Complementary quasiorder lattices of monounary algebras

D. Jakubíková-Studenovská and M. Petrejčíková danica.studenovska@upjs.sk, maria.petrejcikova@upjs.sk

Stará Lesná, Slovakia 5.9. – 11.9.2008

$$\mathcal{A} = (A, f)$$

a monounary algebra

 $\mathcal{A} = (A, f)$

a monounary algebra

 $\begin{array}{c} \alpha \\ \textbf{quasiorder} \text{ of } \mathcal{A} \end{array}$

a binary relation on \mathcal{A} , which is reflexive, transitive and compatible with f

 $\mathcal{A} = (A, f)$

a monounary algebra

 $\begin{array}{c} \alpha \\ \textbf{quasiorder} \text{ of } \mathcal{A} \end{array}$

a binary relation on \mathcal{A} , which is reflexive, transitive and compatible with f

$\label{eq:Quord} \begin{array}{l} \mathcal{A} \\ \text{all quasiorders of } (A,f) \end{array}$

 $\mathcal{A} = (A, f)$

a monounary algebra

$\begin{array}{c} \alpha \\ \textbf{quasiorder} \text{ of } \mathcal{A} \end{array}$

a binary relation on \mathcal{A} , which is reflexive, transitive and compatible with f

$\label{eq:Quord} \mbox{Quord}\, \mathcal{A}$ all quasiorders of (A,f)

 $(\text{Quord } \mathcal{A}, \subseteq)$ lattice of all quasiorders of (A, f)

 $\mathcal{A} = (A, f)$

a monounary algebra

$\begin{array}{c} \alpha \\ \textbf{quasiorder} \text{ of } \mathcal{A} \end{array}$

a binary relation on \mathcal{A} , which is reflexive, transitive and compatible with f

$\label{eq:Quord} \mbox{Quord}\, \mathcal{A}$ all quasiorders of (A,f)

$(\text{Quord } \mathcal{A}, \subseteq)$ **lattice** of all quasiorders of (A, f)

 $\Delta = \{(a, a) : a \in A\} \dots \text{ the smallest quasiorder}$ $A^2 \dots \text{ the greatest quasiorder}$

$$\mathcal{A} = (A, f)$$

a monounary algebra

 $\mathcal{A} = (A, f)$

a monounary algebra

•
$$c \in A$$
 is cyclic if $f^k(c) = c$ for some $k \in N$,

 $\mathcal{A} = (A, f)$

a monounary algebra

- $c \in A$ is cyclic if $f^k(c) = c$ for some $k \in N$,
- the set of all cyclic elements of some connected component of (A, f) is a **cycle** of (A, f).

AIM

 \Leftrightarrow

some conditions for

$$\mathcal{A} = (A, f)$$

 $(\text{Quord }\mathcal{A},\subseteq)$ complementary lattice

conditions for $\mathcal{A}=(A,f)$

$({\rm Quord}\ {\cal A},\subseteq)$ complementary lattice

$(\text{Quord }\mathcal{A},\subseteq)$ complementary lattice

conditions for $\mathcal{A} = (A, f)$

 each connected component of A contains a cycle,
 there is n ∈ N such that each cycle of A has n elements,
 n is square-free,
 for each a ∈ A,
 the element f(a) is cyclic. (picture)

$(\text{Quord }\mathcal{A},\subseteq)$ complementary lattice

conditions for $\mathcal{A} = (A, f)$

 each connected component of A contains a cycle,
 there is n ∈ N such that each cycle of A has n elements,
 n is square-free,
 for each a ∈ A,
 the element f(a) is cyclic. (picture)

sufficient

$(\text{Quord }\mathcal{A},\subseteq)$ complementary lattice

conditions for $\mathcal{A} = (A, f)$

 each connected component of A contains a cycle,
 there is n ∈ N such that each cycle of A has n elements,
 n is square-free,
 for each a ∈ A,
 the element f(a) is cyclic.

