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Abstract. A nondeterministic finite automaton is unambiguous if it has
at most one accepting computation on every input string. We investigate
the complexity of basic regular operations on languages represented by
unambiguous finite automata. We get tight upper bounds for intersection
(mn), left and right quotients (2n − 1), positive closure (3/4 · 2n − 1),
star (3/4 · 2n), shuffle (2mn − 1), and concatenation (3/4 · 2m+n − 1).
To prove tightness, we use a binary alphabet for intersection and left and
right quotients, a ternary alphabet for star and positive closure, a five-
letter alphabet for shuffle, and a seven-letter alphabet for concatenation.
We also get some partial results for union and complementation.

1 Introduction

A nondeterministic machine is unambiguous if it has at most one accepting
computation on every input string. Ambiguity was studied intensively mainly
in connection with context-free languages and it is well known that the classes
of ambiguous, unambiguous, and deterministic context-free languages are all
different. Ambiguity in finite automata was first considered by Schmidt [22] in his

unpublished thesis, where he obtained a lower bound 2Ω(
√

(n)) on the conversion
of unambiguous finite automata into deterministic finite automata, as well as
for the conversion of nondeterministic finite automata into unambiguous finite
automata. He also developed an interesting lower bound method for the size of
unambiguous automata based on the rank of certain matrices.

Stearns and Hunt [24] provided polynomial algorithms for the equivalence
and containment problems for unambiguous finite automata (UFAs), and they
extended them to ambiguity bounded by a fixed integer k. Chan and Ibarra [5]
provided a polynomial space algorithm to decide, given a nondeterministic finite
automaton (NFA), whether it is finitely ambiguous. They also showed that it is
PSPACE-complete to decide, given an NFA M and an integer k, whether M is
k-ambiguous.
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Ibarra and Ravikumar [13] defined the ambiguity function aM (n) : N → N
of a an NFA M such that aM (n) is the maximum number of distinct accepting
computations of M on any string of length n, and they proved that the exponen-
tial ambiguity problem is decidable for NFAs. Weber and Seidl [25] showed that
if an n-state NFA is finitely ambiguous, then it is at most 5n/2nn-ambiguous.
Allauzen et al. [1] considered ε-NFAs, and they proved that, given a trim ε-cycle
free NFA A, it is decidable in time that is cubic in the number of transitions
of A, whether A is finitely, polynomially, or exponentially ambiguous.

Ravikumar and Ibarra [21] considered the relationship between different
types of ambiguity of NFAs to the succinctness of their representations, and
they provided a complete picture for unary and bounded languages. Exponen-
tially and polynomially ambiguous NFAs were separated by Leung [16] by pro-
viding, for every n, an exponentially ambiguous n-state NFA such that every
equivalent polynomially ambiguous NFA requires 2n − 1 states.

The UFA-to-DFA tradeoff was improved to the optimal bound 2n by Leung
[17]. He described, for every n, a binary n-state UFA with a unique initial state
whose equivalent DFA requires 2n states. Similar binary example with multiple
initial states was given by Leiss [15], and a ternary one was presented already by
Lupanov [18]; note that the reverse of Lupanov’s ternary witness for NFA-to-DFA
conversion is deterministic. Leung [17] elaborated the Schmidt’s lower bound
method for the number of states in a UFA. He considered, for a language L, a
matrix whose rows are indexed by strings xi and columns by strings yi, and the
entry in row xi and column yj is 1 if xiyj ∈ L and it is 0 otherwise. He showed
that the rank of such a matrix provides a lower bound on the number of states
in any UFA for L. Using this method, he was able to describe for every n an
n-state finitely ambiguous NFA, whose equivalent UFA requires 2n − 1 states.

A lower bound method was further elaborated by Hromkovič et al. [12]. They
used communication complexity to show that so called exact cover of all 1’s with
monochromatic sub-matrices in a communication matrix of a language provides
a lower bound on the size of any UFA for the language. This allowed them to
simplify proofs presented in [22,24]. Using communication complexity methods,
Hromkovič and Schnitger [11] showed a separation of finitely and polynomially
ambiguous NFAs, and even proved a hierarchy for polynomial ambiguity.

A survey paper on unambiguity in automata theory was presented by Col-
combet [6], where he considered word automata, tropical automata, infinite tree
automata, and register automata. He showed that the notion of unambiguity
is not well understood so far, and that some challenging problems, including
complementation of UFAs, remain open.

Unary unambiguous automata were examined by Okhotin [20], who proved
that the tight upper bound for UFA-to-DFA conversion in the unary case is given

by a function in eΘ( 3
√

n(lnn)2), while the trade-off for NFA-to-UFA conversion is

e
√
n lnn(1+o(1)). He also considered the operations of star, concatenation, and

complementation on unary UFA languages, and obtained the tight upper bound
(n−1)2+1 for star, an upper bound mn for concatenation which is tight if m,n
are relatively prime, and a lower bound n2−ϵ for complementation.

2



In this paper, we continue this research and study the complexity of basic
regular operations on languages represented by unambiguous finite automata.
First, we restate the lower bound method from [17,22]. Using the notions of
reachable and so called co-reachable states in an NFA N , we assign a matrix
MN to the NFA N in such a way that the rank of MN provides a lower bound
on the number of states in any UFA for the language L(N). We use this to
get all our lower bounds. To get upper bounds, we first construct an NFA for
the language resulting from an operation, and then we apply the (incomplete)
subset construction to this NFA to get an incomplete DFA, so also UFA, for the
resulting language.

