Linear orders

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

Compatible quasiorders and linear orders of (monounary) algebras

R. Pöschel, S. Radeleczki, D. Jakubíková-Studenovská

Technische Universität Dresden University Miskolc, University Košice

Summer School on Universal Algebra and Ordered Sets, Stará Lesná, September 9, 2009

inear orders

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

Outline

Notions and notations

Linear orders

The structure of the lattice $Quord\langle A, f \rangle$

Notions and notations $_{\odot \odot}$

inear orders

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

Outline

Notions and notations

Linear orders

The structure of the lattice $\mathsf{Quord}\langle A, f
angle$

Notions and notations $\bullet \circ$

Linear orders

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

compatible quasiorders

$\langle A, F \rangle$ universal algebra

compatible (invariant) relation q ⊆ A × A: For each *f ∈ F (n*-ary) we have *f ⊳ q (f* preserves *q*), i.e.

 $(a_1, b_1), \ldots, (a_n, b_n) \in q \implies (f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in q.$

Lord $\langle A, F \rangle$ compatible linear orders Pord $\langle A, F \rangle$ compatible partial orders (refl., trans., antisymmetric) Generalization of Pord $\langle A, F \rangle$ and Con $\langle A, F \rangle$: Quord $\langle A, F \rangle$ compatible *quasiorders* (reflexive, transitive)

Remark

 $(Quord\langle A, F\rangle, \subseteq)$ is a lattice and it is a complete sublattice of the lattice (Quord(A), \subseteq) of all quasiorders on A.

Problem

Describe the quasiorder lattice Quord(A, F).

The structure of the lattice $Quord\langle A, f \rangle$ 000000000

compatible quasiorders

 $\langle A, F \rangle$ universal algebra compatible (invariant) relation $q \subseteq A \times A$: For each $f \in F$ (*n*-ary) we have $f \triangleright q$ (*f* preserves *q*), i.e

 $(a_1, b_1), \ldots, (a_n, b_n) \in q \implies (f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in q.$

Lord $\langle A, F \rangle$ compatible linear orders Pord $\langle A, F \rangle$ compatible partial orders (refl., trans., antisymmetric) Generalization of Pord $\langle A, F \rangle$ and Con $\langle A, F \rangle$: Quord $\langle A, F \rangle$ compatible *quasiorders* (reflexive, transitive)

Remark

 $(Quord\langle A, F\rangle, \subseteq)$ is a lattice and it is a complete sublattice of the lattice $(Quord(A), \subseteq)$ of all quasiorders on A.

Problem Describe the quasiorder lattice Quord(A, I

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

compatible quasiorders

 $\langle A, F \rangle$ universal algebra compatible (invariant) relation $q \subseteq A \times A$: For each $f \in F$ (*n*-ary) we have $f \triangleright q$ (*f* preserves *q*), i.e.

 $(a_1, b_1), \ldots, (a_n, b_n) \in q \implies (f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in q.$

Lord $\langle A, F \rangle$ compatible linear orders Pord $\langle A, F \rangle$ compatible partial orders (refl., trans., antisymmetric) Generalization of Pord $\langle A, F \rangle$ and Con $\langle A, F \rangle$: Quord $\langle A, F \rangle$ compatible *quasiorders* (reflexive, transitive)

Remark

 $(Quord\langle A, F\rangle, \subseteq)$ is a lattice and it is a complete sublattice of the lattice $(Quord(A), \subseteq)$ of all quasiorders on A.

Problem Describe the quasiorder lattice $Quord\langle A, F \rangle$

The structure of the lattice $Quord\langle A, f \rangle$ 000000000

compatible quasiorders

 $\langle A, F \rangle$ universal algebra compatible (invariant) relation $q \subseteq A \times A$: For each $f \in F$ (*n*-ary) we have $f \triangleright q$ (*f* preserves *q*), i.e.

 $(a_1, b_1), \ldots, (a_n, b_n) \in q \implies (f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in q.$

Lord $\langle A, F \rangle$ compatible linear orders Pord $\langle A, F \rangle$ compatible partial orders (refl., trans., antisymmetric)

Generalization of Pord $\langle A, F \rangle$ and Con $\langle A, F \rangle$: Quord $\langle A, F \rangle$ compatible *quasiorders* (reflexive, transitive)

Remark

 $(Quord\langle A, F \rangle, \subseteq)$ is a lattice and it is a complete sublattice of the lattice $(Quord(A), \subseteq)$ of all quasiorders on A.

Problem *Describe the quasiorder lattice* Quord(A, F).

The structure of the lattice $Quord \langle A, f \rangle$ 00000000

compatible quasiorders

 $\langle A, F \rangle$ universal algebra compatible (invariant) relation $q \subseteq A \times A$: For each $f \in F$ (*n*-ary) we have $f \triangleright q$ (*f* preserves *q*), i.e.

 $(a_1, b_1), \ldots, (a_n, b_n) \in q \implies (f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in q.$

Lord $\langle A, F \rangle$ compatible linear orders Pord $\langle A, F \rangle$ compatible partial orders (refl., trans., antisymmetric) Generalization of Pord $\langle A, F \rangle$ and Con $\langle A, F \rangle$: Quord $\langle A, F \rangle$ compatible *quasiorders* (reflexive, transitive)

Remark

 $(Quord\langle A, F\rangle, \subseteq)$ is a lattice and it is a complete sublattice of the lattice $(Quord(A), \subseteq)$ of all quasiorders on A.

