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Abstract. We analyze the structure of strongly dominating sets of reals in-

troduced in [4]. We prove that for every κ < b a κ-Suslin set A ⊆ ωω is

strongly dominating if and only if A has a Laver perfect subset. We also in-
vestigate the structure of the class l of Baire sets for the Laver category base

and compare the σ-ideal of sets which are not strongly dominating with the

Laver ideal l0.

1. Introduction

Strongly dominating sets were introduced in the paper [4] where the Borel de-
terminacy was used to show that for a Borel set A ⊆ ωω the following conditions
are equivalent: (1) A is strongly dominating; (2) A has a Laver perfect subset;
and (3) player I has a winning strategy in the domination game for the set A.
In the present paper we prove, by elementary means, that conditions (1)–(3) are
equivalent for any analytic and more generally for any κ-Suslin set A with κ < b.
A motivation for this research is the paper [6] in which it is proved that an analytic
set A ⊆ ωω is unbounded if and only if it has a superperfect (i.e., Miller perfect)
subset. Let us mention also that the notion of a strongly dominating set is similar
to but strictly stronger than the notion of a dominating set. In [12] it is proved that
every analytic dominating set in ωω contains a uniform superperfect set and that
the concept of uniform superperfect set does not suffice to characterize dominating
analytic sets in general. The question of the existence of perfect dominating sets
in analytic dominating sets was solved in [2]. The paper is organized as follows:

In Section 2 we introduce the notion of a strongly dominating set. For practi-
cal reasons we define strongly dominating sets by using an equivalent expression
from [4]. We discuss the original definition at the end of Section 3. We show that
the system D of sets which are not strongly dominating is a σ-ideal orthogonal to
the σ-ideals of meager sets and of measure zero sets. In Section 3 we examine some
combinatorial properties of strongly dominating sets.

In Section 4 we obtain the equivalence of conditions (1) and (2) for κ-Suslin sets
(Theorem 4.4) and in Section 5 we show also their equivalence to condition (3). We
prove that every analytic domination game is determined.

In Section 6 we consider the Laver σ-ideal l0 and the σ-algebra l. Assuming
b = c, these systems have some regularity properties because the Laver perfect sets
form a category base. We show that D is a proper subset of l0 and we consider
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several subsystems of l whose intersection with l0 coincide with D. We show that,
at least consistently, almost all of them are pairwise distinct.

In Section 7 we present properties of a natural partition of the Baire space into
Laver perfect sets.

In Section 8 we consider several partial quasi-orderings of good sequences of
Laver perfect sets. We show that the distributivity invariants for two of them
coincide and provide a lower estimation for add(l0).

We use the standard notation. By symbols add(I), cov(I), non(I), and cof(I)
we denote respectively the additivity, the covering, the uniformity, and the cofinality
of an ideal I; b is the least cardinality of an unbounded family and d is the least
cardinality of a dominating family in ωω with respect to eventual dominance; and
t is the least cardinality of a tower in [ω]ω (see e.g., [1, 3]).

2. Strongly dominating sets and the ideal D

A tree q ⊆ <ωω is said to be a Laver tree, if there is s ∈ q (a stem of q) such
that for every t ∈ q either t ⊆ s or s ⊆ t and for every t ∈ q with s ⊆ t the set
brq(t) = {n ∈ ω : t_〈n〉 ∈ q} is infinite. The set of branches

[q] = {x ∈ ωω : (∀k ∈ ω) x�k ∈ q}
of a Laver tree q with stem s is called a Laver perfect set with stem s. For a tree
q ⊆ <ωω and t ∈ q let (q)t be the subtree of q defined by

(q)t = {s ∈ q : s ⊆ t or t ⊆ s}.
Let us recall that a set A ⊆ ωω is dominating, if for every y ∈ ωω there is x ∈ A

such that y(k) ≤ x(k) for all but finitely many k ∈ ω. Let us consider the following
dominating properties of a set A ⊆ ωω.

D(A) ↔ (∀f : <ωω → ω)(∃x ∈ A)(∀∞k ∈ ω) x(k) ≥ f(x�k),

Ds(A) ↔ (∀f : <ωω → ω)(∃x ∈ A ∩ [s])(∀k ≥ |s|) x(k) ≥ f(x�k).

We say that a set A ⊆ ωω is strongly dominating (see [4, Lemma 2.3 (4)]), if
D(A) holds. We discuss the original Definition 2.1 of [4] at the end of the next
section.

Let us define

D = {A ⊆ ωω : A is not strongly dominating}
and for f : <ωω → ω let

B(f) = {x ∈ ωω : (∃∞k ∈ ω) x(k) < f(x�k)}.

Remark 2.1. Assume that A,B ⊆ ωω.
(1) If D(B) holds for some B ⊆ A, then D(A) holds.
(2) If D(A) holds, then D(A \B(f)) holds for every f : <ωω → ω.
(3) If D(A) holds, then A is a dominating family.

Proof. (3) For g ∈ ωω define f(s) = g(|s|) for s ∈ ωω. There is x ∈ A such that for
all but finitely many k ∈ ω, x(k) ≥ f(x�k) = g(k). �

Example 2.2. The following dominating sets are not strongly dominating:

A0 = {x ∈ ωω : (∀k ∈ ω) x(2k + 1) = x(2k)},
A1 = {x ∈ ωω : (∃∞k ∈ ω) x(2k + 1) ≤ x(2k)}.
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A0 is a closed subset and A1 is a Gδ dense subset of ωω. Actually, A0 ⊆ A1 and,
if f(s) = s(k) + 1 for s ∈ k+1ω and k ∈ ω, then for every x ∈ A1, (∃∞k ∈ ω)
x(2k + 1) ≤ x(2k) < f(x�(2k + 1)).

Lemma 2.3 ([13]). D is a σ-ideal on ωω with a base consisting of Gδ sets.

Proof. For each f : <ωω → ω the set B(f) is a Gδ set in D and, by definition, for
each A ∈ D there is f such that A ⊆ B(f).

If fn : <ωω → ω for n ∈ ω and f : <ωω → ω is defined by f(s) = max{fn(s) :
n ≤ |s|}, then

⋃
n∈ω B(fn) ⊆ B(f). �

Lemma 2.4. add(D) = cov(D) = b and cof(D) = non(D) = d.

Proof. cov(D) ≥ add(D) ≥ b and non(D) ≤ cof(D) ≤ d because

f ≤∗ f ′ → B(f) ⊆ B(f ′) for f, f ′ : <ωω → ω.

Conversely, cov(D) ≤ b and non(D) ≥ d because there is ϕ : ωω → D such that

f ′ /∈ ϕ(f) → f ≤∗ f ′ for f, f ′ ∈ ωω.

For f ∈ ωω let ϕ(f) = B(g) where g(s) = f(|s|) for s ∈ <ωω. If f ′ /∈ ϕ(f) = B(g),
then (∀∞k ∈ ω) f ′(k) ≥ g(f ′�k) = f(k). �

Denote by M the ideal of meager subsets of ωω and by Nµ the ideal of sets of
measure 0 for a (σ-additive) Borel measure µ on ωω. The ideals M and Nµ are
known to be orthogonal for all “reasonable” µ, i.e., there are sets M ∈ M and
N ∈ Nµ such that M ∪N = ωω.

Lemma 2.5. The ideal D is orthogonal to the ideals M and Nµ for every finite
Borel measure µ.

Proof. D and M are orthogonal because B(f) ∈ D and B(f) is a Gδ dense subset
of ωω whenever f : <ωω → ω and B(f) 6= ∅. Assume that µ is a Borel measure
and µ(ωω) = 1. Denote Ak,m = {x ∈ ωω : x(k) < m} and find g ∈ ωω such that
µ(Ak,g(k)) > 1 − 2−k for all k ∈ ω. Then for f(s) = g(|s|) we have µ(B(f)) = 1
because

B(f) =
⋂

n∈ω

⋃
k≥nAk,g(k).

