \mathfrak{c} : q' \cap p_{\alpha} \neq \emptyset\}| \leq 1$. $(\rho_1) (\exists p \in {}^{\mu}\mathbb{P})(\forall q \in \mathbb{P})(\exists q' \in \mathbb{P}) \ q' \subseteq q \ \text{and} \ |\{\alpha < \mu : q' \cap p_{\alpha} \neq \emptyset\}| \leq 1$.

- $(\rho_0) (\exists p \in {}^{\mathfrak{c}}\mathbb{P})(\forall q \in \mathbb{P})(\exists q' \in \mathbb{P}) \ q' \subseteq q \text{ and } |\{\alpha < \mathfrak{c} : q' \cap p_\alpha \neq \emptyset\}| < \mathfrak{c}.$

If $\mu = \mathfrak{c}$, then $\sigma_1 \leftrightarrow \sigma_2$ and $\rho_1 \leftrightarrow \rho_2$.

By Theorem 3.3 below for every $p \in {}^{\mathfrak{c}}\mathbb{P}$ there is an antichain $q \in {}^{\mathfrak{c}}\mathbb{P}$ and a one-toone function $f:\mathfrak{c}\to\mathfrak{c}$ such that $q_{\alpha}\subseteq p_{f(\alpha)}$ for $\alpha<\mathfrak{c}$ (it is said that the antichain q pseudo-refines p). Hence, the witnessing sequences for σ_i and ρ_i can be pseudorefined by antichains of \mathbb{P} . Moreover, the witnessing sequences for σ_2 , σ_1 , ρ_2 , ρ_1 can be pseudo-refined so that the sets p_{α} will be pairwise disjoint.

If $p \in {}^{\mathfrak{c}}\mathbb{P}$ is a witnessing sequence for σ_0 , then $\{x \in {}^{\omega}\omega : |\{\alpha < \mathfrak{c} : x \in p_{\alpha}\}| =$ $\mathfrak{c} \in \mathfrak{s}(\mathbb{P})$. To see this let $a_x = \{ \alpha < \mathfrak{c} : x \in p_\alpha \}$ for $x \in {}^\omega \omega$ and let $A = \{ x \in \mathfrak{c} : x \in \mathfrak{c} : x \in \mathfrak{c} \}$ ${}^{\omega}\omega:|a_x|=\mathfrak{c}$. Let $f:A\to\mathfrak{c}$ be a one-to-one function such that $f(x)\in a_x$ for all $x \in A$. Define $A_{f(x)} = \{x\}$ for $x \in A$ and $A_{\alpha} = \emptyset$ for $\alpha \in \mathfrak{c} \setminus \operatorname{rng}(f)$. Then $A = \bigcup_{\alpha < \mathfrak{c}} A_{\alpha} \in s(\mathbb{P})$ by the assumption on p.

Theorem 1.2. The implications of Figure 1 hold. If c is regular, then Figure 1 "reduces" to Figure 2.

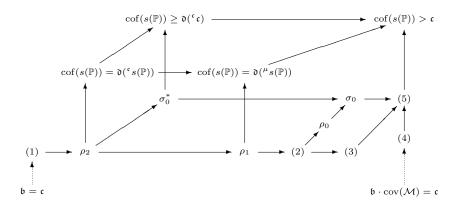


FIGURE 1. Implications between the assertions about \mathbb{P} ($\sigma_2 \leftrightarrow \rho_2$ and $\sigma_1 \leftrightarrow \rho_1$). Dotted arrows are stated for $\mathbb{P}_{\mathbb{L}}$ only.

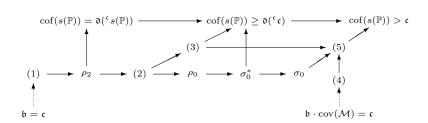


FIGURE 2. Implications between the assertions assuming $\mu = \mathfrak{c}$ $(\rho_2 \leftrightarrow \rho_1 \leftrightarrow \sigma_2 \leftrightarrow \sigma_1)$. Dotted arrows are stated for $\mathbb{P}_{\mathbb{L}}$ only.

Corollary 1.3.

 $\begin{array}{ll} (\mathrm{i}) & (\mathfrak{b}=\mathfrak{c}) \to (\mathrm{cof}(l^0)=\mathfrak{d}({}^{\mathfrak{c}}l^0)). \\ (\mathrm{ii}) & (\mathfrak{b}\cdot\mathrm{cov}(\mathcal{M})=\mathfrak{c}) \to (\mathrm{cof}(l^0)>\mathfrak{c}). \end{array}$

Proof. These are the implications of Figure 1 or Figure 2.

Let $\mathcal{D} \subseteq l^0$ denote the σ -ideal on ω consisting of sets that are not strongly dominating. Recall that a set $A \subseteq \omega$ is strongly dominating if for every function $f: {}^{<\omega}\omega \to \omega$ there is $x \in A$ such that x(k) > f(x|k) for all but finitely many $k \in \omega$. Then $\operatorname{add}(\mathcal{D}) = \operatorname{cov}(\mathcal{D}) = \mathfrak{b}$ and $\operatorname{cof}(\mathcal{D}) = \operatorname{non}(\mathcal{D}) = \mathfrak{d}$ (see [4, Lemma 2.4]) and $\mathfrak{b} \leq \mathfrak{b} \cdot \operatorname{cov}(\mathcal{M}) \leq \mathfrak{d}$.

Corollary 1.4. $cov(l^0) < cof(l^0)$.

Proof. If $cov(l^0) < \mathfrak{c}$, then $cov(l^0) < \mathfrak{c} = non(l^0) \le cof(l^0)$. If $cov(l^0) = \mathfrak{c}$, then $\mathfrak{b} = cov(\mathcal{D}) \ge cov(l^0) = \mathfrak{c}$, and then by Corollary 1.3 (i), $cof(l^0) = \mathfrak{d}(\mathfrak{c}l^0) > \mathfrak{c} = cov(l^0)$.

