Extremal states on bounded residuated ℓ -monoids with general comparability

Dana Šalounová

VŠB–Technical University of Ostrava Czech Republic

Summer School on General Algebra and Ordered Sets Stará Lesná, 5–11 September 2009

Dana Šalounová (Ostrava, Czech Republic) General comparability property

SSAOS 2009 1 / 21

Bounded *Rl*-monoids

Definition

A bounded $R\ell$ -monoid is an algebra $M = (M; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1)$ of type (2, 2, 2, 2, 2, 0, 0) satisfying:

• $(M; \odot, 1)$ is a monoid;

•
$$(M; \lor, \land, 0, 1)$$
 is a bounded lattice;

•
$$x \odot y \le z$$
 iff $x \le y \to z$ iff $y \le x \rightsquigarrow z$;

•
$$(x \rightarrow y) \odot x = x \land y = y \odot (y \rightsquigarrow x).$$

- $(M; \lor, \land)$ is distributive,
- \odot distributes over the lattice operations,
- bounded $R\ell$ -monoids a variety of algebras;

In what follows, an $R\ell$ -monoid is a bounded $R\ell$ -monoid.

イロト イ団ト イヨト イヨト

Bounded *Rl*-monoids

Definition

A bounded *R* ℓ -monoid is an algebra $M = (M; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1)$ of type (2, 2, 2, 2, 2, 0, 0) satisfying:

• $(M; \odot, 1)$ is a monoid;

•
$$(M; \lor, \land, 0, 1)$$
 is a bounded lattice;

•
$$x \odot y \le z$$
 iff $x \le y \to z$ iff $y \le x \rightsquigarrow z$;

•
$$(x \rightarrow y) \odot x = x \land y = y \odot (y \rightsquigarrow x).$$

- (*M*; \lor , \land) is distributive,
- $\,\odot\,$ distributes over the lattice operations,
- bounded $R\ell$ -monoids a variety of algebras;

In what follows, an $R\ell$ -monoid is a bounded $R\ell$ -monoid.

A remark to terminology

- bounded residuated lattices satisfying the condition of divisibility,
- bounded integral generalized BL-algebras,
- pseudo *BL*-algebras as the subvariety of *FL*-algebras satisfying weakening.

Additional unary operations:

 $x^{-} := x \to 0$ $x^{\sim} := x \rightsquigarrow 0$

A remark to terminology

- bounded residuated lattices satisfying the condition of divisibility,
- bounded integral generalized BL-algebras,
- pseudo *BL*-algebras as the subvariety of *FL*-algebras satisfying weakening.

Additional unary operations:

$$x^{-} := x \to 0$$
$$x^{\sim} := x \rightsquigarrow 0$$

Special cases of R^ℓ-monoids

An $R\ell$ -monoid M is

• a pseudo *BL*-algebra iff

 $(x \rightarrow y) \lor (y \rightarrow x) = 1 = (x \rightsquigarrow y) \lor (y \rightsquigarrow x);$

• a *GMV*-algebra (pseudo *MV*-algebra) iff $x^{-\sim} = x = x^{\sim-};$

• a Heyting algebra iff

 $x \odot x = x \quad (\odot = \land).$

Particular classes of $R\ell$ -monoids

If \odot is commutative then an $R\ell$ -monoid is called commutative. In such a case, $\rightarrow = \rightsquigarrow$ and $^{-} = ^{\sim}$.

Definition

An $R\ell$ -monoid is called good if it satisfies

$$x^{-\sim} = x^{\sim -}.$$

We define the binary operation \oplus :

 $x\oplus y := (y^- \odot x^-)^{\sim}.$

Particular classes of $R\ell$ -monoids

If \odot is commutative then an $R\ell$ -monoid is called commutative. In such a case, $\rightarrow = \rightarrow and = \sim$.

