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1. Introduction and preliminaries

It is well known that the tensor product of two vector measures, cf. [5,6], need not
always exist, even in the case of measures ranged in the same Hilbert space and
being the linear mapping (used in its definition) the corresponding inner product,
cf. [7]. Several authors have given sufficient conditions for the existence of the
tensor product measure, including the case of measures valued in locally convex
spaces. In [19], a bilinear integral is defined in the context of locally convex spaces
which is related to Bartle integral, cf. [1], and which allows to state the existence
of the product measures valued in locally convex spaces under certain conditions.
The bornological character of the bilinear integration theory in [19] shows the
fitness of making a development of bilinear integration theory in the context of
the complete bornological locally convex spaces (C. B. L. C. S., for short), cf. [14].
For a list of references to this problem, cf. [2].

The description of the theory of complete bornological locally convex topo-
logical vector spaces may be found in [17], and [18]. In what follows we recall some
necessary notions from [11-13], and [14].

Let X, Y, Z be Hausdorff C. B. L. C. S. over the field K of real R or complex
numbers C, equipped with the bornologies Bx, By, Bz. A Banach disk in X is
a set U which is closed, absolutely convex and the linear span Xy of which is a
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Banach space. Let us denote by U the set of all Banach disks U in X such that
U € %Bx. So, the space X is an inductive limit of Banach spaces Xy, U € U,
X = injlim Xy,
veu

and the family I/ is directed by inclusion and forms the basis of bornology Bx
(analogously for Y and W, Z and V), respectively). We say that the basis U of the
bornology Bx has the vacuum vector ' Uy € U, if Uy C U for every U € U. Let
the bases U, W, V be chosen to consist of all Bx, By, Bz bounded Banach disks
in X, Y, Z with vacuum vectors Uy € U, Uy # {0}, Wo € W, Wy # {0}, Vj € V,
Vo # {0}, respectively. We say that a sequence of elements x,, € X, n € N (the
set of all natural numbers), U-converges to x € X, if there exists U € U such that
for every £ > 0 there exists ng € N such that (x,, —x) € U for every n > ng. We
write x = M—nlLH;O Xy, -

On U the lattice operations are defined as follows. For Uy, Us € U we have:
Ui AUy = Uy NUs, and Uy V Uy = acs(U; UUs), where acs denotes the topological
closure of the absolutely convex span of the set; analogously for W and V. For
(U17W17‘/1)7 (U27W2,‘/2) eU x W xV, we write (U1>W1a‘/1) < (UQ,WQ,‘/Q) if
and only if Uy C Uy, W7 D Wy, and Vi D Vs.

We use @, U, I" to denote the classes of all functions U — W, W — V,
U — V with orders <g¢, <y, <r defined as follows: for ¢, € ® we write
1 <o w2 whenever ¢1(U) C ¢o(U) for every U € U (analogously for <y, <p and
W — V, U — V, respectively). Denote by L(X,Y) the space of all continuous
linear operators L : X — Y. We suppose L(X,Y) C ® (analogously, L(Y,Z) C ¥
and L(X,Z) CT).

Let T and S be two non-void sets. Let A and V be two d-rings of subsets of
sets T and S respectively. If A is a system of subsets of the set T', then o(A) (resp.
d(A)) denotes the o-ring (resp. d-ring) generated by the system A. Set ¥ = o(A)
and 2 = (V). By py : X — [0,00] we denote the Minkowski functional of the
set U € U. Similarly, pyy and py indicate the Minkowski functionals of the sets
W e W and V € V, respectively.

For every (U, W) € U x W, denote by myw : ¥ — [0,00] a (U, W)-semi-
variation of a charge (= finitely additive measure) m : A — L(X,Y), given by

I
my w(E) = sup pw (Z m(E N Ez)xz> , EFeXx,
i=1

where the supremum is taken over all finite sets {x; € U,i = 1,2,...,1} and all
disjoint sets {E; € A; i = 1,2,...,I}. For every (U, W) € U x W, denote by
lmfjgw : £ — [0,00] a scalar (U, W)-semivariation of m : A — L(X,Y), defined
by

1

i=1

, FeXx,
U,W

[mllyw(E) = sup pw

n literature we can find also as terms as the ground state or marked element or fiducial vector
or mother wavelet depending on the context.
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where ||L||y,w = supycy pw (L(x)) and the supremum is taken over all finite sets
of scalars {\; € K; |\;| < 1,4 = 1,2,...,1} and all disjoint sets {E; € A; i =
1,2,...,I}. Analogously, we may define a (W, V')-semivariation iWy and a scalar
(W, V)-semivariation |1y, of a charge 1: V — L(Y,Z).