Problem Describe the quasiorder lattice $Quord\langle A, F \rangle$

The structure of the lattice $Quord \langle A, f \rangle$ 00000000

compatible quasiorders

 $\langle A, F \rangle$ universal algebra compatible (invariant) relation $q \subseteq A \times A$: For each $f \in F$ (*n*-ary) we have $f \triangleright q$ (*f* preserves *q*), i.e.

 $(a_1, b_1), \ldots, (a_n, b_n) \in q \implies (f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in q.$

Lord $\langle A, F \rangle$ compatible linear orders Pord $\langle A, F \rangle$ compatible partial orders (refl., trans., antisymmetric) Generalization of Pord $\langle A, F \rangle$ and Con $\langle A, F \rangle$: Quord $\langle A, F \rangle$ compatible *quasiorders* (reflexive, transitive)

Remark

 $(\text{Quord}(A, F), \subseteq)$ is a lattice and it is a complete sublattice of the lattice $(\text{Quord}(A), \subseteq)$ of all quasiorders on A.

Problem

Describe the quasiorder lattice $Quord\langle A, F \rangle$

The structure of the lattice $Quord \langle A, f \rangle$ 00000000

compatible quasiorders

 $\langle A, F \rangle$ universal algebra compatible (invariant) relation $q \subseteq A \times A$: For each $f \in F$ (*n*-ary) we have $f \triangleright q$ (*f* preserves *q*), i.e.

 $(a_1, b_1), \ldots, (a_n, b_n) \in q \implies (f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in q.$

Lord $\langle A, F \rangle$ compatible linear orders Pord $\langle A, F \rangle$ compatible partial orders (refl., trans., antisymmetric) Generalization of Pord $\langle A, F \rangle$ and Con $\langle A, F \rangle$: Quord $\langle A, F \rangle$ compatible *quasiorders* (reflexive, transitive)

Remark

 $(\text{Quord}(A, F), \subseteq)$ is a lattice and it is a complete sublattice of the lattice $(\text{Quord}(A), \subseteq)$ of all quasiorders on A.

Problem

Describe the quasiorder lattice $Quord\langle A, F \rangle$.

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

Reduction to (mono)unary algebras

H := unary polynomial operations of $\langle A, F \rangle$ (i.e. $H = \langle F \cup C \rangle^{(1)}$). Then

$$Quord\langle A, F \rangle = Quord\langle A, H \rangle$$
$$Quord\langle A, H \rangle = \bigcap_{f \in H} Quord\langle A, f \rangle.$$

Note $\langle A, f \rangle$ is a monounary algebra $(f : A \rightarrow A)$.

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

Reduction to (mono)unary algebras

H := unary polynomial operations of $\langle A, F \rangle$ (i.e. $H = \langle F \cup C \rangle^{(1)}$). Then

$$\begin{aligned} \mathsf{Quord}\langle A,F\rangle &= \mathsf{Quord}\langle A,H\rangle\\ \mathsf{Quord}\langle A,H\rangle &= \bigcap_{f\in H}\mathsf{Quord}\langle A,f\rangle. \end{aligned}$$

Note $\langle A, f \rangle$ is a monounary algebra $(f : A \rightarrow A)$.

The structure of the lattice $Quord\langle A, f \rangle$ 000000000

Reduction to (mono)unary algebras

H := unary polynomial operations of $\langle A, F \rangle$ (i.e. $H = \langle F \cup C \rangle^{(1)}$). Then

$$\begin{aligned} \mathsf{Quord}\langle A,F\rangle &= \mathsf{Quord}\langle A,H\rangle\\ \mathsf{Quord}\langle A,H\rangle &= \bigcap_{f\in H}\mathsf{Quord}\langle A,f\rangle. \end{aligned}$$

Note $\langle A, f \rangle$ is a monounary algebra $(f : A \rightarrow A)$.

Linear orders

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

Outline

Notions and notations

Linear orders

The structure of the lattice $\mathsf{Quord}\langle \mathsf{A}, f
angle$

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

linear extensions of partial orders

Recall: Every partial order has a linear extension

Theorem (Dushnik & Miller)

Every partial order is the intersection of its linear extensions.

Problem

Is this true also for compatible partial orders and compatible linear orders? (or to what extent is this true)

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

linear extensions of partial orders

Recall: Every partial order has a linear extension

Theorem (Dushnik & Miller)

Every partial order is the intersection of its linear extensions.

Problem

Is this true also for compatible partial orders and compatible linear orders? (or to what extent is this true)

The structure of the lattice ${\rm Quord}\langle A,f\rangle$ 00000000

compatible linear orders of $\langle A, f \rangle$

$\langle A, f \rangle$ monounary algebra When exists a compatible linear order?

Theorem (Szigeti)

 $\mathsf{Lord}\langle A, f \rangle \neq \emptyset \iff \langle A, f \rangle \text{ acyclic.}$

Definition $\langle A, f \rangle$ is *acyclic* : $\iff \forall a \in A \forall n \in \mathbb{N}_+ : f^n(a) = a \implies f(a) = a$ (no cycles in the graph of f, except loops)

The structure of the lattice $Quord\langle A, f \rangle$ 000000000

compatible linear orders of $\langle A, f \rangle$

 $\langle A, f \rangle$ monounary algebra When exists a compatible linear order?

Theorem (Szigeti)

$$Lord\langle A, f \rangle \neq \emptyset \iff \langle A, f \rangle$$
 acyclic.

