
COFINALITY OF THE LAVER IDEAL

MIROSLAV REPICKÝ

Abstract. Yurii Khomskii observed that cof(l0) > c assuming b = c and he
asked whether the inequality cof(l0) > c is provable in ZFC. We find several

conditions that imply some variants of this inequality for tree ideals. Apply-

ing a recent result of J. Brendle, Y. Khomskii, and W. Wohofsky we show
that l0 satisfies some of these conditions and consequently, cof(l0) = d(cl0) ≥
d(cc) > c. We also prove that if the cellularity of a Boolean algebra B is hered-

itarily ≥ κ, then every κ-sequence in B+ has a κ-subsequence with a disjoint
refinement.

1. Introduction

Yurii Khomskii [5] observed that assuming b = c, the cofinality of the Laver
ideal l0 is > c, i.e., cof(l0) > c. He asked whether the inequality cof(l0) > c is
provable in ZFC. After writing a previous version of this paper Yurii Khomskii
kindly informed us about the proof of cof(l0) > c. It is contained in the paper of
J. Brendle, Y. Khomskii, and W. Wohofsky [2]. We find several conditions that
imply this and also a bit stronger inequalities for tree ideals. Applying a result of [2]
we prove that cof(l0) = d(cl0) ≥ d(cc) > c. We deal also with disjoint refinements
in Boolean algebras. We prove that if the cellularity of a Boolean algebra B is
hereditarily ≥ κ, then every κ-sequence in B+ has a κ-subsequence with a disjoint
refinement. This result helps to classify the considered conditions.

Throughout this paper PL is the system of all Laver perfect sets in ωω (i.e., the
sets of the form [T ] = {x ∈ ωω : (∀n ∈ ω) x�n ∈ p} where T ⊆ <ωω is a Laver tree)
and PS is the system of all perfect sets in ωω. We are primarily interested in the
Laver ideal l0 but most of the assertions hold also for other tree ideals and also in
a more general context: For a family P ⊆ P(ωω) let s(P) = {X ⊆ ωω : (∀p ∈ P)
(∃q ∈ P) q ⊆ p and q ∩X = ∅} and s+(P) = P(ωω) \ s(P). Hence s(P) is an ideal
associated to the poset (P,⊆). In particular, l0 = s(PL) is the Laver ideal and
s0 = s(PS) is the Marczewski ideal. Let l+ = s+(PL) and s+ = s+(PS). We assume
that P is a family with the following properties:

(a) P is a separable family of sets (see [8, 10]), i.e., P ⊆ dec(P) where dec(P) =
{X ⊆ ωω : (∀p ∈ P)(∃q ∈ P) q ⊆ p and either q ⊆ X or q ∩X = ∅}.

(b) Every p ∈ P has c pairwise disjoint subsets in P.
(c) s(P)�p = s(P) ∩ P(p) is isomorphic to s(P) for every p ∈ P.

Note that dec(P) is an algebra of sets, s(P) ⊆ dec(P), and by (a), p, q ∈ P are
incompatible if and only if p ∩ q ∈ s(P). By (b), non(s(P)) = c; (c) is necessary
only for cof(s(P)) = d(cs(P)).
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Recall that for an ideal I on a set X, non(I) = min{|A| : A ⊆ X and A /∈ I},
cov(I) = min{|I0| : I0 ⊆ I and

⋃
I0 = X}, cof(I) = min{|I0| : I0 ⊆ I and (∀A ∈ I)

(∃B ∈ I0) A ⊆ B}. If P is a partially ordered set then d(P ) denotes the least
cardinality of a dominating subset of P and b(P ) is the least cardinality of an
unbounded subset of P .

If X is a family of sets and p, q ∈ κX, then p ≤ q means (∀α < κ) pα ⊆ qα
and we say that p refines q (we identify p ∈ κX with 〈pα : α < κ〉). We say that
p quasi-refines q if there is a one-to-one function f : κ → κ such that (∀α < κ)
pα ⊆ qf(α).

Lemma 1.1. Let κ be an infinite cardinal and let I ⊆ P(κ) \ {κ} be a family of
sets, e.g., a proper ideal on κ. The following holds:

(i) κ < d(κκ).
(ii) If κ ⊆ I, then d(κκ) ≤ d(κI).
(iii) If [κ]<κ ⊆ I, then κ < d(cf(κ)I) ≤ d(κI).

Proof. If F = {fα : α < κ} ⊆ κκ, then F is not cofinal in κκ because the function
f(α) = fα(α) + 1 is not dominated by any member of F . Therefore κ < d(κκ).

If κ ⊆ I, then there is a pair of functions (Galois–Tukey embedding) ϕ : κκ→ κI
and ψ : κI → κκ such that ϕ(f) ≤ g implies f ≤ ψ(g) (define ϕ(f) = f and
ψ(g)(α) = sup{ξ < κ : ξ ⊆ g(α)}). It follows that d(κκ) ≤ d(κI).