Definition 1.1. Let (U, W) € U x W. Denote by

(a) Ay, the greatest d-subring of A of subsets of finite (U, W)-semivariation
my w and Ay w = {Ayw; (U, W) € U x W} the lattice with the order given
with inclusions of U € U and W € W, respectively;

(b) Afw the greatest d-subring of A on which the restriction myw : Af y —
L(Xy,Yw) of the measure m : A — L(X,Y) is uniformly countable addi-
tive, with my w (E) = m(E), for £ € Afyy, and Ay, = {Af s (U, W) €
U x W} the lattice with the order given with inclusions of U € U and W € W,
respectively;

(c) Afw the greatest d-subring of A where my w is continuous and Af ), =
{AGw; (U, W) €U x W} the lattice with the order given with inclusions of
U cU and W € W, respectively.

Analogously, we may define Vv, Vi, Vi, where (W, V) € Wx V), and
Vw.v, Viy vy Vi 1. We denote by Ayw ®VW,V the smallest §-ring containing all
rectangles Ax B, A € Ayw, B € Vv, where (U, W) eUxW, (W, V) e Wx V.
If D1, Dy are two d-rings of subsets of T', S, respectively, then clearly o(D; ®Ds) =
0(D1) ® 0(D2). For every E € §(D; ® Ds) there exist A € Dy, B € Dy, such that
ECAxB. For ECTxS,seS,put E°={teT;(ts) <€ E}.

The sense of the theory of integration developed in [14] is that it is the
integration theory which completely generalizes the Dobrakov integration, cf. [3],
to a class of non-metrizable locally convex topological vector spaces. A suitable
class of operator measures in C. B. L. C.S. which allows such a generalization is a
class of all og-additive measures.

For (U, W) € UxW we say that a charge m is of o-finite (U, W)-semivariation
if there exist sets £, € Ay w, n € N, such that T = U;’Ozl FE,. For p € ®, we say
that a charge m is of o,,-finite (U, W)-semivariation if for every U € U, the charge
m is of o-finite (U, p(U))-semivariation.

Definition 1.2. We say that a charge m is of og-finite (U, W)-semivariation if
there exists a function ¢ € ® such that m is of o,-finite (U, V)-semivariation.

Let W € W. We say that a charge p: ¥ — Y is a (W, 0)-additive vector
measure, if p is a Yy -valued (countable additive) vector measure.

Definition 1.3. We say that a charge p : ¥ — Y is a (W, 0)-additive vector
measure, if there exists W € W such that p is a (W, 0)-additive vector measure.

The following definition generalizes the notion of o-additivity of an operator-
valued measure in the strong operator topology in Banach spaces, cf. [3], to C. B.
L.C.S.
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Definition 1.4. Let ¢ € ®. We say that a charge m : A — L(X,Y) is a 0,-additive
measure if m is of o,-finite ({4, V)-semivariation, and for every A € Ay ) the
charge m(AN -)x : ¥ — Y is a (p(U),0)-additive measure for every x € Xy,
U € U. We say that a charge m : A — L(X,Y) is a og-additive measure if there
exists ¢ € ® such that m is a o,-additive measure.

In what follows, m : A — L(X,Y) and 1: V — L(Y,Z) are supposed to be
operator valued og- and og-additive measures respectively. For the construction
of (Dobrakov) integral in C.B.L.C.S. see [14].

2. A construction of bornological product measure

Definition 2.1. We say that a (bornological) product measure of a og-additive
measure m : A — L(X,Y) and oyg-additive measure 1: V — L(Y,Z) exists on
A®V (we write m®1: A®V — L(X,Z)), if there exists one and only one
or-additive measure m ® 1: A ® V — L(X, Z) such that

(m®1)(A x B)x =1(B)m(A)x

for every x € X7, A € Ayw, B € Vv, where there exists y € I', p € &, ¢ € ¥,
such that v = o and V-C (W), W C o(U), v(U) C ¢((U)).

The Hahn—Banach theorem and the uniqueness of enlarging of the finite
scalar measure from the ring to the generated o-ring imply that if ny,ns : Ay w ®
Vw,v — L(Xy,Zy), are two o,-additive measures (y € I') such that ny(Ax B) =
HQ(A X B) for every A € AU,W» B e v‘/‘/_rv7 then n; = ny on AU,W ® VW,V-

Remark 2.2. Definition 2.1 differs from that of Dobrakov [4], Definition 1, in reduc-
tion to Banach spaces. Instead of the general A®V we deal only with Ay w @V, v,
VW), W CoU),v(U) C ¥(e(U)). In fact, only our case is needed for prov-
ing the Fubini theorem in [4].