Definition

An $R\ell$ -monoid is called *good* if it satisfies

$$x^{-\sim} = x^{\sim -}$$

We define the binary operation \oplus :

 $x\oplus y := (y^- \odot x^-)^{\sim}.$

Particular classes of $R\ell$ -monoids

If \odot is commutative then an $R\ell$ -monoid is called commutative. In such a case, $\rightarrow = \rightsquigarrow$ and $^- = \sim$.

Definition

An $R\ell$ -monoid is called *good* if it satisfies

$$x^{-\sim} = x^{\sim -}$$

We define the binary operation \oplus :

 $x \oplus y := (y^- \odot x^-)^{\sim}.$

- 4 3 6 4 3 6

Filters

Definition

A non-empty subset F of an $R\ell$ -monoid M is called a *filter* of M if

(F1)
$$x, y \in F$$
 imply $x \odot y \in F$;

(F2) $x \in F, y \in M, x \leq y \text{ imply } y \in F.$

Filters

Definition

A non-empty subset F of an $R\ell$ -monoid M is called a *filter* of M if

(F1)
$$x, y \in F$$
 imply $x \odot y \in F$;

(F2) $x \in F, y \in M, x \leq y \text{ imply } y \in F.$

The set $\mathcal{F}(M)$ of all filters of M is a complete lattice.

If $\emptyset \neq X \subseteq M$ and F(X) is the filter of M generated by X, then

 $F(X) = \{x \in M : x \ge a_1 \odot \cdots \odot a_n, \text{ where } a_1, \dots, a_n \in X, n \in \mathbb{N}\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Filters

Definition

A non-empty subset F of an $R\ell$ -monoid M is called a *filter* of M if

The set $\mathcal{F}(M)$ of all filters of M is a complete lattice.

If $\emptyset \neq X \subseteq M$ and F(X) is the filter of M generated by X, then

 $F(X) = \{x \in M : x \ge a_1 \odot \cdots \odot a_n, \text{ where } a_1, \dots, a_n \in X, n \in \mathbb{N}\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Normal filters and congruences

Definition

A filter *F* is called *normal* if for each $x, y \in M$

$$(\mathsf{F3}) \quad x \to y \in F \iff x \rightsquigarrow y \in F.$$

normal filters of $M \iff$ kernels of congruences on M $\langle x, y \rangle \in \Theta(F) \iff (x \rightarrow y) \land (y \rightarrow x) \in F$ $\iff (x \rightsquigarrow y) \land (y \rightsquigarrow x) \in F.$

Normal filters and congruences

Definition

A filter *F* is called *normal* if for each $x, y \in M$

$$(\mathsf{F3}) \quad x \to y \in F \iff x \rightsquigarrow y \in F.$$

normal filters of $M \iff$ kernels of congruences on M $\langle x, y \rangle \in \Theta(F) \iff (x \rightarrow y) \land (y \rightarrow x) \in F$ $\iff (x \rightsquigarrow y) \land (y \rightsquigarrow x) \in F.$

Boolean elements

Let $M = (M; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1)$ be a bounded $R\ell$ -monoid.

Definition

An element $a \in M$ is called *Boolean* if it has a complement in M, i.e. there is an element $x' \in M$ such that $x \wedge x' = 0$ and $x \vee x' = 1$.

Boolean elements

Let $M = (M; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1)$ be a bounded $R\ell$ -monoid.

Definition

An element $a \in M$ is called *Boolean* if it has a complement in M, i.e. there is an element $x' \in M$ such that $x \wedge x' = 0$ and $x \vee x' = 1$.

Denote by B(M) the set of all Boolean elements of M.

$(B(M); \vee, \wedge, ', 0, 1)$

- It is a Boolean algebra.
- $a' = a^- = a^{\sim}$.
- For any $a \in B(M)$ and $x \in M$: $a \odot x = a \land x = x \odot a$.

イロト 不得下 イヨト イヨト 二日

Boolean elements

Let $M = (M; \odot, \lor, \land, \rightarrow, \rightsquigarrow, 0, 1)$ be a bounded $R\ell$ -monoid.