As a result, we get tight upper bounds for intersection (mn), left and right
quotients (2n−1), positive closure (3/4 ·2n−1), star (3/4 ·2n), shuffle (2mn−1),
and concatenation (3/4 ·2m+n−1). To prove tightness, we always use small fixed
alphabets. Since the reverse of an ambiguous finite automata is unambiguous,
the complexity of a language and its reverse is the same. Finally, we get some
partial results for complementation and union.

2 Preliminaries

We assume that the reader is familiar with basic notions in formal languages and
automata theory. For details and all the unexplained notions, the reader may
refer to [10,23,26].

Let Σ be a finite alphabet of symbols. Then Σ∗ denotes the set of strings
over the alphabet Σ including the empty string ε. The length of a string w is
denoted by |w|, and the number of occurrences of a symbol a in a string w by
#a(w). A language is any subset of Σ∗. For a finite set X, the cardinality of X
is denoted by |X|, and its power-set by 2X .

A nondeterministic finite automaton (NFA) is a 5-tuple N = (Q,Σ,∆, I, F ),
where Q is a finite nonempty set of states, Σ is a finite nonempty input alphabet,
∆ ⊆ Q × Σ × Q is the transition relation, I ⊆ Q is the set of initial states,
and F ⊆ Q is the set of final states. Each element (p, a, q) of ∆ is called a
transition of N . A computation of N on an input string a1 · · · an is a seguence
of transitions (q0, a1, q1)(q1, a2, q2) · · · (qn−1, an, qn) ∈ ∆∗. The computation is
accepting if q0 ∈ I and qn ∈ F ; in such a case we say that the string a1 · · · an
is accepted by N . The language accepted by the NFA N is the set of strings
L(N) = {w ∈ Σ∗ | w is accepted by N}.

An NFA N = (Q,Σ,∆, I, F ) is unambiguous (UFA) if it has at most one
accepting computation on every input string, and it is deterministic (DFA) if
|I| = 1 and for each state p in Q and each symbol a in Σ, there is at most one
state q in Q such that (p, a, q) is a transition of N . Let us emphasize that we
allow NFAs to have multiple initial states, and DFAs to be incomplete.

The transition relation ∆ may be viewed as a function from Q × Σ to 2Q,
which can be extended to the domain 2Q × Σ∗ in the natural way. We denote
this function by ·. Using this notation we get L(N) = {w ∈ Σ∗ | I ·w ∩ F ̸= ∅}.
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Every NFA N = (Q,Σ, ·, I, F ) can be converted to an equivalent incomplete
DFA N ′ = (2Q \{∅}, Σ, ·′, I, F ′), where F ′ = {R ∈ 2Q \{∅} | R∩F ̸= ∅}, and for
each R in 2Q \ {∅} and each a in Σ, the partial transition function ·′ is defined
as follows: R ·′ a = R · a if R · a ̸= ∅ and R ·′ a is undefined otherwise. We call
the DFA N ′ the incomplete subset automaton of NFA N . Since every incomplete
DFA is a UFA, we get the following observation.

Proposition 1. If a language L is accepted by an n-state NFA, then L is ac-
cepted by a UFA of at most 2n − 1 states. ⊓⊔

The reverse wR of a string w is defined by εR = ε and (va)R = avR where
a ∈ Σ and v ∈ Σ∗. The reverse of a language L is the language LR defined by
LR = {wR | w ∈ L}. The reverse of an automaton N = (Q,Σ, ·, I, F ) is the
NFA NR obtained from N by swapping the role of initial and final states and
by reversing all the transitions. Formally, we have NR = (Q,Σ, ·R, F, I), where
q ·R a = {p ∈ Q | q ∈ p · a} for each state q in Q and each symbol a in Σ. The
NFA NR accepts the reverse of the language L(N).

Let N = (Q,Σ, ·, I, F ) be an NFA. We say that a set S is reachable in N
if there is a string w in Σ∗ such that S = I · w. Next, we say that a set T is
co-reachable in N if T is reachable in NR. In what follows we are interesting in
non-empty reachable and co-reachable sets, and we use the following notation:

R = {S ⊆ Q | S is reachable in N and S ̸= ∅}, (1)

C = {T ⊆ Q | S is co-reachable in N and T ̸= ∅}. (2)

The next observation uses the notions of reachable and co-reachable sets in
an NFA to get a characterization of unambiguous automata.

Proposition 2. Let R and C be the families of non-empty reachable and co-
reachable sets in an NFA N . Then N is unambiguous if and only if |S ∩ T | ≤ 1
for each S in R and each T in C.

Proof. (If) Assume that |S∩T | ≤ 1 for each S in R and each T in C. Suppose for
a contradiction, that there is a string w, on which N has two distinct accepting
computations. Let a be the first symbol in w such that after reading a, the two
corresponding states in these computations are distinct; denote the two states
by p and q, respectively. Then w = uav for some strings u and v. Let S = I · ua
and T = F ·R vR. Then S ∈ R, T ∈ C, and S ∩ T ⊇ {p, q}, a contradiction.