Therefore D and Nµ are orthogonal. �

3. Combinatorial properties of strongly dominating sets

For a set A ⊆ ωω and s ∈ <ωω we define

Φ(A) = {x ∈ ωω : (∀∞k ∈ ω) Dx�k(A)},
Φs(A) = {x ∈ [s] : (∀k ≥ |s|) Dx�k(A)},
ps(A) = {x�k : x ∈ Φs(A) and k ∈ ω}.

The set Φs(A) is closed and, if Φs(A) 6= ∅, then ps(A) ⊆ <ωω is a tree and
Φs(A) = [ps(A)].

Lemma 3.1. If A ⊆ ωω, then for every set B ∈ D and for every s ∈ <ωω,
Ds(A) ↔ Ds(A \B).

Proof. Let f0 : <ωω → ω be such that B ⊆ B(f0). Assume that Ds(A) holds and
f : <ωω → ω. Find x ∈ A ∩ [s] such that (∀k ≥ |s|) x(k) ≥ max{f(x�k), f0(x�k)}.
Then x /∈ B(f0) and hence Ds(A \B) holds. �
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Lemma 3.2. Assume that A ⊆ ωω.

(1) A \ Φ(A) ∈ D.
(2) D(A) ↔ (∃s ∈ <ωω) Ds(A).
(3) Ds(A) ↔ (∃∞n ∈ ω) Ds_〈n〉(A).

Proof. Let EA = {s ∈ <ωω : Ds(A)} and EA,s = {n ∈ ω : s_〈n〉 ∈ EA} for
s ∈ <ωω. For every s ∈ <ωω \ EA choose fs : <ωω → ω such that (∀x ∈ A ∩ [s])
(∃k ≥ |s|) x(k) < fs(x�k). Define

gA(s) = max({ft(s) : t /∈ EA and t ⊆ s} ∪ {0}),

hA(s) =

{
0, if EA,s is infinite or EA,s = ∅,
(maxEA,s) + 1, if EA,s 6= ∅ is finite

for s ∈ <ωω.
(1) We prove that A \ Φ(A) ⊆ B(gA). For x ∈ A \ Φ(A) we can derive the

following conditions:

(∃∞k ∈ ω) x�k /∈ EA,

(∃∞k ∈ ω)(∀y ∈ A ∩ [x�k])(∃l ≥ k) y(l) < fx�k(y�l) ≤ gA(y�l),

(∃∞l ∈ ω) x(l) < gA(x�l).

(2) The implication (∃s ∈ <ωω) Ds(A) → D(A) is obvious. If EA = ∅, then for
every x ∈ A, n ∈ ω, and s = x�n there is k ≥ n such that x(k) < fs(x�k) ≤ gA(x�k).
Therefore A ⊆ B(gA) and D(A) does not hold.

(3) Assume that EA,s is infinite. For arbitrary f : <ωω → ω there are n ∈ EA,s

and x ∈ A ∩ [s_〈n〉] such that n ≥ f(s) and (∀k ≥ |s|+ 1) x(k) ≥ f(x�k). Clearly
x(k) ≥ f(x�k) also for k = |s| and hence Ds(A) holds.

Assume that EA,s is finite. Let f(s) = max{gA(s), hA(s)} and we show that
(∀x ∈ A ∩ [s])(∃k ≥ |s|) x(k) < f(x�k). Therefore Ds(A) does not hold. Let
x ∈ A ∩ [s] and n = x(|s|). If n ∈ EA,s, then for k = |s|, x(k) < hA(x�k) ≤ f(x�k).
If n /∈ EA,s, then by the choice of fs_〈n〉 there is k ≥ |s| + 1 such that x(k) <
fs_〈n〉(x�k) ≤ gA(x�k) ≤ f(x�k). �

Lemma 3.3. Φ(A ∩ Φ(A)) = Φ(A) and Φs(A ∩ Φ(A)) = Φs(A) for all s ∈ <ωω
and A ⊆ ωω.

Proof. The equalities follow by definitions of Φ(A) and Φs(A), by Lemma 3.1 and
by Lemma 3.2 (1). �

Lemma 3.4.

(1) Ds(A) ↔ Φs(A) 6= ∅ ↔ ps(A) is a Laver tree with stem s.
(2) Ds(A) ↔ Ds(A ∩ Φs(A)).
(3) If s ⊆ t and Dt�k(A) holds for all |s| ≤ k < |t|, then Φs(A) ∩ [t] = Φt(A).
(4) If A ⊆ ωω is closed, then Φs(A) ⊆ A for all s ∈ <ωω.
(5) Φs(A ∩ Φs(A)) = Φs(A) = Φs(Φs(A)).

Proof. (1) is a consequence of Lemma 3.2 (3).
(2) Assume that Ds(A) holds and Ds(A ∩ Φs(A)) does not hold. Denote

U = {t ⊇ s : A ∩ [t] 6= ∅ and ¬Dt(A) and Du(A) holds for s ⊆ u ( t}.
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Then {[t] : t ∈ U} is a disjoint system of basic clopen sets. Choose g, ft : <ωω → ω
for t ∈ U such that

(∀x ∈ A ∩ [t])(∃k ≥ |t|) x(k) < ft(x�k),

(∀x ∈ A ∩ Φs(A))(∃k ≥ |s|) x(k) < g(x�k).

Define f(u) = min{ft(u) : [u]∩ [t] 6= ∅} (where we let min ∅ = 0 if necessary). Since
Ds(A) holds, there is x ∈ A ∩ [s] such that

(∀k ≥ |s|) x(k) ≥ max{f(x�k), g(x�k)}.

If x /∈ Φs(A), then x ∈ [t] for some t ∈ U and (∀k ≥ |t|) x(k) ≥ f(x�k) = ft(x�k);
this disagree with x(k) < ft(x�k) for some k ≥ |t|. If x ∈ Φs(A), then x(k) < g(x�k)
for some k ≥ |s| which contradicts the choice of x.

(3) The inclusion Φs(A) ∩ [t] ⊆ Φt(A) is obvious. If x ∈ Φt(A), then x ∈ [t]
and Dx�k(A) holds for all k ≥ |t| and it holds for |s| ≤ k < |t| by the assumption.
Therefore x ∈ Φs(A) ∩ [t].

(4) If A is closed, then Φs(A) ⊆ cl(A) = A because for every t ∈ <ωω such that
[t] ∩ Φs(A) 6= ∅ we have [t] ∩A 6= ∅.

(5) The inclusion Φs(A∩Φs(A)) ⊆ Φs(Φs(A)) is obvious and Φs(Φs(A)) ⊆ Φs(A)
because Φs(A) is closed. We prove Φs(A) ⊆ Φs(A ∩ Φs(A)). Let x ∈ Φs(A). Then
for every k ≥ |s|, Dx�k(A) holds, and then by (2) and (3), Dx�k(A∩Φx�k(A)) holds
and Φx�k(A) = Φs(A)∩ [x�k] because s ⊆ x�k and Dx�l(A) holds for all |s| ≤ l < k.
Therefore Dx�k(A ∩ Φs(A)) holds and hence x ∈ Φs(A ∩ Φs(A)). �

Remark 3.5. For A ⊆ ωω denote

F (A) = ωω \
⋃
{[s] : s ∈ <ωω and A ∩ [s] ∈ D}.

If F (A) 6= ∅, then F (A) is a perfect set, Φ(A) is an Fσ dense subset of F (A), and
cl(Φ(A)) = cl(A ∩ Φ(A)) = F (A). By Lemma 2.3 and Lemma 3.2 we have

D(A ∩ [s]) ↔ D(A ∩ F (A) ∩ [s]) ↔ D(A ∩ Φ(A) ∩ [s])

↔ F (A) ∩ [s] 6= ∅ ↔ Φ(A) ∩ [s] 6= ∅.

