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compatible quasiorders

〈A,F 〉 universal algebra
compatible (invariant) relation q ⊆ A× A:
For each f ∈ F (n-ary) we have f . q (f preserves q), i.e.

(a1, b1), . . . , (an, bn) ∈ q =⇒ (f (a1, . . . , an), f (b1, . . . , bn)) ∈ q .

Lord〈A,F 〉 compatible linear orders
Pord〈A,F 〉 compatible partial orders (refl., trans., antisymmetric)

Generalization of Pord〈A,F 〉 and Con〈A,F 〉:
Quord〈A,F 〉 compatible quasiorders (reflexive, transitive)

Remark
(Quord〈A,F 〉,⊆) is a lattice and it is a complete sublattice of the
lattice (Quord(A),⊆) of all quasiorders on A.

Problem
Describe the quasiorder lattice Quord〈A,F 〉.
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Reduction to (mono)unary algebras

H := unary polynomial operations of 〈A,F 〉 (i.e. H = 〈F ∪ C 〉(1)).
Then

Quord〈A,F 〉 = Quord〈A,H〉

Quord〈A,H〉 =
⋂
f ∈H

Quord〈A, f 〉.

Note 〈A, f 〉 is a monounary algebra (f : A→ A).
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linear extensions of partial orders

Recall:
Every partial order has a linear extension

Theorem (Dushnik & Miller)

Every partial order is the intersection of its linear extensions.

Problem
Is this true also for compatible partial orders and compatible linear
orders? (or to what extent is this true)
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compatible linear orders of 〈A, f 〉

〈A, f 〉 monounary algebra
When exists a compatible linear order?

Theorem (Szigeti)

Lord〈A, f 〉 6= ∅ ⇐⇒ 〈A, f 〉 acyclic.

Definition
〈A, f 〉 is acyclic :⇐⇒ ∀a ∈ A∀n ∈ N+ : f n(a) = a =⇒ f (a) = a

(no cycles in the graph of f , except loops)
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Characterization of compatible linear orders

There exists a full description for the compatible linear orders of an
acyclic monounary algebra 〈A, f 〉:
For simplicity, let the graph f • := {(x , f (x)) | x ∈ A} be connected
and let f has a (single) fixed point 1, formally:
∀x , y ∈ A∃m ∈ N : f m(x) = f m(y). Then:

Theorem
Every R ∈ Lord〈A, f 〉 is uniquely characterized by a family
(RB)B∈A/ ker f of linear orders on each equivalence class
B ∈ A/ ker f :

R = ∆ ∪ {(a, b) | ∃n ∈ N ∃B ∈ A/ ker f : (f n(a), f n(b)) ∈ RB \∆}.

∆ := {(a, a) | a ∈ A (equality relation)
f n+1(x) := f (f n(x)), n ∈ N, f 0 is the identity mapping, f 0(x) = x .
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induced by b2 < b′2 and b1 < a1 < a0 on blocks
linear order

7
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Types
General assumption from now on:
〈A, f 〉 (finite) acyclic, connected and with exactly one fixed point 1.

Definition
Set of types:

Tf := {β ∈ Quord〈A, f 〉 | β ⊆ ker f } = {β ∈ Quord(A) | β ⊆ ker f }

For β ∈ Tf we have β =
⋃
{βB | B ∈ A/ ker f }

where βB := β ∩ B2 for each block B of ker f .

Therefore Tf ∼=
∏

B∈A/ ker f

Quord(B).

Definition
Typ of a quasiorder q: qmin := q ∩ ker f .

(Clearly, qmin ∈ Tf , note that ker f ∈ Con〈A, f 〉 ⊆ Quord〈A, f 〉).
β := qmin is the least quasiorder of type β.
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The lattice Quord〈A, f 〉
For type β ∈ Tf let Q(β) := {q ∈ Quord〈A, f 〉 | qmin = β}.
Theorem

(1) Quord〈A, f 〉 =
⋃
{Q(β) | β ∈ Tf }. Each set Q(β) is a

semi-interval of the form

Q(β) =
⋃
i∈I

[β, qi ]

qi

β = qmin
i ∈ Tf

(union of intervals in Quord〈A, f 〉 all with least element β).

(2) Tf is a sublattice of Quord〈A, f 〉 and Tf ∼=
∏

B∈A/ ker f

Quord(B).