(Only if) For a contradiction, suppose that N is unambiguous and there are
two distinct states p, q in S ∩ T . Let S be reachable by u and T be co-reachable

by v. Then there are two distinct accepting computations on uvR: s1
u−→ p

vR

−−→ f1

and s2
u−→ q

vR

−−→ f2 for some states s1, s2 in I and f1, f2 in F , a contradiction. ⊓⊔

If NR is deterministic, then each co-reachable set in N is of size one, and we
get the following result.

Corollary 3. Let N be an NFA. If NR is deterministic, then N is unambiguous.
⊓⊔
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Recall that the state complexity of a regular language L, sc(L), is the small-
est number of states in any complete DFA accepting the language L. The state
complexity of a regular operation is the maximal state complexity of languages
resulting from the operation, considered as the function of state complexities of
the arguments. The nondeterministic state complexity of languages and opera-
tions is defined analogously using NFA representation of languages. We define
the unambiguous state complexity of a regular language L, usc(L), as the smallest
number of states in any UFA for L.

To prove that a DFA is minimal, we only need to show that all its states are
reachable from the initial state, and that no two distinct states are equivalent. To
prove minimality of NFAs, a fooling set lower bound method may be used [2,8].
To prove a lower bound for the size of a UFA, a method based on ranks of certain
matrices was developed by Schmidt [22, Theorem 3.9], Leung [17, Theorem 2]
and Hromkovič et al. [12]. We use it in the following statement.

Proposition 4 ([12,17,22]). Let L be accepted by an NFA N . Let R and C be
the families of non-empty reachable and co-reachable sets in N , respectively. Let
MN be the matrix in which the rows are indexed by sets in R, the columns are
indexed by sets in C, and in the entry (S, T ), we have 0/1 if S and T are/ are
not disjoint. Then usc(L) ≥ rank(MN ).

Proof. Let A be a minimal UFA accepting L. Consider a matrix M ′
A, in which

rows are indexed by the states ofA and columns are indexed by strings generating
the co-reachable sets in C. The entry (q, w) is 1 if wR is accepted by A from q, and
it is 0 otherwise. Then every row ofMN is a sum of the rows ofM ′

A corresponding
to the states in S: Notice that since A is a UFA, for every column there is at most
one such row that contains a 1. Thus every row of MN is a linear combination
of rows in M ′

A, and therefore rank(MN ) ≤ rank(M ′
A) ≤ usc(L). ⊓⊔

Throughout our paper, we use the following observation from [16] and its
corollary stated in the proposition below.

Lemma 5 ([16, Lemma 3]). Let |Q| = n and Mn be a 2n − 1 × 2n − 1
matrix over the field with characteristic 2 with rows and columns indexed by a
non-empty subsets of Q such that Mn(S, T ) = 1 if S ∩ T ̸= ∅ and Mn(S, T ) = 0
otherwise. Then the rank of Mn is 2n − 1. ⊓⊔

Proposition 6. Let L be accepted by an NFA N . Let R be the family of all
non-empty reachable sets in N . If each non-empty set is co-reachable in NFA N ,
then usc(L) ≥ |R|.

Proof. Consider the matrixMN given by Proposition 4. Notice thatMN contains
|R| rows of the matrix Mn given in Lemma 5. By Lemma 5, the rank of Mn

is 2n − 1, so the rows of Mn are linearly independent. Therefore all the rows
of MN must be linearly independent, and we have rank(MN ) = |R|. Hence
usc(L) ≥ rank(MN ) = |R| by Proposition 4. ⊓⊔
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3 Operations on Unambiguous Finite Automata

We start with the reversal and intersection operations. Then we continue with
left and right quotients. Notice that if an NFA N is unambiguous then also NR

is unambiguous. Hence we get the following result.

Theorem 7 (Reversal). Let L be a regular language. Then usc(LR) = usc(L).

Proof. If L is accepted by an unambiguous NFA N , then LR is accepted by NR

which is unambiguous as well, and has the same number of states as N . Hence
usc(LR) ≤ usc(L). On the other hand, the language LR cannot be accepted by
any smaller UFA because otherwise the language L = (LR)R would be accepted
by a smaller UFA as well. ⊓⊔

Theorem 8 (Intersection). Let K and L be languages over Σwith usc(K)=m
and usc(L) = n. Then usc(K ∩ L) ≤ mn, and the bound is tight if |Σ| ≥ 2.

Proof. To get the upper bound, let K and L be accepted m-state and n-state
UFAs A = (QA, Σ, ·A, IA, FA) and B = (QB , Σ, ·B, IB , FB), respectively. Con-
struct the product automaton N = (QA × QB , Σ, ·, IA × IB, FA × FB), where
(p, q) · a = p ·A a× q ·B a. Then N is an mn-state UFA for K ∩ L.

To prove tightness, consider languages K = {w ∈ {a, b}∗ | #a(w) = m− 1},
and L = {w ∈ {a, b}∗ | #b(w) = n − 1}, which are accepted by UFAs A =
({0, 1, . . . ,m− 1}, {a, b}, ·A, {0}, {m− 1}), where i ·A a = i+ 1 if i ≤ m− 2 and
i ·A b = i for each state i, and B = ({0, 1, . . . , n − 1}, {a, b}, ·B , {0}, {n − 1}),
where j ·B a = j for each j and j ·B b = j+1 if j ≤ n−2, respectively. Construct
the product automaton N as described above, and notice that each singleton set
{(i, j)} is reachable and co-reachable in N . Hence MN is an mn ×mn identity
matrix, and the theorem follows by Proposition 4. ⊓⊔

The left quotient of a language L by a string w is w\L = {x | wx ∈ L},
and the left quotient of a language L by a language K is the language K\L =∪

w∈K w\L. The state complexity of the left quotient operation is 2n − 1 [27],
and its nondeterministic state complexity is n+1 [14]. In both cases, the witness
languages are defined over a binary alphabet. Our next result shows that the
tight upper bound for UFAs is 2n−1. To prove tightness we use a binary alphabet.