Remark 2.3. The bornological product measure is a complicated object from the
reason of the following implications: if (Uy, Wi, V1), (U, Wa,Va) € U x W x V,
then

(Ul,Wl) < (U27 WQ) = AUZ,WQ C AUl,Wl y
and
(W1, V1) < (W2, Va) = Vi, v, €V, v, -
In general, for a fixed W € W,
(U1, V1) < (U2, Va) = Ay, w @ Vv, C Ay,w @ Vy,

and we may say nothing about the uniqueness, the existence, etc. of W € W.
However, we guarantee the uniqueness of the measure in the case if it exists.
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Theorem 2.4. If there exists W € W such that for every (U, V) € U XV, every
E € Ayw @ Vw,y and every x € Xy, the function s — m(E®)x, s € S, is Vy,y-
integrable, then the product measure m @ 1: A @V — L(X,Z) exists on A® V.
In this case, for every E € Ay w @ Vv and every x € Xy holds

(mU’W ® IW’V)(E)X == /Sl’n(Es)X dl. (21)

Proof. Suppose that the product measure m ® 1 : A ® V — L(X,Z) exists on
A ® V. Let it hold for the set W € W and let x € Xy, (U, V) € U x V. Denote
by D the class of all sets G € Ay,w ® Vi for which the function s — m(G?®)x,
s € 8, is Vy,v-integrable and for which (2.1) holds. Then clearly D is a subring of
Ay w ® Vv which consists of all rectangles of the type A x B, where A € Ay w,
B € Vy,y and it may be easily shown that D is a d-ring, cf. [10], Theorem E,
§ 33. Since x € Xy is an arbitrary vector, the second assertion of the theorem is
proved.

Next we suppose that there exists W € W such that for a given set E €
Ayw @ Vwy, every (U, V) € U x V and x € Xy, the function s — m(E*)x,
s € S, is Vyyy-integrable. For x € Xy and E € Apw ® Vv, put ng(E) =
Jsm(E®)xdl Since ny(A x B) = ly,v(B)my,w(A)x for every A € Ayw, B €
Vw,v, clearly ny : Ay w ® Vv — Zy is a o-additive measure. Let x € Xy and
suppose that E,, € Ay w ®Vw,v, n € N, are pairwise disjoint sets with their union
E =", E, € Ayw @ Viy,v. We have to show that ny(E) = > 07 ny(E,),
where the series unconditionally V-bornologically converges. Therefore we take
A e Ayw, B € Vy,y such that E C A x B and consider the o-ring Ay w ®
Vw,v N(Ax B). Since the measure ny : Ay w @ Vw,v N(Ax B) — Zy is additive,
by the Orlicz-Pettis theorem, see [8], TV.10.1, it is sufficient to prove that

(ne(E),2') = (nye(En), )
n=1

for each 2/ € VO (here V? is the polar set of V € V), where the series uncondi-
tionally V-bornologically converges. If EY, n € N, is some rearrangement of the

n’

sequence E,, and 2’ € VO then the inequality

<nx(E)—an(E;§),z’> S/SHm(‘)X”U,W << U E:‘) ) dvarw (71, -),

1=n+1
o-additivity of the vector measure my w (-)x : Ayw — Y, and the Lebesgue
dominated convergence theorem yields

D (nx(ED),2') = (nx(E),2').

n=1
which proves the theorem. O
Remark 2.5. For Fréchet spaces Theorem 2.4 holds also in the inverse direction,

i.e. it gives a necessary and sufficient condition for the existence of the bornological
product measure m ® 1.



70 J. Halugka and O. Hutnik Result.Math.

Let g : S — Yy be a Vi y-measurable function and define the submeasure
v (g, B) for B € o(Vw,y) as follows:

v (g, B) = sup {pv ( /B hdl) } ,

where the supremum is taken over all h € o(Vy,y,Yw), and s € S such that
pw (h(s)) < pw(g(s)). Let us denote by Ly (1) the space of all Vyy,y-integrable
functions with the bounded and continuous seminorm ly v (-, B). Analogously we
define iy (-, A) and the space Li; y, (m). This immediately implies the following
result.