Example 1.5. Let W_{κ} be a generic extension of a transitive model V of ZFC by finite support iterations of κ many Cohen reals for an uncountable cardinal κ . Then $W_{\kappa} \vDash \text{``cov}(l^0) = \text{cov}(s^0) = \mathfrak{b} = \omega_1 \text{ and } \mathfrak{d} \geq \kappa$ '' (recall that s^0 is the Marczewski ideal). The equality $\text{cov}(l^0) = \omega_1$ holds because whenever $u \in {}^{\omega}\omega$ is an unbounded real over W_{α} , then $\mathbb{R} \cap W_{\alpha} \in l^0$: Every Laver perfect set p has a Laver perfect subset $p' = \{x \in p : (\forall n \in \omega) \ x(n) \geq u(n)\}$ that contains no real from W_{α} . If C_{α} denotes the notion of forcing for adding α many Cohen reals, then $C_{\kappa} \simeq C_{\kappa} \times C_{\omega_1}$ for $\kappa \geq \omega_1$. Similarly the equality $\text{cov}(s^0) = \omega_1$ holds in W_{ω_1} , and hence also in W_{κ} , because ${}^{\omega}2 \cap W_{\alpha} \in s^0$ in W_{ω_1} for every $\alpha < \omega_1$. We prove that ${}^{\omega}2 \cap W_{\alpha} \in s^0$ in W_{ω_1} . Let $p \subseteq {}^{\omega}2$ be arbitrary perfect set coded in W_{ω_1} . The Borel code of p belongs to W_{β} for some countable $\beta \geq \alpha$. Let $f: {}^{\omega}2 \times {}^{\omega}2 \to p$ be an homeomorphism coded in W_{β} and let $p' = f"({}^{\omega}2 \times \{r\})$ for an $r \in {}^{\omega}2 \setminus W_{\beta}$. Then $p' \cap ({}^{\omega}2 \cap W_{\alpha}) \subseteq p' \cap ({}^{\omega}2 \cap W_{\beta}) = \emptyset$ because $r \notin W_{\beta}$ can be defined from any element of p' by means of p'.

Fact 1.6. Conditions (1) and (4) hold in ZFC for $\mathbb{P} = \mathbb{P}_{\mathbb{S}}$.

Proof. We prove that for every maximal antichain $A \subseteq \mathbb{P}_{\mathbb{S}}$ there exists a maximal antichain $\{p_{\alpha}: \alpha < \mathfrak{c}\} \subseteq \mathbb{P}_{\mathbb{S}}$ refining A consisting of pairwise disjoint sets. (The term "refining family" is used here in the sense that every p_{α} is a subset of some $q \in A$. This differs from the already mentioned "refining sequence".) To prove this, let $\{r_{\xi}: \xi < \mathfrak{c}\}$ be an enumeration of $\mathbb{P}_{\mathbb{S}}$. By splitting one element of the partition if necessary we can assume without loss of generality that $|A| = \mathfrak{c}$. By induction on $\alpha < \mathfrak{c}$ define $\{p_{\alpha} : \alpha < \mathfrak{c}\}$ as follows: Let ξ_{α} be the least ξ such that r_{ξ} is incompatible with all p_{β} , $\beta < \alpha$, i.e., all $|r_{\xi} \cap p_{\beta}| \leq \omega$ for all $\beta < \alpha$ (such ξ exists because by the induction hypothesis $\{p_{\beta}: \beta < \alpha\}$ refines A and $|A| = \mathfrak{c}$). Chose $q \in A$ compatible with $r_{\xi_{\alpha}}$ and let $p_{\alpha} \in \mathbb{P}$ be a subset of $r_{\xi_{\alpha}} \cap q$ disjoint from the s^0 -set $\bigcup_{\beta<\alpha}(r_{\xi_\alpha}\cap p_\beta)$. The sets p_α are pairwise disjoint by the construction. The sequence of ordinals ξ_{α} , $\alpha < \mathfrak{c}$ is strictly increasing, hence cofinal in \mathfrak{c} . Therefore every r_{ξ} is compatible with some p_{α} . Hence $\{p_{\alpha}: \alpha < \mathfrak{c}\}$ is a maximal antichain refining A with pairwise disjoint sets. This gives (1). One can easily verify that every selector for $\{p_{\alpha}: \alpha < \mathfrak{c}\}\$ is an s^0 -set that meets every $q \in A$. Then (4) follows, too, because every antichain can be extended to a maximal one.

Therefore $cof(s^0) = \mathfrak{d}({}^{\mathfrak{c}}s^0) \geq \mathfrak{d}({}^{\mathfrak{c}}\mathfrak{c}) > \mathfrak{c}$ holds in ZFC (in fact, the inequality $cof(s^0) > \mathfrak{c}$ was observed by Khomskii [5]). For $\mathbb{P} = \mathbb{P}_{\mathbb{L}}$ in [2] the following was proved:

(ρ) There is a system $\{p_{\alpha} : \alpha < \mathfrak{c}\} \subseteq \mathbb{P}$ of pairwise disjoint sets such that for every $q \in \mathbb{P}_{\mathbb{L}}$ there is $q' \subseteq q$ in \mathbb{P} such that either there is $\alpha < \mathfrak{c}$ such that $q' \subseteq p_{\alpha}$ or $|q' \cap p_{\alpha}| \leq 1$ for all $\alpha < \mathfrak{c}$.

Lemma 1.7. $\rho \rightarrow \rho_2$.

Proof. Let $p = \langle p_{\alpha} : \alpha < \mathfrak{c} \rangle \in {}^{\mathfrak{c}}\mathbb{P}$ be a witness for (ρ) . Let $\{q_{\alpha} : \alpha < \mathfrak{c}\}$ be an enumeration of the set $\{q \in \mathbb{P} : (\forall \alpha < \mathfrak{c}) \mid q \cap p_{\alpha} \mid \leq 1\}$. For every $\alpha < \mathfrak{c}$, $|p_{\alpha} \cap \bigcup_{\beta \leq \alpha} q_{\beta}| < \mathfrak{c}$ and $|q_{\alpha} \cap \bigcup_{\beta < \alpha} p_{\beta}| < \mathfrak{c}$. Then for every $\alpha < \mathfrak{c}$ there are $r_{\alpha}, q'_{\alpha} \in \mathbb{P}$ such that $r_{\alpha} \subseteq p_{\alpha} \setminus \bigcup_{\beta \leq \alpha} q_{\beta} = \emptyset$ and $q'_{\alpha} \subseteq q_{\alpha} \setminus \bigcup_{\beta \leq \alpha} p_{\beta} = \emptyset$ because $\operatorname{cov}(s(\mathbb{P})) = \mathfrak{c}$. We claim that the sequence $\{r_{\alpha} : \alpha < \mathfrak{c}\}$ is a witness for (ρ_{2}) . Let $q \in \mathbb{P}$ be given. If there is $q' \subseteq q$ in \mathbb{P} such that $q' \subseteq p_{\alpha}$ for some α , then $\{\beta < \mathfrak{c} : q' \cap p_{\beta} \neq \emptyset\} = \{\alpha\}$. Otherwise by (ρ) there is $\alpha < \mathfrak{c}$ such that $q_{\alpha} \subseteq q$. Then $q'_{\alpha} \subseteq q$ and $q'_{\alpha} \cap \bigcup_{\beta < \mathfrak{c}} r_{\beta} \subseteq (q'_{\alpha} \cap \bigcup_{\beta \leq \alpha} p_{\beta}) \cup (q_{\alpha} \cap \bigcup_{\beta > \alpha} r_{\beta}) = \emptyset$, i.e., $\{\beta < \mathfrak{c} : q'_{\alpha} \cap p_{\beta} \neq \emptyset\} = \emptyset$.