Example 3.6. There is an open set A ⊆ ωω and a Laver tree q with stem s such
that [q] ⊆ Φs(A) and [q]∩A = ∅. For example, if A = ωω \ [q], where q is the Laver
tree of sequences of even numbers, then Φ∅(A) = ωω.

For the sake of completeness let us mention that in [4] the following equivalent
expression for a strongly dominating set A (here denoted by D′(A)) was primarily
considered:

D′(A) ↔ (∀f ∈ ωω)(∃x ∈ A)(∀∞k ∈ ω) x(k + 1) ≥ f(x(k)).

For s ∈ <ωω let us define also

D′
s(A) ↔ (∀f ∈ ωω)(∃x ∈ A ∩ [s])(∀k ≥ |s| −̇ 1) x(k + 1) ≥ f(x(k))

where n −̇ 1 = n− 1 if n > 0 and otherwise n −̇ 1 = 0.

Lemma 3.7. Assume that A ⊆ ωω.
(1) D′(A) ↔ D(A).
(2) D′

s(A) ↔ Ds(A) for all s ∈ <ωω \ {∅}.
(3) D′(A) ↔ (∃s ∈ <ωω) D′

s(A).
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Proof. (1) Assume that D(A) holds and let f : ω → ω be given. Define F (∅) = 0
and F (t) = f(t(k)) for t ∈ k+1ω and k ∈ ω. Find x ∈ A such that (∀∞k ∈ ω)
x(k) ≥ F (x�k). Then (∀∞k ∈ ω) x(k + 1) ≥ F (x�(k + 1)) = f(x(k)) and hence
D′(A) holds.

Assume that D′(A) holds and let F : <ωω → ω be given. Define f(n) =
max{F (t) : t ∈ ≤n(n + 1)} + 2n + 1 and find x ∈ A such that (∀∞k ∈ ω)
x(k+ 1) ≥ f(x(k)). Then for all but finitely many k ∈ ω, x(k+ 1) > x(k) ≥ k+ 1,
then for all but finitely many k ∈ ω, x�(k+ 1) ∈ ≤n(n+ 1) for n = x(k), and hence
x(k + 1) ≥ f(x(k)) ≥ F (x�(k + 1)). Therefore D(A) holds.

(2) Assume that Ds(A) holds and let f : ω → ω be given. Define F (∅) = 0 and
F (t) = f(t(k)) for t ∈ k+1ω and k ∈ ω. Find x ∈ A ∩ [s] such that (∀k ≥ |s|)
x(k) ≥ F (x�k). Then (∀k ≥ |s| −̇ 1) x(k + 1) ≥ F (x�(k + 1)) = f(x(k)) and hence
D′

s(A) holds.
Assume that D′

s(A) holds for an s 6= ∅ and let F : <ωω → ω be given. We can
assume that u(i) < F (u) ≤ F (v) whenever u ⊆ v and i ∈ dom(u). Find m ∈ ω such
that s ∈ <mm and define f(n) = max{F (t) : t ∈ n+m((n+1)∪m)}. Find x ∈ A∩[s]
such that (∀k ≥ |s| −̇1) x(k+1) ≥ f(x(k)). Then for all k ≥ |s|−1, x(k+1) > x(k)
and k+1 ≤ (x(k)+1)+(m−1), hence x�(k+1) ∈ ≤x(k)+m((x(k)+1)∪m). Therefore
(∀k ≥ |s| − 1) x(k + 1) ≥ f(x(k)) ≥ F (x�(k + 1)) and hence Ds(A) holds.

(3) The implication (∃s ∈ <ωω) D′
s(A) → D′(A) is obvious. Assume that D′(A)

holds. Then D(A) holds by (1), by Lemma 3.2, Ds(A) holds for some s 6= ∅, and
by (2), D′

s(A) holds for the same s. �

For f ∈ ωω let

B′(f) = {x ∈ ωω : (∃∞k ∈ ω) x(k + 1) < f(x(k))}.
By Lemma 3.7 (1), the family {B′(f) : f ∈ ωω} is a base of the ideal D. Therefore
for every g : <ωω → ω there is f : ω → ω such that B(g) ⊆ B′(f) and, vice versa,
for every f there is g such that B′(f) ⊆ B(g).

4. Analytic strongly dominating sets

A subset of a Polish space X is κ-Suslin, if it is a projection of a closed subset
of X × ωκ, and equivalently, if it is a continuous image of ωκ, see [10]. To simplify
the notation we say that a set is <λ-Suslin, if it is κ-Suslin for some κ < λ.

Let L(s) denote the family of all Laver trees q ⊆ <ωω with stem s and let L
denote the family of all Laver trees.

For a family A ⊆ P(ωω) by induction on α < ω1 we define

SA,0 = {s ∈ <ωω : (∃B ∈ A) Ds(B)},
SA,α = {s ∈ <ωω : (∃∞k ∈ ω) s_〈k〉 ∈

⋃
β<α SA,β} for α > 0,

SA =
⋃

α<ω1
SA,α,

ρA(s) = min{α ≤ ω1 : s ∈ SA,α or α = ω1} for s ∈ <ωω.

Lemma 4.1. If A ⊆ P(ωω) and |A| < b, then Ds(
⋃
A) holds if and only if

ρA(s) < ω1.

Proof. Denote A =
⋃
A. Assume ρA(s) < ω1. If ρA(s) = 0, then Ds(A) follows by

some Ds(B) for a B ∈ A; if ρA(s) > 0, then ρA(s_〈k〉) < ρA(s) for infinitely many
k ∈ ω and, by induction hypothesis, (∃∞k ∈ ω) Ds_〈k〉(A) holds. Then Ds(A)
holds by Lemma 3.2.
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To prove the converse implication by a contradiction, let us assume that Ds(A)
holds and ρA(s) = ω1. By Lemma 3.2 and Lemma 2.4, A\

⋃
B∈A Φ(B) ⊆

⋃
B∈A(B\

Φ(B)) ∈ D, and therefore, by lemma 3.1, Ds(A ∩
⋃

B∈A Φ(B)) holds. Define
f : <ωω → ω by

f(t) =

{
min{m ∈ ω : (∀k ≥ m) ρA(t_〈k〉) = ω1}, if ρA(t) = ω1,
0, otherwise.

There is x ∈ A ∩
⋃

B∈A Φ(B) ∩ [s] such that f(x�k) ≤ x(k) for all k ≥ |s|. Since
ρA(s) = ω1 and x ∈ [s], by definition of f it follows that ρA(x�k) = ω1 for all
k ≥ |s|. On the other hand x ∈ Φ(B) for some B ∈ A and hence ρA(x�k) = 0 for
almost all k ∈ ω. �

The lemma allows inductive constructions over rank ρA. As an application we
give the proof of the following theorem. Denote

M0 = {A ⊆ ωω : (∀s ∈ <ωω)(Ds(A) → (∃q ∈ L(s)) [q] ⊆ A)}.

Theorem 4.2. If A ⊆ M0 has cardinality < b, then
⋃
A ∈ M0.

Proof. Let A ⊆ M0 have cardinality < b and let A =
⋃
A. By Lemma 4.1 it is

enough to prove by induction on α < ω1 that if ρA(s) = α, then there is a Laver
tree q with stem s such that [q] ⊆ A. If ρA(s) = 0, thenDs(B) holds for some B ∈ A
and then the existence of a such q easily follows. Assume 0 < ρA(s) < ω1. There
exists an infinite set a ⊆ ω such that ρA(s_〈k〉) < ρA(s) for all k ∈ a. Applying
the induction hypothesis we find Laver trees qk with stem s_〈k〉 for k ∈ a such
that [qk] ⊆ A. Then q =

⋃
k∈a qk is a Laver tree with stem s and [q] ⊆ A. �

Let A ⊆ P(ωω). A tree q ⊆ <ωω is called an A-tree with stem s, if
(1) q is well-founded, i.e., q has no infinite branch,
(2) for every t ∈ q either t ⊆ s or s ⊆ t,
(3) for every t ∈ q with s ⊆ t either brq(t) ∈ [ω]ω or brq(t) = ∅, and
(4) for every t ∈ q with brq(t) = ∅ there is B ∈ A such that Dt(B) holds.