Definition

An element $a \in M$ is called *Boolean* if it has a complement in M, i.e. there is an element $x' \in M$ such that $x \wedge x' = 0$ and $x \vee x' = 1$.

Denote by B(M) the set of all Boolean elements of M.

 $(B(M); \vee, \wedge, ', 0, 1)$

• It is a Boolean algebra.

• $a' = a^- = a^{\sim}$.

• For any $a \in B(M)$ and $x \in M$: $a \odot x = a \land x = x \odot a$.

For any $a \in B(M)$:

 $M_a := \{x \in M : 0 \le x \le a\}.$

 $\odot_a, \wedge_a, \vee_a$ the restrictions of \odot, \wedge, \vee from M on M_a ; For every $x, y \in M_a$: $x \to_a y := (x \to y) \wedge a, x \to_a y := (x \to y) \wedge a$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … の々で

For any $a \in B(M)$:

$$M_a := \{x \in M : 0 \le x \le a\}.$$

 $\odot_a, \wedge_a, \vee_a$ the restrictions of \odot, \wedge, \vee from M on M_a ; For every $x, y \in M_a$: $x \to_a y := (x \to y) \wedge a, x \rightsquigarrow_a y := (x \rightsquigarrow y) \wedge a$.

Proposition

Let M be a bounded $R\ell$ -monoid and $a \in B(M)$. Then:

(a) $M_a = (M_a; \odot_a, \lor_a, \land_a, \rightarrow_a, \rightsquigarrow_a, 0, a)$ is a bounded $R\ell$ -monoid.

(b) The mapping $p_a: M \longrightarrow M_a$ such that $p_a(x) := x \land a$, for each $x \in M$, is a surjective homomorphism of M onto M_a .

(c) *M* is isomorphic with $M_a \times M_{a'}$.

For any $a \in B(M)$:

$$M_a := \{x \in M : 0 \le x \le a\}.$$

 $\odot_a, \wedge_a, \vee_a$ the restrictions of \odot, \wedge, \vee from M on M_a ; For every $x, y \in M_a$: $x \to_a y := (x \to y) \wedge a, x \rightsquigarrow_a y := (x \rightsquigarrow y) \wedge a$.

Proposition

Let M be a bounded $R\ell$ -monoid and $a \in B(M)$. Then:

(a) $M_a = (M_a; \odot_a, \lor_a, \land_a, \rightarrow_a, \rightsquigarrow_a, 0, a)$ is a bounded $R\ell$ -monoid.

(b) The mapping $p_a: M \longrightarrow M_a$ such that $p_a(x) := x \land a$, for each $x \in M$, is a surjective homomorphism of M onto M_a .

(c) *M* is isomorphic with $M_a \times M_{a'}$.

For any $a \in B(M)$:

$$M_a := \{x \in M : 0 \le x \le a\}.$$

the restrictions of \odot, \land, \lor from M on M_a ; $\odot_a, \wedge_a, \vee_a \dots$ For every $x, y \in M_a$: $x \to_a y := (x \to y) \land a, x \to_a y := (x \to y) \land a$.

Proposition

Let M be a bounded $R\ell$ -monoid and $a \in B(M)$. Then:

- (a) $M_a = (M_a; \odot_a, \lor_a, \land_a, \rightarrow_a, \rightsquigarrow_a, 0, a)$ is a bounded $R\ell$ -monoid.
- (b) The mapping $p_a: M \longrightarrow M_a$ such that $p_a(x) := x \land a$, for each $x \in M$, is a surjective homomorphism of M onto M_a .

イロト イポト イヨト イヨト 二日

For any $a \in B(M)$:

$$M_a := \{x \in M : 0 \le x \le a\}.$$

 $\odot_a, \wedge_a, \vee_a \dots$ the restrictions of \odot, \wedge, \vee from M on M_a ; For every $x, y \in M_a$: $x \to_a y := (x \to y) \wedge a, x \to_a y := (x \to y) \wedge a$.