(picture)

sufficient

|A/r| = 1;

r is an equivalence on A

$({\rm Quord}\ {\cal A},\subseteq)$ complementary lattice

conditions for $\mathcal{A} = (A, f)$

 each connected component of A contains a cycle,
 there is n ∈ N such that each cycle of A has n elements,
 n is square-free,
 for each a ∈ A,
 the element f(a) is cyclic. (picture)

 $_{sufficient}$

$(\text{Quord }\mathcal{A},\subseteq)$ complementary lattice

conditions for $\mathcal{A} = (A, f)$

 each connected component of A contains a cycle,
 there is n ∈ N such that each cycle of A has n elements,
 n is square-free,
 for each a ∈ A,
 the element f(a) is cyclic.

(picture)

sufficient

|A/r| = 1;

r is an equivalence on A

HYPOTHESIS

necessary

 $(\text{Quord }\mathcal{A},\subseteq)$

complementary lattice

 $_{sufficient}$

 $\begin{array}{l} \text{conditions for} \\ \mathcal{A} = (A,f) \end{array}$

 each connected component of A contains a cycle,
 there is n ∈ N such that each cycle of A has n elements,

n is square-free,
 for each a ∈ A,
 the element f(a) is cyclic.

Assume:

 $(A,f)\,\ldots\,$ a monounary algebra ${\rm Quord}\,(A,f)\,\ldots\,$ complementary lattice

Q

Assume:

 $(A, f) \ldots$ a monounary algebra $\operatorname{Quord}(A, f) \ldots$ complementary lattice

(

Lemma

Let (B, f) be a subalgebra of the algebra (A, f). Then the lattice Quord(B, f) is complementary.

Assume:

 $(A, f) \ldots$ a monounary algebra $\operatorname{Quord}(A, f) \ldots$ complementary lattice

(

Lemma

Let (B, f) be a subalgebra of the algebra (A, f). Then the lattice Quord(B, f) is complementary.

Lemma

If $x \in A$, then there is $m \in \mathbb{N}$ such that $f^{m+1}(x) = f(x)$.

Assume:

 $(A, f) \ldots$ a monounary algebra $\operatorname{Quord}(A, f) \ldots$ complementary lattice

(5)

Lemma

Let (B, f) be a subalgebra of the algebra (A, f). Then the lattice Quord(B, f) is complementary.

Lemma

If $x \in A$, then there is $m \in \mathbb{N}$ such that $f^{m+1}(x) = f(x)$.

Lemma

All cycles of (A, f) have the same number of elements.

Assume:

 $(A, f) \dots$ a monounary algebra $Quord(A, f) \dots$ complementary lattice

(5)

Lemma

Let (B, f) be a subalgebra of the algebra (A, f). Then the lattice Quord(B, f) is complementary.

Lemma

If $x \in A$, then there is $m \in \mathbb{N}$ such that $f^{m+1}(x) = f(x)$.

Lemma

All cycles of (A, f) have the same number of elements.

Lemma

If C is a cycle of (A, f) with n elements, then n = 1 or n is a product of mutually distinct primes (square-free).

Assume: $(A, f) \ldots$ a monounary algebra such that;

- each connected component of $\mathcal{A} = (A, f)$ contains a cycle,
- there is $n \in N$ such that each cycle of \mathcal{A} has n elements,
- n is square-free,
- for each $a \in A$, the element f(a) is cyclic.

• For $\alpha \in \text{Quord}(A, f)$, define α^{-1} :

$$(b,a) \in \alpha^{-1} \iff (a,b) \in \alpha.$$

• For $\alpha \in \text{Quord}(A, f)$, define α^{-1} : $(b, a) \in \alpha^{-1} \iff (a, b) \in \alpha$.

• For $a \in A$ denote by C(a) the cycle, containing f(a).