For every A-tree q with stem s there is a rank function ρ : {t ∈ q : s ⊆ t} → ω1

inductively defined by

ρ(t) = sup({0} ∪ {ρ(t_〈n〉) + 1 : n ∈ brq(t)}).

Then ρA(s) < ω1 because ρA(s) ≤ ρ(s) < ω1 (ρA is defined before Lemma 4.1).
Conversely, if ρA(s) < ω1, then

q = {t ∈ <ωω : t ⊆ s or [s ⊆ t
and ∀k |s| ≤ k < |t| → ρA(t�(k + 1)) < ρA(t�k)]}

is an A-tree. Therefore we can express Lemma 4.1 in the following form:

Lemma 4.3. If A ⊆ P(ωω) and |A| < b, then Ds(
⋃
A) holds if and only if there

is an A-tree with stem s. �

Theorem 4.4. If A is a <b-Suslin set, then A ∈ M0.

Proof. Assume that A ⊆ ωω is a strongly dominating κ-Suslin set with κ < b. Let
f : ωκ→ A be a continuous surjection and let s ∈ <ωω be such that Ds(A) holds.
We find a Laver tree q with stem s such that [q] ⊆ A.
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Denote Aσ = f([σ]) for σ ∈ <ωκ; hence A∅ = A. By induction on n ∈ ω define
well-founded trees qn ⊆ <ωω with the set of maximal nodesMn = {t ∈ qn : (∀k ∈ ω)
t_〈k〉 /∈ qn} and σ(t) ∈ <ωκ for t ∈Mn so that the following conditions hold:

(1) q0 = {t ∈ <ωω : t ⊆ s}, M0 = {s}, and σ(s) = ∅.
(2) qn−1 ⊆ qn and qn =

⋃
{(qn)t : t ∈Mn−1}.

(3) (∀u ∈Mn) Du

(
Aσ(u)

)
holds.

(4) (∀t ∈Mn−1) (qn)t is an {Aσ(u) : u ∈Mn ∩ (qn)t}-tree with stem t.
(5) If t ∈Mn−1, u ∈Mn, and t ⊆ u, then t 6= u and σ(t) ( σ(u).

Let n > 0 and assume that qn−1, Mn−1, and σ(t) for t ∈Mn−1 have been defined.
For each t ∈Mn−1 denote

St = {σ ∈ <ωκ : σ(t) ⊆ σ and (∃i ∈ ω) Aσ ⊆ [t_〈i〉]}.

Then Aσ(t)∩ [t] =
⋃
{Aσ : σ ∈ St} by continuity of f . Since |St| < b, by Lemma 4.3

there is an {Aσ : σ ∈ St}-tree pt with stem t. Set qn =
⋃
{pt : t ∈ Mn−1} and

for each u ∈ Mn ∩ pt with t ∈ Mn−1 choose σ(u) ∈ St so that Du

(
Aσ(u)

)
holds.

Conditions (2)–(4) follow by definitions of qn and σ(u) because (qn)t = pt. For
t ∈ Mn−1, Dt

(
Aσ(t)

)
holds by induction hypothesis but Dt(Aσ) does not hold for

σ ∈ St because Aσ ⊆ [t_〈i〉] for some i ∈ ω. Therefore σ(t) 6= σ(u) for u ∈Mn ∩ pt

and hence condition (5) is fulfilled.
Set q =

⋃
n∈ω qn. By (2) and (5), q is a tree with no finite branches and, by

(1) and (4), q is a Laver tree with stem s. Let x ∈ [q]. By (4) and (5) there are
tn ∈ Mn such that tn−1 ( tn ⊆ x for all n > 0, and then, σ(tn−1) ( σ(tn) for all
n > 0. Denote y =

⋃
n∈ω σ(tn). Then y ∈ ωκ. For each n > 0, σ(tn) ∈ Stn−1 and,

for some i ∈ ω, f([σ(tn)]) = Aσ(tn) ⊆ [tn−1
_〈i〉] ⊆ [tn−1]. It follows that f(y) = x

and hence x ∈ A. Therefore [q] ⊆ A. �

Recall that a tree q ⊆ <ωω is a Hechler tree if (∀s ∈ q)(∀∞n ∈ ω) s_〈n〉 ∈ q. It
is easy to see that for every set A ∈ D there exists a Hechler tree q with [q]∩A = ∅.
Therefore we obtain (it was the referee who drew our attention to this result):

Corollary 4.5 (A. W. Miller [8, Theorem 3]). For any <b-Suslin set A ⊆ ωω
either there exists a Hechler tree q with [q] ∩ A = ∅ or there exists a Laver tree q
with [q] ⊆ A. �

5. Domination game

Let us recall the domination game G(A) introduced in [4] (and denoted D(A)
there) as an instance of a two-person game GX(B) with perfect information where
X = ω and A ⊆ ωω is a projection of the set B ⊆ ωω. The initial move of player I in
G(A) is a finite sequence s ∈ <ωω and subsequent kth move of player II is x2k ∈ ω
and (k + 1)th move of player I is x2k+1 ∈ ω for k ∈ ω. Player I wins if (∀k ∈ ω)
x2k+1 ≥ x2k and s_〈x2k+1 : k ∈ ω〉 ∈ A.

Lemma 5.1 ([4, Lemma 2.3]). Let A ⊆ ωω.

(1) Player I has a winning strategy in the game G(A) if and only if there exists
p ∈ L such that [p] ⊆ A.

(2) Player II has no winning strategy in the game G(A) if and only if A is
strongly dominating.
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Proof. (1) If p is a Laver tree with stem s such that [p] ⊆ A, then player I wins
by opening the game with stem s of p and then following this strategy: To play
x2k+1 ≥ x2k so that s_〈x2i+1 : i ≤ k〉 ∈ p.

Let τ be a winning strategy of player I in the game G(A) and let pτ = {τ∗(u) :
u ∈ <ωω} where τ∗(u) = τ(∅)_〈τ(u�k) : 1 ≤ k ≤ |u|〉. Then pτ is a Laver tree with
stem s = τ(∅) and [pτ ] ⊆ A.

(2) By a strategy of player II in the game G(A) we understand a function σ :
<ωω×<ωω → ω having this meaning: If s ∈ <ωω is the initial move of player I and
t ∈ <ωω is an extension of s by a sequence of subsequent moves of player I, then
σ(s, t) is the response of player II by σ. The strategy σ is a winning strategy of
player II in the game G(A) if and only if for every s ∈ <ωω,

(∀x ∈ A ∩ [s])(∃k ≥ |s|) x(k) < σ(s, x�k).

It is evident that player II has a winning strategy if and only if Ds(A) does not
hold for any s ∈ <ωω, i.e., if and only if A is not strongly dominating. �

Now we have the following consequence of Theorem 4.4:

Corollary 5.2. Let A ⊆ ωω be a <b-Suslin set. Then:
(1) The domination game G(A) is determined.
(2) Player I has a winning strategy in the game G(A) if and only if A is strongly

dominating. �

6. Strongly dominating sets and Laver category base

Let us recall that a pair (X,P) where X is a set and P ⊆ P(X) is a family
of regions of X is called a category base (see [9]), if the following conditions are
satisfied:

(1) X =
⋃
P.

(2) Let A ∈ P and Q ⊆ P be a disjoint family with |Q| < |P|.
(a) If A ∩

⋃
Q contains a region, then there is a region B ∈ Q such that

A ∩B contains a region.
(b) If A∩

⋃
Q contains no region, then there is a region B ⊆ A such that

B ∩
⋃
Q = ∅.