Definition $\langle A, f \rangle$ is *acyclic* : $\iff \forall a \in A \forall n \in \mathbb{N}_+ : f^n(a) = a \implies f(a) = a$ (no cycles in the graph of f, except loops)

Characterization of compatible linear orders

There exists a full description for the compatible linear orders of an acyclic monounary algebra $\langle A, f \rangle$:

For simplicity, let the graph $f^{\bullet} := \{(x, f(x)) \mid x \in A\}$ be connected and let f has a (single) fixed point 1, formally: $\forall x, y \in A \exists m \in \mathbb{N} : f^m(x) = f^m(y)$. Then:

Theorem

Every $R \in Lord(A, f)$ is uniquely characterized by a family $(R_B)_{B \in A/\ker f}$ of linear orders on each equivalence class $B \in A/\ker f$:

 $R = \Delta \cup \{(a, b) \mid \exists n \in \mathbb{N} \exists B \in A / \ker f : (f^n(a), f^n(b)) \in R_B \setminus \Delta\}.$

 $\Delta := \{(a, a) \mid a \in A \text{ (equality relation)} \\ f^{n+1}(x) := f(f^n(x)), n \in \mathbb{N}, f^0 \text{ is the identity mapping, } f^0(x) = x$

A D F A B F A B F A B F

Characterization of compatible linear orders

There exists a full description for the compatible linear orders of an acyclic monounary algebra $\langle A, f \rangle$: For simplicity, let the graph $f^{\bullet} := \{(x, f(x)) \mid x \in A\}$ be connected and let f has a (single) fixed point 1, formally: $\forall x, y \in A \exists m \in \mathbb{N} : f^m(x) = f^m(y)$. Then:

Theorem

Every $R \in Lord(A, f)$ is uniquely characterized by a family $(R_B)_{B \in A/\ker f}$ of linear orders on each equivalence class $B \in A/\ker f$:

 $R = \Delta \cup \{(a, b) \mid \exists n \in \mathbb{N} \exists B \in A / \ker f : (f^n(a), f^n(b)) \in R_B \setminus \Delta\}.$

 $\Delta := \{(a, a) \mid a \in A \text{ (equality relation)} \\ f^{n+1}(x) := f(f^n(x)), n \in \mathbb{N}, f^0 \text{ is the identity mapping, } f^0(x) = x.$

A D F A B F A B F A B F

Characterization of compatible linear orders

There exists a full description for the compatible linear orders of an acyclic monounary algebra $\langle A, f \rangle$: For simplicity, let the graph $f^{\bullet} := \{(x, f(x)) \mid x \in A\}$ be connected and let f has a (single) fixed point 1, formally: $\forall x, y \in A \exists m \in \mathbb{N} : f^m(x) = f^m(y)$. Then:

Theorem

Every $R \in \text{Lord}\langle A, f \rangle$ is uniquely characterized by a family $(R_B)_{B \in A/ \text{ker } f}$ of linear orders on each equivalence class $B \in A/ \text{ker } f$:

 $R = \Delta \cup \{(a, b) \mid \exists n \in \mathbb{N} \exists B \in A / \ker f : (f^n(a), f^n(b)) \in R_B \setminus \Delta\}.$

 $\Delta := \{(a, a) \mid a \in A \text{ (equality relation)} \\ f^{n+1}(x) := f(f^n(x)), n \in \mathbb{N}, f^0 \text{ is the identity mapping, } f^0(x) = x.$

A D F A B F A B F A B F

Characterization of compatible linear orders

There exists a full description for the compatible linear orders of an acyclic monounary algebra $\langle A, f \rangle$: For simplicity, let the graph $f^{\bullet} := \{(x, f(x)) \mid x \in A\}$ be connected and let f has a (single) fixed point 1, formally: $\forall x, y \in A \exists m \in \mathbb{N} : f^m(x) = f^m(y)$. Then:

Theorem

Every $R \in \text{Lord}\langle A, f \rangle$ is uniquely characterized by a family $(R_B)_{B \in A/ \text{ker } f}$ of linear orders on each equivalence class $B \in A/ \text{ker } f$:

 $R = \Delta \cup \{(a, b) \mid \exists n \in \mathbb{N} \exists B \in A / \ker f : (f^n(a), f^n(b)) \in R_B \setminus \Delta\}.$

 $\Delta := \{(a, a) \mid a \in A \text{ (equality relation)} \\ f^{n+1}(x) := f(f^n(x)), n \in \mathbb{N}, f^0 \text{ is the identity mapping, } f^0(x) = x.$

Linear orders

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

Linear orders

The structure of the lattice $Quord\langle A, f \rangle$ 000000000

Linear orders

The structure of the lattice $Quord\langle A, f \rangle$ 000000000

Linear orders

The structure of the lattice $Quord\langle A, f \rangle$ 000000000

Linear orders

The structure of the lattice $Quord\langle A, f \rangle$ 000000000

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

inear orders

The structure of the lattice $Quord\langle A, f \rangle$

Outline

Notions and notations

Linear orders

The structure of the lattice $Quord\langle A, f \rangle$

The structure of the lattice $Quord\langle A, f \rangle$ $\bullet 00000000$

Types

General assumption from now on: $\langle A, f \rangle$ (finite) acyclic, connected and with exactly one fixed point 1.