Let {ξα : α < cf(κ)} be a cofinal sequence of ordinals in κ and assume that
[κ]<κ ⊆ I. If F = {fα : α < κ} ⊆ cf(κ)I, then F is not cofinal in cf(κ)I because
there is f : cf(κ) → [κ]<κ ⊆ I such that (∀α < cf(κ))(∀ξ < ξα) f(α) \ fξ(α) 6= ∅;
f is not dominated by any member of F . �

In this section as well as in the next section the letter µ denotes the cofinality of
the continuum, i.e., µ = cf(c). By previous lemma the following inequalities hold:

c < d(cc) ≤ d(cs(P)), c < d(µs(P)) ≤ d(cs(P)),

c < d(cc) ≤ d(c([c]<c)), c < d(µ([c]<c)) ≤ d(c([c]<c)).

Below we list several conditions and later we show that each of them imply that
cof(s(P)) is above some of the cardinals c+, d(cc), d(cs(P)), d(µs(P)) that are all
bigger than c (on the other hand we have no comparison between cof(s(P)) and the
cardinals d(µ([c]<c)) ≤ d(c([c]<c)) provided that c is singular).

(1) There exists a maximal antichain A ⊆ P of cardinality c with pairwise
disjoint sets.

(2) There exists a maximal antichain {pα : α < c} ⊆ P such that (∀α < c)
(∃q ∈ P) q ∩

⋃
β<α pβ = ∅.

(3) There exists a maximal antichain {pα : α < c} ⊆ P such that (∀α < c)
ωω \

⋃
β<α pβ ∈ s+(P).

(4) (∀p ∈ cP)[p is an antichain → (∃A ∈ s(P))(∀α < c) A ∩ pα 6= ∅].
(5) (∃p ∈ cP)(∀q ∈ {p′ ∈ cP : p′ ≤ p})(∃A ∈ s(P))(∀α < c) A ∩ qα 6= ∅.

The strengthening of condition (4) by removing the requirement that a c-se-
quence p ∈ cP is an antichain is false (consider an enumeration of P).

Let us consider also the following selection and refinement properties for P:

(σ2) There is p ∈ cP such that
⋃

α<cAα ∈ s(P) whenever (∀α < c) Aα ⊆ pα and
Aα ∈ s(P).
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(σ1) There is p ∈ µP such that
⋃

α<µAα ∈ s(P) whenever (∀α < µ) Aα ⊆ pα

and Aα ∈ s(P).
(σ∗0) There is p ∈ cP such that

⋃
α<cAα ∈ s(P) whenever (∀α < c) Aα ∈ [pα]<c.

(σ0) There is p ∈ cP such that
⋃

α<cAα ∈ s(P) whenever (∀α < c) Aα ∈ [pα]≤1.
(ρ2) (∃p ∈ cP)(∀q ∈ P)(∃q′ ∈ P) q′ ⊆ q and |{α < c : q′ ∩ pα 6= ∅}| ≤ 1.
(ρ1) (∃p ∈ µP)(∀q ∈ P)(∃q′ ∈ P) q′ ⊆ q and |{α < µ : q′ ∩ pα 6= ∅}| ≤ 1.
(ρ0) (∃p ∈ cP)(∀q ∈ P)(∃q′ ∈ P) q′ ⊆ q and |{α < c : q′ ∩ pα 6= ∅}| < c.
If µ = c, then σ1 ↔ σ2 and ρ1 ↔ ρ2.
By Theorem 3.3 below for every p ∈ cP there is an antichain q ∈ cP and a one-to-

one function f : c → c such that qα ⊆ pf(α) for α < c (it is said that the antichain q
pseudo-refines p). Hence, the witnessing sequences for σi and ρi can be pseudo-
refined by antichains of P. Moreover, the witnessing sequences for σ2, σ1, ρ2, ρ1

can be pseudo-refined so that the sets pα will be pairwise disjoint.
If p ∈ cP is a witnessing sequence for σ0, then {x ∈ ωω : |{α < c : x ∈ pα}| =

c} ∈ s(P). To see this let ax = {α < c : x ∈ pα} for x ∈ ωω and let A = {x ∈
ωω : |ax| = c}. Let f : A → c be a one-to-one function such that f(x) ∈ ax for
all x ∈ A. Define Af(x) = {x} for x ∈ A and Aα = ∅ for α ∈ c \ rng(f). Then
A =

⋃
α<cAα ∈ s(P) by the assumption on p.

Theorem 1.2. The implications of Figure 1 hold. If c is regular, then Figure 1
“reduces” to Figure 2.

cof(s(P)) > ccof(s(P)) ≥ d(cc) -

cof(s(P)) = d(µs(P))cof(s(P)) = d(cs(P))
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Figure 1. Implications between the assertions about P (σ2 ↔ ρ2

and σ1 ↔ ρ1). Dotted arrows are stated for PL only.

cof(s(P)) > ccof(s(P)) ≥ d(cc)cof(s(P)) = d(cs(P)) --

(5)(3)
��3��*

-

σ0σ∗
0ρ0(2)ρ2(1)

66

��3���*
-----

(4)

6

b · cov(M) = cb = c

66

Figure 2. Implications between the assertions assuming µ = c
(ρ2 ↔ ρ1 ↔ σ2 ↔ σ1). Dotted arrows are stated for PL only.