Corollary 1.8.
$$cof(l^0) = \mathfrak{d}({}^{\mathfrak{c}}l^0) \geq \mathfrak{d}({}^{\mathfrak{c}}\mathfrak{c}) > \mathfrak{c}.$$

Acknowledgement. The author would like to thank the referee for their reading all versions of this paper carefully and suggestions of improvements.

2. Proofs

Lemma 2.1. $\rho_2 \rightarrow \rho_1 \rightarrow \rho_0$.

Proof. The implication $\rho_2 \to \rho_1$ is trivial. Assume that $p \in {}^{\mu}\mathbb{P}$ is a witness for ρ_1 and let $f: \mu \to \mathfrak{c}$ is a cofinal function. For every $\alpha < \mu$ choose a system $\{p_{\alpha,\xi} : \xi < f(\alpha)\} \subseteq \mathbb{P}$ of pairwise disjoint subsets of p_{α} and let $r = \langle r_{\alpha} : \alpha < \mathfrak{c} \rangle$ be a one-to-one enumeration of $\{p_{\alpha,\xi} : \alpha < \mu \text{ and } \xi < f(\alpha)\}$. Clearly r is a witness for ρ_0 and hence $\rho_1 \to \rho_0$ holds.

Lemma 2.2. $\sigma_2 \to \sigma_1 \to \sigma_0$ and $\sigma_2 \to \sigma_0^*$.

Proof. If $p \in {}^{\mu}\mathbb{P}$ is a witness for σ_1 , then any $p' \in {}^{\mathfrak{c}}\mathbb{P}$ obtained from p by splitting each member of p into $<\mathfrak{c}$ sets is a witness for σ_0 . Therefore $\sigma_1 \to \sigma_0$ holds. The other implications are trivial.

Lemma 2.3. $\sigma_2 \leftrightarrow \rho_2, \ \sigma_1 \leftrightarrow \rho_1, \ \rho_0 \rightarrow \sigma_0.$

Proof. We prove $\rho_2 \to \sigma_2$ and $\sigma_2 \to \rho_2$; proofs of other implications are similar.

Let $p \in {}^{\mathfrak{c}}\mathbb{P}$ be a witness for ρ_2 and let $A_{\alpha} \subseteq p_{\alpha}$ be arbitrary $s(\mathbb{P})$ -sets for $\alpha < \mathfrak{c}$. We show that $A = \bigcup_{\alpha < \mathfrak{c}} A_{\alpha}$ is an $s(\mathbb{P})$ -set and hence σ_2 holds. Let $q \in \mathbb{P}$ be arbitrary. There is $q' \subseteq q$ in \mathbb{P} and $\alpha < \mathfrak{c}$ such that $q' \cap p_{\beta} = \emptyset$ for all $\beta \neq \alpha$. Then $A \cap q' = A_{\alpha} \cap q' \in s(\mathbb{P})$ and then there is $q'' \subseteq q'$ in \mathbb{P} such that $q'' \cap A = \emptyset$. Therefore $A \in s(\mathbb{P})$.

Let $p \in {}^{\mathfrak{c}}\mathbb{P}$ be a witness for σ_2 . By Theorem 3.4 there is a disjoint pseudorefinement $r \in {}^{\mathfrak{c}}\mathbb{P}$ of p, i.e., for all $\alpha < \beta < \mathfrak{c}$, $r_{\alpha} \cap r_{\beta} \in s(\mathbb{P})$ and there is a one-to-one function $f : \mathfrak{c} \to \mathfrak{c}$ such that $r_{\alpha} \subseteq p_{f(\alpha)}$ for all $\alpha < \mathfrak{c}$. We verify that r is a witness for ρ_2 . Let $q \in \mathbb{P}$. Since r is an antichain of \mathbb{P} and \mathbb{P} is separable, there are $q' \subseteq q$ in \mathbb{P} and $\alpha < \mathfrak{c}$ such that $q' \cap r_{\beta} \in s(\mathbb{P})$ for all $\beta \neq \alpha$. Then

 $q' \cap \bigcup_{\beta \neq \alpha} r_{\beta} \in s(\mathbb{P})$ by the choice of p. Therefore there is $q'' \subseteq q'$ in \mathbb{P} such that $q'' \cap \bigcup_{\beta \neq \alpha} r_{\beta} = \emptyset$.

The same proof as that of $\rho_0 \to \sigma_0$ gives the following:

Lemma 2.4. If \mathfrak{c} is regular, then $\rho_0 \to \sigma_0^*$.

Lemma 2.5. (1) \rightarrow (ρ_2), (ρ_1) \rightarrow (2) \rightarrow (ρ_0), (2) \rightarrow (3) \rightarrow (5), (4) \rightarrow (5), (σ_0) \rightarrow (5).

Proof. The implications $(\rho_1) \to (2) \to (\rho_0)$ and $(3) \to (5)$ need some explanation; the other implications are trivial.

