The Fubini Theorem for Bornological Product Measures

Ján Haluška and Ondrej Hutník

Abstract. The goal of this note is to present a construction of bornological product measures and prove a Fubini-type theorem for them.

Mathematics Subject Classification (2000). Primary 46G10; Secondary 28B05. Keywords. Product measure, complete bornological locally convex vector space, Fubini theorem, bilinear integral, Dobrakov integral.

1. Introduction and preliminaries

It is well known that the tensor product of two vector measures, cf. [5,6], need not always exist, even in the case of measures ranged in the same Hilbert space and being the linear mapping (used in its definition) the corresponding inner product, cf. [7]. Several authors have given sufficient conditions for the existence of the tensor product measure, including the case of measures valued in locally convex spaces. In [19], a bilinear integral is defined in the context of locally convex spaces which is related to Bartle integral, cf. [1], and which allows to state the existence of the product measures valued in locally convex spaces under certain conditions. The bornological character of the bilinear integration theory in [19] shows the fitness of making a development of bilinear integration theory in the context of the complete bornological locally convex spaces (C. B. L. C. S., for short), cf. [14]. For a list of references to this problem, cf. [2].

The description of the theory of complete bornological locally convex topological vector spaces may be found in [17], and [18]. In what follows we recall some necessary notions from [11–13], and [14].

Let X, Y, Z be Hausdorff C. B. L. C. S. over the field K of real R or complex numbers C, equipped with the bornologies \mathfrak{B}_X , \mathfrak{B}_Y , \mathfrak{B}_Z . A Banach disk in X is a set U which is closed, absolutely convex and the linear span X_U of which is a

This paper was supported by Grants VEGA 2/0097/08, APVT-51-006904 and CNR-SAS project 2007-2009 "Integration in abstract structures".

Banach space. Let us denote by \mathcal{U} the set of all Banach disks U in \mathbf{X} such that $U \in \mathfrak{B}_{\mathbf{X}}$. So, the space \mathbf{X} is an inductive limit of Banach spaces \mathbf{X}_U , $U \in \mathcal{U}$,

$$\mathbf{X} = \underset{U \in \mathcal{U}}{\text{injlim}} \; \mathbf{X}_U \;,$$

and the family \mathcal{U} is directed by inclusion and forms the basis of bornology $\mathfrak{B}_{\mathbf{X}}$ (analogously for \mathbf{Y} and \mathcal{W} , \mathbf{Z} and \mathcal{V} , respectively). We say that the basis \mathcal{U} of the bornology $\mathfrak{B}_{\mathbf{X}}$ has the vacuum vector 1 $U_0 \in \mathcal{U}$, if $U_0 \subset U$ for every $U \in \mathcal{U}$. Let the bases \mathcal{U} , \mathcal{W} , \mathcal{V} be chosen to consist of all $\mathfrak{B}_{\mathbf{X}}$, $\mathfrak{B}_{\mathbf{Y}}$, $\mathfrak{B}_{\mathbf{Z}}$ bounded Banach disks in \mathbf{X} , \mathbf{Y} , \mathbf{Z} with vacuum vectors $U_0 \in \mathcal{U}$, $U_0 \neq \{0\}$, $W_0 \in \mathcal{W}$, $W_0 \neq \{0\}$, $V_0 \in \mathcal{V}$, $V_0 \neq \{0\}$, respectively. We say that a sequence of elements $\mathbf{x}_n \in \mathbf{X}$, $n \in \mathbb{N}$ (the set of all natural numbers), \mathcal{U} -converges to $\mathbf{x} \in \mathbf{X}$, if there exists $U \in \mathcal{U}$ such that for every $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $(\mathbf{x}_n - \mathbf{x}) \in \mathcal{U}$ for every $n \geq n_0$. We write $\mathbf{x} = \mathcal{U}$ - $\lim_{n \to \infty} \mathbf{x}_n$.

On \mathcal{U} the lattice operations are defined as follows. For $U_1, U_2 \in \mathcal{U}$ we have: $U_1 \wedge U_2 = U_1 \cap U_2$, and $U_1 \vee U_2 = \operatorname{acs}(U_1 \cup U_2)$, where acs denotes the topological closure of the absolutely convex span of the set; analogously for \mathcal{W} and \mathcal{V} . For $(U_1, W_1, V_1), (U_2, W_2, V_2) \in \mathcal{U} \times \mathcal{W} \times \mathcal{V}$, we write $(U_1, W_1, V_1) \ll (U_2, W_2, V_2)$ if and only if $U_1 \subset U_2$, $W_1 \supset W_2$, and $V_1 \supset V_2$.