4 MIROSLAV REPICKÝ

Corollary 1.3.

(i) (b = c) → (cof(l0) = d(cl0)).
(ii) (b · cov(M) = c) → (cof(l0) > c).

Proof. These are the implications of Figure 1 or Figure 2. �

Let D ⊆ l0 denote the σ-ideal on ωω consisting of sets that are not strongly
dominating. Recall that a set A ⊆ ωω is strongly dominating if for every function
f : <ωω → ω there is x ∈ A such that x(k) > f(x�k) for all but finitely many
k ∈ ω. Then add(D) = cov(D) = b and cof(D) = non(D) = d (see [4, Lemma 2.4])
and b ≤ b · cov(M) ≤ d.

Corollary 1.4. cov(l0) < cof(l0).

Proof. If cov(l0) < c, then cov(l0) < c = non(l0) ≤ cof(l0). If cov(l0) = c, then
b = cov(D) ≥ cov(l0) = c, and then by Corollary 1.3 (i), cof(l0) = d(cl0) > c =
cov(l0). �

Example 1.5. Let Wκ be a generic extension of a transitive model V of ZFC by
finite support iterations of κ many Cohen reals for an uncountable cardinal κ. Then
Wκ � “ cov(l0) = cov(s0) = b = ω1 and d ≥ κ” (recall that s0 is the Marczewski
ideal). The equality cov(l0) = ω1 holds because whenever u ∈ ωω is an unbounded
real over Wα, then R∩Wα ∈ l0: Every Laver perfect set p has a Laver perfect subset
p′ = {x ∈ p : (∀n ∈ ω) x(n) ≥ u(n)} that contains no real from Wα. If Cα denotes
the notion of forcing for adding α many Cohen reals, then Cκ ' Cκ×Cω1 for κ ≥ ω1.
Similarly the equality cov(s0) = ω1 holds in Wω1 , and hence also in Wκ, because
ω2 ∩Wα ∈ s0 in Wω1 for every α < ω1. We prove that ω2 ∩Wα ∈ s0 in Wω1 . Let
p ⊆ ω2 be arbitrary perfect set coded in Wω1 . The Borel code of p belongs to Wβ for
some countable β ≥ α. Let f : ω2×ω2 → p be an homeomorphism coded in Wβ and
let p′ = f“(ω2×{r}) for an r ∈ ω2 \Wβ . Then p′ ∩ (ω2∩Wα) ⊆ p′ ∩ (ω2∩Wβ) = ∅
because r /∈Wβ can be defined from any element of p′ by means of f .

Fact 1.6. Conditions (1) and (4) hold in ZFC for P = PS.

Proof. We prove that for every maximal antichain A ⊆ PS there exists a maximal
antichain {pα : α < c} ⊆ PS refining A consisting of pairwise disjoint sets. (The
term “refining family” is used here in the sense that every pα is a subset of some
q ∈ A. This differs from the already mentioned “refining sequence”.) To prove this,
let {rξ : ξ < c} be an enumeration of PS. By splitting one element of the partition
if necessary we can assume without loss of generality that |A| = c. By induction
on α < c define {pα : α < c} as follows: Let ξα be the least ξ such that rξ is
incompatible with all pβ , β < α, i.e., all |rξ ∩ pβ | ≤ ω for all β < α (such ξ exists
because by the induction hypothesis {pβ : β < α} refines A and |A| = c). Chose
q ∈ A compatible with rξα and let pα ∈ P be a subset of rξα ∩ q disjoint from the
s0-set

⋃
β<α(rξα

∩ pβ). The sets pα are pairwise disjoint by the construction. The
sequence of ordinals ξα, α < c is strictly increasing, hence cofinal in c. Therefore
every rξ is compatible with some pα. Hence {pα : α < c} is a maximal antichain
refining A with pairwise disjoint sets. This gives (1). One can easily verify that
every selector for {pα : α < c} is an s0-set that meets every q ∈ A. Then (4) follows,
too, because every antichain can be extended to a maximal one. �
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Therefore cof(s0) = d(cs0) ≥ d(cc) > c holds in ZFC (in fact, the inequality
cof(s0) > c was observed by Khomskii [5]). For P = PL in [2] the following was
proved:

(ρ) There is a system {pα : α < c} ⊆ P of pairwise disjoint sets such that for
every q ∈ PL there is q′ ⊆ q in P such that either there is α < c such that
q′ ⊆ pα or |q′ ∩ pα| ≤ 1 for all α < c.

Lemma 1.7. ρ→ ρ2.