• For $\alpha \in \text{Quord}(A, f)$, define α^{-1} :

$$(b,a) \in \alpha^{-1} \iff (a,b) \in \alpha.$$

• For $a \in A$ denote by C(a) the cycle, containing f(a).

• Relation R: If B, D are cycles of (A, f), then B R D, if there are $k \in N$, cycles $B = C_0, C_1, \ldots, C_k = D$, elements $c_0 \in C_0, c_1 \in C_1, \ldots, c_k \in C_k$ such that for each $i \in \{0, 1, \ldots, k-1\}$, $(c_i, c_{i+1}) \in \alpha \cup \alpha^{-1}$.

• For $\alpha \in \text{Quord}(A, f)$, define α^{-1} :

$$(b,a) \in \alpha^{-1} \iff (a,b) \in \alpha.$$

• For $a \in A$ denote by C(a) the cycle, containing f(a).

- Relation R: If B, D are cycles of (A, f), then B R D, if there are $k \in N$, cycles $B = C_0, C_1, \ldots, C_k = D$, elements $c_0 \in C_0, c_1 \in C_1, \ldots, c_k \in C_k$ such that for each $i \in \{0, 1, \ldots, k-1\}, (c_i, c_{i+1}) \in \alpha \cup \alpha^{-1}$.
- For $a, b \in A$, set

$$a \ r \ b \iff C(a) \ R \ C(b).$$

• For $\alpha \in \text{Quord}(A, f)$, define α^{-1} :

$$(b,a) \in \alpha^{-1} \iff (a,b) \in \alpha.$$

• For $a \in A$ denote by C(a) the cycle, containing f(a).

Relation R: If B, D are cycles of (A, f), then B R D, if there are k ∈ N, cycles B = C₀, C₁,..., C_k = D, elements c₀ ∈ C₀, c₁ ∈ C₁,..., c_k ∈ C_k such that for each i ∈ {0, 1, ..., k − 1}, (c_i, c_{i+1}) ∈ α ∪ α⁻¹.
For a, b ∈ A, set

$$a \ r \ b \iff C(a) \ R \ C(b).$$

The relation r is an equivalence on A.

Lemma:

If $a, b \in A$ belong to the same connected component, then $a \ r \ b$.

(example)

Sufficient condition

$$A/r = \{A_j : j \in J\}$$

Theorem

Let $\alpha \in \text{Quord}(A, f)$, $j \in J$. Then there exists a complement β_j of $\alpha_j = \alpha \upharpoonright A_j$ in the lattice $\text{Quord}(A_j, f)$.

Sufficient condition

$$A/r = \{A_j : j \in J\}$$

Theorem

Let $\alpha \in \text{Quord}(A, f)$, $j \in J$. Then there exists a complement β_j of $\alpha_j = \alpha \upharpoonright A_j$ in the lattice $\text{Quord}(A_j, f)$.

Theorem

If $\alpha \in$ Quord (A, f) and |A/r| = 1, then the conditions

- each connected component of (A, f) contains a cycle,
- there is $n \in N$ such that each cycle of (A, f) has n elements,
- n is square-free,
- for each $a \in A$, the element f(a) is cyclic

are necessary and sufficient for the existence of a complement of α in the lattice Quord(A, f).

$$A/r = \{A_j : j \in J\}, |J| = 1$$

Let $\alpha \in \text{Quord}(A, f)$.

• A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.

$$A/r = \{A_j : j \in J\}, |J| = 1$$

Let $\alpha \in \text{Quord}(A, f)$.

- A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.
- ρ on A': $(a,b) \in \rho$ if $a, b \in A'$, f(a) = f(b) and there are $k \in N$ and $a = u_0, u_1, \ldots, u_k = b$ elements of A' such that $(\forall i \in \{0, \ldots, k-1\})(f(a) = f(u_i), (u_i, u_{i+1}) \in \alpha \cup \alpha^{-1}).$

$$A/r = \{A_j : j \in J\}, |J| = 1$$

Let $\alpha \in \text{Quord}(A, f)$.

