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1. Background: Consensus theory

In our paper we generalize a recent result of B. Leclerc and B.
Monjardet related with the characterization of meet projections on
congruence simple atomistic lattices.

The main problem of the so called Social choice theory is the
problem of aggregating individual preferences into a collective
preference. A lattice theoretical approach to this problem was
developed first in K. J. Arrow’s book (Social Choice and
Individual Values, 1951). Latter C. P. Chambers and A. D. Miller
were working with the lattice of partitions of a finite set, using them
to model individual preferences.

A main theorem of them was extended by Leclerc and
Monjardet(2013) to every finite simple atomistic lattice having
cardinality greater than two.

presented by Sándor Radeleczki, Math. Institue, Univ. of Miskolc (joint work with Melvin F. Janowitz, DIMACS Center, Rutgers Univ.)Aggregation



1. Background: Consensus theory

In our paper we generalize a recent result of B. Leclerc and B.
Monjardet related with the characterization of meet projections on
congruence simple atomistic lattices.

The main problem of the so called Social choice theory is the
problem of aggregating individual preferences into a collective
preference. A lattice theoretical approach to this problem was
developed first in K. J. Arrow’s book (Social Choice and
Individual Values, 1951). Latter C. P. Chambers and A. D. Miller
were working with the lattice of partitions of a finite set, using them
to model individual preferences.

A main theorem of them was extended by Leclerc and
Monjardet(2013) to every finite simple atomistic lattice having
cardinality greater than two.

presented by Sándor Radeleczki, Math. Institue, Univ. of Miskolc (joint work with Melvin F. Janowitz, DIMACS Center, Rutgers Univ.)Aggregation



1. Background: Consensus theory

In our paper we generalize a recent result of B. Leclerc and B.
Monjardet related with the characterization of meet projections on
congruence simple atomistic lattices.

The main problem of the so called Social choice theory is the
problem of aggregating individual preferences into a collective
preference. A lattice theoretical approach to this problem was
developed first in K. J. Arrow’s book (Social Choice and
Individual Values, 1951). Latter C. P. Chambers and A. D. Miller
were working with the lattice of partitions of a finite set, using them
to model individual preferences.

A main theorem of them was extended by Leclerc and
Monjardet(2013) to every finite simple atomistic lattice having
cardinality greater than two.

presented by Sándor Radeleczki, Math. Institue, Univ. of Miskolc (joint work with Melvin F. Janowitz, DIMACS Center, Rutgers Univ.)Aggregation



1. Background: Consensus theory

In our paper we generalize a recent result of B. Leclerc and B.
Monjardet related with the characterization of meet projections on
congruence simple atomistic lattices.

The main problem of the so called Social choice theory is the
problem of aggregating individual preferences into a collective
preference. A lattice theoretical approach to this problem was
developed first in K. J. Arrow’s book (Social Choice and
Individual Values, 1951). Latter C. P. Chambers and A. D. Miller
were working with the lattice of partitions of a finite set, using them
to model individual preferences.

A main theorem of them was extended by Leclerc and
Monjardet(2013) to every finite simple atomistic lattice having
cardinality greater than two.

presented by Sándor Radeleczki, Math. Institue, Univ. of Miskolc (joint work with Melvin F. Janowitz, DIMACS Center, Rutgers Univ.)Aggregation



2. Preliminary notions and notations

General notions

Let L be a finite lattice and denote by J the set of its join-irreducible
elements. For an element x ∈ L we define J(x) := {j ∈ J | j ≤ x}. Then

x =
∨
J(x).

Let n be a fixed positive integer, and In = {1, 2, . . . , n}. A profile π is an
element π = (x1, x2, . . . , xn) of Ln. We will use the notations π(i) = xi
and πx = (x , x , . . . , x) -for the constant profile belonging to x .
A consensus function on L is a mapping F : Ln → L.

(1) F is an oligarchy if

F (x1, x2, . . . , xn) =
∧
{xi | i ∈ M}, for some M ⊆ In.

(2) F is a residual mapping if it is a meet homomorphism (i.e.
F (π ∧ π′) = F (π)∧ F (π′) for all π, π′ ∈ Ln) such that F (1, 1, . . . , 1) = 1.

The mapp F 0 : Ln → L is defined by F 0(π) = 0 for each π ∈ Ln.
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Some particular notions and notations

For an a ∈ L and π ∈ Ln we define

Na(π) = {i ∈ In | a ≤ xi}.