- $(\rho_1) \to (2)$. Let $p \in {}^{\mu}\mathbb{P}$ be a witness for (ρ_1) , i.e., the set $D = \{q \in \mathbb{P} : | \{\alpha < \mu : q \cap p_{\alpha} \neq \emptyset\}| \leq 1\}$ is dense in \mathbb{P} . By refining the sets p_{α} if necessary we can assume that $p_{\alpha} \in D$ and hence they are pairwise disjoint for $\alpha < \mu$. We can also assume that the antichain p is not maximal in \mathbb{P} . If $q \in D$ is incompatible with every p_{α} , then since q can meet at most one member of p and \mathbb{P} is separable, there is $q' \subseteq q$ in \mathbb{P} such that $q' \cap \bigcup_{\alpha < \mu} p_{\alpha} = \emptyset$. Hence there is a maximal antichain $A \supseteq \{p_{\alpha} : \alpha < \mu\}$ in D of cardinality \mathfrak{c} such that $q \cap \bigcup_{\alpha < \mu} p_{\alpha} = \emptyset$ for all $q \in A \setminus \{p_{\alpha} : \alpha < \mu\}$. The enumeration of A in which $\{p_{\alpha} : \alpha < \mu\}$ is cofinal is a witness for (2).
- $(2) \to (\rho_0)$. Let $\{r_\alpha : \alpha < \mathfrak{c}\} \subseteq \mathbb{P}$ be a maximal antichain such that $(\forall \alpha < \mathfrak{c})(\exists r \in \mathbb{P}) \ r \cap \bigcup_{\beta < \alpha} r_\beta = \emptyset$ and let $f \in {}^{\mu}\mathfrak{c}$ be an increasing cofinal function. By induction on $\alpha < \mu$ find $g(\alpha) < \mathfrak{c}$ and families $\{q_{\alpha,\xi} : \xi < f(\alpha)\} \subseteq \mathbb{P}$ of pairwise disjont sets such that $q_{\alpha,\xi} \subseteq r_{g(\alpha)} \setminus \bigcup_{\beta < f(\alpha)} r_\beta$. Let $p \in {}^{\mathfrak{c}}\mathbb{P}$ be a one-to-one enumeration of $\{q_{\alpha,\xi} : \alpha < \mu \text{ and } \xi < f(\alpha)\}$. Then p is a witness for ρ_0 : If $q \in \mathbb{P}$ is given find $q' \subseteq q$ in \mathbb{P} such that $q' \subseteq r_\beta$ for some $\beta < \mathfrak{c}$. Then $q' \cap q_{\alpha,\xi} = \emptyset$ whenever $f(\alpha) > \beta$.
- (3) \rightarrow (5). For $X \in s^+(\mathbb{P})$ let $\mathbb{P}(X) = \{p \in \mathbb{P} : (\forall q \in \mathbb{P}) \ q \subseteq p \to q \cap X \neq \emptyset\}$. Assume that (3) holds and let $\{r_\alpha : \alpha < \mathfrak{c}\} \subseteq \mathbb{P}$ be a maximal antichain such that the sets $X_\alpha = {}^\omega \omega \setminus \bigcup_{\beta < \alpha} r_\beta$ are in $s^+(\mathbb{P})$ for all $\alpha < \mathfrak{c}$. Using the maximality of the antichain, by induction construct $u \in {}^\mu \mathbb{P}$ and an increasing continuous cofinal function $f \in {}^\mu \mathfrak{c}$ with f(0) = 0 so that for every $\xi < \mu$, $u_\xi \in \mathbb{P}(X_{f(\xi)})$ and $u_\xi \subseteq r_\beta$ for some $\beta < f(\xi+1)$. Define $p \in {}^\mathfrak{c}\mathbb{P}$ by $p_\alpha = u_\xi$ for $\alpha \in [f(\xi), f(\xi+1))$ and $\xi < \mu$. Let $q \in {}^\mathfrak{c}\mathbb{P}$ be arbitrary such that $q \leq p$. Take any set $A = \{x_\alpha : \alpha < \mathfrak{c}\}$ with $x_\alpha \in q_\alpha \cap X_{f(\xi)}$ whenever $\alpha \in [f(\xi), f(\xi+1))$. Then $A \cap q_\alpha \neq \emptyset$ for all $\alpha < \mathfrak{c}$. We prove that $A \in s(\mathbb{P})$ and hence (5) holds. If $v \in \mathbb{P}$ there are β, ξ , and $v' \in \mathbb{P}$ such that $\beta < f(\xi)$ and $v' \subseteq v \cap r_\beta$. Then $A \cap v' \subseteq \{x_\alpha : \alpha < f(\xi)\}$ has cardinality $< \mathfrak{c}$ and hence there is $v'' \subseteq v'$ in \mathbb{P} such that $A \cap v' = \emptyset$.

Lemma 2.6. Let $\mathbb{P} = \mathbb{P}_{\mathbb{L}}$.

- (i) $(\mathfrak{b} = \mathfrak{c}) \to (1)$.
- (ii) $(\mathfrak{b} \cdot \text{cov}(\mathcal{M}) = \mathfrak{c}) \to (4)$.

Proof. The proof of (1) and (4) for $\mathbb{P} = \mathbb{P}_{\mathbb{L}}$ under the assumption $\mathfrak{b} = \mathfrak{c}$ is same as that for the $\mathbb{P} = \mathbb{P}_{\mathbb{S}}$ in Fact 1.6. (Following the proof of Fact 1.6 with $\mathbb{P}_{\mathbb{L}}$ in the role of $\mathbb{P}_{\mathbb{S}}$, let ξ_{α} be the least ordinal such that $r_{\xi_{\alpha}} \cap p_{\beta} \in s(\mathbb{P}_{\mathbb{L}})$ for all $\beta < \alpha$. Then $\bigcup_{\beta < \alpha} (r_{\xi_{\alpha}} \cap p_{\beta}) \in s(\mathbb{P}_{\mathbb{L}})$ because $\mathrm{add}(\mathcal{D}) = \mathfrak{b}$ and we assume $\mathfrak{b} = \mathfrak{c}$. Therefore for some $q \in A$ we can find $p_{\alpha} \subseteq r_{\xi_{\alpha}} \cap q$ in $\mathbb{P}_{\mathbb{L}}$ disjoint from $\bigcup_{\beta < \alpha} (r_{\xi_{\alpha}} \cap p_{\beta})$. This is the only distinct point of the proofs.)

Assume $\operatorname{cov}(\mathcal{M}) = \mathfrak{c}$. To verify (4) assume that $p \in {}^{\mathfrak{c}}\mathbb{P}_{\mathbb{L}}$ is an antichain and we find $A \in l^0$ such that $A \cap p_{\alpha} \neq \emptyset$ for all $\alpha < \mathfrak{c}$. Without loss of generality we can assume that p is a maximal antichain. For every $\alpha < \mathfrak{c}$ there is $x_{\alpha} \in p_{\alpha} \setminus \bigcup_{\beta < \alpha} p_{\beta}$

because $p_{\alpha} \cap p_{\beta}$ is nowhere dense in p_{α} whenever $\alpha \neq \beta$. Let $A = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. We prove that $A \in l^0$. Let $q \in \mathbb{P}_{\mathbb{L}}$ be arbitrary. By maximality of the antichain p there is $\alpha < \mathfrak{c}$ and $q' \in \mathbb{P}_{\mathbb{L}}$ such that $q' \subseteq q \cap p_{\alpha}$. Then $q' \cap A \subseteq \{x_{\beta} : \beta \leq \alpha\}$, and since $\text{non}(l^0) = \mathfrak{c}$, there is $q'' \in \mathbb{P}_{\mathbb{L}}$ such that $q'' \subseteq q'$ and $q'' \cap A = \emptyset$.

The following lemma summarizes hypotheses under which $cof(s(\mathbb{P})) > \mathfrak{c}$.

Lemma 2.7. Denote $\mu = cf(\mathfrak{c})$.