- A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.
- ρ on A': $(a,b) \in \rho$ if $a, b \in A'$, f(a) = f(b) and there are $k \in N$ and $a = u_0, u_1, \ldots, u_k = b$ elements of A' such that $(\forall i \in \{0, \ldots, k-1\})(f(a) = f(u_i), (u_i, u_{i+1}) \in \alpha \cup \alpha^{-1}).$

$$A/r = \{A_j : j \in J\}, |J| = 1$$

Let $\alpha \in \text{Quord}(A, f)$.

- A': all noncyclic elements x of A such that $(x, f^n(x)) \notin \alpha$ and $(f^n(x), x) \notin \alpha$.
- ρ on A': $(a,b) \in \rho$ if $a, b \in A'$, f(a) = f(b) and there are $k \in N$ and $a = u_0, u_1, \dots, u_k = b$ elements of A' such that $(\forall i \in \{0, \dots, k-1\})(f(a) = f(u_i), (u_i, u_{i+1}) \in \alpha \cup \alpha^{-1}).$

The relation ρ is an equivalence on A'.

Lemma:

For each $D \in A'/\rho$ there are $P(D) \subseteq D$ and $p(D) \in P(D)$ such that

$$(\forall x \in D \setminus P(D))(\exists y \in P(D))((x,y) \in \alpha, (y,x) \in \alpha);$$

 $\label{eq:states} \ensuremath{ { \ensuremath{ \otimes } } } (\forall x,y\in P(D))((x,y)\in \alpha \Rightarrow (y,x)\notin \alpha).$

Sufficient condition - construction

 $\beta = \beta_j, \ \beta_j \in \text{Quord}(A_j, f)$

• Step (a). Let x, y belong to the same cycle $C, y = f^k(x)$, $\alpha \upharpoonright C = \theta_d, d/n$ and let $e = \frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e/k.

(example)

 $\beta = \beta_j, \ \beta_j \in \text{Quord}(A_j, f)$

- Step (a). Let x, y belong to the same cycle C, $y = f^k(x)$, $\alpha \upharpoonright C = \theta_d$, d/n and let $e = \frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e/k.
- Step (b). Let x ∈ C₁, y ∈ C₂, where C₁ and C₂ are distinct cycles. We put (x, y) ∈ β if and only if there are a ∈ C₁ and b ∈ C₂ with (b, a) ∈ α, (a, b) ∉ α.

 $\beta = \beta_j, \ \beta_j \in \text{Quord}(A_j, f)$

- Step (a). Let x, y belong to the same cycle C, $y = f^k(x)$, $\alpha \upharpoonright C = \theta_d$, d/n and let $e = \frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e/k.
- Step (b). Let x ∈ C₁, y ∈ C₂, where C₁ and C₂ are distinct cycles. We put (x, y) ∈ β if and only if there are a ∈ C₁ and b ∈ C₂ with (b, a) ∈ α, (a, b) ∉ α.
- Step (c). Suppose that $x, y \in P(D)$ for some $D \in A'/\rho$. Then $(x, y) \in \beta$ if and only if and $(y, x) \in \alpha$.

 $\beta = \beta_j, \ \beta_j \in \text{Quord}(A_j, f)$

- Step (a). Let x, y belong to the same cycle C, $y = f^k(x)$, $\alpha \upharpoonright C = \theta_d$, d/n and let $e = \frac{n}{d}$. We set $(x, y) \in \beta$ if and only if e/k.
- Step (b). Let x ∈ C₁, y ∈ C₂, where C₁ and C₂ are distinct cycles. We put (x, y) ∈ β if and only if there are a ∈ C₁ and b ∈ C₂ with (b, a) ∈ α, (a, b) ∉ α.
- Step (c). Suppose that $x, y \in P(D)$ for some $D \in A'/\rho$. Then $(x, y) \in \beta$ if and only if and $(y, x) \in \alpha$.
- Step (d1). Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $y \notin A'$, then $(x, y) \in \beta$ if and only if $(f^n(y), y) \notin \alpha, (y, f^n(y)) \in \alpha, x = f^k(y), e/k$.