Definition Set of *types*:

$\mathcal{T}_{f} := \{\beta \in \mathsf{Quord}\langle A, f \rangle \mid \beta \subseteq \ker f\} = \{\beta \in \mathsf{Quord}(A) \mid \beta \subseteq \ker f\}$

For $\beta \in T_f$ we have $\beta = \bigcup \{\beta_B \mid B \in A / \text{ ker } f\}$ where $\beta_B := \beta \cap B^2$ for each block B of ker f. Therefore $T_f \cong \prod_{B \in A / \text{ ker } f} \text{Quord}(B)$.

Definition

Typ of a quasiorder q: $q^{\min} := q \cap \ker f$.

(Clearly, $q^{\min} \in T_f$, note that ker $f \in Con(A, f) \subseteq Quord(A, f)$ $\beta := q^{\min}$ is the least quasiorder of type β

The structure of the lattice $Quord\langle A, f \rangle$ $\bullet 00000000$

Types

General assumption from now on: $\langle A, f \rangle$ (finite) acyclic, connected and with exactly one fixed point 1. Definition Set of *types*:

$\mathcal{T}_{f} := \{\beta \in \mathsf{Quord}\langle A, f \rangle \mid \beta \subseteq \ker f\} = \{\beta \in \mathsf{Quord}(A) \mid \beta \subseteq \ker f\}$

For $\beta \in \mathcal{T}_f$ we have $\beta = \bigcup \{\beta_B \mid B \in A / \ker f\}$ where $\beta_B := \beta \cap B^2$ for each block *B* of ker *f*. Therefore $\mathcal{T}_f \cong \prod_{B \in A / \ker f} \operatorname{Quord}(B)$.

Definition Typ of a quasiorder q: $q^{\min} := q \cap \ker f$. (Clearly, $q^{\min} \in \mathcal{T}_{C}$ note that $\ker f \in Con(A, f) \subset C$

 $\beta := q^{\min}$ is the least quasiorder of type β .

The structure of the lattice $Quord\langle A, f \rangle$ $\bullet 00000000$

Types

General assumption from now on: $\langle A, f \rangle$ (finite) acyclic, connected and with exactly one fixed point 1. Definition Set of *types*:

$\mathcal{T}_{f} := \{\beta \in \mathsf{Quord}\langle A, f \rangle \mid \beta \subseteq \ker f\} = \{\beta \in \mathsf{Quord}(A) \mid \beta \subseteq \ker f\}$

For $\beta \in \mathcal{T}_f$ we have $\beta = \bigcup \{\beta_B \mid B \in A / \ker f\}$ where $\beta_B := \beta \cap B^2$ for each block B of ker f. Therefore $\mathcal{T}_f \cong \prod_{B \in A / \ker f} \operatorname{Quord}(B)$.

Definition Typ of a quasiorder q: $q^{\min} := q \cap \ker$

(Clearly, $q^{\min} \in \mathcal{I}_{f}$, note that ker $f \in \text{Con}(A, f) \subseteq \text{Quord}(A, f)$ $\beta := q^{\min}$ is the least quasiorder of type β .

The structure of the lattice $Quord\langle A, f \rangle$ $\bullet 00000000$

Types

General assumption from now on: $\langle A, f \rangle$ (finite) acyclic, connected and with exactly one fixed point 1. Definition Set of *types*:

 $\mathcal{T}_{f} := \{\beta \in \mathsf{Quord}\langle A, f \rangle \mid \beta \subseteq \ker f\} = \{\beta \in \mathsf{Quord}(A) \mid \beta \subseteq \ker f\}$

For $\beta \in \mathcal{T}_f$ we have $\beta = \bigcup \{\beta_B \mid B \in A / \ker f\}$ where $\beta_B := \beta \cap B^2$ for each block *B* of ker *f*. Therefore $\mathcal{T}_f \cong \prod_{B \in A / \ker f} \operatorname{Quord}(B)$.

Definition Typ of a quasiorder q: $q^{\min} := q \cap \ker f$. (Clearly, $q^{\min} \in T_f$, note that $\ker f \in \operatorname{Con}\langle A, f \rangle \subseteq \operatorname{Quord}\langle A, f \rangle$ $\beta := q^{\min}$ is the least quasiorder of type β .

The structure of the lattice $Quord\langle A, f \rangle$ $\bullet 00000000$

Types

General assumption from now on: $\langle A, f \rangle$ (finite) acyclic, connected and with exactly one fixed point 1. Definition Set of *types*:

$$\mathcal{T}_{f} := \{\beta \in \mathsf{Quord}\langle A, f \rangle \mid \beta \subseteq \ker f\} = \{\beta \in \mathsf{Quord}(A) \mid \beta \subseteq \ker f\}$$

For
$$\beta \in \mathcal{T}_f$$
 we have $\beta = \bigcup \{\beta_B \mid B \in A / \ker f\}$
where $\beta_B := \beta \cap B^2$ for each block *B* of ker *f*.
Therefore $\mathcal{T}_f \cong \prod_{B \in A / \ker f} \operatorname{Quord}(B)$.

Definition

Typ of a quasiorder q: $q^{\min} := q \cap \ker f$.

(Clearly, $q^{\min} \in \mathcal{I}_{f}$, note that ker $f \in \text{Con}\langle A, f \rangle \subseteq \text{Quord}\langle A, f \rangle$ $\beta := q^{\min}$ is the least quasiorder of type β .