Theorem 9 (Left Quotient). Let K,L ⊆ Σ∗, usc(K) = m, and usc(L) = n.
Then usc(K \L) ≤ 2n − 1, and the bound is tight if |Σ| ≥ 2.

Proof. To get an upper bound, let A be an n-state UFA for L. Construct an n-
state NFA N for K \L from A by making initial all states of A that are reachable
from the initial set by some string in K. By Proposition 1, usc(K \L) ≤ 2n − 1.

For tightness, let K = {ak | k ≥ m − 1} and L be the language accepted
by the n-state DFA A = ({0, 1, . . . , n− 1}, {a, b}, {0}, {0, 1, . . . , n− 1}) shown in
Fig. 1. Notice that each state of A is reachable by some string in K. Construct
an n-state NFA N for K \L from A by making all the states initial. Hence the
initial set of N is {0, 1, . . . , n−1}. Next, we can shift every reachable subset right
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0 1 . . . n−2 n−1
a

b

a

b

a a

b

a

Fig. 1. The UFA of a language L with usc(K \L) = 2n − 1, where K = a≥m−1.

by one (modulo n) by reading a, and we can remove the state n from any subset
containing state n by reading b. Therefore each non-empty set is reachable in N .

To constructNR, we only need to reverse the transitions on a inN . The initial
subset of NR is {0, 1, . . . , n− 1}, and we can again shift any subset and remove
one state as before. It follows that every non-empty set is reachable in NR, that
is, co-reachable in NFA N . By Proposition 6, we have usc(K \L) ≥ 2n − 1. ⊓⊔

The right quotient of a language L by a string w is L/w = {x | xw ∈ L},
and the right quotient of a language L by a language K is L/K =

∪
w∈K L/w.

If a language L is accepted by an n-state DFA or NFA A, then the language
L/K is accepted by an automaton that is exactly the same as A, except for the
set of final states that consists of all states of A, from which some string in K is
accepted by A [27]. Thus sc(L/K) ≤ n and nsc(L/K) ≤ n. The tightness of the
first upper bound has been shown using binary languages in [27]. The second
upper bound is met by unary languages a≥m−1 and a≤n−1. Our next aim is to
show that the tight upper bound for unambiguous finite automata is 2n−1, with
witnesses defined over a binary alphabet.

Theorem 10 (Right Quotient). Let K,L ⊆ Σ∗, usc(K) = m, and usc(L) =
n. Then usc(L/K) ≤ 2n − 1, and the bound is tight if |Σ| ≥ 2.

Proof. To get an upper bound, let A be an n-state UFA for L. Construct an n-
state NFA for L/K as described above. By Proposition 1, usc(L/K) ≤ 2n − 1.

To prove tightness, let K = {ak | k ≥ m−1} and L be the language accepted
by the n-state NFA A = ({0, 1, . . . , n−1}, {a, b}, {0, 1, . . . , n−1}, {n−1}) shown
in Fig. 2. Since the automaton AR is deterministic, the NFA A is unambiguous
by Corollary 3. Since a string in K is accepted by A from each state of A, we
construct an NFA N for L/K from A by making all the states of A final. Notice
that we obtain the same NFA as in the proof of the previous lemma, thus by the
same arguments usc(L/K) ≥ 2n − 1. ⊓⊔

0 1 . . . n−2 n−1
a

b

a

b

a a

b

a

Fig. 2. The UFA of a language L with usc(L/K) = 2n − 1, where K = a≥m−1.
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0 1 . . . m−1
a, c

d

a, c

d, f

a, c

a

d, f

0 1 . . . n−1
b, d

c

b, d

c, f

b, d

b

c, f

d d d

b b b

c

c

c

a

a

a b
a

df df df

cf

cf

cf

cd

. . .

...

. . .

Fig. 3. Witness UFAs for shuffle meeting the upper bound 2mn − 1 (left) and a
sketch of the resulting NFA N .

Now let us continue with the shuffle and concatenation operations. The
shuffle of two strings u and v over an alphabet Σ is defined as the set of strings
u � v = {u1v1 · · ·ukvk | u = u1 · · ·uk, v = v1 · · · vk, u1, . . . , uk, v1, . . . , vk ∈ Σ∗}.
The shuffle of languages K and L over Σ is defined by K�L =

∪
u∈K,v∈L u� v.

The state complexity of the shuffle operation on languages represented by incom-
plete deterministic automata was studied by Câmpeanu et al. [3]. They proved
that 2mn − 1 is a tight upper bound for that case. Here we show that the same
upper bound is tight also for UFAs, and to prove tightness, we use almost the
same languages as in [3, Theorem 1]. Up to our best knowledge, the problem is
still open for complete deterministic automata.

Theorem 11 (Shuffle). Let K,L ⊆ Σ∗, usc(K) = m, and usc(L) = n. Then
usc(L�K) ≤ 2mn − 1, and the bound is tight if |Σ| ≥ 5.

