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Bounded R`-monoids

Definition

A bounded R`-monoid is an algebra M = (M;�,∨,∧,→, , 0, 1) of type
〈2, 2, 2, 2, 2, 0, 0〉 satisfying:

(M; �, 1) is a monoid;

(M; ∨,∧, 0, 1) is a bounded lattice;

x � y ≤ z iff x ≤ y → z iff y ≤ x  z ;

(x → y)� x = x ∧ y = y � (y  x).

– (M; ∨,∧) is distributive,

– � distributes over the lattice operations,

– bounded R`-monoids – a variety of algebras;

In what follows, an R`-monoid is a bounded R`-monoid.
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A remark to terminology

bounded residuated lattices satisfying the condition of divisibility,

bounded integral generalized BL-algebras,

pseudo BL-algebras as the subvariety of FL-algebras satisfying
weakening.

Additional unary operations:

x− := x → 0

x∼ := x  0
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Special cases of R`-monoids

An R`-monoid M is

a pseudo BL-algebra iff

(x → y) ∨ (y → x) = 1 = (x  y) ∨ (y  x);

a GMV -algebra (pseudo MV -algebra) iff

x−∼ = x = x∼−;

a Heyting algebra iff

x � x = x (� = ∧ ).
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Particular classes of R`-monoids

If � is commutative then an R`-monoid is called commutative.
In such a case, →= and − = ∼.

Definition

An R`-monoid is called good if it satisfies

x−∼ = x∼−.

We define the binary operation ⊕ :

x ⊕ y := (y− � x−)∼.
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Filters

Definition

A non-empty subset F of an R`-monoid M is called a filter of M if

(F1) x , y ∈ F imply x � y ∈ F ;

(F2) x ∈ F , y ∈ M, x ≤ y imply y ∈ F .

The set F(M) of all filters of M is a complete lattice.

If ∅ 6= X ⊆ M and F (X ) is the filter of M generated by X , then

F (X ) = {x ∈ M : x ≥ a1 � · · · � an, where a1, . . . , an ∈ X , n ∈ N}.

Dana Šalounová (Ostrava, Czech Republic) General comparability property SSAOS 2009 6 / 21



Filters

Definition

A non-empty subset F of an R`-monoid M is called a filter of M if

(F1) x , y ∈ F imply x � y ∈ F ;

(F2) x ∈ F , y ∈ M, x ≤ y imply y ∈ F .

The set F(M) of all filters of M is a complete lattice.

If ∅ 6= X ⊆ M and F (X ) is the filter of M generated by X , then

F (X ) = {x ∈ M : x ≥ a1 � · · · � an, where a1, . . . , an ∈ X , n ∈ N}.
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Normal filters and congruences

Definition

A filter F is called normal if for each x , y ∈ M

(F3) x → y ∈ F ⇐⇒ x  y ∈ F .

normal filters of M ←→ kernels of congruences on M

〈x , y〉 ∈ Θ(F )⇐⇒ (x → y) ∧ (y → x) ∈ F

⇐⇒ (x  y) ∧ (y  x) ∈ F .
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Boolean elements

Let M = (M; �,∨,∧,→, , 0, 1) be a bounded R`-monoid.

Definition

An element a ∈ M is called Boolean if it has a complement in M, i.e.
there is an element x ′ ∈ M such that x ∧ x ′ = 0 and x ∨ x ′ = 1.

Denote by B(M) the set of all Boolean elements of M.

(B(M); ∨,∧,′ , 0, 1)

It is a Boolean algebra.

a′ = a− = a∼.

For any a ∈ B(M) and x ∈ M: a� x = a ∧ x = x � a.
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Supportive propositions

For any a ∈ B(M):

Ma := {x ∈ M : 0 ≤ x ≤ a}.

�a, ∧a, ∨a . . . . . . the restrictions of �,∧,∨ from M on Ma;

For every x , y ∈ Ma : x →a y := (x → y) ∧ a, x  a y := (x  y) ∧ a.

Proposition

Let M be a bounded R`-monoid and a ∈ B(M). Then:

(a) Ma = (Ma; �a,∨a,∧a,→a, a, 0, a) is a bounded R`-monoid.

(b) The mapping pa : M −→ Ma such that pa(x) := x ∧ a, for each
x ∈ M, is a surjective homomorphism of M onto Ma.

(c) M is isomorphic with Ma ×Ma′ .
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General comparability property

Dvurečenskij, Rachůnek: Bounded commutative residuated `-monoids
with general comparability and states. Soft Comput. 10 (2006).

Definition

A bounded R`-monoid M satisfies general comparability if for every
x , y ∈ M there is a ∈ B(M) such that

pa(x) ≤ pa(y) and pa′(x) ≥ pa′(y).

The idea

Two elements of M need not be in general comparable in M.

The coordinates of elements x = (x ∧ a, x ∧ a′), y = (y ∧ a, y ∧ a′)
can be compared in [0, a] and [0, a′], respectively.
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Examples

Example

Every linearly ordered bounded R`-monoid satisfies general
comparability.

The direct product of an arbitrary system of linearly ordered bounded
R`-monoids satisfies general comparability.
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Examples

Example

Let M = {0, a, b, c , 1} be the lattice with the given diagram, � = ∧,
→= , and → be defined by the table.