- (i) $\sigma_0^* \to \operatorname{cof}(s(\mathbb{P})) \ge \mathfrak{d}({}^{\mathfrak{c}}\mathfrak{c}).$
- (ii) $\rho_2 \to \operatorname{cof}(s(\mathbb{P})) = \mathfrak{d}(\mathfrak{s}(\mathbb{P})).$
- (iii) $\rho_1 \to \operatorname{cof}(s(\mathbb{P})) = \mathfrak{d}({}^{\mu}s(\mathbb{P})).$
- (iv) $(5) \to \operatorname{cof}(s(\mathbb{P})) > \mathfrak{c}$.
- (v) If $\mathfrak{c} = \mu$, then (3) $\to \operatorname{cof}(s(\mathbb{P})) \ge \mathfrak{d}({}^{\mathfrak{c}}\mathfrak{c})$.
- *Proof.* (i) Let $p \in {}^{\mathfrak{c}}\mathbb{P}$ be such that $\bigcup_{\alpha < \mathfrak{c}} A_{\alpha} \in s(\mathbb{P})$ whenever $(\forall \alpha < \mathfrak{c}) \ A_{\alpha} \in [p_{\alpha}]^{<\mathfrak{c}}$. There is a pair of functions (Galois–Tukey embedding) $\varphi : {}^{\mathfrak{c}}\mathfrak{c} \to s(\mathbb{P})$ and $\psi : s(\mathbb{P}) \to {}^{\mathfrak{c}}\mathfrak{c}$ such that $\varphi(f) \subseteq A$ implies $f \leq \psi(A)$, and consequently, $\mathfrak{d}({}^{\mathfrak{c}}\mathfrak{c}) \leq \operatorname{cof}(s(\mathbb{P}))$. To see this fix an enumeration $\{x_{\alpha} : \alpha < \mathfrak{c}\}$ of ${}^{\omega}\omega$ and define $\varphi(f) = \bigcup_{\alpha < \mathfrak{c}} (p_{\alpha} \cap \{x_{\beta} : \beta < f(\alpha)\})$ and $\psi(A)(\alpha) = \min\{\beta < \mathfrak{c} : x_{\beta} \in p_{\alpha} \setminus A\}$.
- (ii) Assume that $p \in {}^{\mathfrak{c}}\mathbb{P}$ is a witness for σ_2 (because $\rho_2 \leftrightarrow \sigma_2$ by Lemma 2.3). Then $\operatorname{cof}(s(\mathbb{P})) \geq \mathfrak{d}(\prod_{\alpha < \mathfrak{c}} s(\mathbb{P}) \upharpoonright p_{\alpha}) = \mathfrak{d}({}^{\mathfrak{c}}s(\mathbb{P})) \geq \operatorname{cof}(s(\mathbb{P}))$ because $s(\mathbb{P}) \upharpoonright p_{\alpha} = s(\mathbb{P}) \cap \mathcal{P}(p_{\alpha})$ is isomorphic to $s(\mathbb{P})$ for every α . The proof of (iii) is same.
- (iv) Let $p \in {}^{\mathfrak{c}}\mathbb{P}$ be a witness for (5). Let $\{A_{\alpha} : \alpha < \mathfrak{c}\}$ be arbitrary family of $s(\mathbb{P})$ -sets of cardinality \mathfrak{c} . Find $q \in {}^{\mathfrak{c}}\mathbb{P}$ such that for every $\alpha < \mathfrak{c}$, $q_{\alpha} \subseteq p_{\alpha}$ and $q_{\alpha} \cap A_{\alpha} = \emptyset$. By (5) there is $A \in s(\mathbb{P})$ such that $(\forall \alpha < \mathfrak{c}) \ A \cap q_{\alpha} \neq \emptyset$. Then A is not covered by any set from A. This proves that $cof(s(\mathbb{P})) > \mathfrak{c}$.
- (v) Assume that (3) holds and let $\{p_{\xi} : \xi < \mathfrak{c}\} \subseteq \mathbb{P}$ be a maximal antichain in \mathbb{P} such that all sets $Z_{\beta} = {}^{\omega}\omega \setminus \bigcup_{\xi < \beta} p_{\xi}$ for $\beta < \mathfrak{c}$ are in $s^{+}(\mathbb{P})$. By the maximality of the antichain for every $\beta < \mathfrak{c}$ there is $\xi \geq \beta$ such that $Z_{\beta} \cap p_{\xi} \in s^{+}(\mathbb{P})$. Hence, by induction we can define an increasing sequence of ordinals $\{\xi_{\alpha} : \alpha < \mu\}$ cofinal in \mathfrak{c} such that the sets $X_{\alpha} = Z_{\xi_{\alpha}} \setminus Z_{\xi_{\alpha+1}}$ are in $s^{+}(\mathbb{P})$. Since $\operatorname{non}(s(\mathbb{P})) = \mathfrak{c}$, using the maximality of the antichain one can easily verify that $\bigcup_{\alpha < \mu} A_{\alpha} \in s(\mathbb{P})$ whenever $(\forall \alpha < \mu) A_{\alpha} \in [X_{\alpha}]^{<\mathfrak{c}}$. Then the same argument as in case (i) proves that $\operatorname{cof}(s(\mathbb{P})) \geq \mathfrak{d}({}^{\mu}\mathfrak{c})$.

Question 2.8. Assuming $\mathfrak{b} < \mathfrak{c}$, is $\operatorname{cof}(l^0) = \mathfrak{d}({}^{\mathfrak{b}}l^0)$? Notice that $\operatorname{cof}(l^0) = \mathfrak{d}({}^{\kappa}l^0)$ whenever $1 \le \kappa < \mathfrak{b}$ and if $\mathfrak{b} = \mathfrak{c}$, then the equality holds also for $\kappa = \mathfrak{b}$.

3. Refinemens

Let B be a Boolean algebra. For $a \in B$ let $B \upharpoonright a = \{x \in B : x \leq a\}$ be the relativization of B with respect to a and let $B^+ = B \setminus \{0\}$.

Let κ and λ be cardinal numbers and let $a=\langle a_{\alpha}:\alpha<\lambda\rangle$ and $b=\langle b_{\alpha}:\alpha<\lambda\rangle$ be any λ -sequences in B^+ . We say that a is a disjoint sequence if $a_{\alpha}\wedge a_{\beta}=0$ for $\beta<\alpha<\lambda$. We say that a is κ -disjoint if $(\forall \alpha<\lambda)$ $|\{\beta<\lambda:a_{\alpha}\wedge a_{\beta}\neq\emptyset\}|<\kappa$ (in particular, 2-disjoint has the same meaning as disjoint and if $\lambda<\kappa$, then each λ -sequence is κ -disjoint). We say that b is a refinement of a, if $b_{\alpha}\leq a_{\alpha}$ for all $\alpha<\lambda$; we say that b is a pseudo-refinement of a, if there is a one-to-one function $f:\lambda\to\lambda$ such that $b_{\alpha}\leq a_{f(\alpha)}$ for all $\alpha<\lambda$.

Theorem 3.1 (Balcar–Vojtáš; [1, 6]). Assume that κ is an infinite cardinal and for each $x \in B^+$ there is an antichain of $B \upharpoonright x$ of cardinality κ^+ . Then each κ -sequence in B^+ has a disjoint refinement.

This theorem can be expressed in the following form:

Theorem 3.2. Assume that κ is a regular cardinal and for each $x \in B^+$ there is an antichain of $B \upharpoonright x$ of cardinality κ . Then each κ -disjoint sequence in B^+ has a disjoint refinement.

Proof. Let $\langle a_{\alpha} : \alpha < \lambda \rangle$ be a κ -disjoint sequence in B^+ . The following are the lines from [6]. For $X \subseteq B$ and $a \in B$ let $X(a) = \{x \in X : x \land a \neq 0\}$. By induction on $\alpha < \lambda$ we construct a chain $\langle X_{\alpha} : \alpha < \lambda \rangle$ of antichains of B^+ increasing with respect to the inclusion such that for every $\alpha, \beta < \lambda$,

- (i) $X_{\alpha}(a_{\beta}) = \emptyset$ or $|X_{\alpha}(a_{\beta})| \ge \kappa$ and
- (ii) $|X_{\alpha+1}(a_{\alpha})| \geq \kappa$.