Proof. Let A = (QA, Σ, ·A, IA, FA) and B = (QB , Σ, ·B , IB , FB) be m- and
n-state UFAs for K and L respectively. Then K � L is accepted by an mn-
state NFA N = (QA ×QB , Σ, ·, IA × IB , FA ×FB), where for each state (p, q) in
QA×QB and each symbol a in Σ, we have (p, q)·a = (p·Aa×{q})∪({p}×q ·B a).
Hence usc(K � L) ≤ 2mn − 1 by Proposition 1.

To prove tightness, let Σ = {a, b, c, d, f}. Let K and L be the regular lan-
guages accepted by DFAs A = ({0, 1, . . . ,m− 1}, Σ, ·A, {0}, {m− 1}) and B =
({0, 1, . . . , n−1}, Σ, ·B , {0}, {n−1}) shown in Fig. 3 (left); notice that these DFAs
are the same as in [3, Theorem 1] up to the position of final states. Construct an
NFA N for K�L as described above. Fig. 3 (right) shows a sketch of the result-
ing NFA. It is shown in [3] that each non-empty set is reachable in N : The initial
set {(0, 0)} goes to the ”full” set {0, 1, . . . ,m−1}×{0, 1, . . . , n−1} by cmdn, and
for each subset S with (i, j) ∈ S, we have S ·am−ibn−jfaibj = S \ {(i, j)}. Next,
in NR we have {(m− 1, n− 1)} ·R cmdn = {0, 1, . . . ,m− 1} × {0, 1, . . . , n− 1},
and S ·R aibjfam−ibn−j = S \{(i, j)} for each subset S with (i, j) ∈ S. It follows
that each non-empty set is co-reachable in N , so usc(L) ≥ 2mn − 1. ⊓⊔
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The concatenation of languages K and L is KL = {uv | u ∈ K and v ∈ L}.
The state complexity of concatenation is m2n − 2n−1, and its nondeterministic
state complexity is m + n. In both cases, the witnesses are defined over a bi-
nary alphabet [9,14,19,27]. In the next theorem we get a tight upper bound for
concatenation on UFAs. To prove tightness, we use a seven-letter alphabet.

Theorem 12 (Concatenation). Let K,L ⊆ Σ∗, usc(K)=m, and usc(L)= n,
where m,n ≥ 2. Then usc(KL) ≤ 3/4·2m+n−1, and the bound is tight if |Σ| ≥ 6.

Proof. Let A = (QA, Σ, ·A, IA, FA) and B = (QB , Σ, ·B , IB , FB) be UFAs for
languages K and L, respectively. Let |QA| = m, |FA| = k, |QB | = n, |IB| = ℓ.
Construct an NFA N = (QA ∪ QB , Σ, ·, I, FB) for KL, where for each q in
QA ∪QB and each a in Σ,

q · a =


q ·A a, if q ∈ QA and q ·A a ∩ FA = ∅;
q ·A a ∪ IB , if q ∈ QA and q ·A a ∩ FA ̸= ∅;
q ·B a, if q ∈ QB,

and

I =

{
IA, if IA ∩ FA = ∅;
IA ∪ IB , otherwise.

Notice that if a set S is reachable in the NFA N and S ∩ FA ̸= ∅, then IB ⊆ S.
It follows that the number of reachable sets is 2m−k2n+(2m−2m−k)2n−ℓ, which
is maximal if ℓ = 1. In such a case, this number equals (2m +2m−k)2n−1, which
is maximal if k = 1. After excluding the empty set, we get the upper bound.

For tightness, let K and L be languages over {a, b, c, d, α, β, γ} accepted
by automata A and B shown in Fig. 4, where QA = {q0, q1, . . . , qm−1} and
QB = {0, 1, . . . , n − 1}. Notice that AR and B are deterministic, so A and B
are unambiguous. Construct an NFA N for KL from automata A and B as de-
scribed above, that is, by adding transitions on a, b, c from state qm−2 to state 0,
and by adding transitions on α, β, γ from state qm−1 to state 0. The initial state
of N is q0 and the unique final state is n− 1.

q0 q1 . . . qm−2 qm−1
a, b

α, β, γ, b, c, d

a, b, c

α, β, γ, d

a, b, c a, b, c

α, β, γ, d

a

α, β, γ

0 1 . . . n−2 n−1
α

a, b, c, d, β

α, β

a, b, c, d, γ

α, β α, β

a, b, c, d, γ

α, β

a, b, c, d, γ

Fig. 4. Witness UFAs for concatenation meeting the upper bound 3/4·2m+n−1.
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First, let us show that the family of all the non-empty sets that are reachable
in N contains each subset S ∪ T , where S ⊆ QA, T ⊆ QB and if qm−1 ∈ S then
0 ∈ T . Consider several cases:

(1) Let S = {qm−1} ∪ T , where T ⊆ QB and 0 ∈ T . The set {qm−1, 0} is
reached from the initial set {q0} by am−1. Next, each set {qm−1, 0, j2, . . . , jk} of
size k + 1 is reached from the set {qm−1, 0, j3 − j2 + 1, . . . , jk − j2 + 1} of size k
by the string αβj2−1. This proves case (1) by induction.