 $\beta = \beta_i, \beta_i \in \text{Quord}(A_i, f)$

- Step (d'1). Suppose that y belongs to a cycle C, x is noncyclic, C(x) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $x \notin A'$, then $(x, y) \in \beta$ if and only if $(f^n(x), x) \in \alpha, (x, f^n(x)) \notin \alpha, y = f^k(x), e/k.$
- Step (d2). Suppose that x belongs to a cycle C, y is noncyclic, C(y) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $y \in A'$, then $(x, y) \in \beta$ if and only if there is $D \in A'/\rho$ such that $y \in P(D), x = f^k(y), e/k$ and $(y, p(D)) \in \alpha$.
- Step (d'2). Suppose that y belongs to a cycle C, x is noncyclic, C(x) = C. Further let $\alpha \upharpoonright C = \theta_d$, d/n, $e = \frac{n}{d}$. If $x \in A'$, then $(x, y) \in \beta$ if and only if there is $D \in A'/\rho$ such that $x \in P(D), y = f^k(x), e/k$ and $(x, p(D)) \in \alpha$.
- Step (e). Suppose that x, y satisfy none of the assumptions of the previous steps. Then $(x, y) \in \beta$ if and only if $(x, f^n(x)) \in \beta, (f^n(x), f^n(y)) \in \beta, (f^n(y), y) \in \beta.$ (

- (A, f) is a monounary algebra;
 - $\bullet\,$ each connected component of (A,f) contains a cycle,
 - there is $n \in N$ such that each cycle of (A, f) has n elements,
 - \bullet n is square-free,
 - for each $a \in A$, the element f(a) is cyclic,

- (A, f) is a monounary algebra;
 - $\bullet\,$ each connected component of (A,f) contains a cycle,
 - there is $n \in N$ such that each cycle of (A, f) has n elements,
 - \bullet n is square-free,
 - for each $a \in A$, the element f(a) is cyclic,
- $\alpha \in \operatorname{Quord}(A, f)$,

- (A, f) is a monounary algebra;
 - $\bullet\,$ each connected component of (A,f) contains a cycle,
 - there is $n \in N$ such that each cycle of (A, f) has n elements,
 - \bullet n is square-free,
 - for each $a \in A$, the element f(a) is cyclic,
- $\alpha \in$ Quord (A, f),
- r_{α} an equivalence r on A (as above) depends on α ,

- (A, f) is a monounary algebra;
 - $\bullet\,$ each connected component of (A,f) contains a cycle,
 - there is $n \in N$ such that each cycle of (A, f) has n elements,
 - \bullet n is square-free,
 - for each $a \in A$, the element f(a) is cyclic,
- $\alpha \in$ Quord (A, f),
- r_{α} an equivalence r on A (as above) depends on α ,
- |J|>1; $A/r_{\alpha}=\{A_j:j\in J\}$ and for each $i\in J:$

- (A, f) is a monounary algebra;
 - $\bullet\,$ each connected component of (A,f) contains a cycle,
 - there is $n \in N$ such that each cycle of (A, f) has n elements,
 - n is square-free,
 - for each $a \in A$, the element f(a) is cyclic,
- $\alpha \in \operatorname{Quord}(A, f)$,
- r_{α} an equivalence r on A (as above) depends on α ,
- |J| > 1; $A/r_{\alpha} = \{A_j : j \in J\}$ and for each $i \in J$:
 - c_i a fixed cyclic element of chosen cycle C_i in A_i ;

