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Summary:

we give sufficient algebraic conditions for a variety V of l-algebras
(which are based on lattices) of the kind A = (L,∧,∨, 0, 1,F ) such
that:

finitely presented and projective algebras from the variety V are
closed under finite direct product.

It follows from this condition that unification in V is filtering (i.e.
for every two unifiers there exists a unifier that is more general
then both of them), and hence unification in V is either unitary or
nullary.



UNIFICATION of terms (polynomials) in an equational theory E .

Two terms t1(x1, . . . , xn), t2(x1, . . . , xn) in variables x1, . . . , xn = x .

T (x) - all terms in variables x1, . . . , xn,

A substitution σ : {x1, . . . , xn} → T (y) is an E− unifier for t1, t2 if

`E σt1 = σt2.

In this case t1, t2 - unifiable in E . Solving equations: t1 = t2 in E .

Given two E-unifiers σ, τ : x → T (y) for t1, t2,
σ is more general than τ , τ � σ,
if there is a substitution θ such that, for x ∈ x ,

`E θ(σ(x)) = τ(x).

� is a preorder (reflexive, transitive).

A mgu, most general unifier for t1, t2 in E is a E−unifier σ for
t1, t2 such that σ is more general then any E-unifier for t1, t2.



Unification Types of equational theories (varieties):

Each equational theory (variety) may have one of the four types:

unitary (or 1), each unifiable t1, t2 has a mgu (best),
finitary (or ω), each unifiable t1, t2 - finitely m. max (w.r.t. �)
unifiers, and not unitary,
infinitary (or ∞), each unifiable t1, t2 - infin. m. max unifiers, and
neither unitary nor finitary (roughly),
nullary, (or 0), for some unifiable t1, t2 max unifiers do not exist
(worst)

If unification in E is unitary (or finitary) and decidable, then there
are applications of some deduction technique to Automated
Theorem Provers, industrial databases, Description Logic etc.
Not applicable if unification in E is infinitary or nullary.

Applications in logic: admissibility of inference rules.



semigroups infinitary Plotkin 1972

commutat. semigroups finitary Livesey, Siekmann 1976

groups infinitary Lawrence 1989

Abelian groups finitary Lankford 1979

rings infinitary Lawrence 1987

commutat. rings nullary or infinitary Burris, Lawrence 1989

lattices (distr.latt.) nullary Willard 1991

semilattices finitary Livesey, Siekmann 1976

Boolean algebras unitary Biitner, Simonis 1987

discriminator algebras unitary Burris 1987

Heyting algebras finitary Ghilardi 1999

closure (interior) alg. finitary Ghilardi 2000

equivalential algebras unitary Wroński 2005

q-linear closure (int.) a. unitary Dzik, Wojtylak 2011

Fregean varieties unitary Slomczynska 2011

MV- algebras (  Lukas.) nullary Marra, Spada 2011

var. distr. pseudocpl. latt. nullary Cabrer 2013

See Stan Burris http://www.math.uwaterloo.ca/∼ snburris/



Algebraic approach by Ghilardi (1999)

An algebra B ∈ VE is finitely presented, if there is a finite set of
variables, x1, . . . , xk = x and a finite set S of equations of terms
with variables in x such that B is isomorphic to a quotient algebra
FE (x)/∼, where ∼ is a congruence defined as follows :
t1 ∼ t2 iff S `E t1 = t2

An algebra P in a variety V is projective in V if for every A, B of
V and homomorphisms f : P→ B, g : A→ B (where g is epi)
there is a h : P→ A such that the following diagram commutes

P

h
��

f

��
A g

// B



P is projective in V iff P is a retract of a free algebra in V, i.e.
there are q and m such that

P m
// FV (x) q

// P

and q ◦m = 1 (q is onto, m is 1-1).
Ghilardi: E -unification problem corresponds to a finitely presented
algebra A ∈ VE .
A unifier (a solution) for A is a pair given by: a projective algebra
P and a homomorphism u : A→ P.
A is unifiable if there is a unifier for it.
Given two unifiers u1 and u2 for A, u1 : A→ P1 is more general
then u2 : A→ P2, u2 � u1, if there is a homomorphism g such
that the following diagram commutes:

A

u1
��

u2

!!
P1 g

// P2

Unification types in symbolic and algebraic approach coincide.



Lack of characterizations of unification types.

(S.Burris) Discriminator varieties have unitary unification.

Unification in L is filtering if, for every two unifiers there exists a
unifier that is more general then both of them (then type 1 or 0).

Ghilardi (2003): If a modal logic L contains K 4, then
unification in L is filtering ⇐⇒ ♦+�+x → �+♦+x ∈ L

WD(2006): If a logic L extends intuitionistic logic, then
unification in L is filtering ⇐⇒ ¬x ∨ ¬¬x ∈ L.

Ghilardi (2003) Unification in L is filtering iff the direct product of
two finitely presented and projective algebras from VL is finitely
presented and projective.



Algebraic preliminaries:

Let L be a bounded lattice with 0 and 1.
a ∈ L is called a central element of L if a is complemented and for
all x , y ∈ L the sublattice generated by {a, x , y} is distributive.

Cen(L) - all central elements, a Boolean sublattice of the lattice L,
c ∈ Cen(L) has a single complement c ∈ Cen(L);
the pair {c ,c} is called a central pair of L

c ∈ Cen(L), induces a congruence

θc = {(x , y) | x ∧ c = y ∧ c}.

for any c ∈ Cen(L), θc and θc form a factor congruence pair of L;
conversely, if θ1 and θ2 are factor congruences of a bounded lattice
L: L ∼= L/θ1 × L/θ2, then there exists a c ∈ Cen(L) such that
θ1 = θc , θ2 = θc .