We use Φ , Ψ , Γ to denote the classes of all functions $\mathcal{U} \to \mathcal{W}$, $\mathcal{W} \to \mathcal{V}$, $\mathcal{U} \to \mathcal{V}$ with orders $<_{\Phi}$, $<_{\Psi}$, $<_{\Gamma}$ defined as follows: for $\varphi_1, \varphi_1 \in \Phi$ we write $\varphi_1 <_{\Phi} \varphi_2$ whenever $\varphi_1(U) \subset \varphi_2(U)$ for every $U \in \mathcal{U}$ (analogously for $<_{\Psi}$, $<_{\Gamma}$ and $\mathcal{W} \to \mathcal{V}$, $\mathcal{U} \to \mathcal{V}$, respectively). Denote by $L(\mathbf{X}, \mathbf{Y})$ the space of all continuous linear operators $L: \mathbf{X} \to \mathbf{Y}$. We suppose $L(\mathbf{X}, \mathbf{Y}) \subset \Phi$ (analogously, $L(\mathbf{Y}, \mathbf{Z}) \subset \Psi$ and $L(\mathbf{X}, \mathbf{Z}) \subset \Gamma$).

Let T and S be two non-void sets. Let Δ and ∇ be two δ -rings of subsets of sets T and S respectively. If \mathcal{A} is a system of subsets of the set T, then $\sigma(\mathcal{A})$ (resp. $\delta(\mathcal{A})$) denotes the σ -ring (resp. δ -ring) generated by the system \mathcal{A} . Set $\Sigma = \sigma(\Delta)$ and $\Xi = \sigma(\nabla)$. By $p_U: \mathbf{X} \to [0, \infty]$ we denote the Minkowski functional of the set $U \in \mathcal{U}$. Similarly, p_W and p_V indicate the Minkowski functionals of the sets $W \in \mathcal{W}$ and $V \in \mathcal{V}$, respectively.

For every $(U, W) \in \mathcal{U} \times \mathcal{W}$, denote by $\hat{\mathbf{m}}_{U,W} : \Sigma \to [0, \infty]$ a (U, W)-semi-variation of a charge (= finitely additive measure) $\mathbf{m} : \Delta \to L(\mathbf{X}, \mathbf{Y})$, given by

$$\hat{\mathbf{m}}_{U,W}(E) = \sup p_W \left(\sum_{i=1}^I \mathbf{m}(E \cap E_i) \mathbf{x}_i \right), \quad E \in \Sigma,$$

where the supremum is taken over all finite sets $\{\mathbf{x}_i \in U, i = 1, 2, ..., I\}$ and all disjoint sets $\{E_i \in \Delta; i = 1, 2, ..., I\}$. For every $(U, W) \in \mathcal{U} \times \mathcal{W}$, denote by $\|\mathbf{m}\|_{U,W} : \Sigma \to [0, \infty]$ a scalar (U, W)-semivariation of $\mathbf{m} : \Delta \to L(\mathbf{X}, \mathbf{Y})$, defined by

$$\|\mathbf{m}\|_{U,W}(E) = \sup p_W \left\| \sum_{i=1}^I \lambda_i \mathbf{m}(E \cap E_i) \right\|_{U,W}, \quad E \in \Sigma,$$

¹In literature we can find also as terms as the *ground state* or *marked element* or *fiducial vector* or *mother wavelet* depending on the context.

where $||L||_{U,W} = \sup_{\mathbf{x} \in U} p_W(L(\mathbf{x}))$ and the supremum is taken over all finite sets of scalars $\{\lambda_i \in \mathbb{K}; \ |\lambda_i| \leq 1, i = 1, 2, \dots, I\}$ and all disjoint sets $\{E_i \in \Delta; \ i = 1, 2, \dots, I\}$. Analogously, we may define a (W, V)-semivariation $\hat{\mathbf{l}}_{W,V}$ and a scalar (W, V)-semivariation $||\mathbf{l}||_{W,V}$ of a charge $\mathbf{l} : \nabla \to L(\mathbf{Y}, \mathbf{Z})$.

Definition 1.1. Let $(U, W) \in \mathcal{U} \times \mathcal{W}$. Denote by

- (a) $\Delta_{U,W}$ the greatest δ -subring of Δ of subsets of finite (U, W)-semivariation $\hat{\mathbf{m}}_{U,W}$ and $\Delta_{U,W} = \{\Delta_{U,W}; (U,W) \in \mathcal{U} \times \mathcal{W}\}$ the lattice with the order given with inclusions of $U \in \mathcal{U}$ and $W \in \mathcal{W}$, respectively;
- (b) $\Delta_{U,W}^u$ the greatest δ -subring of Δ on which the restriction $\mathbf{m}_{U,W}: \Delta_{U,W}^u \to L(\mathbf{X}_U, \mathbf{Y}_W)$ of the measure $\mathbf{m}: \Delta \to L(\mathbf{X}, \mathbf{Y})$ is uniformly countable additive, with $\mathbf{m}_{U,W}(E) = \mathbf{m}(E)$, for $E \in \Delta_{U,W}^u$ and $\Delta_{U,W}^u = \{\Delta_{U,W}^u; (U,W) \in \mathcal{U} \times \mathcal{W}\}$ the lattice with the order given with inclusions of $U \in \mathcal{U}$ and $W \in \mathcal{W}$, respectively;
- (c) $\Delta_{U,W}^c$ the greatest δ -subring of Δ where $\hat{\mathbf{m}}_{U,W}$ is continuous and $\Delta_{U,W}^c = \{\Delta_{U,W}^c; (U,W) \in \mathcal{U} \times \mathcal{W}\}$ the lattice with the order given with inclusions of $U \in \mathcal{U}$ and $W \in \mathcal{W}$, respectively.