Put $X_{\emptyset} = \emptyset$ and let $X_{\alpha} = \bigcup_{\beta < \alpha} X_{\beta}$ for α limit. Assume that X_{α} has been constructed. If $|X_{\alpha}(a_{\alpha})| = \kappa$, set $X_{\alpha+1} = X_{\alpha}$. Otherwise $X_{\alpha}(a_{\alpha}) = \emptyset$ and hence $a \wedge a_{\alpha} = 0$ for all $a \in X_{\alpha}$. Choose any antichain $Y \subseteq B \upharpoonright a_{\alpha}$ of size κ and let $Y' = Y \setminus \bigcup \{Y(a_{\beta}) : a_{\alpha} \wedge a_{\beta} \neq 0 \text{ and } |Y(a_{\beta})| < \kappa \}$. By regularity of κ and because a is κ -disjoint, $|Y'| = \kappa$. Define $X_{\alpha+1} = X_{\alpha} \cup Y'$. This finishes the construction.

Let $X = \bigcup_{\alpha < \lambda} X_{\alpha}$. Then $|X(a_{\alpha})| = \kappa$ for all $\alpha < \lambda$. By induction on $\alpha < \kappa$ choose $x_{\alpha} \in X(a_{\alpha}) \setminus \{x_{\beta} : \beta < \alpha \text{ and } a_{\alpha} \wedge a_{\beta} \neq 0\}$ and define a disjoint refining sequence $\langle b_{\alpha} : \alpha < \lambda \rangle$ for $\langle a_{\alpha} : \alpha < \lambda \rangle$ by setting $b_{\alpha} = x_{\alpha} \wedge a_{\alpha}$.

Theorem 3.3. Assume that κ is an infinite cardinal and for each $x \in B^+$ there is an antichain of $B \upharpoonright x$ of cardinality κ . Then each κ -sequence in B^+ has a disjoint pseudo-refinement.

Proof. Let κ -sequence $a \in {}^{\kappa}(B^+)$ be fixed. There are several cases.

Case 1. κ is regular. We claim that there exists a disjoint sequence $d \in {}^{\kappa}(B^+)$ such that for every $S \in [\kappa]^{<\kappa}$ there are $\beta, \gamma \in \kappa \setminus S$ such that $d_{\gamma} \wedge a_{\beta} \neq 0$.

To prove the claim, for every $\alpha < \kappa$ choose an antichain $D_{\alpha} \subseteq (B \upharpoonright a_{\alpha})^{+}$ of size κ . Assuming that disjoint sequences $d \in {}^{\kappa}(B \upharpoonright a_{\alpha})^{+}$ for any $\alpha < \kappa$ have not the property in the claim (otherwise there is nothing to prove) we can find for every $\alpha < \kappa$ a set $D'_{\alpha} \in [D_{\alpha}]^{<\kappa}$ and an ordinal $g(\alpha) < \kappa$ such that $d \wedge a_{\beta} = 0$ for all $d \in D_{\alpha} \setminus D'_{\alpha}$ and $\beta \geq g(\alpha)$. Since κ is regular and $g(\alpha) > \alpha$ for all $\alpha < \kappa$ the function $f : \kappa \to \kappa$ inductively defined by $f(\alpha) = g(\sup f \upharpoonright \alpha)$ for $\alpha < \kappa$ is strictly increasing. For $\alpha < \beta < \kappa$, because $f(\beta) \geq f(\alpha+1) = g(f(\alpha))$, for all $d \in D_{f(\alpha)} \setminus D'_{f(\alpha)}$ and $e \in D_{f(\beta)} \setminus D'_{f(\beta)}$ we have $d \wedge e \leq d \wedge a_{f(\beta)} = 0$. It follows that $D = \bigcup_{\alpha < \kappa} (D_{f(\alpha)} \setminus D'_{f(\alpha)})$ is an antichain of size κ and each $a_{f(\alpha)}$ meets κ many elements of D. Therefore the antichain D (i.e., enumeration of D by κ) has the property in the claim and the proof of the claim is finished.

The claim allows inductively define one-to-one functions $f, g : \kappa \to \kappa$ by

$$f(\alpha) = \min\{\beta \in \kappa \setminus \operatorname{rng}(f \upharpoonright \alpha) : (\exists \gamma \in \kappa \setminus \operatorname{rng}(g \upharpoonright \alpha)) \ d_{\gamma} \land a_{\beta} \neq 0\},\$$

$$g(\alpha) = \min\{\gamma \in \kappa \setminus \operatorname{rng}(g \upharpoonright \alpha) : d_{\gamma} \land a_{f(\alpha)} \neq 0\}.$$

Then the sequence $b \in {}^{\kappa}(B^+)$ defined by $b_{\alpha} = d_{g(\alpha)} \wedge a_{f(\alpha)}$ is disjoint and $b_{\alpha} \leq a_{f(\alpha)}$, i.e., b is a disjoint pseudo-refinement of a.

Case 2. κ is singular. Let $\mu = \operatorname{cf}(\kappa)$, and let $\langle \kappa_{\xi} : \xi < \mu \rangle$ be an increasing cofinal sequence of regular cardinals in κ bigger than μ . We consider two subcases.

Case 2a. There exists a disjoint sequence $d \in {}^{\lambda}(B^{+})$ with $\lambda < \kappa$ such that for every $S' \in [\kappa]^{<\kappa}$ and every $T' \in [\lambda]^{<\mu}$ there are $\beta \in \kappa \setminus S'$ and $\gamma \in \lambda \setminus T'$ such that $d_{\gamma} \wedge a_{\beta} \neq 0$. For $\gamma < \lambda$ let $S_{\gamma} = \{\beta < \kappa : d_{\gamma} \wedge a_{\beta} \neq 0\}$, let $T = \{\gamma < \lambda : |S_{\gamma}| = \kappa\}$, and let $S = \bigcup_{\gamma \in \lambda \setminus T} S_{\gamma}$.

If $|T| \geq \mu$, let $\langle \gamma_{\xi} : \xi < \mu \rangle$ be any sequence of distinct elements of T. For $\xi < \mu$ we can choose $B_{\xi} \in [S_{\gamma_{\xi}}]^{\kappa_{\xi}}$ so that the sets B_{ξ} 's are pairwise disjoint. This is possible because $\kappa_{\xi} > \sum_{\eta < \xi} \kappa_{\eta}$. By Balcar–Vojtáš theorem, for every $\xi < \mu$ there is a disjoint refinement $\langle b_{\alpha} : \alpha \in B_{\xi} \rangle$ of the sequence $\langle d_{\gamma_{\xi}} \wedge a_{\alpha} : \alpha \in B_{\xi} \rangle$. Then $\langle b_{\alpha} : \alpha \in \bigcup_{\xi < \mu} B_{\xi} \rangle$ is a disjoint pseudo-refinement of a.