A consensus function F : Ln → L

(3) is Paretian if for any j ∈ J and π ∈ Ln, Nj(π) = In implies j ≤ F (π).
It is easy to see that this means that x1 ∧ . . . ∧ xn ≤ F (x1, . . . , xn),
in other words, F is meet-dominating.

(4) F is decisive if Nj(π) = Nj(π
′) yields j ≤ F (π)⇔ j ≤ F (π′).

(5) F is neutral monotone if for all j , j ′ ∈ J, and all profiles π, π′ ∈ Ln,
Nj(π) ⊆ Nj′(π

′) implies that if j ≤ F (π) then j ′ ≤ F (π′).

Observe that the latter prop. (5) implies the decisivity property as well.
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3. The Leclerc-Monjardet Theorem

In the paper
Aggregation and Residuation, Order 30, (2013) 261–268,
the authors proved the following result (Theorem 5, p. 265):

Theorem 1.

Let L be a finite simple atomistic lattice having cardinality greater than
2, and F : Ln → L a consensus function on L. The following conditions
are then equivalent:

(F1) F is decisive and Paretian.

(F2) F is neutral monotone and is not F 0.

(F3) F is a meet homomorphism and F (π) ≥
∧

i∈In
π(i) for all profiles π.

(F4) F is a residual map and F (πa) ≥ a for every atom a.

(F5) F is an oligarchy.

At first, we present a natural generalization of this theorem.
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4. The first extension of the Leclerc-Monjardet theorem

Theorem 2.

Let L be a finite tolerance simple lattice having cardinality at least 3, and
F : Ln → L. The following conditions are equivalent:

(F1) F is decisive and Paretian.

(F2) F is neutral monotone and is not F 0.

(F3) F is a meet homomorphism and F (π) ≥
∧

j∈In
π(j) for all profiles π.

(F4) F is a residual map and F (πj) ≥ j for every j ∈ J.

(F5) F is an oligarchy.

Thus the condition being a ”congruence-simple atomistic lattice”, was
replaced by the condition being a ”tolerance simple lattice”.

A tolerance of a lattice L is a reflexive, symmetric relation on L
compatible with the operations ∨ and ∧. L is congruence simple, if it
has only trivial congruences, namely 4 = {(x , x) | x ∈ L} and ∇ = L× L,
and L is tolerance simple, if it has only the tolerances 4 and ∇.
Since any finite simple atomistic lattice L is in fact tolerance simple, our
result is a true generalization of Theorem 1.
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A sketch of the proof

It can be checked that on any finite lattice with at least 3 elements
(F1) ⇔ (F2), (F3) ⇒ (F4), and (F5) ⇒ (F2).

To prove (F2) ⇒ (F3) we use the characterization of congruence simple
finite lattices by the mean of their join-irreducible elements.

In fact we prove that there is no such a mapping F : Ln → L which is
neutral monotone, but it is not a meet homomorphism.

(F4) ⇒ (F5): Here we need some technical details about the relation
between the tolerances of a lattice L and its adjoint pairs of mappings.

Recall that a mapping f : L→ L is increasing if f (x) ≥ x , for all x ∈ L.

(the dual notion is an incresing mapping f : L→ L)
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Definition 1.

Let L,M be finite lattices, with F : L→ M and G : M → L mappings.
F is residual if it is a meet homomorphism such that F (1) = 1, and G is
residuated if G is a join homomorphism such that G (0) = 0. Every
residual map F : L→ M has a unique residuated mapping G : M → L
associated with it. They are related by the equations

G (y) ≤ x ⇐⇒ y ≤ F (x) . (∗)

If M = L then (G ,F ) is also called an adjoint pair. In this case
F : L→ L is increasing and G : L→ L is decreasing.

Conversely, any pair of mappings such that G : L→ L is decreasing (or
F : L→ L is increasing) which satisfies (∗) is an adjoint pair.

Any adjoint pair of mappings defines a tolerance TG on the lattice L by

TG = {(x , y) ∈ L2 | G (x ∨ y) ≤ x ∧ y}.

Conversely, any tolerance T ⊆ L2 induces on a (finite) lattice L an
adjoint pair of mappings as follows (see [6]):

GT (x) :=
∧
{y ∈ L | (x , y) ∈ T} and FT (x) :=

∨
{y ∈ L | (x , y) ∈ T}.
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Now the main idea of the proof of (F4) ⇒ (F5) is the following:
Suppose that F : Ln → L satisfies (F4), i.e. F is a residual map such that

F (πj) ≥ j for every j ∈ J.