Proposition

Let M be a bounded $R\ell$ -monoid and $a \in B(M)$. Then:

- (a) $M_a = (M_a; \odot_a, \lor_a, \land_a, \rightarrow_a, \rightsquigarrow_a, 0, a)$ is a bounded $R\ell$ -monoid.
- (b) The mapping $p_a: M \longrightarrow M_a$ such that $p_a(x) := x \land a$, for each $x \in M$, is a surjective homomorphism of M onto M_a .

(c) *M* is isomorphic with $M_a \times M_{a'}$.

General comparability property

Dvurečenskij, Rachůnek: Bounded commutative residuated *l*-monoids with general comparability and states. Soft Comput. 10 (2006).

Definition

A bounded $R\ell$ -monoid M satisfies *general comparability* if for every $x, y \in M$ there is $a \in B(M)$ such that

 $p_a(x) \leq p_a(y)$ and $p_{a'}(x) \geq p_{a'}(y)$.

(日) (同) (三) (三)

10 / 21

General comparability property

Dvurečenskij, Rachůnek: Bounded commutative residuated *l*-monoids with general comparability and states. Soft Comput. 10 (2006).

Definition

A bounded $R\ell$ -monoid M satisfies *general comparability* if for every $x, y \in M$ there is $a \in B(M)$ such that

$$p_a(x) \leq p_a(y)$$
 and $p_{a'}(x) \geq p_{a'}(y)$.

The idea

• Two elements of *M* need not be in general comparable in *M*.

The coordinates of elements x = (x ∧ a, x ∧ a'), y = (y ∧ a, y ∧ a') can be compared in [0, a] and [0, a'], respectively.

(日) (同) (日) (日)

General comparability property

Dvurečenskij, Rachůnek: Bounded commutative residuated *l*-monoids with general comparability and states. Soft Comput. 10 (2006).

Definition

A bounded $R\ell$ -monoid M satisfies *general comparability* if for every $x, y \in M$ there is $a \in B(M)$ such that

$$p_a(x) \leq p_a(y)$$
 and $p_{a'}(x) \geq p_{a'}(y)$.

The idea

- Two elements of *M* need not be in general comparable in *M*.
- The coordinates of elements x = (x ∧ a, x ∧ a'), y = (y ∧ a, y ∧ a') can be compared in [0, a] and [0, a'], respectively.

・ロン ・四 ・ ・ ヨン ・ ヨン

Example

- Every linearly ordered bounded *Rl*-monoid satisfies general comparability.
- The direct product of an arbitrary system of linearly ordered bounded *Rl*-monoids satisfies general comparability.

A (10) A (10)

Example

- Every linearly ordered bounded *Rl*-monoid satisfies general comparability.
- The direct product of an arbitrary system of linearly ordered bounded *Rl*-monoids satisfies general comparability.

4 3 > 4 3

Example

- Every linearly ordered bounded *Rl*-monoid satisfies general comparability.
- The direct product of an arbitrary system of linearly ordered bounded $R\ell$ -monoids satisfies general comparability.

4 E 5 4

Example

Let $M = \{0, a, b, c, 1\}$ be the lattice with the given diagram, $\odot = \land$, $\rightarrow = \rightsquigarrow$, and \rightarrow be defined by the table.

Example

Let $M = \{0, a, b, c, 1\}$ be the lattice with the given diagram, $\odot = \land$, $\rightarrow = \rightsquigarrow$, and \rightarrow be defined by the table.

Then $R\ell$ -monoid $M = (M; \lor, \land, \odot, \rightarrow, 0, 1)$ does not satisfy general comparability.

<ロ> (日) (日) (日) (日) (日)

- 34

- Mundici, D.: Averaging the truth-value in Łukasiewicz logic. Studia Logica 55 (1995).
 - States establish measures on their associated *MV*-algebras which generalized the usual probability measures on Boolean algebras.