If $|T| < \mu$, then $|S| = \kappa$ by the hypothesis for Case 2a. For $\gamma \in \lambda \setminus T$ let $B_{\gamma} = S_{\gamma} \setminus \bigcup \{S_{\delta} : \delta < \gamma \text{ and } \delta \in \lambda \setminus T\}$. Then $S = \bigcup_{\gamma \in \lambda \setminus T} B_{\gamma}$ is a disjoint union of sets of cardinalities $< \kappa$. By Balcar–Vojtáš theorem, for every $\gamma \in \lambda \setminus T$ there is a disjoint refinement $\langle b_{\alpha} : \alpha \in B_{\gamma} \rangle$ of the sequence $\langle d_{\gamma} \wedge a_{\alpha} : \alpha \in B_{\gamma} \rangle$. Then $\langle b_{\alpha} : \alpha \in S \rangle$ is a disjoint pseudo-refinement of a.

Case 2b. For every disjoint sequence $d \in {}^{\lambda}(B^{+})$ with $\lambda < \kappa$ there exist $S \in [\kappa]^{<\kappa}$ and $T \in [\lambda]^{<\mu}$ such that for all $\beta \in \kappa \setminus S$ and $\gamma \in \lambda \setminus T$ we have $d_{\gamma} \wedge a_{\beta} = 0$.

By Balcar–Vojtáš theorem, for every $\xi < \mu$ let $\langle b_{\alpha} : \alpha \in \kappa_{\xi+1} \setminus \kappa_{\xi} \rangle$ be a disjoint refinement of $\langle a_{\alpha} : \alpha \in \kappa_{\xi+1} \setminus \kappa_{\xi} \rangle$. Find $S_{\xi} \in [\kappa]^{<\kappa}$ and $T_{\xi} \in [\kappa_{\xi+1} \setminus \kappa_{\xi}]^{<\mu}$ such that $b_{\gamma} \wedge a_{\beta} = 0$ for all $\beta \in \kappa \setminus S_{\xi}$ and $\gamma \in \kappa_{\xi+1} \setminus (\kappa_{\xi} \cup T_{\xi})$. By induction construct a cofinal subset $X \subseteq \mu$ (the range of an increasing sequence) such that $|S_{\eta}| < \kappa_{\xi}$ whenever $\eta < \xi$ are both in X. For $\xi \in X$ let $B_{\xi} = \kappa_{\xi+1} \setminus (\kappa_{\xi} \cup T_{\xi} \cup \bigcup_{\eta < \xi, \, \eta \in X} S_{\eta})$. If $\eta < \xi$ are both in X, then $B_{\xi} \subseteq \kappa \setminus S_{\eta}$ and $B_{\eta} \subseteq \kappa_{\eta+1} \setminus (\kappa_{\eta} \cup T_{\eta})$, and therefore $b_{\gamma} \wedge b_{\beta} \leq b_{\gamma} \wedge a_{\beta} = 0$ for $\beta \in B_{\xi}$ and $\gamma \in B_{\eta}$. Then $b = \langle b_{\alpha} : \alpha \in \bigcup_{\xi \in X} B_{\xi} \rangle$ is a disjoint sequence in B^+ and $|b| = \sum_{\xi \in X} \kappa_{\xi+1} = \kappa$. Therefore b is a disjoint pseudo-refinement of a.

A Boolean algebra B is said to be (ν, \cdot, κ) -distributive if for every ν -sequence of antichains $A_{\alpha} \subseteq B^+$, $\alpha < \nu$ there exists a maximal antichain $A \subseteq B^+$ such that for every $x \in A$ and every $\alpha < \nu$, $|\{y \in A_{\alpha} : x \land y \neq 0\}| < \kappa$ (see [7]). We say that B is $(\nu, \cdot, \kappa)^*$ -distributive if for every ν -sequence of antichains $A_{\alpha} \subseteq B^+$, $\alpha < \nu$ there exists a maximal antichain $A \subseteq B^+$ such that $|\{y \in \bigcup_{\alpha < \nu} A_{\alpha} : x \land y \neq 0\}| < \kappa$ for every $x \in A$.

Let S be an infinite set. For $f \in {}^SB$ let $\operatorname{supp}(f) = \{s \in S : f(s) > 0\}$. We say that $f \in {}^SB$ has a disjoint refinement if $f \upharpoonright \operatorname{supp}(f)$ has a disjoint refinement. Assuming that $f \in {}^SB$ has no disjoint refinement we define

$$I(f) = \{X \subseteq S : f \mid X \text{ has a disjoint refinement}\}.$$

Theorem 3.4. Assume that κ is an infinite cardinal and for each $x \in B^+$ there is an antichain of $B \upharpoonright x$ of cardinality κ . If $f \in {}^S B$ has no disjoint refinement, then I(f) is an ideal on S such that $[S]^{<\kappa} \subseteq I(f)$ and $I(f) \cap [X]^{\kappa} \neq \emptyset$ for all $X \in [S]^{\kappa}$. If B is $(\nu, \cdot, \kappa)^*$ -distributive, then I(f) is a ν -complete ideal on S.

Proof. Obviously I(f) is closed for subsets. By Balcar–Vojtáš theorem $[S]^{<\kappa} \subseteq I(f)$ and by previous theorem $I(f) \cap [X]^{\kappa} \neq \emptyset$ for all $X \in [S]^{\kappa}$. Every Boolean algebra is $(\nu, \cdot, 2)$ -distributive for $\nu < \omega$ and therefore the fact that I(f) is an ideal is a special case of the claim about the additivity of I(f).

Assume that B is $(\nu, \cdot, \kappa)^*$ -distributive and let $X_i \in I(f)$ for $i < \nu$ be pairwise disjoint. We prove that the union $X = \bigcup_{i \in \omega} X_i$ belongs to I(f). Without loss of generality we can assume that $X \subseteq \text{supp}(f)$. Because the sets X_i 's are pairwise

disjoint there is $g \in {}^X(B^+)$ such that $g \upharpoonright X_i$ is a disjoint refinement of $f \upharpoonright X_i$ for $i < \nu$. By the distributivity property of B there is a maximal antichain $A \subseteq B^+$ such that for every $a \in A$ the set $Y_a = \{s \in X : g(s) \land a \neq 0\}$ has cardinality $< \kappa$. Let \preceq be a well-ordering of A. The sets $Y_a' = Y_a \setminus \bigcup_{b \prec a} Y_b$ for $a \in A$ are pairwise disjoint and by maximality of A we have $X = \bigcup_{a \in A} Y_a = \bigcup_{a \in A} Y_a'$. Since $|Y_a'| < \kappa$, by Balcar–Vojtáš theorem there is a disjoint refinement $f_a : Y_a' \to B^+$ of $g \upharpoonright Y_a'$ for every $a \in A$. It follows that $\bigcup_{a \in A} f_a \in {}^X(B^+)$ is a disjoint refinement of $f \upharpoonright X$ and hence $X \in I(f)$.