Proof. Let p = 〈pα : α < c〉 ∈ cP be a witness for (ρ). Let {qα : α < c} be
an enumeration of the set {q ∈ P : (∀α < c) |q ∩ pα| ≤ 1}. For every α < c,
|pα ∩

⋃
β≤α qβ | < c and |qα ∩

⋃
β<α pβ | < c. Then for every α < c there are

rα, q
′
α ∈ P such that rα ⊆ pα \

⋃
β≤α qβ = ∅ and q′α ⊆ qα \

⋃
β≤α pβ = ∅ because

cov(s(P)) = c. We claim that the sequence {rα : α < c} is a witness for (ρ2).
Let q ∈ P be given. If there is q′ ⊆ q in P such that q′ ⊆ pα for some α, then
{β < c : q′ ∩ pβ 6= ∅} = {α}. Otherwise by (ρ) there is α < c such that qα ⊆ q.
Then q′α ⊆ q and q′α ∩

⋃
β<c rβ ⊆ (q′α ∩

⋃
β≤α pβ) ∪ (qα ∩

⋃
β>α rβ) = ∅, i.e.,

{β < c : q′α ∩ pβ 6= ∅} = ∅. �

Corollary 1.8. cof(l0) = d(cl0) ≥ d(cc) > c. �

Acknowledgement. The author would like to thank the referee for their reading
all versions of this paper carefully and suggestions of improvements.

2. Proofs

Lemma 2.1. ρ2 → ρ1 → ρ0.

Proof. The implication ρ2 → ρ1 is trivial. Assume that p ∈ µP is a witness for ρ1

and let f : µ→ c is a cofinal function. For every α < µ choose a system {pα,ξ : ξ <
f(α)} ⊆ P of pairwise disjoint subsets of pα and let r = 〈rα : α < c〉 be a one-to-one
enumeration of {pα,ξ : α < µ and ξ < f(α)}. Clearly r is a witness for ρ0 and hence
ρ1 → ρ0 holds. �

Lemma 2.2. σ2 → σ1 → σ0 and σ2 → σ∗0 .

Proof. If p ∈ µP is a witness for σ1, then any p′ ∈ cP obtained from p by splitting
each member of p into < c sets is a witness for σ0. Therefore σ1 → σ0 holds. The
other implications are trivial. �

Lemma 2.3. σ2 ↔ ρ2, σ1 ↔ ρ1, ρ0 → σ0.

Proof. We prove ρ2 → σ2 and σ2 → ρ2; proofs of other implications are similar.
Let p ∈ cP be a witness for ρ2 and let Aα ⊆ pα be arbitrary s(P)-sets for α < c.

We show that A =
⋃

α<cAα is an s(P)-set and hence σ2 holds. Let q ∈ P be
arbitrary. There is q′ ⊆ q in P and α < c such that q′ ∩ pβ = ∅ for all β 6= α.
Then A ∩ q′ = Aα ∩ q′ ∈ s(P) and then there is q′′ ⊆ q′ in P such that q′′ ∩A = ∅.
Therefore A ∈ s(P).

Let p ∈ cP be a witness for σ2. By Theorem 3.4 there is a disjoint pseudo-
refinement r ∈ cP of p, i.e., for all α < β < c, rα ∩ rβ ∈ s(P) and there is
a one-to-one function f : c → c such that rα ⊆ pf(α) for all α < c. We verify that
r is a witness for ρ2. Let q ∈ P. Since r is an antichain of P and P is separable,
there are q′ ⊆ q in P and α < c such that q′ ∩ rβ ∈ s(P) for all β 6= α. Then
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q′ ∩
⋃

β 6=α rβ ∈ s(P) by the choice of p. Therefore there is q′′ ⊆ q′ in P such that
q′′ ∩

⋃
β 6=α rβ = ∅. �

The same proof as that of ρ0 → σ0 gives the following:

Lemma 2.4. If c is regular, then ρ0 → σ∗0 . �

Lemma 2.5. (1) → (ρ2), (ρ1) → (2) → (ρ0), (2) → (3) → (5), (4) → (5),
(σ0) → (5).

Proof. The implications (ρ1) → (2) → (ρ0) and (3) → (5) need some explanation;
the other implications are trivial.

(ρ1) → (2). Let p ∈ µP be a witness for (ρ1), i.e., the set D = {q ∈ P : |{α < µ :
q ∩ pα 6= ∅}| ≤ 1} is dense in P. By refining the sets pα if necessary we can assume
that pα ∈ D and hence they are pairwise disjoint for α < µ. We can also assume
that the antichain p is not maximal in P. If q ∈ D is incompatible with every pα,
then since q can meet at most one member of p and P is separable, there is q′ ⊆ q in P
such that q′ ∩

⋃
α<µ pα = ∅. Hence there is a maximal antichain A ⊇ {pα : α < µ}

in D of cardinality c such that q ∩
⋃

α<µ pα = ∅ for all q ∈ A \ {pα : α < µ}. The
enumeration of A in which {pα : α < µ} is cofinal is a witness for (2).

(2) → (ρ0). Let {rα : α < c} ⊆ P be a maximal antichain such that (∀α < c)(∃r ∈
P) r ∩

⋃
β<α rβ = ∅ and let f ∈ µc be an increasing cofinal function. By induction

on α < µ find g(α) < c and families {qα,ξ : ξ < f(α)} ⊆ P of pairwise disjont sets
such that qα,ξ ⊆ rg(α) \

⋃
β<f(α) rβ . Let p ∈ cP be a one-to-one enumeration of

{qα,ξ : α < µ and ξ < f(α)}. Then p is a witness for ρ0: If q ∈ P is given find q′ ⊆ q
in P such that q′ ⊆ rβ for some β < c. Then q′ ∩ qα,ξ = ∅ whenever f(α) > β.