Let L denote the family of Laver perfect subtrees of <ωω ordered by p ≤ q if
p ⊆ q and let PL be the family of all Laver perfect sets on ωω. Denote (see [4])

l = {X ⊆ ωω : (∀A ∈ PL)(∃B ∈ PL) B ⊆ A and (B ⊆ X or B ∩X = ∅)},
l0 = {X ⊆ ωω : (∀A ∈ PL)(∃B ∈ PL) B ⊆ A and B ∩X = ∅}.

It is easy to see that D ⊆ l0 and by Theorem 4.4, D ∩Σ1
1 = l0 ∩Σ1

1.

Theorem 6.1 ([4, Theorem 1.1 (1)]). t ≤ add(l0) ≤ cov(l0) ≤ b and non(l0) = c.

Proof. Since D ⊆ l0, by Lemma 2.4, add(l0) ≤ cov(l0) ≤ cov(D) = b.
Each Laver perfect set is a union of c many disjoint Laver perfect sets and some

of them must avoid a set of cardinality < c. Therefore non(l0) = c.
The inequality t ≤ add(l0) is proved in [4]. It follows also by Lemma 8.4 below.

�

Part of the following theorem has its origin in [4, Lemma 2.5]; see also [7, 11].
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Theorem 6.2. Assume b = c. Then (ωω,PL) is a category base and l is closed
under the κ-Suslin operation for all κ < add(l0).

Proof. We verify condition (2) of the definition of category base. Let Q ⊆ PL have
cardinality < c and let A ∈ PL.

If A ∩
⋃
Q contains a Laver perfect set, then A ∩

⋃
Q /∈ D, then there is B ∈ Q

such that A ∩ B /∈ D because |Q| < b = add(D), and since A ∩ B is closed, it
contains a Laver perfect subset. If A ∩

⋃
Q contains no Laver perfect set, then

A ∩ C ∈ D for all C ∈ Q, then by additivity of D there is f : <ωω → ω such
that A ∩

⋃
Q ⊆ B(f), and then there is a Laver perfect set B ⊆ A \B(f) because

A \B(f) is an Fσ set and A \B(f) /∈ D.
Since l0 is a σ-ideal, l is the family of Baire sets in the category base PL and

therefore l is < add(l0)-complete algebra and is closed under the κ-Suslin operation
for all κ < add(l0) (see [9]; in fact Morgan’s exposition concerns the countable case
only, but if we replace in this exposition meager sets as countable unions of singular
sets by κ-meager sets as unions of κ many singular sets, the definition of Baire sets
will be converted into the definition of κ-Baire sets which are closed under κ-Suslin
operation by the same arguments). �

Let us note that the conclusion of Theorem 4.4 is not a consequence of The-
orem 6.2. This is due to the fact D ( l0. To prove that D 6= l0 we need some
notation. Let G be the set of functions g : <ωω → {0, 1}. For a function g ∈ G let
p(g) be the Laver tree with stem ∅ recursively defined by letting ∅ ∈ p(g) and, if
t ∈ p(g) and m ∈ ω, then t_〈m〉 ∈ p(g) if and only if m ≡ g(t) mod 2.

Lemma 6.3. Let G0 ⊆ G be a set of functions of cardinality less than c and let
A = ωω \

⋃
g∈G0

[p(g)]. Then Ds(A) holds for all s ∈ <ωω. If c = ω1, then,
moreover, there is g̃ ∈ G such that [p(g̃)] ⊆ A.

Proof. Let f : <ωω → ω and s ∈ <ωω be given. The set

Cs,f = {x ∈ [s] : (∀k ≥ |s|) x(k) = f(x�k) or x(k) = f(x�k) + 1}

is a Cantor perfect set such that |Cs,f ∩ p(g)| ≤ 1 for every g ∈ G, and for every
x ∈ Cs,f , (∀k ≥ |s|) x(k) ≥ f(x�k). Since |G0| < c = |Cs,f | it follows that
Cs,f ∩A 6= ∅.

IfG0 is countable andG0 = {gn : n ∈ ω}, then let g̃(s) = 1−gn(s) for s ∈ nω. �

Theorem 6.4. D 6= l0.

Proof. Let {fα : α < c} and {gα : α < c} be enumerations of the set of functions
f : <ωω → ω and the set of functions g : <ωω → {0, 1}, respectively. By Lemma 6.3
for each α < c pick xα ∈ ωω \

⋃
β<α[p(gβ)] such that (∀k ∈ ω) xα(k) ≥ fα(xα�k).

Clearly the set X = {xα : α < c} is strongly dominating; actually D∅(X) holds. We
prove that X ∈ l0. Let p ∈ L be arbitrary. Take α < c such that p′ = p ∩ p(gα) is
a Laver tree with the same stem as p has. Since [p′]∩X ⊆ [p(gα)]∩X ⊆ {xβ : β ≤ α}
and non(l0) = c there is q ∈ L below p′ such that [q] ∩X = ∅. �

Corollary 6.5.
(1) There is A ∈ l0 \ D such that Ds(A) holds for every s ∈ <ωω.
(2) If d = c, then there is A ∈ l0 \ D such that Ds(A) holds for every s ∈ <ωω

and A ∩ [p(g)] ∈ D for every g : <ωω → {0, 1}.
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Proof. Let X ∈ l0 \ D be the set constructed in the proof of Theorem 6.4 and let
A = {s_x : s ∈ <ωω and x ∈ X}. Then A ∈ l0 and Ds(A) holds for every s.
Moreover, for every g : <ωω → {0, 1}, |A ∩ [p(g)]| < c; hence if non(D) = c (see
Lemma 2.4), then A ∩ [p(g)] ∈ D. �

Let us recall from the previous section that

M0 = {A ⊆ ωω : (∀s ∈ <ωω) Ds(A) → (∃q ∈ L(s)) [q] ⊆ A}.
The class M0 may be not closed under intersections and complements. Therefore
we introduce the following derived classes:

M1 = {A ⊆ ωω : (∀F ⊆ ωω closed) F ∩A ∈ M0},
M2 = {A ⊆ ωω : (∀F ⊆ ωω <b-Suslin) F ∩A ∈ M0},
M1i = {A ⊆ ωω : (∀B ∈ Mi) B ∩A ∈ Mi}, for i = 0, 1, 2,

M∗
i = {A ∈ Mi : ωω \A ∈ Mi}, for i = 0, 1, 2, 10, 11, 12.

We have the following inclusions:

Lemma 6.6.
(1) M10 ⊆ M11 ⊆ M12 ⊆ M2 ⊆ M1 ⊆ M0.
(2) M∗

10 ⊆ M∗
11 ⊆ M∗

12 ⊆ M∗
2 ⊆ M∗

1 ⊆ M∗
0.

(3) D ⊆ M∗
i ⊆ Mi for i = 0, 1, 2, 10, 11, 12.

(4) l0 \ D = l0 \Mi for i = 0, 1, 2, 10, 11, 12.
(5) M1 ( l, l * M0, M∗

0 * l, M∗
11 * M10.

(6) M10 ( M11, M∗
10 ( M∗

11, M1 ( M0. M∗
1 ( M∗

0.

Proof. (1) We show M11 ⊆ M12 (the proof of M10 ⊆ M11 is similar). Assume
that A ⊆ ωω and A /∈ M12. There is B ∈ M2 such that B ∩ A /∈ M2 and then
F ∩ (B ∩ A) /∈ M0 for some <b-Suslin set F ⊆ ωω. Then (F ∩ B) ∩ A /∈ M1 and
F ∩ B ∈ M1 because B ∈ M2 and the intersection of F with any closed set is
<b-Suslin. Therefore A /∈ M11. The other inclusions are obvious.