States on MV-algebras

A *state* on an *MV*-algebra *M* is a mapping $s: M \longrightarrow [0,1] (\subset \mathbb{R})$ such that

(1)
$$s(x \oplus y) = s(x) + s(y)$$
 if $x \odot y = 0$ ($\iff y \le x^{-}$),
(2) $s(1) = 1$.

くほと くほと くほと

Riečan, B.: On the probability on BL-algebra. Acta Math. Nitra 4 (2000).

Riečan states

A Riečan state on a BL-algebra M is a mapping $s: M \longrightarrow [0,1]$ such that

(R1)
$$s(x \oplus y) = s(x) + s(y)$$
 if $y^{--} \le x^{-}$,

(R2) s(1) = 1.

14 / 21

Dvurečenskij, A.: *States on pseudo MV-algebras*, Stud. Logica 68 (2001).

States on GMV-algebras

A state on an *GMV*-algebra (pseudo *MV*-algebra) *M* is a mapping $s: M \longrightarrow [0,1]$ such that (1) $s(x \oplus y) = s(x) + s(y)$ if $x \odot y = 0$ ($\iff y \le x^{\sim} \iff x \le y^{-}$), (2) s(1) = 1.

・ 何 ト ・ ヨ ト ・ ヨ ト

15 / 21

- Georgescu, G.: *Bosbach states on fuzzy structures,* Soft Comput. 8 (2004).
 - He extended the notion of a Riečan state for good pseudo *BL*-algebras.
 - He introduced a Bosbach state not using orthogonal elements, so it is applicable also for non-commutative fuzzy structures, which are not good.

A B A A B A

- Georgescu, G.: *Bosbach states on fuzzy structures,* Soft Comput. 8 (2004).
 - He extended the notion of a Riečan state for good pseudo *BL*-algebras.
 - He introduced a Bosbach state not using orthogonal elements, so it is applicable also for non-commutative fuzzy structures, which are not good.
- Dvurečenskij, A., Rachůnek, J.: On Riečan and Bosbach states for bounded non-commutative Rℓ-monoids, Math. Slovaca 56 (2006).
 - For good bounded $R\ell$ -monoids Riečan and Bosbach states coincide.

- 4 同 6 4 日 6 4 日 6

Definition

A Bosbach state (further simply a state) on M is a mapping $s: M \longrightarrow [0, 1]$ such that for any $x, y \in M$, (B1) $s(x) + s(x \rightarrow y) = s(y) + s(y \rightarrow x)$; (B2) $s(x) + s(y \rightarrow y) = s(y) + s(y \rightarrow y)$;

$$(B2) s(x) + s(x \rightsquigarrow y) = s(y) + s(y \rightsquigarrow x)$$

(B3)
$$s(0) = 0, s(1) = 1.$$

Dvurečenskij, A., Rachůnek, J.: *Probabilistic averaging in bounded Rl-monoids*, Semigroup Forum, 72 (2006).

- 4 同 6 4 日 6 4 日 6

Definition

A Bosbach state (further simply a state) on M is a mapping $s: M \longrightarrow [0,1]$ such that for any $x, y \in M$, (B1) $s(x) + s(x \rightarrow y) = s(y) + s(y \rightarrow x)$;

(B2)
$$s(x) + s(x \rightsquigarrow y) = s(y) + s(y \rightsquigarrow x);$$

(B3)
$$s(0) = 0, s(1) = 1.$$

Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded Rℓ-monoids, Semigroup Forum, 72 (2006).

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition

A Bosbach state (further simply a state) on M is a mapping $s: M \longrightarrow [0,1]$ such that for any $x, y \in M$, (B1) $s(x) + s(x \rightarrow y) = s(y) + s(y \rightarrow x)$;

(B2)
$$s(x) + s(x \rightsquigarrow y) = s(y) + s(y \rightsquigarrow x);$$

B3)
$$s(0) = 0, s(1) = 1.$$

Kernel of s

If s is a state on a bounded $R\ell$ -monoid M, set

$$Ker(s) := \{x \in M : s(x) = 1\}.$$

- Ker(s) is a proper normal filter of M.
- *M*/Ker(*s*) is an *MV*-algebra.