The structure of the lattice $Quord\langle A, f \rangle$ $\bullet 00000000$

Types

General assumption from now on: $\langle A, f \rangle$ (finite) acyclic, connected and with exactly one fixed point 1. Definition Set of *types*:

$$\mathcal{T}_{f} := \{\beta \in \mathsf{Quord}\langle A, f \rangle \mid \beta \subseteq \ker f\} = \{\beta \in \mathsf{Quord}(A) \mid \beta \subseteq \ker f\}$$

For
$$\beta \in \mathcal{T}_f$$
 we have $\beta = \bigcup \{ \beta_B \mid B \in A / \ker f \}$
where $\beta_B := \beta \cap B^2$ for each block B of ker f .
Therefore $\mathcal{T}_f \cong \prod_{B \in A / \ker f} \operatorname{Quord}(B)$.

Definition

Typ of a quasiorder q: $q^{\min} := q \cap \ker f$.

(Clearly, $q^{\min} \in \mathcal{I}_f$, note that ker $f \in \text{Con}(A, f) \subseteq \text{Quord}(A, f)$ $\beta := q^{\min}$ is the least quasiorder of type β .

The structure of the lattice $Quord\langle A, f \rangle$ $\bullet 00000000$

Types

General assumption from now on: $\langle A, f \rangle$ (finite) acyclic, connected and with exactly one fixed point 1. Definition Set of *types*:

$$\mathcal{T}_{f} := \{\beta \in \mathsf{Quord}\langle A, f \rangle \mid \beta \subseteq \ker f\} = \{\beta \in \mathsf{Quord}(A) \mid \beta \subseteq \ker f\}$$

For
$$\beta \in \mathcal{T}_f$$
 we have $\beta = \bigcup \{\beta_B \mid B \in A / \ker f\}$
where $\beta_B := \beta \cap B^2$ for each block B of ker f .
Therefore $\mathcal{T}_f \cong \prod_{B \in A / \ker f} \operatorname{Quord}(B)$.

Definition

Typ of a quasiorder $q: q^{\min} := q \cap \ker f$.

(Clearly, $q^{\min} \in \mathcal{T}_f$, note that ker $f \in \text{Con}\langle A, f \rangle \subseteq \text{Quord}\langle A, f \rangle$) $\beta := q^{\min}$ is the least quasiorder of type β .

inear orders

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

The lattice $\operatorname{Quord}\langle A, f \rangle$ For type $\beta \in \mathcal{T}_f$ let $Q(\beta) := \{q \in \operatorname{Quord}\langle A, f \rangle \mid q^{\min} = \beta\}.$

Theorem

(1) Quord $\langle A, f \rangle = \bigcup \{ Q(\beta) \mid \beta \in T_f \}$. Each set $Q(\beta)$ is a semi-interval of the form

 $Q(\beta) = \bigcup_{i \in I} [\beta, q_i]$

(union of intervals in Quord $\langle A, f \rangle$ all with least element β). (2) T_f is a sublattice of Quord $\langle A, f \rangle$ and $T_f \cong \prod_{B \in A / \ker f} \text{Quord}(B)$.

(3) ^{min} : Quord $\langle A, f \rangle \to T_f : q \mapsto q^{\min}$ is a \wedge -semilattice homomorphism (in particular an order-homomorphism)

Linear orders

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

The lattice $Quord\langle A, f \rangle$ For type $\beta \in T_f$ let $Q(\beta) := \{q \in Quord\langle A, f \rangle \mid q^{\min} = \beta\}$. Theorem

(1) Quord $\langle A, f \rangle = \bigcup \{Q(\beta) \mid \beta \in T_f\}$. Each set $Q(\beta)$ is a semi-interval of the form $Q(\beta) = \bigcup_{i \in I} [\beta, q_i]$ $\beta = q_i^{\min} \in T_f$

(union of intervals in Quord $\langle A, f \rangle$ all with least element β).

- (2) T_f is a sublattice of Quord $\langle A, f \rangle$ and $T_f \cong \prod_{B \in A/ \text{ker } f} \text{Quord}(B)$.
- (3) ^{min} : Quord $\langle A, f \rangle \to T_f : q \mapsto q^{\min}$ is a \wedge -semilattice homomorphism (in particular an order-homomorphism)

inear orders

The structure of the lattice $Quord \langle A, f \rangle$ 00000000

The lattice $Quord\langle A, f \rangle$ For type $\beta \in T_f$ let $Q(\beta) := \{q \in Quord\langle A, f \rangle \mid q^{\min} = \beta\}$. Theorem

(1) Quord $\langle A, f \rangle = \bigcup \{Q(\beta) \mid \beta \in \mathcal{T}_f\}$. Each set $Q(\beta)$ is a semi-interval of the form $Q(\beta) = \bigcup_{i \in I} [\beta, q_i]$ $\beta = q_i^{\min} \in \mathcal{T}_f$

(union of intervals in Quord $\langle A, f \rangle$ all with least element β).

(2) \mathcal{T}_f is a sublattice of Quord $\langle A, f \rangle$ and $\mathcal{T}_f \cong \prod_{B \in A/ \ker f} \text{Quord}(B)$.