(2) follows by (1); (3) is easy.
(4) The inclusion l0 \D ⊆ l0 \M0 follows by definitions. Hence for all i, l0 \D ⊆

l0 \Mi by (1), and the inclusion l0 \ D ⊇ l0 \Mi holds because D ⊆ Mi by (3).
(5) If A ∈ M1 and q ∈ L, then [q] ∩ A ∈ M0 and, either there is s ∈ q such that

Ds([q] ∩ A) holds, or [q] ∩ A ∈ D ⊆ l0. Therefore, there is p ∈ L such that in the
former case, [p] ⊆ [q] ∩ A and in the latter case, [p] ⊆ [q] \ A. Hence M1 ⊆ l. By
Theorem 6.4 and (4), ∅ 6= l0 \ D ⊆ l \M0 ⊆ l \M1 and hence M1 6= l and l * M0.
To see that M∗

0 * l and M∗
11 * M10 choose q ∈ L and qi

s ∈ L(s) for s ∈ <ωω and
i = 0, 1 such that [qi

s] ∩ [q] = ∅ and [q0s ] ∩ [q1s ] = ∅. Let X ⊆ [q] be a Bernstein set
in [q] and let A = X ∪

⋃
s∈<ωω[q0s ]. Then A ∈ M∗

0 \ l and [q] ∈ M∗
11 \M10; [q] /∈ M10

because [q] ∩A = X and X /∈ M0.
(6) follows by (5). �

The results of the previous section have the following consequences:

Corollary 6.7.
(1) Mi is closed under unions of < b sets for i = 0, 1, 2, 10, 11, 12.
(2) M1i is closed under finite intersections and M∗

1i is an algebra of sets on ωω
for i = 0, 1, 2.

(3) Mi contains all <b-Suslin sets for i = 0, 1, 2.
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(4) M∗
i contains all Borel sets and, if b > ω1, then M∗

i contains all analytic
sets for i = 0, 1, 2.

Proof. (1) follows by Theorem 4.2; (2) is an easy consequence of definitions; (3) fol-
lows by Theorem 4.4; (4) holds because the Borel sets are closed under complements
and analytic and co-analytic sets (and Σ1

2 sets) are ω1-Suslin. �

Modifying definitions of M1 and M2 let us define

M′
1 = {A ⊆ ωω : (∀F ⊆ ωω closed) D(F ∩A) → (∃q ∈ L) [q] ⊆ F ∩A},

M′
2 = {A ⊆ ωω : (∀F <b-Suslin) D(F ∩A) → (∃q ∈ L) [q] ⊆ F ∩A}.

Lemma 6.8. M1 = M′
1 and M2 = M′

2.

Proof. Obviously, M1 ⊆ M′
1 and M2 ⊆ M′

2. We prove that M′
1 ⊆ M1 (M′

2 ⊆ M2).
Let A ⊆ ωω be such that A /∈ M1 (A /∈ M2). There are s ∈ <ωω and a closed
(<b-Suslin) set F ⊆ [s] such that Ds(F ∩ A) holds and (∀q ∈ L(s)) [q] * F ∩ A.
Denote

T = {t ∈ <ωω : (∀q ∈ L(t)) [q] * F ∩A}.
Then s ∈ T and for t ∈ T , (∀∞n ∈ ω) t_〈n〉 ∈ T . Let f : <ωω → ω be such that,
if t ⊇ s and t ∈ T , then (∀n ≥ f(t)) t_〈n〉 ∈ T . The set

F0 = {x ∈ F : (∀k ≥ |s|) x(k) ≥ f(x�k)}
is closed (<b-Suslin) and Ds(F0 ∩ A) holds, but there is no q ∈ L such that [q] ⊆
F0 ∩A. Therefore A /∈ M′

1 (A /∈ M′
2). �

Lemma 6.9.
(1) M1 = {A ∈ l : (∀r ∈ L) [r] ∩A /∈ l0 \ D}.
(2) M2 = {A ∈ l : (∀F <b-Suslin) F ∩A /∈ l0 \ D}.
(3) M11 = {A ∈ l : (∀B ∈ M1) B ∩A /∈ l0 \ D}.
(4) M12 = {A ∈ l : (∀B ∈ M2) B ∩A /∈ l0 \ D}.

Proof. Apply characterizations in Lemma 6.8. For the equality (1) use the fact
that the strongly dominating part Φ(F ) of a closed set F is a countable union of
Laver perfect sets and for (3) and (4) notice that M1 is closed under intersections
by closed sets and M2 is closed under intersections by <b-Suslin sets. �

Question 6.10. Which classes in the chains of the inclusions M11 ⊆ M12 ⊆ M2 ⊆ M1

and M∗
11 ⊆ M∗

12 ⊆ M∗
2 ⊆ M∗

1 are different?

At present we are not able to distinguish M11 from M12 and M2 from M1. Also
we are not able to distinguish M∗

11 from M∗
12 and M∗

2 from M∗
1. We show that, at

least consistently, M12 ( M2 and M∗
12 ( M∗

2.

Theorem 6.11. Assume c = ω1. Let 2 ≤ κ ≤ ω1 be a cardinal number. For every
X ∈ l0 there is a system of pairwise disjoint sets {Aξ : ξ < κ} ⊆ M2 \ D such that
the set X0 = ωω\

⋃
ξ<κAξ is in l0, X ⊆ X0 and for every Y ⊆ X0 and every ξ < κ,

Y ∪Aξ ∈ M2.

Proof. We prove theorem for κ = ω1; the proof for κ < ω1 is similar. Let X ∈ l0.
Let {Fα : α < ω1} be an enumeration of the family of analytic subsets of ωω
with ω1 repetitions. By induction on α < ω1 for all ξ < ω1 we define Aξ,α ⊆ L,
A∗ξ,α =

⋃
β<αAξ,β , Aξ,α =

⋃
{[r] : r ∈ Aξ,α}, and A∗ξ,α =

⋃
β<αAξ,β such that for

all α < ω1 and ξ < ω1 the following conditions are satisfied:
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(1) A∗ξ,α ⊆ Aξ,α and {[r] : r ∈ Aξ,α} is a system of pairwise disjoint sets.
(2) A∗ξ,α ⊆ Aξ,α, Aξ1,α ∩Aξ2,α = ∅ for any ξ1 6= ξ2.
(3) A∗ξ,α = ∅ and A∗ξ,α = ∅ whenever ξ ≥ α, i.e.,

⋃
ξ<ω1

A∗ξ,α =
⋃

ξ<αA
∗
ξ,α.

(4) If Fα\
⋃

ξ<ω1
A∗ξ,α /∈ D, then there are rξ

α ∈ L for ξ ≤ α such that [rξ
α] ⊆ Fα\

(X ∪
⋃

ξ<ω1
A∗ξ,α), [rξ1

α ]∩ [rξ2
α ] = ∅ for any ξ1 6= ξ2, and Aξ,α = A∗ξ,α ∪ {rξ

α}
for ξ ≤ α and Aξ,α = A∗ξ,α for ξ > α.

(5) If Fα \
⋃

ξ<ω1
A∗ξ,α ∈ D, then Aξ,α = A∗ξ,α for all ξ < ω1.

(6) X ∩
⋃

ξ<ω1
Aξ,α = ∅.

(7) For every r ∈ A∗ξ,α there is g : <ωω → {0, 1} such that r ⊆ p(g).

At the induction step conditions (4) and (5) can be fulfilled because by (3), the
set Fα \

⋃
ξ<ω1

A∗ξ,α is analytic, and if it is strongly dominating, it has a Laver
perfect subset avoiding the set X ∈ l0. Let Aξ =

⋃
α<ω1

Aξ,α for ξ < ω1 and let
X0 = ωω \

⋃
ξ<ω1

Aξ. Then X ⊆ X0 by (6). Condition (7) by Lemma 6.3 ensures
that condition (4) applies ω1 times and hence each Aξ has a Laver perfect subset
and Aξ /∈ D. By (1) and (2), the system A =

⋃
ξ<ω1

⋃
α<ω1

Aξ,α is an antichain
in L. It is a maximal antichain because whenever p ∈ L and [p] = Fα for some α,
then [r0α] ⊆ [p] and r0α ∈ A whenever condition (4) takes place, and p is compatible
with some r ∈

⋃
ξ<αA∗ξ,α whenever condition (5) takes place. Therefore X0 ∈ l0.