(3) → (5). For X ∈ s+(P) let P(X) = {p ∈ P : (∀q ∈ P) q ⊆ p → q ∩X 6= ∅}.
Assume that (3) holds and let {rα : α < c} ⊆ P be a maximal antichain such that
the sets Xα = ωω \

⋃
β<α rβ are in s+(P) for all α < c. Using the maximality of

the antichain, by induction construct u ∈ µP and an increasing continuous cofinal
function f ∈ µc with f(0) = 0 so that for every ξ < µ, uξ ∈ P(Xf(ξ)) and uξ ⊆ rβ
for some β < f(ξ+ 1). Define p ∈ cP by pα = uξ for α ∈ [f(ξ), f(ξ+ 1)) and ξ < µ.
Let q ∈ cP be arbitrary such that q ≤ p. Take any set A = {xα : α < c} with
xα ∈ qα ∩Xf(ξ) whenever α ∈ [f(ξ), f(ξ + 1)). Then A ∩ qα 6= ∅ for all α < c. We
prove that A ∈ s(P) and hence (5) holds. If v ∈ P there are β, ξ, and v′ ∈ P such
that β < f(ξ) and v′ ⊆ v ∩ rβ . Then A ∩ v′ ⊆ {xα : α < f(ξ)} has cardinality < c
and hence there is v′′ ⊆ v′ in P such that A ∩ v′ = ∅. �

Lemma 2.6. Let P = PL.
(i) (b = c) → (1).
(ii) (b · cov(M) = c) → (4).

Proof. The proof of (1) and (4) for P = PL under the assumption b = c is same as
that for the P = PS in Fact 1.6. (Following the proof of Fact 1.6 with PL in the role
of PS, let ξα be the least ordinal such that rξα ∩ pβ ∈ s(PL) for all β < α. Then⋃

β<α(rξα ∩ pβ) ∈ s(PL) because add(D) = b and we assume b = c. Therefore for
some q ∈ A we can find pα ⊆ rξα

∩ q in PL disjoint from
⋃

β<α(rξα
∩ pβ). This is

the only distinct point of the proofs.)
Assume cov(M) = c. To verify (4) assume that p ∈ cPL is an antichain and we

find A ∈ l0 such that A ∩ pα 6= ∅ for all α < c. Without loss of generality we can
assume that p is a maximal antichain. For every α < c there is xα ∈ pα \

⋃
β<α pβ
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because pα ∩ pβ is nowhere dense in pα whenever α 6= β. Let A = {xα : α < c}.
We prove that A ∈ l0. Let q ∈ PL be arbitrary. By maximality of the antichain p
there is α < c and q′ ∈ PL such that q′ ⊆ q ∩ pα. Then q′ ∩A ⊆ {xβ : β ≤ α}, and
since non(l0) = c, there is q′′ ∈ PL such that q′′ ⊆ q′ and q′′ ∩A = ∅. �

The following lemma summarizes hypotheses under which cof(s(P)) > c.

Lemma 2.7. Denote µ = cf(c).

(i) σ∗0 → cof(s(P)) ≥ d(cc).
(ii) ρ2 → cof(s(P)) = d(cs(P)).
(iii) ρ1 → cof(s(P)) = d(µs(P)).
(iv) (5) → cof(s(P)) > c.
(v) If c = µ, then (3) → cof(s(P)) ≥ d(cc).

Proof. (i) Let p ∈ cP be such that
⋃

α<cAα ∈ s(P) whenever (∀α < c) Aα ∈
[pα]<c. There is a pair of functions (Galois–Tukey embedding) ϕ : cc → s(P)
and ψ : s(P) → cc such that ϕ(f) ⊆ A implies f ≤ ψ(A), and consequently,
d(cc) ≤ cof(s(P)). To see this fix an enumeration {xα : α < c} of ωω and define
ϕ(f) =

⋃
α<c(pα ∩ {xβ : β < f(α)}) and ψ(A)(α) = min{β < c : xβ ∈ pα \A}.

(ii) Assume that p ∈ cP is a witness for σ2 (because ρ2 ↔ σ2 by Lemma 2.3).
Then cof(s(P)) ≥ d(

∏
α<c s(P)�pα) = d(cs(P)) ≥ cof(s(P)) because s(P)�pα =

s(P) ∩ P(pα) is isomorphic to s(P) for every α. The proof of (iii) is same.
(iv) Let p ∈ cP be a witness for (5). Let {Aα : α < c} be arbitrary family of

s(P)-sets of cardinality c. Find q ∈ cP such that for every α < c, qα ⊆ pα and
qα ∩ Aα = ∅. By (5) there is A ∈ s(P) such that (∀α < c) A ∩ qα 6= ∅. Then A is
not covered by any set from A. This proves that cof(s(P)) > c.