(3) $^{\min}$: Quord $\langle A, f \rangle \to \mathcal{T}_f : q \mapsto q^{\min}$ is a \wedge -semilattice homomorphism (in particular an order-homomorphism)

inear orders

The structure of the lattice $Quord \langle A, f \rangle$ 00000000

The lattice $Quord\langle A, f \rangle$ For type $\beta \in T_f$ let $Q(\beta) := \{q \in Quord\langle A, f \rangle \mid q^{\min} = \beta\}$. Theorem

(1) Quord $\langle A, f \rangle = \bigcup \{Q(\beta) \mid \beta \in T_f\}$. Each set $Q(\beta)$ is a semi-interval of the form $Q(\beta) = \bigcup_{i \in I} [\beta, q_i]$ $\beta = q_i^{\min} \in T_f$

(union of intervals in Quord $\langle A, f \rangle$ all with least element β).

- (2) \mathcal{T}_f is a sublattice of Quord $\langle A, f \rangle$ and $\mathcal{T}_f \cong \prod_{B \in A/ \text{ ker } f} \text{Quord}(B)$.
- (3) min : Quord $\langle A, f \rangle \to T_f : q \mapsto q^{\min}$ is a \wedge -semilattice homomorphism (in particular an order-homomorphism)

inear orders

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

Special case: partial orders

Lemma

Let $\beta \in T_f$ be a partial order. Then

 $\beta^{\mathsf{max}} := \Delta \cup \{(a, b) \mid \exists n \in \mathbb{N} : (f^n(a), f^n(b)) \in \beta \setminus \Delta\}$

is a compatible partial order, i.e. $\beta^{\max} \in \text{Pord}\langle A, f \rangle$.

Proposition Let $\beta \in \mathcal{T}_f$ be a partial order. Then

 $Q(\beta) = [\beta, \beta^{\max}]_{\text{Quord}\langle A, f \rangle}$

is an interval.

inear orders

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

Special case: partial orders

Lemma

Let $\beta \in T_f$ be a partial order. Then

 $\beta^{\mathsf{max}} := \Delta \cup \{(a, b) \mid \exists n \in \mathbb{N} : (f^n(a), f^n(b)) \in \beta \setminus \Delta\}$

is a compatible partial order, i.e. $\beta^{\max} \in \text{Pord}\langle A, f \rangle$.

Proposition Let $\beta \in \mathcal{T}_f$ be a partial order. Then

$$Q(\beta) = [\beta, \beta^{\max}]_{\text{Quord}\langle A, f \rangle}$$

is an interval.

Linear extensions of compatible partial orders

The analogon to the Theorem of Dushnik & Miller for compatible orders:

Theorem Let $q \in \text{Pord}\langle A, f \rangle$ be a compatible partial order of type $\beta = q \cap \text{ker } f$. Then

$$\beta^{\mathsf{max}} = \bigcap \{ R \in \mathsf{Lord} \langle A, f \rangle \mid q \subseteq R \}$$

is the intersection of all its compatible linear extensions (in particular there always exists a compatible linear extension).

Linear extensions of compatible partial orders

The analogon to the Theorem of Dushnik & Miller for compatible orders:

Theorem

Let $q \in \text{Pord}\langle A, f \rangle$ be a compatible partial order of type $\beta = q \cap \ker f$. Then

$$\beta^{\mathsf{max}} = \bigcap \{ R \in \mathsf{Lord}\langle A, f \rangle \mid q \subseteq R \}$$

is the intersection of all its compatible linear extensions (in particular there always exists a compatible linear extension).

Linear orders

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

Proof

 $\beta^{\max} = \bigcap \{ R \in Lord\langle A, f \rangle \mid q \subseteq R \}$ " \subseteq ": Let $(a, b) \in \beta^{\max}$ and R compatible linear extension of q(thus also of $\beta \subseteq q$). By definition of β^{\max} there exists $n \in \mathbb{N}$, such that $(f^n(a), f^n(b)) \in \beta \setminus \Delta \subseteq R \setminus \Delta$. By Lemma below this implies $(a, b) \in R$; thus $\beta^{\max} \subseteq R$.

Linear orders

The structure of the lattice Quord $\langle A, f \rangle$ 000000000

(日)、

Proof

 $\beta^{\max} = \bigcap \{ R \in Lord\langle A, f \rangle \mid q \subseteq R \}$ " \subseteq ": Let $(a, b) \in \beta^{\max}$ and R compatible linear extension of q(thus also of $\beta \subseteq q$). By definition of β^{\max} there exists $n \in \mathbb{N}$, such that $(f^n(a), f^n(b)) \in \beta \setminus \Delta \subseteq R \setminus \Delta$. By Lemma below this implies $(a, b) \in R$; thus $\beta^{\max} \subseteq R$.

Lemma For $R \in \text{Lord}\langle A, f \rangle$ we have: $(f^i(a), f^i(b)) \in R \setminus \Delta \iff (a, b) \in R \setminus \Delta \text{ and } f^i(a) \neq f^i(b).$

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

Proof

$$\beta^{\max} = \bigcap \{ R \in \mathsf{Lord} \langle A, f \rangle \mid q \subseteq R \}$$

" \supseteq ": On each block $B \in A/\ker f$ the restriction $\beta_B := \beta \cap B^2 = q \cap B^2$ is the intersection of all linear extensions (on *B*) (Dushnik & Miller). Linear extensions on each block uniquely define a compatible linear extension of β , thus $\bigcap \{R \in \operatorname{Lord}\langle A, f \rangle \mid q \subseteq R\}$ has type β , i.e. belongs to $Q(\beta) = [\beta, \beta^{\max}].$