(2) Let S ⊆ QA, T ⊆ QB , and 0 ∈ T . The set {q0} ∪ T is reached by a from
the set {qm−1} ∪ T which is considered in case (1). Next, in the NFA A, each
subset S of QA with q0 /∈ S is reached from a set S′ of the same size and with
0 ∈ S′ by a string in a∗, and each set such set S′ is reached from a smaller set by
a string in cb∗. This proves case (2) by induction since there is a loop on a, b, c
in each state of T , and we have 0 ∈ T .

(3) Let S ⊆ QA and qm−1 /∈ S. Let T ⊆ QB and 0 /∈ T . Then the set S∪T is
reached by γ from the set S ∪ T ∪ {0} which is considered in case (2). It follows
that N has 3/4 · 2m+n − 1 non-empty reachable sets.

Now let us show that each non-empty set is co-reachable in N . First, notice
that in BR, we can shift each set cyclically by using a string in α∗, and we
can eliminate state 0 from each set containing 0 using γ. This means that each
subset of QB is reached from QB in BR. Similarly, each string in a∗ performs a
cyclic shift of any set in AR. Next, we can eliminate a state qi from any set S
containing the state qi and a state qj with j > i: We shift S cyclically so that
state qi is moved to q0, then we use a string in c+ to ”merge” original states qi
and qj . After that reading a string in a∗ results in eliminating the state qi from
the original set S. Therefore, each non-empty subset of QA is reachable from QA

in AR. The empty set is reached from {q1} by c in AR. It follows that for each
S ⊆ QA with qm−1 ∈ S and each T ⊆ QB , there exist a string uS over {a, c}
and a string vT over {α, γ} such that in NR, we have

−→ {n− 1} αn−1amα−−−−−−→ QA ∪ {n− 1} uS−−→ S ∪ {n− 1} αn−1βn

−−−−−→ S ∪QB
uT−−→ S ∪ T ;

recall that there is a loop on a, b, c in each state of QB , and there is a loop on
α, β, γ in each state of QA. Next if qm−1 /∈ S, then for each T ⊆ QB the set
S∪T is reached from S∪{qm−1}∪T by d since we have a loop on d in each state
of A and B, except for state qm−1. Hence each non-empty set is co-reachable in
NFA N , and our proof is complete. ⊓⊔

Now we consider the Kleene closure (star) and positive closure operations. For
a language L, the star of L is the language L∗ =

∪
i≥0 L

i, where L0 = {ε} and

Li+1 = Li L. The positive closure of L is L+ =
∪

i≥1 L
i. The state complexity of

the star operation is 3/4 · 2n with binary witness languages [19,27]. In the unary
case, the tight upper bound is (n − 1)2 + 1 [4,27]. The nondeterministic state
complexity of star is n+1, with witnesses defined over a unary alphabet [9]. We
first consider the positive closure of UFA languages, and we get a tight upper
bound 3/4 · 2n − 1 on its complexity. Our worst-case example is defined over a
ternary alphabet.
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Theorem 13 (Positive Closure). Let L be a language over Σwith usc(L)= n,
where n ≥ 2. Then usc(L+) ≤ 3/4 · 2n − 1, and the bound is tight if |Σ| ≥ 3.

Proof. To get an upper bound, let A = (Q,Σ, ·, I, F ) be an n-state UFA for L.
Construct an NFA N = (Q,Σ, ·+, I, F ) for L+ where the transition function ·+
is defined as

q ·+ a =

{
q · a ∪ I, if q · a ∩ F ̸= ∅;
q · a, otherwise

for each state q in Q and each symbol a in Σ. Notice that if a set S is reachable
in N and S ∩ F ̸= ∅, then I ⊆ S. Hence a set containing some final state of
A and not containing some initial state of A cannot be reachable in N . Denote
this family of unreachable sets by Unreach. Let us count the number of such
sets. To this aim, denote |I \ F | = i, |I ∩ F | = j, and |F \ I| = k. Since A is
unambiguous, we must have j ≤ 1. Consider three cases:

(1) Let j = 0. Then we must have i, k ≥ 1 since A has at least one initial and
at least one final state. A set in Unreach contains a non-empty subset of F , a
non-universal subset of I, and any subset of the remaining states. Thus we have

|Unreach| = (2i − 1)(2k − 1)2n−i−k = (1− 1

2i
)(1− 1

2k
)2n ≥ 1/4 · 2n.

(2) Let j = 1 and i = k = 0. Then A has one initial state, which is also the
only final state of A. Then L = L+, and so usc(L+) = usc(L).

(3) Let j = 1 and let at least one of i, k be positive. A set in Unreach which
contains the unique initial and final state must contain a non-universal subset of
I \ F . A set which does not contain this state must contain a non-empty subset
of F \ I. Thus we have |Unreach| =(

(2i − 1)2k + 2i(2k − 1)
)
2n−i−k−1 =

(
1− 1

2k+1
− 1

2i+1

)
2n−1 ≥ 1/4 · 2n.

In case (2), we have n ≤ 3/4 · 2n − 1 since n ≥ 2. Next, in cases (1) and (3),
at least 1/4 · 2n subsets are unreachable. The empty subset is not in Unreach.
It follows that there are at most 3/4 · 2n − 1 reachable non-empty subsets in N .
This proves the upper bound.