Analogously, we may define $\nabla_{W,V}$, $\nabla^u_{W,V}$, $\nabla^c_{W,V}$, where $(W,V) \in \mathcal{W} \times \mathcal{V}$, and $\nabla_{W,\mathcal{V}}$, $\nabla^u_{W,\mathcal{V}}$, $\nabla^c_{W,\mathcal{V}}$. We denote by $\Delta_{U,W} \otimes \nabla_{W,V}$ the smallest δ -ring containing all rectangles $A \times B$, $A \in \Delta_{U,W}$, $B \in \nabla_{W,V}$, where $(U,W) \in \mathcal{U} \times \mathcal{W}$, $(W,V) \in \mathcal{W} \times \mathcal{V}$. If \mathcal{D}_1 , \mathcal{D}_2 are two δ -rings of subsets of T, S, respectively, then clearly $\sigma(\mathcal{D}_1 \otimes \mathcal{D}_2) = \sigma(\mathcal{D}_1) \otimes \sigma(\mathcal{D}_2)$. For every $E \in \delta(\mathcal{D}_1 \otimes \mathcal{D}_2)$ there exist $A \in \mathcal{D}_1$, $B \in \mathcal{D}_2$, such that $E \subset A \times B$. For $E \subset T \times S$, $s \in S$, put $E^s = \{t \in T; (t,s) \in E\}$.

The sense of the theory of integration developed in [14] is that it is the integration theory which completely generalizes the Dobrakov integration, cf. [3], to a class of non-metrizable locally convex topological vector spaces. A suitable class of operator measures in C. B. L. C. S. which allows such a generalization is a class of all σ_{Φ} -additive measures.

For $(U, W) \in \mathcal{U} \times \mathcal{W}$ we say that a charge \mathbf{m} is of σ -finite (U, W)-semivariation if there exist sets $E_n \in \Delta_{U,W}$, $n \in \mathbb{N}$, such that $T = \bigcup_{n=1}^{\infty} E_n$. For $\varphi \in \Phi$, we say that a charge \mathbf{m} is of σ_{φ} -finite (U, \mathcal{W}) -semivariation if for every $U \in \mathcal{U}$, the charge \mathbf{m} is of σ -finite $(U, \varphi(U))$ -semivariation.

Definition 1.2. We say that a charge **m** is of σ_{Φ} -finite $(\mathcal{U}, \mathcal{W})$ -semivariation if there exists a function $\varphi \in \Phi$ such that **m** is of σ_{φ} -finite $(\mathcal{U}, \mathcal{W})$ -semivariation.

Let $W \in \mathcal{W}$. We say that a charge $\mu : \Sigma \to \mathbf{Y}$ is a (W, σ) -additive vector measure, if μ is a \mathbf{Y}_W -valued (countable additive) vector measure.

Definition 1.3. We say that a charge $\mu : \Sigma \to \mathbf{Y}$ is a (\mathcal{W}, σ) -additive vector measure, if there exists $W \in \mathcal{W}$ such that μ is a (W, σ) -additive vector measure.

The following definition generalizes the notion of σ -additivity of an operatorvalued measure in the strong operator topology in Banach spaces, cf. [3], to C. B. L. C. S. **Definition 1.4.** Let $\varphi \in \Phi$. We say that a charge $\mathbf{m} : \Delta \to L(\mathbf{X}, \mathbf{Y})$ is a σ_{φ} -additive measure if \mathbf{m} is of σ_{φ} -finite $(\mathcal{U}, \mathcal{W})$ -semivariation, and for every $A \in \Delta_{U, \varphi(U)}$ the charge $\mathbf{m}(A \cap \cdot)\mathbf{x} : \Sigma \to \mathbf{Y}$ is a $(\varphi(U), \sigma)$ -additive measure for every $\mathbf{x} \in \mathbf{X}_U$, $U \in \mathcal{U}$. We say that a charge $\mathbf{m} : \Delta \to L(\mathbf{X}, \mathbf{Y})$ is a σ_{Φ} -additive measure if there exists $\varphi \in \Phi$ such that \mathbf{m} is a σ_{φ} -additive measure.

In what follows, $\mathbf{m}: \Delta \to L(\mathbf{X}, \mathbf{Y})$ and $\mathbf{l}: \nabla \to L(\mathbf{Y}, \mathbf{Z})$ are supposed to be operator valued σ_{Φ} - and σ_{Ψ} -additive measures respectively. For the construction of (Dobrakov) integral in C.B.L.C.S. see [14].