(v) Assume that (3) holds and let {pξ : ξ < c} ⊆ P be a maximal antichain in P
such that all sets Zβ = ωω \

⋃
ξ<β pξ for β < c are in s+(P). By the maximality

of the antichain for every β < c there is ξ ≥ β such that Zβ ∩ pξ ∈ s+(P). Hence,
by induction we can define an increasing sequence of ordinals {ξα : α < µ} cofinal
in c such that the sets Xα = Zξα \ Zξα+1 are in s+(P). Since non(s(P)) = c,
using the maximality of the antichain one can easily verify that

⋃
α<µAα ∈ s(P)

whenever (∀α < µ) Aα ∈ [Xα]<c. Then the same argument as in case (i) proves
that cof(s(P)) ≥ d(µc). �

Question 2.8. Assumimng b < c, is cof(l0) = d(bl0)? Notice that cof(l0) = d(κl0)
whenever 1 ≤ κ < b and if b = c, then the equality holds also for κ = b.

3. Refinemens

Let B be a Boolean algebra. For a ∈ B let B�a = {x ∈ B : x ≤ a} be the
relativization of B with respect to a and let B+ = B \ {0}.

Let κ and λ be cardinal numbers and let a = 〈aα : α < λ〉 and b = 〈bα : α < λ〉
be any λ-sequences in B+. We say that a is a disjoint sequence if aα ∧ aβ = 0 for
β < α < λ. We say that a is κ-disjoint if (∀α < λ) |{β < λ : aα ∧ aβ 6= ∅}| < κ
(in particular, 2-disjoint has the same meaning as disjoint and if λ < κ, then each
λ-sequence is κ-disjoint). We say that b is a refinement of a, if bα ≤ aα for all
α < λ; we say that b is a pseudo-refinement of a, if there is a one-to-one function
f : λ→ λ such that bα ≤ af(α) for all α < λ.
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Theorem 3.1 (Balcar–Vojtáš; [1, 6]). Assume that κ is an infinite cardinal and for
each x ∈ B+ there is an antichain of B�x of cardinality κ+. Then each κ-sequence
in B+ has a disjoint refinement. �

This theorem can be expressed in the following form:

Theorem 3.2. Assume that κ is a regular cardinal and for each x ∈ B+ there
is an antichain of B�x of cardinality κ. Then each κ-disjoint sequence in B+ has
a disjoint refinement.

Proof. Let 〈aα : α < λ〉 be a κ-disjoint sequence in B+. The following are the lines
from [6]. For X ⊆ B and a ∈ B let X(a) = {x ∈ X : x ∧ a 6= 0}. By induction
on α < λ we construct a chain 〈Xα : α < λ〉 of antichains of B+ increasing with
respect to the inclusion such that for every α, β < λ,

(i) Xα(aβ) = ∅ or |Xα(aβ)| ≥ κ and
(ii) |Xα+1(aα)| ≥ κ.

Put X∅ = ∅ and let Xα =
⋃

β<αXβ for α limit. Assume that Xα has been
constructed. If |Xα(aα)| = κ, set Xα+1 = Xα. Otherwise Xα(aα) = ∅ and hence
a ∧ aα = 0 for all a ∈ Xα. Choose any antichain Y ⊆ B�aα of size κ and let
Y ′ = Y \

⋃
{Y (aβ) : aα ∧ aβ 6= 0 and |Y (aβ)| < κ}. By regularity of κ and because

a is κ-disjoint, |Y ′| = κ. Define Xα+1 = Xα ∪ Y ′. This finishes the construction.
Let X =

⋃
α<λXα. Then |X(aα)| = κ for all α < λ. By induction on α < κ

choose xα ∈ X(aα) \ {xβ : β < α and aα ∧ aβ 6= 0} and define a disjoint refining
sequence 〈bα : α < λ〉 for 〈aα : α < λ〉 by setting bα = xα ∧ aα. �

Theorem 3.3. Assume that κ is an infinite cardinal and for each x ∈ B+ there is
an antichain of B�x of cardinality κ. Then each κ-sequence in B+ has a disjoint
pseudo-refinement.

Proof. Let κ-sequence a ∈ κ(B+) be fixed. There are several cases.
Case 1. κ is regular. We claim that there exists a disjoint sequence d ∈ κ(B+)

such that for every S ∈ [κ]<κ there are β, γ ∈ κ \ S such that dγ ∧ aβ 6= 0.
To prove the claim, for every α < κ choose an antichain Dα ⊆ (B�aα)+ of

size κ. Assuming that disjoint sequences d ∈ κ(B�aα)+ for any α < κ have not
the property in the claim (otherwise there is nothing to prove) we can find for
every α < κ a set D′

α ∈ [Dα]<κ and an ordinal g(α) < κ such that d ∧ aβ = 0
for all d ∈ Dα \D′

α and β ≥ g(α). Since κ is regular and g(α) > α for all α < κ
the function f : κ → κ inductively defined by f(α) = g(sup f�α) for α < κ is
strictly increasing. For α < β < κ, because f(β) ≥ f(α + 1) = g(f(α)), for all
d ∈ Df(α)\D′

f(α) and e ∈ Df(β)\D′
f(β) we have d∧e ≤ d∧af(β) = 0. It follows that

D =
⋃

α<κ(Df(α) \ D′
f(α)) is an antichain of size κ and each af(α) meets κ many

elements of D. Therefore the antichain D (i.e., enumeration of D by κ) has the
property in the claim and the proof of the claim is finished.