To prove tightness, let L be the language accepted by the ternary DFA A
shown in Fig. 5 (top). Construct the NFA N for L+ as described above. Notice
that the DFA A restricted to the alphabet {a, b} is the same as the witness DFA
for the star operation from [27, Theorem 3.3, Fig. 4] In particular, this means
that N has 3/4 · 2n − 1 non-empty reachable subsets.

Let us show that each non-empty set is co-reachable in N . To this aim, we
use only the transitions on a and c. Fig. 5 (bottom) shows these transitions in
NR. Notice, that we can shift each subset S of {0, 1, . . . , n−1} cyclically by one
to the set {(s − 1) mod n | s ∈ S}: we use a if 0 /∈ S or if both 0 and n − 1
are in S, and we use ac otherwise. Next, we can eliminate a state i from any
set containing states i and i+1. It follows that each non-empty set is reachable
from {0, 1, . . . , n − 1} in NR. To conclude the proof, notice that the initial set

{n− 1} of NR goes to {0, 1, . . . , n− 1} by the string an
2

. ⊓⊔
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0 1 . . . n− 3 n− 2 n− 1
a a, b a, b a, b a, b

ab

bc c c c

0 1 . . . n− 3 n− 2 n− 1
a a a a a

c c c c

a
ac

Fig. 5. The witness UFA for positive closure meeting the upper bound 3/4·2n−1
(top), and the transitions on a, c in the NFA NR (bottom).

Finally, let us show that the tight upper bound for star on UFAs is 3/4 · 2n,
and that it is met by the language accepted by the UFA shown in Fig. 5 (top).

Theorem 14 (Star). Let L be a regular language over Σ with usc(L) = n,
where n ≥ 2. Then usc(L∗) ≤ 3/4 · 2n, and the bound is tight if |Σ| ≥ 3.

Proof. The upper bound follows from the previous theorem since if ε ∈ L, then
L+ = L∗, and otherwise we only need to add one more initial and final state
to the UFA for L+ to accept the empty string. The resulting automaton is
unambiguous since the new state accepts only the empty string which is not
accepted by UFA for L+.

For tightness, consider the language L accepted by the UFA A shown in
Fig. 5 (top). Construct an NFA N for L∗ from UFA A by adding a new initial
and final state q0, and by adding the transitions on a, b from n− 2 to 0, and the
transition by c from n− 1 to 0. As shown in [27, Theorem 3.3] the NFA N has
3/4 · 2n reachable sets: the initial set {q0, 0}, all the subsets of {0, 1, . . . , n− 1}
containing state 0, and all the non-empty subsets of {1, 2, . . . , n− 2}.

Next, consider the NFA NR. The initial set of NR is {q0, n− 1}. Next, as we
have shown in the proof of Theorem 13, each non-empty set is reachable in NR.
Now consider the 3/4 · 2n × 2n matrix MN .

{q0, n− 1} T ̸= {n− 1} T = {n− 1}
{q0, 0} 1 0

S
n− 1 ∈ S

1
1
. . .
1

1
1
. . .
1

S
n− 1 /∈ S

0
0
. . .
0

0
0
. . .
0

Table 1. Matrix MN for NFA N for the star of the language from Fig. 5 (top).
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Assume that the first row is indexed by {q0, 0}, then there are rows indexed
by reachable sets containing n − 1, and then by reachable sets not containing
n−1. Next, assume that the first column is indexed by the initial co-reachable set
{q0, n−1}, the last column is indexed by {n−1}, and all the remaining columns
are indexed by the remaining co-reachable sets. This is illustrated in Table 1.

Then the rank of the sub-matrix obtained from MN by removing the first row
and the first column is 3/4·2n−1. Next, notice that the first and the last columns
differ only in the entry in the first row. Hence the first row cannot be expressed
as a linear combination of any others rows. Therefore rank(MN ) = 3/4 · 2n, and
the theorem follows by Proposition 4. ⊓⊔

4 Partial Results for Complementation and Union

In this section we present partial results for the complementation and union
operations on UFA languages. The complement of a language L over Σ is the
language Lc = Σ∗ \L. A language and its complement have the same state com-
plexity since to get a DFA for the complement of L, we only need to interchange
the sets of final and non-final states in a DFA for L. For NFAs, the tight upper
bound for complementation is 2n with witnesses defined over a binary alphabet
[9,14]. For unary UFAs, the problem was studied by Okhotin who provided a
lower bound n2 − o(1) for complementation of unary UFAs [20, Theorem 6].
In the next theorem we deal with an upper bound. Then we consider union.

Theorem 15 (Complementation: Upper Bound). Let L be a regular lan-
guage with usc(L) = n, where n ≥ 7. Then usc(Lc) ≤ 20.79n+logn.

Proof. Let A be an n-state UFA for L and R and C be the sets of non-empty
reachable and co-reachable sets of A. First, we show that usc(Lc)≤ min{|R|, |C|}.
We have usc(Lc) ≤ |R| since we can get a DFA for Lc by applying the subset
construction to A and by interchanging the sets of final and non-final states in the
resulting DFA that has |R| reachable states. Next, we have usc(Lc) ≤ |C| since
the NFA AR is unambiguous, so usc((LR)c) ≤ |C| which means that usc(Lc) ≤ |C|
since complement and reversal commutes and the reverse of a UFA is a UFA.

Next, let k = max{|X| | X ∈ R}, and pick a set S in R of size k. Then each
set in R has size at most k, and each set in C may have at most one element in
S by Proposition 2. Thus

|R| ≤
(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

k

)
and |C| ≤ (k + 1)2n−k.