Example 3.5. Let \mathcal{R} be the disjoint refinement ideal on $^{\omega}2$, i.e., the ideal I(f) for the Boolean algebra $B = \mathcal{P}(\omega)/\mathrm{fin}$ and $f: ^{\omega}2 \to B$ defined by $f(x) = \{n \in \omega : x(n) = 1\}/\mathrm{fin}$ for $x \in S$. Then $[^{\omega}2]^{<\mathfrak{c}} \subseteq \mathcal{R}$, $\mathcal{R} \cap [X]^{\mathfrak{c}} \neq \emptyset$ for all $X \in [^{\omega}2]^{\mathfrak{c}}$, and $\mathrm{add}(\mathcal{R}) \geq \mathfrak{h}$ (recall that \mathfrak{h} is the least cardinal κ such that $\mathcal{P}(\omega)/\mathrm{fin}$ is not κ -distributive). Let us recall two other σ -ideals $\mathcal{I}_0 \subsetneq \mathfrak{P}_2$ on $^{\omega}2$:

$$\mathfrak{P}_2 = \{ A \subseteq {}^{\omega}2 : (\forall a \in [\omega]^{\omega}) \ A \upharpoonright a \neq {}^{a}2 \},$$

$$\mathcal{I}_0 = \{ A \subseteq {}^{\omega}2 : (\forall a \in [\omega]^{\omega}) (\exists b \in [a]^{\omega}) \ |A \upharpoonright b| \leq \omega \},$$

where $A \upharpoonright a = \{x \upharpoonright a : x \in A\}$. The ideal \mathfrak{P}_2 was introduced by Rosłanowski [11] in connection to an infinite game of Mycielski. The ideals \mathcal{I}_0 and \mathfrak{P}_2 coincide on analytic sets and $\mathrm{add}(\mathcal{I}_0) \geq \mathfrak{h}$ (see [9]). By Balcar–Vojtáš theorem one can easily verify that

$$\mathcal{I}_0 \subseteq \{ A \subseteq {}^{\omega}2 : (\forall a \in [\omega]^{\omega}) (\exists b \in [a]^{\omega}) \ |A \upharpoonright b| < \mathfrak{c} \} \subseteq \mathcal{R}.$$

On the other hand, $\mathcal{R} \setminus \mathfrak{P}_2 \neq \emptyset$, and moreover, there is a closed set $A \subseteq {}^{\omega}2$ such that $A \in \mathcal{R}$ and $(\forall b \in [\omega]^{\omega})(\exists c \in [b]^{\omega})$ $A \upharpoonright c = {}^{c}2$. To see this, let $P \subseteq [\omega]^{\omega}$ be a compact almost disjoint family. For $a \in P$ let $A_a = \{x \in {}^{\omega}2 : (\forall n \in a) \ x(n) = 1\}$ and let $A = \bigcup_{a \in P} A_a$. Then the set A is a closed subset of ${}^{\omega}2$ (A is a projection of the compact set $\{(a,x): a \in P \text{ and } x \in A_a\}$) and $A \in \mathcal{R}$ (because for every $x \in A$ there is $a \in P$ such that $a \subseteq^* \{n \in \omega : x(n) = 1\}$ and for every $a \in A$ there is an almost disjoint family of subsets of a of cardinality \mathfrak{c}). Let $b \in [\omega]^{\omega}$ be given. Find $a \in P$ such that $c = b \setminus a$ is infinite. Then $A \upharpoonright c \supseteq A_a \upharpoonright c = {}^{c}2$.

Example 3.6. Every \mathfrak{c} -sequence $B \in {}^{\mathfrak{c}}l^+$ has a disjoint refinement by l^+ -sets. Assume that $B_{\alpha} \in l^+$ for all $\alpha < \mathfrak{c}$. For every $\alpha < \mathfrak{c}$ choose $p_{\alpha} \in \mathbb{P}(B_{\alpha})$, i.e., $|q \cap B_{\alpha}| = \mathfrak{c}$ for all $q \in \mathbb{P}$ with $q \subseteq p_{\alpha}$. Let $\{p_{\alpha,\beta} : \beta < \mathfrak{c}\}$ be an enumeration of the set $\{q \in \mathbb{P} : q \subseteq p_{\alpha}\}$ and let $\pi : \mathfrak{c} \times \mathfrak{c} \to \mathfrak{c}$ be one-to-one. By induction on $\pi(\alpha,\beta)$ choose $x_{\alpha,\beta} \in B_{\alpha} \cap p_{\alpha,\beta} \setminus \{x_{\alpha',\beta'} : \pi(\alpha',\beta') < \pi(\alpha,\beta)\}$. The sets $B'_{\alpha} = \{x_{\alpha,\beta} : \beta < \mathfrak{c}\}$ are pairwise disjoint l^+ -sets and $B'_{\alpha} \subseteq B_{\alpha}$.

References

- B. Balcar and P. Vojtáš, Refining systems on Boolean algebras. Set theory and hierarchy theory, V (Proc. Third Conf., Bierutowice, 1976), pp. 45–58. Lecture Notes in Math., Vol. 619, Springer, Berlin, 1977
- [2] J. Brendle, Y. Khomskii, W. Wohofsky, Cofinalities of Marczewski ideals, in preparation.
- [3] M. Goldstern, M. Repický, S. Shelah, O. Spinas, *On tree ideals*. Proc. Amer. Math. Soc. **123** (1995), no. 5, 1573–1581.
- [4] M. Dečo and M. Repický, Strongly dominating sets of reals. Arch. Math. Logic 52 (2013), no. 7-8, 827-846.
- $[5]\,$ Y. Khomskii, E-mail communication with M. Dečo, 2014.
- [6] S. Koppelberg, Handbook of Boolean algebras. Vol. 1. Edited by J. Donald Monk and Robert Bonnet. North-Holland Publishing Co., Amsterdam, 1989.

- [7] B. Balcar and P. Simon, Disjoint refinements. Handbook of Boolean algebras. Vol. 2. Edited by J. Donald Monk and Robert Bonnet. North-Holland Publishing Co., Amsterdam, 1989.
- [8] W. Kułaga, On fields and ideals connected with notions of forcing, Coll. Math. 105 (2006), no. 2, 271–281.
- [9] M. Repický, Mycielski ideal and the perfect set theorem. Proc. Amer. Math. Soc. 132 (2004), no. 7, 2141–2150.
- [10] M. Repický, Bases of measurability in Boolean algebras. Math. Slovaca ${\bf 64}$ (2014), no. 6, 1299–1334.
- $[11]\,$ A. Rosłanowski, On game ideals. Colloq. Math. ${\bf 59}$ (1990), no. 2, 159–168.

Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 040 01 Košice, Slovak Republic

 $E ext{-}mail\ address: repicky@saske.sk}$