2. A construction of bornological product measure

Definition 2.1. We say that a (bornological) product measure of a σ_{Φ} -additive measure $\mathbf{m}: \Delta \to L(\mathbf{X}, \mathbf{Y})$ and σ_{Ψ} -additive measure $\mathbf{l}: \nabla \to L(\mathbf{Y}, \mathbf{Z})$ exists on $\Delta \otimes \nabla$ (we write $\mathbf{m} \otimes \mathbf{l}: \Delta \otimes \nabla \to L(\mathbf{X}, \mathbf{Z})$), if there exists one and only one σ_{Γ} -additive measure $\mathbf{m} \otimes \mathbf{l}: \Delta \otimes \nabla \to L(\mathbf{X}, \mathbf{Z})$ such that

$$(\mathbf{m} \otimes \mathbf{l})(A \times B)\mathbf{x} = \mathbf{l}(B)\mathbf{m}(A)\mathbf{x}$$

for every $\mathbf{x} \in \mathbf{X}_U$, $A \in \Delta_{U,W}$, $B \in \nabla_{W,V}$, where there exists $\gamma \in \Gamma$, $\varphi \in \Phi$, $\psi \in \Psi$, such that $\gamma = \psi \circ \varphi$ and $V \subseteq \psi(W)$, $W \subseteq \varphi(U)$, $\gamma(U) \subset \psi(\varphi(U))$.

The Hahn–Banach theorem and the uniqueness of enlarging of the finite scalar measure from the ring to the generated σ -ring imply that if $\mathbf{n}_1, \mathbf{n}_2 : \Delta_{U,W} \otimes \nabla_{W,V} \to L(\mathbf{X}_U, \mathbf{Z}_V)$, are two σ_{γ} -additive measures $(\gamma \in \Gamma)$ such that $\mathbf{n}_1(A \times B) = \mathbf{n}_2(A \times B)$ for every $A \in \Delta_{U,W}$, $B \in \nabla_{W,V}$, then $\mathbf{n}_1 = \mathbf{n}_2$ on $\Delta_{U,W} \otimes \nabla_{W,V}$.

Remark 2.2. Definition 2.1 differs from that of Dobrakov [4], Definition 1, in reduction to Banach spaces. Instead of the general $\Delta \otimes \nabla$ we deal only with $\Delta_{U,W} \otimes \nabla_{W,V}$, $V \subseteq \psi(W), W \subseteq \varphi(U), \gamma(U) \subset \psi(\varphi(U))$. In fact, only our case is needed for proving the Fubini theorem in [4].

Remark 2.3. The bornological product measure is a complicated object from the reason of the following implications: if $(U_1, W_1, V_1), (U_2, W_2, V_2) \in \mathcal{U} \times \mathcal{W} \times \mathcal{V}$, then

$$(U_1, W_1) \ll (U_2, W_2) \Rightarrow \Delta_{U_2, W_2} \subset \Delta_{U_1, W_1}$$

and

$$(W_1, V_1) \ll (W_2, V_2) \Rightarrow \nabla_{W_2, V_2} \subset \nabla_{W_1, V_1}$$
.

In general, for a fixed $W \in \mathcal{W}$,

$$(U_1, V_1) \ll (U_2, V_2) \Rightarrow \Delta_{U_2, W} \otimes \nabla_{W, V_2} \subset \Delta_{U_1, W} \otimes \nabla_{W, V_1}$$

and we may say nothing about the uniqueness, the existence, etc. of $W \in \mathcal{W}$. However, we guarantee the uniqueness of the measure in the case if it exists.

Theorem 2.4. If there exists $W \in \mathcal{W}$ such that for every $(U, V) \in \mathcal{U} \times \mathcal{V}$, every $E \in \Delta_{U,W} \otimes \nabla_{W,V}$ and every $\mathbf{x} \in \mathbf{X}_U$, the function $s \mapsto \mathbf{m}(E^s)\mathbf{x}$, $s \in S$, is $\nabla_{W,V}$ -integrable, then the product measure $\mathbf{m} \otimes \mathbf{l} : \Delta \otimes \nabla \to L(\mathbf{X}, \mathbf{Z})$ exists on $\Delta \otimes \nabla$. In this case, for every $E \in \Delta_{U,W} \otimes \nabla_{W,V}$ and every $\mathbf{x} \in \mathbf{X}_U$ holds

$$(\mathbf{m}_{U,W} \otimes \mathbf{l}_{W,V})(E)\mathbf{x} = \int_{S} \mathbf{m}(E^{s})\mathbf{x} \, \mathrm{d}\mathbf{l}.$$
 (2.1)

Proof. Suppose that the product measure $\mathbf{m} \otimes \mathbf{l} : \Delta \otimes \nabla \to L(\mathbf{X}, \mathbf{Z})$ exists on $\Delta \otimes \nabla$. Let it hold for the set $W \in \mathcal{W}$ and let $\mathbf{x} \in \mathbf{X}_U$, $(U, V) \in \mathcal{U} \times \mathcal{V}$. Denote by \mathcal{D} the class of all sets $G \in \Delta_{U,W} \otimes \nabla_{W,V}$ for which the function $s \mapsto \mathbf{m}(G^s)\mathbf{x}$, $s \in S$, is $\nabla_{W,V}$ -integrable and for which (2.1) holds. Then clearly \mathcal{D} is a subring of $\Delta_{U,W} \otimes \nabla_{W,V}$ which consists of all rectangles of the type $A \times B$, where $A \in \Delta_{U,W}$, $B \in \nabla_{W,V}$ and it may be easily shown that \mathcal{D} is a δ -ring, cf. [10], Theorem E, § 33. Since $\mathbf{x} \in \mathbf{X}_U$ is an arbitrary vector, the second assertion of the theorem is proved.