- **(())) (())) ())**

Definition

A Bosbach state (further simply a state) on M is a mapping $s: M \longrightarrow [0,1]$ such that for any $x, y \in M$, (P1) s(x) + s(x - y) = s(y) + s(y - y):

(B1)
$$s(x) + s(x \to y) = s(y) + s(y \to x);$$

(B2) $s(x) + s(x \to y) = s(y) + s(y \to x);$
(B3) $s(0) = 0, \ s(1) = 1.$

Kernel of s

If s is a state on a bounded $R\ell$ -monoid M, set

$$Ker(s) := \{x \in M : s(x) = 1\}.$$

- Ker(s) is a proper normal filter of M.
- M/Ker(s) is an MV-algebra.

< ロ > < 同 > < 三 > < 三

The set S(M) of all states on M is a convex set, i.e., if $s_1, s_2 \in S(M)$ and $\lambda \in [0, 1]$, then $s = \lambda s_1 + (1 - \lambda)s_2 \in S(M)$.

Definition

A state $s \in S(M)$ is called *extremal* if the equality $s = \lambda s_1 + (1 - \lambda)s_2$, where $s_1, s_2 \in S(M)$ and $\lambda \in (0, 1)$, implies $s = s_1 = s_2$.

Proposition

Let s be a state on a bounded $R\ell$ -monoid M and let $K = B(M) \cap \text{Ker}(s)$. Then it holds:

(a) If s is extremal, then K is a maximal filter of B(M).

(b) If s has the property that $t \in S(M)$ and $Ker(t) \supseteq K$ imply t = s, then s is extremal.

The set S(M) of all states on M is a convex set, i.e., if $s_1, s_2 \in S(M)$ and $\lambda \in [0, 1]$, then $s = \lambda s_1 + (1 - \lambda)s_2 \in S(M)$.

Definition

A state $s \in S(M)$ is called *extremal* if the equality $s = \lambda s_1 + (1 - \lambda)s_2$, where $s_1, s_2 \in S(M)$ and $\lambda \in (0, 1)$, implies $s = s_1 = s_2$.

Proposition

Let s be a state on a bounded $R\ell$ -monoid M and let $K = B(M) \cap \text{Ker}(s)$. Then it holds:

(a) If s is extremal, then K is a maximal filter of B(M).

(b) If s has the property that t ∈ S(M) and Ker(t) ⊇ K imply t = s, then s is extremal.

The set S(M) of all states on M is a convex set, i.e., if $s_1, s_2 \in S(M)$ and $\lambda \in [0, 1]$, then $s = \lambda s_1 + (1 - \lambda)s_2 \in S(M)$.

Definition

A state $s \in S(M)$ is called *extremal* if the equality $s = \lambda s_1 + (1 - \lambda)s_2$, where $s_1, s_2 \in S(M)$ and $\lambda \in (0, 1)$, implies $s = s_1 = s_2$.

Proposition

Let s be a state on a bounded $R\ell$ -monoid M and let $K = B(M) \cap \text{Ker}(s)$. Then it holds:

(a) If s is extremal, then K is a maximal filter of B(M).

(b) If s has the property that $t \in S(M)$ and $Ker(t) \supseteq K$ imply t = s, then s is extremal.

イロト イヨト イヨト

The set S(M) of all states on M is a convex set, i.e., if $s_1, s_2 \in S(M)$ and $\lambda \in [0, 1]$, then $s = \lambda s_1 + (1 - \lambda)s_2 \in S(M)$.

Definition

A state $s \in S(M)$ is called *extremal* if the equality $s = \lambda s_1 + (1 - \lambda)s_2$, where $s_1, s_2 \in S(M)$ and $\lambda \in (0, 1)$, implies $s = s_1 = s_2$.