We prove that Y ∪Aη ∈ M′
2 for all η < ω1 and Y ⊆ X0. Let F ⊆ ωω be an analytic

set such that F ∩ (Y ∪Aη) /∈ D and let F = Fα for some α > η. Then

Fα ∩ (Y ∪Aη) ⊆ Fα ∩ (X0 ∪Aη) ⊆ (Fα ∩A∗η,α) ∪ (Fα \
⋃

ξ<ω1
A∗ξ,α).

Therefore, if Fα \
⋃

ξ<ω1
A∗ξ,α ∈ D, then Fα ∩A∗η,α /∈ D, and this set being analytic

has a Laver perfect subset. If Fα \
⋃

ξ<ω1
A∗ξ,α /∈ D, then by (4), [rη

α] ⊆ Fα ∩Aη,α.
Therefore F ∩Aη has a Laver perfect subset. �

Corollary 6.12. If c = ω1, then M∗
2 * M12. Consequently M12 ( M2 and

M∗
12 ( M∗

2.

Proof. Let X ∈ l0 \ D and let A0 and A1 be the sets from Theorem 6.11 found
for the set X and for κ = 2. Then X ∪ Ai ∈ M∗

2 and X ∪ Ai /∈ M12 because
(X ∪A0) ∩ (X ∪A1) = X /∈ M0. �

7. A partition of Laver perfect sets

Let us consider the following partition of ωω into Laver perfect sets:

Lx = {y ∈ ωω : (∀n ∈ ω) y(n) ≡ x(n) mod 2}, x ∈ ω2. (∗)

This partition is not a maximal antichain. To see this consider any homeomor-
phism ψ between H = {x ∈ ω2 : (∃∞n ∈ ω) x(n) = 1} and (<ωω)ω. Let f : H → ωω
be defined by

f(x) = y ↔ (∀n ∈ ω) y(n) = min{k ≥ ψ(x)(y�n) : k ≡ x(n) mod 2}.

The set A = rng(f) is a Borel set because it is a continuous one-to-one image of the
Polish space H. The set A is a Borel strongly dominating selector of {Lx : x ∈ H}
and A is disjoint from Lx for x /∈ H. Since A is analytic, by Theorem 4.4, A contains
a Laver perfect set. Therefore the disjoint partition (∗) is not a maximal antichain.
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Let G be the set of functions g : <ωω → {0, 1}. Recall that for a function g ∈ G,
p(g) is the Laver tree with stem ∅ recursively defined by letting ∅ ∈ p(g) and, if
t ∈ p(g) and m ∈ ω, then t_〈m〉 ∈ p(g) if and only if m ≡ g(t) mod 2.

Lemma 7.1.
(1) There is g ∈ G such that the Laver perfect set [p(g)] is a selector for the

partition (∗).
(2) There is g ∈ G such that (∀x ∈ ω2) [p(g)]∩Lx ∈ D and (∀q ∈ L)(∀x ∈ ω2)

if q ⊆ p(g) and [q] ∩ Lx 6= ∅, then [q] ∩ Lx is a perfect set.

Proof. (1)–(2) For a ∈ [ω]ω consider a one-to-one function π : a× ω → a such that
n < π(n,m) for all (n,m) ∈ a×ω. For example, let π(a(n),m) = a(2n(2m+1)) for
(n,m) ∈ ω × ω where a(n) denotes the nth member of the set a in the increasing
enumeration. Let us define g : <ωω → {0, 1} by induction: Set g(∅) = 0. Assume
that k > 0 and g(s) have been defined for s ∈ <kω and define g(s) ∈ {0, 1} for
s ∈ kω so that

(i) if k /∈ rng(π), then g(s) = 0, and
(ii) if π(n,m) = k for (n,m) ∈ a × ω, then g(s) = 0 if and only if s(n) =

2m+ g(s�n).
If y ∈ [p(g)] ∩ Lx, then

(∀(n,m) ∈ a× ω) x(π(n,m)) = 0 if and only if y(n) = 2m+ g(y�n) (∗∗)
recursive formula (∗∗) uniquely defines y�a. Therefore |{y�a : y ∈ [p(g)]∩Lx}| ≤ 1,
hence the closed set [p(g)]∩Lx contains no Laver perfect set, and so [p(g)]∩Lx ∈ D
for all x ∈ ω2. In the case when a = ω the Laver perfect set [p(g)] is a selector for the
partition (∗) and we obtain assertion (1) of the lemma. We verify (the second part
of) assertion (2) of the lemma in the case when the set ω\a is infinite. Let q ∈ L be
such that q ⊆ p(g) and let y ∈ [q]∩Lx for some x ∈ ω2. Let q0 ⊆ q be the tree such
that [q0] = [q] ∩ Lx. If s ∈ q0 is a splitting node of q and |s| /∈ a, then by case (i)
in the definition of π, {n ∈ ω : s_〈n〉 ∈ q0} = {n ∈ ω : s_〈n〉 ∈ q} ⊆ {2n : n ∈ ω},
and hence, s is a splitting node of q0. Therefore q0 is a perfect tree and [q] ∩ Lx is
a perfect set. �

Assume that q ∈ L and q ⊆ p(g) for some g : <ωω → {0, 1}. The sets

E(q) = {x ∈ ω2 : [q] ∩ Lx /∈ D} and F (q) = {x ∈ ω2 : [q] ∩ Lx 6= ∅}

are analytic, E(q) ⊆ F (q), |E(q)| ≤ ω (because [q] ∩ Lx contains a relatively open
subset of [q] for x ∈ E(q)), and, if E(q) = ∅, then |F (q)| = c (because, then F (q) is
an uncountable analytic set by σ-additivity of D).

8. Sequences of Laver perfect sets

Let Q be the set of all functions g : <ωω → [ω]ω. For g ∈ Q and s ∈ <ωω let

Ls(g) = {x ∈ [s] : (∀k ≥ |s|) x(k) ∈ g(x�k)},
L(g) = {x ∈ ωω : (∀∞k ∈ ω) x(k) ∈ g(x�k)} =

⋃
s∈<ωω Ls(g).

and let ps(g) be the unique Laver perfect tree with stem s such that Ls(g) = [ps(g)].
For f, g ∈ Q we define

f ≤ g ↔ (∀s ∈ <ωω) f(s) ⊆ g(s),

f ⊆∗ g ↔ (∀s ∈ <ωω) f(s) ⊆∗ g(s),
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f ⊆∗ g ↔ (∀∞s ∈ <ωω) f(s) ⊆ g(s),

f ⊆∗∗ g ↔ (∀∞s ∈ <ωω) f(s) ⊆∗ g(s),
f ≤∗ g ↔ f ⊆∗ g and f ⊆∗ g.

All these relations are quasi-orderings. The relation ⊆∗ was considered in [5] and
the relation ≤∗ was considered in [4]. We compare these quasi-orderings and refine
some results from [4].

Lemma 8.1. Let f, g ∈ Q.
(1) f ≤ g → f ≤∗ g → f ⊆∗ g → f ⊆∗∗ g.
(2) f ⊆∗ g → L(f) ⊆ L(g).
(3) f ⊆∗∗ g → L(f) \ L(g) ∈ l0.
(4) L(f) \ L(g) ∈ l0 ↔ (∀f ′ ≤ f)(∃f ′′ ≤ f ′) f ′′ ≤ g.