Next we suppose that there exists $W \in \mathcal{W}$ such that for a given set $E \in \Delta_{U,W} \otimes \nabla_{W,V}$, every $(U,V) \in \mathcal{U} \times \mathcal{V}$ and $\mathbf{x} \in \mathbf{X}_U$, the function $s \mapsto \mathbf{m}(E^s)\mathbf{x}$, $s \in S$, is $\nabla_{W,V}$ -integrable. For $\mathbf{x} \in \mathbf{X}_U$ and $E \in \Delta_{U,W} \otimes \nabla_{W,V}$, put $\mathbf{n}_{\mathbf{x}}(E) = \int_S \mathbf{m}(E^s)\mathbf{x}$ dl. Since $\mathbf{n}_{\mathbf{x}}(A \times B) = \mathbf{l}_{W,V}(B)\mathbf{m}_{U,W}(A)\mathbf{x}$ for every $A \in \Delta_{U,W}$, $B \in \nabla_{W,V}$, clearly $\mathbf{n}_{\mathbf{x}} : \Delta_{U,W} \otimes \nabla_{W,V} \to \mathbf{Z}_V$ is a σ -additive measure. Let $\mathbf{x} \in \mathbf{X}_U$ and suppose that $E_n \in \Delta_{U,W} \otimes \nabla_{W,V}$, $n \in \mathbb{N}$, are pairwise disjoint sets with their union $E = \bigcup_{n=1}^{\infty} E_n \in \Delta_{U,W} \otimes \nabla_{W,V}$. We have to show that $\mathbf{n}_{\mathbf{x}}(E) = \sum_{n=1}^{\infty} \mathbf{n}_{\mathbf{x}}(E_n)$, where the series unconditionally V-bornologically converges. Therefore we take $A \in \Delta_{U,W}$, $B \in \nabla_{W,V}$ such that $E \subset A \times B$ and consider the σ -ring $\Delta_{U,W} \otimes \nabla_{W,V} \cap (A \times B)$. Since the measure $\mathbf{n}_{\mathbf{x}} : \Delta_{U,W} \otimes \nabla_{W,V} \cap (A \times B) \to \mathbf{Z}_V$ is additive, by the Orlicz-Pettis theorem, see [8], IV.10.1, it is sufficient to prove that

$$\langle \mathbf{n}_{\mathbf{x}}(E), z' \rangle = \sum_{n=1}^{\infty} \langle \mathbf{n}_{\mathbf{x}}(E_n), z' \rangle$$

for each $z' \in V^0$ (here V^0 is the polar set of $V \in \mathcal{V}$), where the series unconditionally V-bornologically converges. If E_n^* , $n \in \mathbb{N}$, is some rearrangement of the sequence E_n , and $z' \in V^0$, then the inequality

$$\left| \left\langle \mathbf{n}_{\mathbf{x}}(E) - \sum_{n=1}^{\infty} \mathbf{n}_{\mathbf{x}}(E_n^*), z' \right\rangle \right| \leq \int_S \|\mathbf{m}(\cdot)\mathbf{x}\|_{U,W} \left(\left(\bigcup_{i=n+1}^{\infty} E_i^* \right)^s \right) d\mathbf{var}_{\mathbf{W}}(\mathbf{z}'\mathbf{l}, \cdot),$$

 σ -additivity of the vector measure $\mathbf{m}_{U,W}(\,\cdot\,)\mathbf{x}:\Delta_{U,W}\to\mathbf{Y}_W$, and the Lebesgue dominated convergence theorem yields

$$\sum_{n=1}^{\infty} \left\langle \mathbf{n}_{\mathbf{x}}(E_i^*), z' \right\rangle \to \left\langle \mathbf{n}_{\mathbf{x}}(E), z' \right\rangle,$$

which proves the theorem.

Remark 2.5. For Fréchet spaces Theorem 2.4 holds also in the inverse direction, i.e. it gives a necessary and sufficient condition for the existence of the bornological product measure $\mathbf{m} \otimes \mathbf{l}$.

Let $\mathbf{g}: S \to \mathbf{Y}_W$ be a $\nabla_{W,V}$ -measurable function and define the submeasure $\hat{\mathbf{l}}_{W,V}(\mathbf{g},B)$ for $B \in \sigma(\nabla_{W,V})$ as follows:

$$\hat{\mathbf{l}}_{W,V}(\mathbf{g}, B) = \sup \left\{ p_V \left(\int_B \mathbf{h} \, \mathrm{d}\mathbf{l} \right) \right\},$$

where the supremum is taken over all $\mathbf{h} \in \sigma(\nabla_{W,V}, \mathbf{Y}_W)$, and $s \in S$ such that $p_W(\mathbf{h}(s)) \leq p_W(\mathbf{g}(s))$. Let us denote by $L^1_{W,V}(\mathbf{l})$ the space of all $\nabla_{W,V}$ -integrable functions with the bounded and continuous seminorm $\hat{\mathbf{l}}_{W,V}(\cdot, B)$. Analogously we define $\hat{\mathbf{m}}_{U,W}(\cdot, A)$ and the space $L^1_{U,W}(\mathbf{m})$. This immediately implies the following result.