The claim allows inductively define one-to-one functions f, g : κ→ κ by

f(α) = min{β ∈ κ \ rng(f�α) : (∃γ ∈ κ \ rng(g�α)) dγ ∧ aβ 6= 0},
g(α) = min{γ ∈ κ \ rng(g�α) : dγ ∧ af(α)) 6= 0}.

Then the sequence b ∈ κ(B+) defined by bα = dg(α)∧af(α) is disjoint and bα ≤ af(α),
i.e., b is a disjoint pseudo-refinement of a.

Case 2. κ is singular. Let µ = cf(κ), and let 〈κξ : ξ < µ〉 be an increasing cofinal
sequence of regular cardinals in κ bigger than µ. We consider two subcases.
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Case 2a. There exists a disjoint sequence d ∈ λ(B+) with λ < κ such that for
every S′ ∈ [κ]<κ and every T ′ ∈ [λ]<µ there are β ∈ κ \S′ and γ ∈ λ \ T ′ such that
dγ ∧ aβ 6= 0. For γ < λ let Sγ = {β < κ : dγ ∧ aβ 6= 0}, let T = {γ < λ : |Sγ | = κ},
and let S =

⋃
γ∈λ\T Sγ .

If |T | ≥ µ, let 〈γξ : ξ < µ〉 be any sequence of distinct elements of T . For ξ < µ
we can choose Bξ ∈ [Sγξ

]κξ so that the sets Bξ’s are pairwise disjoint. This is
possible because κξ >

∑
η<ξ κη. By Balcar–Vojtáš theorem, for every ξ < µ there

is a disjoint refinement 〈bα : α ∈ Bξ〉 of the sequence 〈dγξ
∧ aα : α ∈ Bξ〉. Then

〈bα : α ∈
⋃

ξ<µBξ〉 is a disjoint pseudo-refinement of a.
If |T | < µ, then |S| = κ by the hypothesis for Case 2a. For γ ∈ λ \ T let

Bγ = Sγ \
⋃
{Sδ : δ < γ and δ ∈ λ \ T}. Then S =

⋃
γ∈λ\T Bγ is a disjoint union

of sets of cardinalities < κ. By Balcar–Vojtáš theorem, for every γ ∈ λ \ T there
is a disjoint refinement 〈bα : α ∈ Bγ〉 of the sequence 〈dγ ∧ aα : α ∈ Bγ〉. Then
〈bα : α ∈ S〉 is a disjoint pseudo-refinement of a.

Case 2b. For every disjoint sequence d ∈ λ(B+) with λ < κ there exist S ∈ [κ]<κ

and T ∈ [λ]<µ such that for all β ∈ κ \ S and γ ∈ λ \ T we have dγ ∧ aβ = 0.
By Balcar–Vojtáš theorem, for every ξ < µ let 〈bα : α ∈ κξ+1 \ κξ〉 be a disjoint

refinement of 〈aα : α ∈ κξ+1 \ κξ〉. Find Sξ ∈ [κ]<κ and Tξ ∈ [κξ+1 \ κξ]<µ such
that bγ ∧ aβ = 0 for all β ∈ κ \Sξ and γ ∈ κξ+1 \ (κξ ∪ Tξ). By induction construct
a cofinal subset X ⊆ µ (the range of an increasing sequence) such that |Sη| < κξ

whenever η < ξ are both in X. For ξ ∈ X let Bξ = κξ+1 \ (κξ ∪Tξ ∪
⋃

η<ξ, η∈X Sη).
If η < ξ are both in X, then Bξ ⊆ κ \ Sη and Bη ⊆ κη+1 \ (κη ∪ Tη), and therefore
bγ ∧ bβ ≤ bγ ∧ aβ = 0 for β ∈ Bξ and γ ∈ Bη. Then b = 〈bα : α ∈

⋃
ξ∈X Bξ〉

is a disjoint sequence in B+ and |b| =
∑

ξ∈X κξ+1 = κ. Therefore b is a disjoint
pseudo-refinement of a. �

A Boolean algebra B is said to be (ν, ·, κ)-distributive if for every ν-sequence of
antichains Aα ⊆ B+, α < ν there exists a maximal antichain A ⊆ B+ such that for
every x ∈ A and every α < ν, |{y ∈ Aα : x∧y 6= 0}| < κ (see [7]). We say that B is
(ν, ·, κ)∗-distributive if for every ν-sequence of antichains Aα ⊆ B+, α < ν there
exists a maximal antichain A ⊆ B+ such that |{y ∈

⋃
α<ν Aα : x ∧ y 6= 0}| < κ for

every x ∈ A.
Let S be an infinite set. For f ∈ SB let supp(f) = {s ∈ S : f(s) > 0}. We

say that f ∈ SB has a disjoint refinement if f� supp(f) has a disjoint refinement.
Assuming that f ∈ SB has no disjoint refinement we define

I(f) = {X ⊆ S : f�X has a disjoint refinement}.