Proof. (2) Assume that f ⊆∗ g. There is n ∈ ω such that f(s) ⊆ g(s) whenever
|s| ≥ n. If |s| ≥ n, then Ls(f) ⊆ Ls(g) ⊆ L(g). If |s| < n, then Ls(f) =

⋃
{Lt(f) :

t ∈ ps(f) ∩ nω} ⊆ L(g). Therefore L(f) ⊆ L(g).
(3) If L(f) \L(g) /∈ l0, then there is u ∈ <ωω such that f(t) ⊆∗ g(t) for all t ⊇ u

and Lu(f) \ L(g) /∈ l0. Let f ′ ≤ f and s ⊇ u be such that Ls(f ′) ⊆ Ls(f) \ L(g).
Since f(t) ⊆∗ g(t) for all t ⊇ s there is f ′′ ≤ f ′ such that Ls(f ′′) ⊆ Ls(g). This is
a contradiction because Ls(f ′′) ⊆ Ls(f ′).

(4) Assume that L(f) \ L(g) ∈ l0 and let f ′ ≤ f . Without loss of generality
we can assume L(f ′) ⊆ L(g). Assume that there is s ∈ <ωω such that (∀h ≤ f ′)
Ls(h) \ Ls(g) 6= ∅. Then (∀∞n ∈ f ′(s))(∀h ≤ f ′) Ls_〈n〉(h) \ Ls_〈n〉(g) 6= ∅ and
by induction we can define g′ ≤ f ′ such that for all t ∈ ps(g′) above s, (∀h ≤ f ′)
Lt(h) \ Lt(g) 6= ∅. Since Ls(g′) ⊆ Ls(f ′) ⊆ L(g), by the Baire category theorem
there is t ∈ ps(g′) above s such that Lt(g′) ⊆ Lt(g). This is a contradiction.
Therefore (∀s ∈ <ωω)(∃h ≤ f ′) Ls(h) ⊆ Ls(g) and by induction we can define
f ′′ ≤ f ′ such that f ′′ ≤ g.

To see the inverse implication notice that l is a σ-field (see a general argument in
[7, Lemma 4.1]) and therefore L(f) ∈ l for every f ∈ Q. Also, ifA ⊆ Ls(f) is a Laver
perfect set with stem s ∈ <ωω, then there is f ′ ≤ f such that Ls(f ′) = A. �

A part of Theorem 1.1 of [4] says that t ≤ add(l0) and the proof is based on
the fact that the partially ordered set (Q,≤∗) is κ-closed for every κ < t. We can
say a bit more. Let us recall that a partially ordered set (P,≤) is κ-distributive,
if the intersection of κ many open dense subsets of P is dense. (P,≤) is nowhere
κ-distributive, if there is a family of open dense sets of cardinality κ with the empty
intersection.

Lemma 8.2. Let κ be a cardinal number.
(1) (Q,≤∗) is κ-closed if and only if (Q,⊆∗) is κ-closed if and only if κ < t.
(2) (Q,≤∗) is κ-distributive if and only if (Q,⊆∗) is κ-distributive.
(3) (Q,≤∗) and (Q,⊆∗) are nowhere h-distributive.

Proof. (1) We present the proof for (Q,≤∗); the proof for (Q,⊆∗) is the same.
Suppose that γ ≤ κ < t and 〈fα : α < γ〉 is a decreasing sequence in (Q,≤∗).

For each s ∈ <ωω there is f ′(s) ∈ [ω]ω, such that (∀α < γ) f ′(s) ⊆∗ fα(s). Find
gα : <ωω → ω such that f ′(s) \ gα(s) ⊆ fα(s) for all s. Since t ≤ b, there exists
g : <ωω → ω such that gα ≤∗ g for all α < γ, Now let f(s) = f ′(s) \ g(s). It is easy
to check that f ∈ Q and f ≤∗ fα for all α < γ.
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Let 〈aα : α < t〉 be a tower in ([ω]ω,⊆∗), i.e., aα ⊆∗ aβ for β ≤ α < t and
there is no a ∈ [ω]ω such that a ⊆∗ aα for all α < t. Fix a one-to-one enumeration
<ωω = {sn : n ∈ ω} and define fα(sn) = aα \ n for sn ∈ <ωω and α < t. Then
〈fα : α < t〉 is a tower in (Q,≤∗).

(2) Every open dense subset of (Q,⊆∗) is an open dense subset of (Q,≤∗) and
the relation ≤∗ is included in ⊆∗. Therefore the κ-distributivity of (Q,≤∗) implies
the κ-distributivity of (Q,⊆∗).

Assume that (Q,⊆∗) is κ-distributive and let 〈Dα : α < κ〉 be a sequence of open
dense subsets of (Q,≤∗). Every open dense subset of (Q,≤∗) is a dense subset of
(Q,⊆∗). Therefore D′

α = {f ∈ Q : (∃g ∈ Dα) f ⊆∗ g} are open dense subsets of
(Q,⊆∗) for all α < κ and hence D′ =

⋂
α<κD

′
α is an open dense subset of (Q,⊆∗).

Let f ∈ Q be arbitrary. There is f ′ ∈ D′ such that f ′ ≤ f . For each α < κ choose
fα ∈ Dα and hα : <ωω → ω such that (∀s ∈ <ωω) f ′(s) \ hα(s) ⊆ fα(s). By (3),
κ < h ≤ b and therefore there exists h : <ωω → ω such that hα ≤∗ h for all α < κ.
Define g ∈ Q by g(s) = f ′(s) \ h(s) for s ∈ <ωω. Then g ≤ f and for all α < κ,
g ≤∗ fα, hence g ∈

⋂
α<κDα. Therefore

⋂
α<κDα is a dense subset of (Q,≤∗) and

(Q,≤∗) is κ-distributive.
(3) Let {Dα : α < h} be a family of open dense subsets of ([ω]ω,⊆∗) such that⋂

α<hDα = ∅. For every α < h the set D′
α = {f ∈ Q : (∀s ∈ <ωω) f(s) ∈ Dα} is

an open dense subset of Q and
⋂

α<hD
′
α = ∅. �

Denote

hL = min{κ : (Q,≤∗) is not κ-distributive}.
By Lemma 8.2, t ≤ hL ≤ h.

Lemma 8.3. For every X ∈ l0 and g ∈ Q there exists f ∈ Q such that f ≤ g and
L(f) ∩X = ∅.

Proof. Assume that there is s ∈ <ωω such that (∀f ≤ g) Ls(f) ∩ X 6= ∅. Then
the set {n ∈ g(s) : (∃f ≤ g) Ls_〈n〉(f) ∩X = ∅} is finite and by induction we can
define g′ ≤ g such that (∀t ∈ ps(g′))(∀f ≤ g) Lt(f) ∩X 6= ∅. Since X ∈ l0 there is
a Laver tree p ⊆ ps(g′) with stem t ∈ ps(g′) such that [p]∩X = ∅ and we can define
f ≤ g′ ≤ g such that Lt(f) = [p] contradicting t ∈ ps(g′). Therefore for every s
there is h ≤ g such that Ls(h)∩X = ∅ and by induction we can define f ∈ Q such
that Ls(f) ∩X = ∅ for all s ∈ <ωω. �

Lemma 8.4. add(l0) ≥ hL.

Proof. Let κ < hL and let X =
⋃

α<κXα with all Xα ∈ l0. By Lemma 8.3 for every
α < κ the set Dα = {f ∈ Q : L(f) ∩Xα = ∅} is an open dense subset of (Q,≤∗).
By κ-distributivity of (Q,≤∗), the set D =

⋂
α<κDα is an open dense subset of

(Q,≤∗) and L(f) ∩
⋃

α<κXα = ∅ for every f ∈ D.
We show that X ∈ l0. For A ∈ PL find g ∈ Q and s ∈ <ωω such that Ls(g) = A

and find f ∈ D such that f ≤∗ g. There is r ∈ ps(f) above s such that for all
t ∈ pr(f) above r we have f(t) ⊆ g(t). Set B = Lr(f). Then B = Lr(f) ⊆ Lr(g) ⊆
Ls(g) = A and B ∩X = ∅ because f ∈ D. �
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