Theorem 2.6. Let $(U, W, V) \in \mathcal{U} \times \mathcal{W} \times \mathcal{V}$ and let the product measure $\mathbf{m}_{U,W} \otimes \mathbf{l}_{W,V}$: $\Delta_{U,W} \otimes \nabla_{W,V} \to L(\mathbf{X}_U, \mathbf{Z}_V)$ exist. Let $E \in \sigma(\Delta_{U,W} \otimes \nabla_{W,V})$ and $\mathbf{f} : T \otimes S \to \mathbf{X}_U$ be a $\Delta_{U,W} \otimes \nabla_{W,V}$ -measurable function. Then

$$\|\mathbf{m} \otimes \mathbf{l}\|_{U,V}(E) \leq \hat{\mathbf{l}}_{W,V}(\|\mathbf{m}\|_{U,W}(E^s), S),$$

and

$$(\widehat{\mathbf{m} \otimes \mathbf{l}})_{U,V}(\mathbf{f}, E) \leq \hat{\mathbf{l}}_{W,V}(\widehat{\mathbf{m}}_{U,W}(\mathbf{f}(\cdot, s), E^s), S).$$

In the special case of $E = A \times B$, $A \in \Delta_{U,W}$, $B \in \nabla_{W,V}$, we have

$$\|\mathbf{m} \otimes \mathbf{l}\|_{U,V}(A \times B) \leq \|\mathbf{m}\|_{U,W}(A) \cdot \hat{\mathbf{l}}_{W,V}(B) < \infty,$$

and

$$(\widehat{\mathbf{m} \otimes \mathbf{l}})_{U,V}(A \times B) \leq \hat{\mathbf{m}}_{U,W}(A) \cdot \hat{\mathbf{l}}_{W,V}(B)$$
.

Thus (U,V)-semivariation $(\widehat{\mathbf{m}\otimes\mathbf{l}})_{U,V}$ is a finite set function on $\Delta_{U,W}\otimes\nabla_{W,V}$.

3. A Fubini-type theorem

Let $(U, W, V) \in \mathcal{U} \times \mathcal{W} \times \mathcal{V}$. Denote by $\widetilde{\sigma}(\Delta_{U,W} \otimes \nabla_{W,V}, \mathbf{X})$ the closure of the set $\sigma(\Delta_{U,W} \otimes \nabla_{W,V}, \mathbf{X})$ of all $\Delta_{U,W} \otimes \nabla_{W,V}$ -simple functions on $T \times S$ with values in \mathbf{X} with respect to the seminorm $\|\cdot\|_{T \times S,U}$ in the Banach space of all U-bounded functions on $T \times S$. For elements from $\widetilde{\sigma}(\Delta_{U,W} \otimes \nabla_{W,V}, \mathbf{X})$ the following Fubinitype theorem holds.

Theorem 3.1. Let $(U, W, V) \in \mathcal{U} \times \mathcal{W} \times \mathcal{V}$. Let the product measure $\mathbf{m}_{U,W} \otimes \mathbf{l}_{W,V}$ exist on $\Delta_{U,W} \otimes \nabla_{W,V}$. Let $\mathbf{f} \in \widetilde{\sigma}(\Delta_{U,W} \otimes \nabla_{W,V}, \mathbf{X})$ and $F \in \Delta_{U,W} \otimes \nabla_{W,V}$ (if $\hat{\mathbf{m}}_{U,W}(T) \cdot \hat{\mathbf{l}}_{W,V}(S) < \infty$, then let $F \in \sigma(\Delta_{U,W} \otimes \nabla_{W,V})$). Then

- (a) $\mathbf{f}\chi_F$ is a $\Delta_{U,W} \otimes \nabla_{W,V}$ -integrable function;
- (b) for every $s \in S$ the function $\mathbf{f}(\cdot, s)\chi_F(\cdot, s)$ is $\Delta_{U,W}$ -integrable;
- (c) for every $E \in \sigma(\Delta_{U,W} \otimes \nabla_{W,V})$ the function $s \mapsto \int_{E^s} \mathbf{f}(\cdot, s) \chi_F(\cdot, s) d\mathbf{m}$, $s \in S$, is $\nabla_{W,V}$ -integrable and for every $E \in \sigma(\Delta_{U,W} \otimes \nabla_{W,V})$ holds

$$\int_{E^s} \mathbf{f} \chi_F \, \mathrm{d}(\mathbf{m} \otimes \mathbf{l}) = \int_S \int_{E^s} \mathbf{f}(\cdot, s) \chi_F(\cdot, s) \, \mathrm{d}\mathbf{m} \, \mathrm{d}\mathbf{l}.$$