Theorem 2.6. Let (U, W, V) € UxW xV and let the product measure my w Qlw,v :
Ayw @Vwy — L(Xy,Zy) exist. Let E € o(Ayw @Vw,y) and f: TS — Xy
be a Ayw @ Vw,yv-measurable function. Then

lm @1y, (E) < lw,y (|lm]low(E%),S),
and
(meyyv(f,E) <lwy (mU,W(f( ° 8),E8)»S) ~
In the special case of E=Ax B, A€ Ayw, B € Vw,y, we have
lm @ 1|g,v (A x B) < [myw(A) 1wy (B) < oo,

and

(m @ 1)y (A x B) < myw(A) 1wy (B).

Thus (U, V)-semivariation (m ® 1)y v is a finite set function on Ay w @ Vv .

3. A Fubini-type theorem

Let (U,W,V) e U x W x V. Denote by (Ayw ® Vw,v, X) the closure of the set
o(Ayw ® Vv, X) of all Ay w ® Vy,y-simple functions on T' x S with values
in X with respect to the seminorm || - ||7xs,v in the Banach space of all U-bounded
functions on T x S. For elements from ¢(Ay,w @ Vv, X) the following Fubini-
type theorem holds.

Theorem 3.1. Let (U, W, V) e U x W x V. Let the product measure my yw & Ly
exist on Ayw @ Vwy. Let £ € 5(AU,W ® Vwy,X) and F € Auw @ Vw,v (if
g (T) -l v (S) < oo, then let F € o(Ayw @ Vwy)). Then
(a) fxr is a Ayw ® Vw,v-integrable function;
(b) for every s € S the function £(-,s)xr(-,s) is Ay,w-integrable;
(c) for every E € o(Ayw ® Vw,y) the function s — [, £(-,s)xr(-,s)dm,
s €8, is Vw,v-integrable and for every E € o(Ayw ® Vw,v) holds

fXFd(m(X)l):/ £f(-,8)xr(-,s)dmdl.
s JEs

Es
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Proof. Let f, € 0(Auw ® Vw,v,X), n € N, be a sequence of functions such
that [|f, — f|lrxs,v — 0 as n — oo. Take Ag € Ayw and By € Vv, such that
F C Ay x By (if thyw (T) -l (S) = oo, take Ag € o(Ap.w) and By € o(Vyy)).
Then f,(t,s) — f(t,s) for every (t,s) € T x S. If E € o(Ayw ® Vw,y), then
anE S &(A(LW X VW,V) for every n € N.

(a) From the definition of the (U, V)-semivariation (m ® 1)y and Theo-
rem 2.6 we have

pv </E f.xrdm®]l) - /EkaF dm® 1)> =pv (/BHF(fn —fk)dm® 1))

< | — fillrxs,v - (Mm@ Dy,y (F)
< |Ifn — fillrxs,u

-ty w (Ao) - lw,v (Bo)

for every E € o(Apy,w ® Vw,v) and every n, k € N. Since my,w (Aop) -iW,V(BO) <
00, then by Theorem 4.3 in [14] the function fxp is Ay w ® V,y-integrable and

/fnxpd(m®l)—>/fXFd(m®l)
E E

for every E € o(Ayw ® Viw,v).
(b) Let s € S. Then

Pw (Afn('7S>XF('7S)dm—/Afk(-,S)XF(-,s)dm>

< |fn — fillrxs,v - myw (Ao)

for every A € o(Ayw ® Vw,v) and n,k E N. Since my,w(A4g) < oo, then by
Theorem 4.3 in [14] the function f( -, s)xr(-,s) is Ay w-integrable and we have

Ag() <ma/ .,s)dm

for every A € o(Ay,w). In particular,
[ ot dm = [ fCsne( s dm
s ES
for every E € o(Ayw @ Vw,v).
(c) Let E € o(Ay,w ® Vw,v). Then using Lemma 3.3 in [16], we get

pv</B Esfn(-,s)xp(-7s)dmdl—/B Esfk(-,s)xp(-,s)dmdl>

< sup pw (/ (£u(-,s) — (-, 9)) dm> Aw,v(Bo)

sE€By
< | — fillrxs.v - o w(Ag) - lw v (Bo)
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for every By € o(Vw,y) and n,k € N. Since rhUyw(Ao)iW_,V(Bo) < oo and
If, — fellrxs,y — 0 as n,k — oo, according to Theorem on interchange the
limit and integral in [15] the relations (a) and (b) imply that the function s —
fEs f(-, ,s)dm, s € S, is Vyy y-integrable and, therefore,

/ £ ( (-,s)dmdl—>/ f(-,8)xr(-,s)dmdl
Es s JEs

as n — o0. It is enough to note that by Theorem 2.4 there holds

/ande® // xrF(-,s)dmdl
E El

for every E € o(Ayw ® Vw,v) and n € N. O
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