Then it has a associated residuated map G : L→ Ln. Now,

G (j) = (G1(j),G2(j), . . . ,Gn(j))

and the inequality j ≤ F (πj) implies Gi (j) ≤ j : ∀i ∈ In. Since each Gi is
a join-homomorphism, we get

Gi (x) = Gi (
∨
J(x)) =

∨
{Gi (j) | j ≤ x , j ∈ J} ≤

∨
{j ∈ J | j ≤ x} = x ,

for all x ∈ L, and each i .

Thus Gi is a decreasing residuated map, so it is associated with a unique
tolerance on L. Because L is tolerance simple, it has only two such
decreasing maps, namely the identity map and the zero map.
Let M = {i ∈ In | Gi (x) = x}. Then for i 6∈ M, Gi (x) = 0, for all x ∈ L.
Hence

G (π) =
∨
{π(i) | i ∈ M}.

By an easy computing it follows that:

F (π) =
∧
{π(i) | i ∈ M},

that is, F is an oligarchy.
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5. Further generalizations

Next, we observed that a part of the conditions of Theorem 2, remain
equivalent if we consider a subdirect product of tolerance simple lattices.
The best construction is proved to be the following particular
semilattice-subdirect product.

Let L = (L,∧) be a meet semilattice with least element 0, {c1, c2, . . . cm}
a finite family of pairwise disjoint nonzero elements of L, and
Im = {1, 2, . . . ,m}. Denote by D =

∏
k∈Im

[0, ck ] their direct product. For
each k ∈ Im, we define a mapping τk : [0, ck ]→ D by specifying that

for each x ∈ [0, ck ], (τk(x))k = x and (τk(x))k′ = 0, for all k ′ 6= k .

We say that L is an internal subdirect product of the semilattices
[0, ck ], k ∈ Im if there exists a subdirect embedding Ψ of (L,∧) into D
such that for each k ∈ Im and every x ≤ ck it is true that Ψ(x) = τk(x).
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Interior subdirect products are related with the so called classification
systems of a lattice. Classification systems were introduced in [10]
motivated by the methods of Formal Concept Analysis (see [3]).

Definition 2.

Let L be a complete lattice. A nonempty set S = {ck | k ∈ K} of
nonzero elements of L is called a classification system if it satisfies the
conditions:

(1) ck′ ∧ ck = 0, for all distinct k ′ and k from K ,

(2) x =
∨
{x ∧ ck | k ∈ K}, for all x ∈ L.

It is not hard to check

Proposition 1.

Let L be a complete lattice and S = {ck | k ∈ K} a nonempty set of
nonzero elements of L. The following conditions are then equivalent:

(i) S is a classification system of L.

(ii) The semilattice (L,∧) is an internal subdirect product of the
semilattices
([0, ck ],∧), k ∈ K .

presented by Sándor Radeleczki, Math. Institue, Univ. of Miskolc (joint work with Melvin F. Janowitz, DIMACS Center, Rutgers Univ.)Aggregation



Interior subdirect products are related with the so called classification
systems of a lattice. Classification systems were introduced in [10]
motivated by the methods of Formal Concept Analysis (see [3]).

Definition 2.

Let L be a complete lattice. A nonempty set S = {ck | k ∈ K} of
nonzero elements of L is called a classification system if it satisfies the
conditions:

(1) ck′ ∧ ck = 0, for all distinct k ′ and k from K ,

(2) x =
∨
{x ∧ ck | k ∈ K}, for all x ∈ L.

It is not hard to check

Proposition 1.

Let L be a complete lattice and S = {ck | k ∈ K} a nonempty set of
nonzero elements of L. The following conditions are then equivalent:

(i) S is a classification system of L.

(ii) The semilattice (L,∧) is an internal subdirect product of the
semilattices
([0, ck ],∧), k ∈ K .

presented by Sándor Radeleczki, Math. Institue, Univ. of Miskolc (joint work with Melvin F. Janowitz, DIMACS Center, Rutgers Univ.)Aggregation



Interior subdirect products are related with the so called classification
systems of a lattice. Classification systems were introduced in [10]
motivated by the methods of Formal Concept Analysis (see [3]).