Proof. Let $\mathbf{f}_n \in \widetilde{\sigma}(\Delta_{U,W} \otimes \nabla_{W,V}, \mathbf{X})$, $n \in \mathbb{N}$, be a sequence of functions such that $\|\mathbf{f}_n - \mathbf{f}\|_{T \times S,U} \to 0$ as $n \to \infty$. Take $A_0 \in \Delta_{U,W}$ and $B_0 \in \nabla_{W,V}$, such that $F \subset A_0 \times B_0$ (if $\hat{\mathbf{m}}_{U,W}(T) \cdot \hat{\mathbf{1}}_{W,V}(S) = \infty$, take $A_0 \in \sigma(\Delta_{U,W})$ and $B_0 \in \sigma(\nabla_{W,V})$). Then $\mathbf{f}_n(t,s) \to \mathbf{f}(t,s)$ for every $(t,s) \in T \times S$. If $E \in \sigma(\Delta_{U,W} \otimes \nabla_{W,V})$, then $\mathbf{f}_n\chi_E \in \widetilde{\sigma}(\Delta_{U,W} \otimes \nabla_{W,V})$ for every $n \in \mathbb{N}$.

(a) From the definition of the (U,V)-semivariation $(\widehat{\mathbf{m}\otimes\mathbf{l}})_{U,V}$ and Theorem 2.6 we have

$$p_{V}\left(\int_{E} \mathbf{f}_{n} \chi_{F} d(\mathbf{m} \otimes \mathbf{l}) - \int_{E} \mathbf{f}_{k} \chi_{F} d(\mathbf{m} \otimes \mathbf{l})\right) = p_{V}\left(\int_{B \cap F} (\mathbf{f}_{n} - \mathbf{f}_{k}) d(\mathbf{m} \otimes \mathbf{l})\right)$$

$$\leq \|\mathbf{f}_{n} - \mathbf{f}_{k}\|_{T \times S, U} \cdot (\widehat{\mathbf{m} \otimes \mathbf{l}})_{U, V}(F)$$

$$\leq \|\mathbf{f}_{n} - \mathbf{f}_{k}\|_{T \times S, U}$$

$$\cdot \hat{\mathbf{m}}_{U, W}(A_{0}) \cdot \hat{\mathbf{l}}_{W, V}(B_{0})$$

for every $E \in \sigma(\Delta_{U,W} \otimes \nabla_{W,V})$ and every $n, k \in \mathbb{N}$. Since $\hat{\mathbf{m}}_{U,W}(A_0) \cdot \hat{\mathbf{l}}_{W,V}(B_0) < \infty$, then by Theorem 4.3 in [14] the function $\mathbf{f}\chi_F$ is $\Delta_{U,W} \otimes \nabla_{W,V}$ -integrable and

$$\int_{E} \mathbf{f}_{n} \chi_{F} \, \mathrm{d}(\mathbf{m} \otimes \mathbf{l}) \to \int_{E} \mathbf{f} \chi_{F} \, \mathrm{d}(\mathbf{m} \otimes \mathbf{l})$$

for every $E \in \sigma(\Delta_{U,W} \otimes \nabla_{W,V})$.

(b) Let $s \in S$. Then

$$p_{W}\left(\int_{A} \mathbf{f}_{n}(\cdot, s) \chi_{F}(\cdot, s) \, \mathrm{d}\mathbf{m} - \int_{A} \mathbf{f}_{k}(\cdot, s) \chi_{F}(\cdot, s) \, \mathrm{d}\mathbf{m}\right)$$

$$< \|\mathbf{f}_{n} - \mathbf{f}_{k}\|_{T \times SU} \cdot \hat{\mathbf{m}}_{UW}(A_{0})$$

for every $A \in \sigma(\Delta_{U,W} \otimes \nabla_{W,V})$ and $n, k \in \mathbb{N}$. Since $\hat{\mathbf{m}}_{U,W}(A_0) < \infty$, then by Theorem 4.3 in [14] the function $\mathbf{f}(\cdot, s)\chi_F(\cdot, s)$ is $\Delta_{U,W}$ -integrable and we have

$$\int_{A} \mathbf{f}_{n}(\cdot, s) \chi_{F}(\cdot, s) \, d\mathbf{m} \to \int_{A} \mathbf{f}(\cdot, s) \chi_{F}(\cdot, s) \, d\mathbf{m}$$

for every $A \in \sigma(\Delta_{U,W})$. In particular,

$$\int_{E^s} \mathbf{f}_n(\,\cdot\,,s) \chi_F(\,\cdot\,,s) \,\mathrm{d}\mathbf{m} \to \int_{E^s} \mathbf{f}(\,\cdot\,,s) \chi_F(\,\cdot\,,s) \,\mathrm{d}\mathbf{m}$$

for every $E \in \sigma(\Delta_{U,W} \otimes \nabla_{W,V})$.