If k ≥ n/2, then |C| ≤ (n/2 + 1) · 2n/2 ≤ 20.5n+logn, and the theorem follows.
Now assume that k < n/2. Then |R| ≤ k

(
n
k

)
≤ n( enk )k and |C| ≤ n2n−k. Let

r(k) = n( enk )k and c(k) = n2n−k. Then r(k) increases, while c(k) decreases with
k. It follows that if we pick a k0 such that k0 < n/2, then usc(Lc) ≤ r(k0)
if k ≤ k0, and usc(Lc) ≤ c(k0) otherwise. By setting k = nx and by solving
( ennx )

nx = 2n−nx, we get x0 = 0.2144, k0 = 0.2144n, r(k0) ≤ 20.7856n+logn, and
c(k0) ≤ 20.785629n+logn. This completes our proof. ⊓⊔
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p0 p1 p2 . . . pm−1
a a a a

a

b b b

q0 q1 q2 . . . qn−1
c c c c

c

d d d

Fig. 6. The UFAs for union meeting the bound mn +m + n; the loops on c, d
resp. on a, b in each state of A and B, respectively, are not displayed.

Proposition 16 (Union). Let K and L be languages over Σ with usc(K) = m
and usc(L) = n, where 1 ≤ m ≤ n. Then

(a) usc(K ∪ L) ≤ m+ n · usc(Kc) ≤ m+ n20.79n+logn;
(b) the bound mn+m+ n is met if |Σ| ≥ 7.

Proof. (a) The claim follows from the equality K ∪ L = K∪̇(L ∩Kc), where ∪̇
denotes a disjoint union, since we have usc(L∩Kc) ≤ n ·usc(Lc) by Theorem 8,
and, moreover, the NFA for a disjoint union of UFAs is unambiguous. The second
inequality is given by Theorem 15.

(b) Let K and L be the languages over {a, b, c, d} accepted by DFAs A and B,
such that we have a loop on c, d in each state of A and a loop on a, b in each
state of B; the remaining transitions are shown in Fig. 6. Construct an NFA N
for K ∪ L from A and B so that the set of initial states is {p0, q0} and the set
of final states is {p0, . . . , pm−1, q0, . . . , qn−1}. Then the sets {pi, qj}, {pi}, {qj}
with 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1 are reachable in N . To conclude the proof
notice that each set is co-reachable in N since we can shift any set in A cyclically
by reading a and eliminate one state by reading b, while each state of B remains
in itself. The same can by done symmetrically with the sets in B. ⊓⊔

5 Conclusions

We investigated the complexity of basic regular operations on languages repre-
sented by unambiguous finite automata. Since the reverse of an unambiguous
automaton is unambiguous, a language and its reversal have the same complex-
ity for UFAs. Next, we obtained tight upper bounds for intersection (mn), left
and right quotients (2n−1), positive closure (3/4 ·2n−1), star (3/4 ·2n), shuffle
(2mn − 1), and concatenation (3/4 · 2m+n − 1).

To get upper bounds, we constructed an NFA for the language resulting from
an operation, and applied the (incomplete) subset construction to it. For lower
bounds, we defined witness languages in such a way that we were able to assign a
matrix to a resulting language. The rank of this matrix provided a lower bound
on the unambiguous state complexity of the resulting language.
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To prove tightness, we used a binary alphabet for intersection and left and
right quotients, a ternary alphabet for star and positive closure, a five-letter
alphabet for shuffle, and a seven-letter alphabet for concatenation.

For complementation and union, we provided upper bounds 20.79n+logn and
m + n20.79n+logn, respectively. Finally, we got a lower bound mn + m + n for
union in the quaternary case. The exact complexity of complementation and
union on UFAs remains open. All our result are summarized and compared to
the known results on the state complexity and nondeterministic state complexity
of the considered operations in Table 2.

In the case of complementation, we tried to use a fooling set lower bound
method, but we were able to describe a fooling set for the complement of an
n-state UFA language only of size n+ log n. Moreover, it seems that every such
fooling set is of size which is linear in n [7]. Thus the fooling set technique
cannot be used to get a larger lower bound. Neither the method based on the
rank of matrices can be used here since the matrices of a language and its
complement have the same rank, up to one. Therefore, to get a larger lower
bound for complementation, some other techniques should be developed.

sc |Σ| nsc |Σ| usc |Σ|
reversal 2n 2 n+ 1 2 n 1
intersection mn 2 mn 2 mn 2
left quotient 2n − 1 2 n+ 1 2 2n − 1 2
right quotient n 1 n 1 2n − 1 2
positive closure 3/4 · 2n − 1 2 n 1 3/4 · 2n − 1 3
star 3/4 · 2n 2 n+ 1 1 3/4 · 2n 3

shuffle ≥ 2(m−1)(n−1) 5 mn 2 2mn − 1 5
concatenation (m− 1/2) · 2n 2 m+ n 2 3/4 · 2m+n − 1 7

complement n 1 2n 2 ≤ 20.79n+logn

≥ n2−ϵ 1 [20]

union mn 2 m+ n+ 1 2 ≤ m+ n20.79n+logn

≥ mn+m+ n 4

Table 2. The complexity of regular operations: state complexity, nondetermin-
istic state complexity, unambiguous state complexity, and the sizes of alphabets
for worst-case examples.
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