Proposition

Let s be a state on a bounded $R\ell$ -monoid M and let $K = B(M) \cap \text{Ker}(s)$. Then it holds:

(a) If s is extremal, then K is a maximal filter of B(M).

(b) If s has the property that $t \in S(M)$ and $Ker(t) \supseteq K$ imply t = s, then s is extremal.

General comparability and states

Theorem

Let a bounded $R\ell$ -monoid M satisfy general comparability and let K be a maximal filter of B(M) such that the filter F(K) of the $R\ell$ -monoid Mgenerated by K is normal.

Then there exists a unique state s on M such that $B(M) \cap \text{Ker}(s) = K$. Moreover, the state s is extremal.

General comparability and states

Corollary

If M is a bounded $R\ell$ -monoid satisfying general comparability and if there is at least one maximal filter K of B(M) such that the filter F(K) of the $R\ell$ -monoid M generated by K is normal, then $S(M) \neq \emptyset$.

Corollary

Let M be a bounded $R\ell$ -monoid satisfying general comparability such that for every maximal filter K of B(M), the filter F(K) of Mgenerated by K is normal. If the set of extremal states on M is finite, then every state on B(M) can be extended to a state on M.

(人間) トイヨト イヨト

General comparability and states

Corollary

If M is a bounded $R\ell$ -monoid satisfying general comparability and if there is at least one maximal filter K of B(M) such that the filter F(K) of the $R\ell$ -monoid M generated by K is normal, then $S(M) \neq \emptyset$.

Corollary

Let M be a bounded $R\ell$ -monoid satisfying general comparability such that for every maximal filter K of B(M), the filter F(K) of Mgenerated by K is normal. If the set of extremal states on M is finite, then every state on B(M) can be extended to a state on M.

- 4 週 ト - 4 三 ト - 4 三 ト

General comparability and maximal filters of B(M)

Proposition

Let *M* be a bounded $R\ell$ -monoid. Let $\bigcap_{K} F(K)$ be the intersection of all filters F(K) of *M* generated by maximal filters *K* of B(M). Then $\bigcap_{K} F(K) = \{1\}$.

Theorem

(a) If a bounded Rl-monoid M satisfies general comparability, K is a maximal filter of B(M) and the filter F(K) of M generated by K is normal, then the quotient Rl-monoid M/F(K) is linearly ordered.
(b) If, moreover, the filter F(K) is normal in M for every maximal filter K of B(M), then M is a pseudo-BL-algebra which is a subdirect.

product of the pseudo-BL-algebras M/F(K).

General comparability and maximal filters of B(M)

Proposition

Let *M* be a bounded $R\ell$ -monoid. Let $\bigcap_{K} F(K)$ be the intersection of all filters F(K) of *M* generated by maximal filters *K* of B(M). Then $\bigcap_{K} F(K) = \{1\}$.

Theorem

(a) If a bounded $R\ell$ -monoid M satisfies general comparability, K is a maximal filter of B(M) and the filter F(K) of M generated by K is normal, then the quotient $R\ell$ -monoid M/F(K) is linearly ordered.

(b) If, moreover, the filter F(K) is normal in M for every maximal filter K of B(M), then M is a pseudo-BL-algebra which is a subdirect product of the pseudo-BL-algebras M/F(K).

General comparability and maximal filters of B(M)

Proposition

Let *M* be a bounded $R\ell$ -monoid. Let $\bigcap_{K} F(K)$ be the intersection of all filters F(K) of *M* generated by maximal filters *K* of B(M). Then $\bigcap_{K} F(K) = \{1\}$.

Theorem

- (a) If a bounded Rℓ-monoid M satisfies general comparability, K is a maximal filter of B(M) and the filter F(K) of M generated by K is normal, then the quotient Rℓ-monoid M/F(K) is linearly ordered.
- (b) If, moreover, the filter F(K) is normal in M for every maximal filter K of B(M), then M is a pseudo-BL-algebra which is a subdirect product of the pseudo-BL-algebras M/F(K).