Linear orders

The structure of the lattice Quord $\langle A, f \rangle$ 000000000

A D F A B F A B F A B F

Proof

 $\beta^{\max} = \bigcap \{ R \in \text{Lord} \langle A, f \rangle \mid q \subseteq R \}$ " \subset ": Let $(a, b) \in \beta^{\max}$ and R compatible linear extension of q (thus also of $\beta \subseteq q$). By definition of β^{\max} there exists $n \in \mathbb{N}$, such that $(f^n(a), f^n(b)) \in \beta \setminus \Delta \subseteq R \setminus \Delta$. By Lemma below this implies $(a, b) \in R$; thus $\beta^{\max} \subset R$. " \supseteq ": On each block $B \in A / \ker f$ the restriction $\beta_B := \beta \cap B^2 = q \cap B^2$ is the intersection of all linear extensions (on B) (Dushnik & Miller). Linear extensions on each block uniquely define a compatible linear extension of β , thus $\bigcap \{R \in \text{Lord}\langle A, f \rangle \mid q \subseteq R\}$ has type β , i.e. belongs to $Q(\beta) = [\beta, \beta^{\max}].$

Lemma

For
$$R \in \text{Lord}\langle A, f \rangle$$
 we have:
 $(f^i(a), f^i(b)) \in R \setminus \Delta \iff (a, b) \in R \setminus \Delta$ and $f^i(a) \neq f^i(b)$.

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

Generalization: linear \rightarrow quasilinear

In general, $\beta^{\max} := \Delta \cup \{(a, b) \mid \exists n \in \mathbb{N} : (f^n(a), f^n(b)) \in \beta \setminus \Delta\}$ does not belong to $Q(\beta)$ because it is not transitive, i.e. not a quasiorder.

> How to describe the maximal elements q_i of the semiintervals $Q(\beta)$? Answer: They are the intersection of all compatible *quasilinear* extensions.

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

Generalization: linear \rightarrow quasilinear

In general, $\beta^{\max} := \Delta \cup \{(a, b) \mid \exists n \in \mathbb{N} : (f^n(a), f^n(b)) \in \beta \setminus \Delta\}$ does not belong to $Q(\beta)$ because it is not transitive, i.e. not a quasiorder.

How to describe the maximal elements q_i of the semiintervals $Q(\beta)$?

Answer:

They are the intersection of all compatible *quasilinear* extensions.

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

Generalization: linear \rightarrow quasilinear

In general, $\beta^{\max} := \Delta \cup \{(a, b) \mid \exists n \in \mathbb{N} : (f^n(a), f^n(b)) \in \beta \setminus \Delta\}$ does not belong to $Q(\beta)$ because it is not transitive, i.e. not a quasiorder.

How to describe the maximal elements q_i of the semiintervals $Q(\beta)$?

Answer:

They are the intersection of all compatible *quasilinear* extensions.

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

Generalization: linear \rightarrow quasilinear

In general, $\beta^{\max} := \Delta \cup \{(a, b) \mid \exists n \in \mathbb{N} : (f^n(a), f^n(b)) \in \beta \setminus \Delta\}$ does not belong to $Q(\beta)$ because it is not transitive, i.e. not a quasiorder.

How to describe the maximal elements q_i of the semiintervals $Q(\beta)$?

Answer:

They are the intersection of all compatible *quasilinear* extensions.

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

Generalization: linear \rightarrow quasilinear

In general, $\beta^{\max} := \Delta \cup \{(a, b) \mid \exists n \in \mathbb{N} : (f^n(a), f^n(b)) \in \beta \setminus \Delta\}$ does not belong to $Q(\beta)$ because it is not transitive, i.e. not a quasiorder.

How to describe the maximal elements q_i of the semiintervals $Q(\beta)$?

Answer:

They are the intersection of all compatible *quasilinear* extensions.

quasilinear quasiorders

Definition

A quasiorder q is called quasilinear if q/q_0 given by

 $([a]_{q_0}, [b]_{q_0}) \in q/q_0 : \iff \exists u \in [a]_{q_0} \exists v \in [b]_{q_0} : (u, v) \in q$

is a linear order on the factor set A/q_0 (where $q_0 = q \cap q^{-1}$, note $q_0 \in \operatorname{Con}\langle A, f \rangle$).

Remark: $q \in \text{QLord}(A, f)$ is uniquely determined by q_0 and q/q_0 , i.e. by a congruence $\theta \in \text{Con}(A, f)$ and a linear order $\hat{\lambda} \in \text{Quord}(A/\theta, \hat{f})$ (which in turn is given by linear orders on the blocks of ker \hat{f})

Theorem

Let β be some type and let q be a maximal element in the semi-interval $Q(\beta)$. Then q is the intersection of all its quasilinear extensions:

 $q = \bigcap \{\lambda \in \mathsf{Quord}(A, f) \mid q \subseteq \lambda \text{ quasilinear} \}.$

quasilinear quasiorders

Definition

A quasiorder q is called quasilinear if q/q_0 given by

$$([a]_{q_0}, [b]_{q_0}) \in q/q_0 : \iff \exists u \in [a]_{q_0} \exists v \in [b]_{q_0} : (u, v) \in q$$

is a linear order on the factor set A/q_0 (where $q_0 = q \cap q^{-1}$, note $q_0 \in \text{Con}\langle A, f \rangle$). *Remark:* $q \in \text{QLord}(A, f)$ is uniquely determined by q_0 and q/q_0 , i.e. by a congruence $\theta \in \text{Con}(A, f)$ and a linear order $\hat{\lambda} \in \text{Quord}(A/\theta, \hat{f})$ (which in turn is given by linear orders on the blocks of ker \hat{f})