→ 0 a b c 1

0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

s
s

s s
s

0

a

c

b

1

@
@@

�
��

�
��

@
@@

Then R`-monoid M = (M; ∨,∧,�,→, 0, 1) does not satisfy general
comparability.
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A glimpse of states on fuzzy structures

Mundici, D.: Averaging the truth-value in  Lukasiewicz logic.
Studia Logica 55 (1995).

States establish measures on their associated MV -algebras which
generalized the usual probability measures on Boolean algebras.

States on MV -algebras

A state on an MV -algebra M is a mapping s : M −→ [0, 1] (⊂ R)
such that

(1) s(x ⊕ y) = s(x) + s(y) if x � y = 0 (⇐⇒ y ≤ x−),

(2) s(1) = 1.
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A glimpse of states on fuzzy structures

Riečan, B.: On the probability on BL-algebra.
Acta Math. Nitra 4 (2000).

Riečan states

A Riečan state on a BL-algebra M is a mapping s : M −→ [0, 1] such
that

(R1) s(x ⊕ y) = s(x) + s(y) if y−− ≤ x−,

(R2) s(1) = 1.
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A glimpse of states on fuzzy structures

Dvurečenskij, A.: States on pseudo MV-algebras, Stud. Logica 68
(2001).

States on GMV -algebras

A state on an GMV -algebra (pseudo MV -algebra) M is a mapping
s : M −→ [0, 1] such that

(1) s(x ⊕ y) = s(x) + s(y) if x � y = 0 (⇐⇒ y ≤ x∼ ⇐⇒ x ≤ y−),

(2) s(1) = 1.
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A glimpse of states on fuzzy structures

Georgescu, G.: Bosbach states on fuzzy structures, Soft Comput. 8
(2004).

He extended the notion of a Riečan state for good pseudo
BL-algebras.

He introduced a Bosbach state not using orthogonal elements, so it
is applicable also for non-commutative fuzzy structures, which are not
good.

Dvurečenskij, A., Rachůnek, J.: On Riečan and Bosbach states for
bounded non-commutative R`-monoids, Math. Slovaca 56 (2006).

For good bounded R`-monoids Riečan and Bosbach states coincide.
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Bosbach states

Definition

A Bosbach state (further simply a state) on M is a mapping
s : M −→ [0, 1] such that for any x , y ∈ M,

(B1) s(x) + s(x → y) = s(y) + s(y → x);

(B2) s(x) + s(x  y) = s(y) + s(y  x);

(B3) s(0) = 0, s(1) = 1.

Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded
R`-monoids, Semigroup Forum, 72 (2006).

Kernel of s

If s is a state on a bounded R`-monoid M, set

Ker(s) := {x ∈ M : s(x) = 1}.

Ker(s) is a proper normal filter of M.

M/Ker(s) is an MV -algebra.
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Extremal states

The set S(M) of all states on M is a convex set, i.e.,
if s1, s2 ∈ S(M) and λ ∈ [0, 1], then s = λs1 + (1− λ)s2 ∈ S(M).

Definition

A state s ∈ S(M) is called extremal if the equality s = λs1 + (1− λ)s2,
where s1, s2 ∈ S(M) and λ ∈ (0, 1), implies s = s1 = s2.

Proposition

Let s be a state on a bounded R`-monoid M and let K = B(M) ∩ Ker(s).
Then it holds:

(a) If s is extremal, then K is a maximal filter of B(M).

(b) If s has the property that t ∈ S(M) and Ker(t) ⊇ K imply t = s,
then s is extremal.
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Definition

A state s ∈ S(M) is called extremal if the equality s = λs1 + (1− λ)s2,
where s1, s2 ∈ S(M) and λ ∈ (0, 1), implies s = s1 = s2.

Proposition

Let s be a state on a bounded R`-monoid M and let K = B(M) ∩ Ker(s).
Then it holds:

(a) If s is extremal, then K is a maximal filter of B(M).

(b) If s has the property that t ∈ S(M) and Ker(t) ⊇ K imply t = s,
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General comparability and states

Theorem

Let a bounded R`-monoid M satisfy general comparability and let K be
a maximal filter of B(M) such that the filter F (K ) of the R`-monoid M
generated by K is normal.
Then there exists a unique state s on M such that B(M) ∩ Ker(s) = K .
Moreover, the state s is extremal.
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General comparability and states

Corollary

If M is a bounded R`-monoid satisfying general comparability
and if there is at least one maximal filter K of B(M) such that
the filter F (K ) of the R`-monoid M generated by K is normal,
then S(M) 6= ∅.

Corollary

Let M be a bounded R`-monoid satisfying general comparability
such that for every maximal filter K of B(M), the filter F (K ) of M
generated by K is normal. If the set of extremal states on M is finite,
then every state on B(M) can be extended to a state on M.
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General comparability and maximal filters of B(M)

Proposition

Let M be a bounded R`-monoid. Let
⋂
K

F (K ) be the intersection

of all filters F (K ) of M generated by maximal filters K of B(M).

Then
⋂
K

F (K ) = {1}.

Theorem

(a) If a bounded R`-monoid M satisfies general comparability, K is
a maximal filter of B(M) and the filter F (K ) of M generated by K
is normal, then the quotient R`-monoid M/F (K ) is linearly ordered.

(b) If, moreover, the filter F (K ) is normal in M for every maximal filter
K of B(M), then M is a pseudo-BL-algebra which is a subdirect
product of the pseudo-BL-algebras M/F (K ).
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