(c) Let $E \in \sigma(\Delta_{U,W} \otimes \nabla_{W,V})$. Then using Lemma 3.3 in [16], we get

$$p_{V}\left(\int_{B}\int_{E^{s}}\mathbf{f}_{n}(\cdot,s)\chi_{F}(\cdot,s)\,\mathrm{d}\mathbf{m}\,\mathrm{d}\mathbf{l} - \int_{B}\int_{E^{s}}\mathbf{f}_{k}(\cdot,s)\chi_{F}(\cdot,s)\,\mathrm{d}\mathbf{m}\,\mathrm{d}\mathbf{l}\right)$$

$$\leq \sup_{s\in B_{0}}p_{W}\left(\int_{E^{s}}\left(\mathbf{f}_{n}(\cdot,s) - \mathbf{f}_{k}(\cdot,s)\right)\,\mathrm{d}\mathbf{m}\right)\cdot\hat{\mathbf{l}}_{W,V}(B_{0})$$

$$\leq \|\mathbf{f}_{n} - \mathbf{f}_{k}\|_{T\times S,U}\cdot\hat{\mathbf{m}}_{U,W}(A_{0})\cdot\hat{\mathbf{l}}_{W,V}(B_{0})$$

for every $B_0 \in \sigma(\nabla_{W,V})$ and $n,k \in \mathbb{N}$. Since $\hat{\mathbf{m}}_{U,W}(A_0) \cdot \hat{\mathbf{l}}_{W,V}(B_0) < \infty$ and $\|\mathbf{f}_n - \mathbf{f}_k\|_{T \times S,U} \to 0$ as $n,k \to \infty$, according to Theorem on interchange the limit and integral in [15] the relations (a) and (b) imply that the function $s \mapsto \int_{E^s} \mathbf{f}(\cdot,s) \chi_F(\cdot,s) \, d\mathbf{m}, s \in S$, is $\nabla_{W,V}$ -integrable and, therefore,

$$\int_{S} \int_{E^{s}} \mathbf{f}_{n}(\cdot, s) \chi_{F}(\cdot, s) \, d\mathbf{m} \, d\mathbf{l} \to \int_{S} \int_{E^{s}} \mathbf{f}(\cdot, s) \chi_{F}(\cdot, s) \, d\mathbf{m} \, d\mathbf{l}$$

as $n \to \infty$. It is enough to note that by Theorem 2.4 there holds

$$\int_{E} \mathbf{f}_{n} \chi_{F} d(\mathbf{m} \otimes \mathbf{l}) = \int_{S} \int_{E^{s}} \mathbf{f}_{n}(\cdot, s) \chi_{F}(\cdot, s) d\mathbf{m} d\mathbf{l}$$

for every $E \in \sigma(\Delta_{U,W} \otimes \nabla_{W,V})$ and $n \in \mathbb{N}$.

References

- [1] R. G. Bartle, A general bilinear vector integral, Studia Math. 15 (1956), 337–352.
- [2] M. E. Ballvé and P. Jiménez Guerra, Fubini theorems for bornological measures, Math. Slovaca 43 (1993), 137–148.
- [3] I. Dobrakov, On integration in Banach spaces, I., Czechoslovak Math. J. 20 (1970), 511–536.
- [4] I. Dobrakov, On integration in Banach spaces, III., Czechoslovak Math. J. 29 (1979), 478–499.
- [5] M. Duchoň and I. Kluvánek, Inductive tensor product of vector valued measures, Mat. Čas. 17 (1967), 108–112.
- [6] M. Duchoň, On the projective tensor product of vector-valued measures II., Mat. Čas. 19 (1969), 228–234.
- [7] R. M. Dudley and L. Pakula, A counter-example on the inner product of measures, Indiana Univ. Math. J. 21 (1972), 843–845.
- [8] N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory, Interscience Publisher, New York, 1958.
- [9] F. J. Fernandez, On the product of operator valued measures, Czechoslovak Math. J. 40 (1990), 543–562.
- [10] P. R. Halmos, Measure Theory, Van Nostrand, New York, 1950.
- [11] J. Haluška, On lattices of set functions in complete bornological locally convex spaces, Simon Stevin 67 (1993), 27–48.
- [12] J. Haluška, On a lattice structure of operator spaces in complete bornological locally convex spaces, *Tatra Mt. Math. Publ.* **2** (1993), 143–147.
- [13] J. Haluška, On convergences of functions in complete bornological locally convex spaces, Rev. Roumaine Math. Pures Appl. 38 (1993), 327–337.
- [14] J. Haluška, On integration in complete bornological locally convex spaces, *Czechoslovak Math. J.* 47 (1997), 205–219.
- [15] J. Haluška and O. Hutník, On integrable functions in complete bornological locally convex spaces, Math. Z. (submitted).

- [16] J. Haluška and O. Hutník, On vector integral inequalities, Mediterr. J. Math. (to appear).
- [17] H. Hogbe-Nlend, Bornologies and Functional Analysis, North Holland, Amsterdam, New York, Oxford, 1977.
- [18] J. V. Radyno, Linear Equations and the Bornology (in Russian), Izd. Bel. Gosud. Univ., Minsk, 1982.
- [19] R. Rao Chivukula and A.S. Sastry, Product vector measures via Bartle integrals, J. Math. Anal. Appl. 96 (1983), 180-195.

Ján Haluška Mathematical Institute Slovak Academy of Science Grešákova 6 SK-040 01 Košice Slovakia

e-mail: jhaluska@saske.sk

Ondrej Hutník Institute of Mathematics Faculty of Science P. J. Šafárik University Jesenná 5 $\rm SK\text{-}041$ 54 Košice Slovakia e-mail: ondrej.hutnik@upjs.sk

Received: April 8, 2008. Revised: May 30, 2008.