Theorem

Let β be some type and let q be a maximal element in the semi-interval $Q(\beta)$. Then q is the intersection of all its quasilinear extensions:

 $q = \bigcap \{\lambda \in \mathsf{Quord}(A, f) \mid q \subseteq \lambda \text{ quasilinear} \}.$

quasilinear quasiorders

Definition

A quasiorder q is called quasilinear if q/q_0 given by

$$([a]_{q_0}, [b]_{q_0}) \in q/q_0 : \iff \exists u \in [a]_{q_0} \exists v \in [b]_{q_0} : (u, v) \in q$$

is a linear order on the factor set
$$A/q_0$$

(where $q_0 = q \cap q^{-1}$, note $q_0 \in \text{Con}\langle A, f \rangle$).
Remark: $q \in \text{QLord}(A, f)$ is uniquely determined by q_0 and q/q_0 , i.e. by
a congruence $\theta \in \text{Con}(A, f)$ and a linear order $\hat{\lambda} \in \text{Quord}(A/\theta, \hat{f})$
(which in turn is given by linear orders on the blocks of ker \hat{f})

Theorem

Let β be some type and let q be a maximal element in the semi-interval $Q(\beta)$. Then q is the intersection of all its quasilinear extensions:

$$q = \bigcap \{\lambda \in \mathsf{Quord}(A, f) \mid q \subseteq \lambda \text{ quasilinear}\}.$$

inear orders

The structure of the lattice $Quord\langle A, f \rangle$ 000000000

\lor - or \land -irreducible quasiorders

join in Quord(A, f): $q_1 \lor q_2 = (q_1 \cup q_2)^{tra}$

V-irreducible quasiorders: 1-generated

 $\alpha(a,b) := (\Delta \cup \{(f^n(a), f^n(b)) \mid n \in \mathbb{N}\})^{tra}$

meet in Quord(A, f): $q_1 \land q_2 = q_1 \cap q_2$

Problem

Characterize the ∧-irreducible quasiorders

Characterize the ∧-irreducible quasilinear quasiorders

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

\lor - or \land -irreducible quasiorders

join in Quord(A, f): $q_1 \lor q_2 = (q_1 \cup q_2)^{tra}$ \lor -irreducible quasiorders: 1-generated

 $lpha(a,b) := (\Delta \cup \{(f^n(a), f^n(b)) \mid n \in \mathbb{N}\})^{\mathsf{tra}}$

meet in Quord(A, f): $q_1 \wedge q_2 = q_1 \cap q_2$

Problem

Characterize the ∧-irreducible quasiorders

Characterize the ∧-irreducible quasilinear quasiorders

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

\lor - or \land -irreducible quasiorders

join in Quord(A, f): $q_1 \lor q_2 = (q_1 \cup q_2)^{tra}$ \lor -irreducible quasiorders: 1-generated

 $lpha(a,b) := (\Delta \cup \{(f^n(a), f^n(b)) \mid n \in \mathbb{N}\})^{tra}$

meet in Quord(A, f): $q_1 \land q_2 = q_1 \cap q_2$

Problem

Characterize the ∧-irreducible quasiorders

Characterize the \land -irreducible quasilinear quasiorders

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

\lor - or \land -irreducible quasiorders

join in Quord(A, f): $q_1 \lor q_2 = (q_1 \cup q_2)^{tra}$ \lor -irreducible quasiorders: 1-generated

$$lpha(\mathsf{a},\mathsf{b}):=(\Delta\cup\{(f^n(\mathsf{a}),f^n(\mathsf{b}))\mid\mathsf{n}\in\mathbb{N}\})^{\mathsf{tra}}$$

meet in Quord(A, f): $q_1 \land q_2 = q_1 \cap q_2$

Problem

Characterize the $\wedge\mathchar`-irreducible quasiorders$

Characterize the ^-irreducible quasilinear quasiorders

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

\lor - or \land -irreducible quasiorders

join in Quord(A, f): $q_1 \lor q_2 = (q_1 \cup q_2)^{tra}$ \lor -irreducible quasiorders: 1-generated

$$lpha(\mathsf{a},\mathsf{b}) := (\Delta \cup \{(f^n(\mathsf{a}),f^n(\mathsf{b})) \mid \mathsf{n} \in \mathbb{N}\})^{\mathsf{tra}}$$

meet in Quord(A, f): $q_1 \land q_2 = q_1 \cap q_2$

Problem

Characterize the \land -irreducible quasiorders Characterize the \land -irreducible quasilinear quasiorders

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

\lor - or \land -irreducible quasiorders

join in Quord(A, f): $q_1 \lor q_2 = (q_1 \cup q_2)^{tra}$ \lor -irreducible quasiorders: 1-generated

$$lpha(\mathsf{a},\mathsf{b}) := (\Delta \cup \{(f^n(\mathsf{a}),f^n(\mathsf{b})) \mid \mathsf{n} \in \mathbb{N}\})^{\mathsf{tra}}$$

meet in Quord(A, f): $q_1 \land q_2 = q_1 \cap q_2$

Problem

Characterize the ∧-irreducible quasiorders Characterize the ∧-irreducible quasilinear quasiorders (partial) answer: next talk by Danica Jakubíková-Studenovská

inear orders

The structure of the lattice $Quord\langle A, f \rangle$ 00000000

Thank you for your attention