(3) min : Quord〈A, f 〉 → Tf : q 7→ qmin is a ∧-semilattice
homomorphism (in particular an order-homomorphism)
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Special case: partial orders

Lemma
Let β ∈ Tf be a partial order. Then

βmax := ∆ ∪ {(a, b) | ∃n ∈ N : (f n(a), f n(b)) ∈ β \∆}

is a compatible partial order, i.e. βmax ∈ Pord〈A, f 〉.

Proposition

Let β ∈ Tf be a partial order. Then

Q(β) = [β, βmax]Quord〈A,f 〉

is an interval.
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Linear extensions of compatible partial orders

The analogon to the Theorem of Dushnik & Miller for compatible
orders:

Theorem
Let q ∈ Pord〈A, f 〉 be a compatible partial order of type
β = q ∩ ker f . Then

βmax =
⋂
{R ∈ Lord〈A, f 〉 | q ⊆ R}

is the intersection of all its compatible linear extensions (in
particular there always exists a compatible linear extension).



Notions and notations Linear orders The structure of the lattice Quord〈A, f 〉

Linear extensions of compatible partial orders

The analogon to the Theorem of Dushnik & Miller for compatible
orders:

Theorem
Let q ∈ Pord〈A, f 〉 be a compatible partial order of type
β = q ∩ ker f . Then

βmax =
⋂
{R ∈ Lord〈A, f 〉 | q ⊆ R}

is the intersection of all its compatible linear extensions (in
particular there always exists a compatible linear extension).



Notions and notations Linear orders The structure of the lattice Quord〈A, f 〉

Proof

βmax =
T
{R ∈ Lord〈A, f 〉 | q ⊆ R}

“⊆”: Let (a, b) ∈ βmax and R compatible linear extension of q
(thus also of β ⊆ q). By definition of βmax there exists n ∈ N,
such that (f n(a), f n(b)) ∈ β \∆ ⊆ R \∆. By Lemma below this
implies (a, b) ∈ R; thus βmax ⊆ R.

“⊇”: On each block B ∈ A/ ker f the restriction
βB := β ∩ B2 = q ∩ B2 is the intersection of all linear extensions
(on B) (Dushnik & Miller). Linear extensions on each block
uniquely define a compatible linear extension of β, thus⋂
{R ∈ Lord〈A, f 〉 | q ⊆ R} has type β, i.e. belongs to

Q(β) = [β, βmax].

Lemma
For R ∈ Lord〈A, f 〉 we have:

(f i (a), f i (b)) ∈ R \∆ ⇐⇒ (a, b) ∈ R \∆ and f i (a) 6= f i (b).
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Generalization: linear → quasilinear

In general, βmax := ∆ ∪ {(a, b) | ∃n ∈ N : (f n(a), f n(b)) ∈ β \∆}
does not belong to Q(β) because it is not transitive, i.e. not a
quasiorder.

βmax

qi

β = qi ∩ ker f ∈ Tf

How to describe the maxi-
mal elements qi of the semi-
intervals Q(β)?
Answer:
They are the intersection of all
compatible quasilinear exten-
sions.
Moreover, βmax =

⋃
i∈I qi .
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quasilinear quasiorders

Definition
A quasiorder q is called quasilinear if q/q0 given by

([a]q0 , [b]q0) ∈ q/q0 :⇐⇒ ∃u ∈ [a]q0 ∃v ∈ [b]q0 : (u, v) ∈ q

is a linear order on the factor set A/q0

(where q0 = q ∩ q−1, note q0 ∈ Con〈A, f 〉).

Remark: q ∈ QLord(A, f ) is uniquely determined by q0 and q/q0, i.e. by
a congruence θ ∈ Con(A, f ) and a linear order λ̂ ∈ Quord(A/θ, f̂ )
(which in turn is given by linear orders on the blocks of ker f̂ )

Theorem
Let β be some type and let q be a maximal element in the
semi-interval Q(β). Then q is the intersection of all its quasilinear
extensions:

q =
⋂
{λ ∈ Quord(A, f ) | q ⊆ λ quasilinear}.
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∨- or ∧-irreducible quasiorders

join in Quord(A, f ): q1 ∨ q2 = (q1 ∪ q2)tra

∨-irreducible quasiorders: 1-generated

α(a, b) := (∆ ∪ {(f n(a), f n(b)) | n ∈ N})tra

meet in Quord(A, f ): q1 ∧ q2 = q1 ∩ q2

Problem
Characterize the ∧-irreducible quasiorders
Characterize the ∧-irreducible quasilinear quasiorders

(partial) answer: next talk by Danica Jakub́ıková-Studenovská
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Thank you for your attention
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