Definition 2.

Let L be a complete lattice. A nonempty set S = {ck | k ∈ K} of
nonzero elements of L is called a classification system if it satisfies the
conditions:

(1) ck′ ∧ ck = 0, for all distinct k ′ and k from K ,

(2) x =
∨
{x ∧ ck | k ∈ K}, for all x ∈ L.

It is not hard to check

Proposition 1.

Let L be a complete lattice and S = {ck | k ∈ K} a nonempty set of
nonzero elements of L. The following conditions are then equivalent:

(i) S is a classification system of L.

(ii) The semilattice (L,∧) is an internal subdirect product of the
semilattices
([0, ck ],∧), k ∈ K .

presented by Sándor Radeleczki, Math. Institue, Univ. of Miskolc (joint work with Melvin F. Janowitz, DIMACS Center, Rutgers Univ.)Aggregation



Interior subdirect products are related with the so called classification
systems of a lattice. Classification systems were introduced in [10]
motivated by the methods of Formal Concept Analysis (see [3]).

Definition 2.

Let L be a complete lattice. A nonempty set S = {ck | k ∈ K} of
nonzero elements of L is called a classification system if it satisfies the
conditions:

(1) ck′ ∧ ck = 0, for all distinct k ′ and k from K ,

(2) x =
∨
{x ∧ ck | k ∈ K}, for all x ∈ L.

It is not hard to check

Proposition 1.

Let L be a complete lattice and S = {ck | k ∈ K} a nonempty set of
nonzero elements of L. The following conditions are then equivalent:

(i) S is a classification system of L.

(ii) The semilattice (L,∧) is an internal subdirect product of the
semilattices
([0, ck ],∧), k ∈ K .

presented by Sándor Radeleczki, Math. Institue, Univ. of Miskolc (joint work with Melvin F. Janowitz, DIMACS Center, Rutgers Univ.)Aggregation



6. Aggregation and classification systems

Let L be a finite lattice, S = {c1, c2, . . . , cm} a classification system of L,
and F : Ln → L a consensus function on L. We say that F is compatible
with the system S if for each ck ∈ S , and any profiles
π = (x1, x2, . . . , xn) ∈ Ln, π′ = (y1, y2, . . . , yn) ∈ Ln.

If π ∧ πck = π′ ∧ πck then F (π) ∧ ck = F (π′) ∧ ck .

For each profile π = (x1, x2, . . . , xn) of Ln, the profile πk of Lk
n is defined

by πk = π ∧ πck , i.e. πk = (x1 ∧ ck , . . . , xn ∧ ck). Then F induces a
family of consensus functions Fk by the rule

Fk(πk) = F (π) ∧ ck .

The S-compatibility condition is just what is needed to make each Fk

well defined.

(1) The main observation is that any meet homomorphism F : Ln → L
which satisfies F (πx) ≥ x for all x ∈ L is S-compatible. Hence any
residual map F : Ln → L induces a residual map Fk on each interval
[0, ck ]. If this is tolerance simple, then the only induced maps on [0, ck ]
are the identity mapping and the constant mapping Fk(x) = ck .
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(2) We also recall that every join irreducible of L is in fact a join
irreducible of some [0, ck ]. Since any join irreducible of [0, ck ] must also
be a join irreducible of L, we get J(L) =

⋃
k∈Im

J([0, ck ]). Now, we
obtain:

Theorem 3.

Let F be a consensus function on the fixed finite lattice L. Suppose
S = {c1, c2, . . . , cm} is a classification system for L, with each [0, ck ]
tolerance simple, having cardinality at least 3. The following conditions
are then equivalent:

(P1) F is decisive, Paretian, and S-compatible.

(P2) F is neutral monotone and S-compatible, but F 6= F 0.

(P3) F is a meet homomorphism and F (π) ≥
∧

j π(j) for any profile π.

(P4) F is a residual map and F (πj) ≥ j for every join irreducible j .

(P5) F is a generalized oligarchy in the sense that for every ck ∈ S , the
induced consensus function Fk defined on [0, ck ] by
Fk(π ∧ πck ) = F (π) ∧ ck is an oligarchy. In fact, there exist
nonempty subsets J1, . . . , Jm of Im such that

F (π) =
(∧

j∈J1
π(j) ∧ c1

)
∨ . . . ∨

(∧
j∈Jm

π(j) ∧ cm
)

.
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