Theorem 3.4. Assume that κ is an infinite cardinal and for each x ∈ B+ there is
an antichain of B�x of cardinality κ. If f ∈ SB has no disjoint refinement, then
I(f) is an ideal on S such that [S]<κ ⊆ I(f) and I(f) ∩ [X]κ 6= ∅ for all X ∈ [S]κ.
If B is (ν, ·, κ)∗-distributive, then I(f) is a ν-complete ideal on S.

Proof. Obviously I(f) is closed for subsets. By Balcar–Vojtáš theorem [S]<κ ⊆ I(f)
and by previous theorem I(f)∩ [X]κ 6= ∅ for all X ∈ [S]κ. Every Boolean algebra is
(ν, ·, 2)-distributive for ν < ω and therefore the fact that I(f) is an ideal is a special
case of the claim about the additivity of I(f).

Assume that B is (ν, ·, κ)∗-distributive and let Xi ∈ I(f) for i < ν be pairwise
disjoint. We prove that the union X =

⋃
i∈ω Xi belongs to I(f). Without loss of

generality we can assume that X ⊆ supp(f). Because the sets Xi’s are pairwise
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disjoint there is g ∈ X(B+) such that g�Xi is a disjoint refinement of f�Xi for
i < ν. By the distributivity property of B there is a maximal antichain A ⊆ B+

such that for every a ∈ A the set Ya = {s ∈ X : g(s) ∧ a 6= 0} has cardinality < κ.
Let � be a well-ordering of A. The sets Y ′

a = Ya \
⋃

b≺a Yb for a ∈ A are pairwise
disjoint and by maximality of A we have X =

⋃
a∈A Ya =

⋃
a∈A Y

′
a. Since |Y ′

a| < κ,
by Balcar–Vojtáš theorem there is a disjoint refinement fa : Y ′

a → B+ of g�Y ′
a for

every a ∈ A. It follows that
⋃

a∈A fa ∈ X(B+) is a disjoint refinement of f�X and
hence X ∈ I(f). �

Example 3.5. Let R be the disjoint refinement ideal on ω2, i.e., the ideal I(f) for the
Boolean algebra B = P(ω)/fin and f : ω2 → B defined by f(x) = {n ∈ ω : x(n) =
1}/fin for x ∈ S. Then [ω2]<c ⊆ R, R∩ [X]c 6= ∅ for all X ∈ [ω2]c, and add(R) ≥ h
(recall that h is the least cardinal κ such that P(ω)/fin is not κ-distributive). Let
us recall two other σ-ideals I0 ( P2 on ω2:

P2 = {A ⊆ ω2 : (∀a ∈ [ω]ω) A�a 6= a2},
I0 = {A ⊆ ω2 : (∀a ∈ [ω]ω)(∃b ∈ [a]ω) |A�b| ≤ ω},

where A�a = {x�a : x ∈ A}. The ideal P2 was introduced by Ros lanowski [11]
in connection to an infinite game of Mycielski. The ideals I0 and P2 coincide on
analytic sets and add(I0) ≥ h (see [9]). By Balcar–Vojtáš theorem one can easily
verify that

I0 ⊆ {A ⊆ ω2 : (∀a ∈ [ω]ω)(∃b ∈ [a]ω) |A�b| < c} ⊆ R.

On the other hand, R \P2 6= ∅, and moreover, there is a closed set A ⊆ ω2 such
that A ∈ R and (∀b ∈ [ω]ω)(∃c ∈ [b]ω) A�c = c2. To see this, let P ⊆ [ω]ω be
a compact almost disjoint family. For a ∈ P let Aa = {x ∈ ω2 : (∀n ∈ a) x(n) = 1}
and let A =

⋃
a∈P Aa. Then the set A is a closed subset of ω2 (A is a projection of

the compact set {(a, x) : a ∈ P and x ∈ Aa}) and A ∈ R (because for every x ∈ A
there is a ∈ P such that a ⊆∗ {n ∈ ω : x(n) = 1} and for every a ∈ A there is an
almost disjoint family of subsets of a of cardinality c). Let b ∈ [ω]ω be given. Find
a ∈ P such that c = b \ a is infinite. Then A�c ⊇ Aa�c = c2.

Example 3.6. Every c-sequence B ∈ cl+ has a disjoint refinement by l+-sets. As-
sume that Bα ∈ l+ for all α < c. For every α < c choose pα ∈ P(Bα), i.e.,
|q ∩ Bα| = c for all q ∈ P with q ⊆ pα. Let {pα,β : β < c} be an enumeration
of the set {q ∈ P : q ⊆ pα} and let π : c × c → c be one-to-one. By induc-
tion on π(α, β) choose xα,β ∈ Bα ∩ pα,β \ {xα′,β′ : π(α′, β′) < π(α, β)}. The sets
B′

α = {xα,β : β < c} are pairwise disjoint l+-sets and B′
α ⊆ Bα.
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