An algebra A = (L,∧,∨, 0, 1,F ) is called an l -algebra if
(L,∧,∨, 0, 1) is a bounded lattice, and any n-ary term f : Ln → L
of it is centre-preserving, that is, for every c ∈ Cen(L),

(xi , yi ) ∈ θc , i = 1, ..., n implies (f (x1, ..., xn), f (y1, ..., yn)) ∈ θc .

Examples of l-algebras: bounded lattices, p-algebras, ortholattices,
Heyting algebras etc., also residuated lattices (we will show it)

- any l-algebra is congruence distributive,
- the factor congruences of an l-algebra and of its underlying
lattice L coincide.



A congruence θ of ConA is said to be compact if for every
(nonempty) Φ ⊆ ConA, θ ≤

∨
Φ implies θ ≤

∨
F , for some finite

nonempty F ⊆ Φ.
An algebra A = (A,F ) with a constant 1 is called 1-regular (or
weakly regular), if for each ϕ, θ ∈ ConA,
[1]ϕ = [1]θ implies ϕ = θ.

A variety V with a constant 1 is 1-regular if each A ∈ V is
1-regular. Any congruence ϕ of a 1-regular algebra A is generated
by its congruence class [1]ϕ, i.e. ϕ = θ([1]ϕ).

Theorem.(B. Csákány) A variety V with a constant 1 is 1-regular if
and only if there exist binary terms d1(x , y), ..., dn(x , y) such that
di (x , x) = 1, for i =, ..., n and
d1(x , y) = 1,...,dn(x , y) = 1 implies x = y.



Any compact congruence of A is a principal congruence and it is
generated by a principal filter of L.
FV (x) denoted the free algebra generated by x

An algebra is finitely presented if it is isomorphic to a finitely
generated free algebra divided by a compact congruence.

Corollary. Let V be a variety of algebras of the form
A = (L,∧,∨, 0, 1,F ) which is 1-regular. Then a finitely presented
algebra of V can be represented (up to isomorphism) by a quotient
FV (x)/θ[t), where t = 1 corresponds to equations in the
presentation S that define the congruence ∼ in FV (x)/ ∼, in other
words: θ[t) = θ(t, 1) = ∼ in ConFV (x).



I. Finitely presented algebras closed under the fin. direct product.

Assume: V - a variety of (lattice based) l-algebras of the form
A = (L,∧,∨, 0, 1,F ) and the following condition holds in V:

(A) (L,∧,∨, 0, 1) is a bounded lattice and any u, v ∈ L which are
complements of each other in L are central elements in L,

Lemma 5. If V satisfy the above, then for any a, b ∈ L with
a ∧ b = 0 we have

θ(a, 1) ∧ θ(b, 1) = θ(a ∨ b, 1)

and the congruences θ(a, 1)/θ(a ∨ b, 1) and θ(b, 1)/θ(a ∨ b, 1)
form a factor congruence pair of the factor algebra A/θ(a ∨ b, 1).



In addition to (A) we have
(B) Each algebra A ∈ V has a unary term g such that for v ∈ L,
v ∧ g(v) = 0 and g(0) = 1,

Theorem 6. Let V be a 1-regular variety of l-algebras satisfying
the conditions (A) and (B). If A,B ∈ V are finitely presented
algebras, then their direct product A× B is also finitely presented.



II. Finitely presented projective algebras closed under finite direct
product

(C) Each algebra A = (L,∧,∨, 0, 1,F ) ∈ V has two unary terms h
and kh, such that for every v ∈ L,
h(v) ∧ kh(v) = 0, h(v) ∨ kh(v) = 1 and h(0) = kh(1) = 1.

Theorem 8. Let V be a 1-regular variety of l-algebras satisfying
the conditions (A), (B) and (C). If A,B ∈ V are finitely presented
projective algebras, then A× B is also a finitely presented
projective algebra of V.

Corollary: If the conditions (A), (B) and (C) hold in a variety of
l-algebras V then unification in V is either unitary or nullary.



Application: filtering unification in varieties of residuated lattices.

An algebra L = (L,∧,∨,�,→, 0, 1) is called an integral bounded
commutative residuated lattice, IBCRL, or simply bounded
residuated lattice, if
(1) (L,∧,∨, 0, 1) is a bounded lattice;
(2) (L,�) is a commutative monoid with unit element 1;
(3) x � y ≤ z ⇔ x ≤ y → z , for all x , y , z ∈ L.

Theorem 14. Any bounded residuated lattice is an l-algebra
satisfying condition (A).

Now consider L = (L,∧,∨,�,→, 0, 1) - a bounded residuated
lattice satisfying:
¬x ∧ x = 0, for all x ∈ L, where ¬x := x → 0,

it is always pseudocomplemented: y ∧ x = 0⇔ y ≤ ¬x



Theorem 19. Let V be a variety of integral commutative
residuated lattices and assume that the Stone identity

¬x ∨ ¬¬x = 1

holds in V.
Then unification in V is filtering.

Corollary: If each of residuated lettices generating a variety V has
no zero divisors, then unification in V is either unitary or nullary.
In particular, unification in strict fuzzy logics is either unitary or
nullary.

Till now: EDPC, deduction theorem etc. needed,
here: no need of EDPC, non-distributive residuated lattices
included
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Csákány, B., Characterizations of regular varieties, Acta Sci. Math.
(Szeged) 31, (1970), 187-189
Dzik, W., Splittings of Lattices of Theories and Unification Types,
Contributions to General Algebra, 17 (2006), 71-81.
Ghilardi, S., Unification through Projectivity, J. of Symbolic
Computation, 7 (1997), 733–752.
Ghilardi, S. and Sacchetti, L., Filtering Unification and Most
General Unifiers in Modal Logic, J. of Symb. Log.69 (2004)879-09
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