- (A, f) is a monounary algebra;
 - $\bullet\,$ each connected component of (A,f) contains a cycle,
 - there is $n \in N$ such that each cycle of (A, f) has n elements,
 - n is square-free,
 - for each $a \in A$, the element f(a) is cyclic,
- $\alpha \in$ Quord (A, f),
- r_{α} an equivalence r on A (as above) depends on α ,
- $|J| > 1; A/r_{\alpha} = \{A_j : j \in J\}$ and for each $i \in J$:
 - c_i a fixed cyclic element of chosen cycle C_i in A_i ;
 - $\alpha \upharpoonright C_i$... a congruence of the cycle C_i ,

- (A, f) is a monounary algebra;
 - $\bullet\,$ each connected component of (A,f) contains a cycle,
 - $\bullet\,$ there is $n\in N$ such that each cycle of (A,f) has n elements,
 - n is square-free,
 - for each $a \in A$, the element f(a) is cyclic,
- $\alpha \in$ Quord (A, f),
- r_{α} an equivalence r on A (as above) depends on α ,
- |J| > 1; $A/r_{\alpha} = \{A_j : j \in J\}$ and for each $i \in J$:
 - c_i a fixed cyclic element of chosen cycle C_i in A_i ;
 - $\alpha \upharpoonright C_i$... a congruence of the cycle C_i ,
 - $d_i \in \mathbb{N}; \ \alpha \restriction C_i$ is the smallest congruence containing the pair $(c_i, f^{d_i}(c_i)),$

<u>Berman</u>: if $n \in \mathbb{N}$, then θ_d is a congruence of an *n*-element cycle $(C, f) \Leftrightarrow$ if there is $d \in \mathbb{N}$ such that d/n. For each $x \in C$, θ_d is the smallest congruence containing the pair $(x, f^d(x))$.

Sufficient condition - general case

Notice:

$$(x, f^j(x)) \in \alpha \upharpoonright C_i$$
, for each $x \in C_i, j \in \mathbb{N} \Leftrightarrow d_i/j$.

Notice:

$$(x, f^j(x)) \in \alpha \upharpoonright C_i$$
, for each $x \in C_i, j \in \mathbb{N} \Leftrightarrow d_i/j$.

- the set of all d_i is finite $\{d_1, d_2, \ldots, d_s\}$ and let $\{1, 2, \ldots, s\} \subseteq J$,
- d the greatest common divisor of d_1, d_2, \ldots, d_s ,

Notice:

$$(x, f^j(x)) \in \alpha \upharpoonright C_i$$
, for each $x \in C_i, j \in \mathbb{N} \Leftrightarrow d_i/j$.

• the set of all d_i is finite $\{d_1, d_2, \ldots, d_s\}$ and let $\{1, 2, \ldots, s\} \subseteq J$,

• d the greatest common divisor of d_1, d_2, \ldots, d_s , Notice:

 $(f^l(c_i),f^k(c_i))\in \theta(c_i,f^d(c_i)), \text{ for } d,l,k\in\mathbb{N}\,\Leftrightarrow\,d/l-k.$

Notice:

$$(x, f^j(x)) \in \alpha \upharpoonright C_i$$
, for each $x \in C_i, j \in \mathbb{N} \Leftrightarrow d_i/j$.

• the set of all d_i is finite $\{d_1, d_2, \ldots, d_s\}$ and let $\{1, 2, \ldots, s\} \subseteq J$,

• d the greatest common divisor of d_1, d_2, \ldots, d_s , Notice:

$$(f^l(c_i), f^k(c_i)) \in \theta(c_i, f^d(c_i)), \text{ for } d, l, k \in \mathbb{N} \Leftrightarrow d/l - k.$$

Lemma

There exist positive integers q_1, q_2, \ldots, q_s and q such that

$$1 + qn = q_1 \frac{d_1}{d} + q_2 \frac{d_2}{d} + \dots + q_s \frac{d_s}{d}$$

•
$$\gamma = \{(f^k(c_i), f^k(c_j)) : i, j \in J, k \in \mathbb{N}\}, \quad \gamma \in \text{Quord}(A, f),$$

•
$$\gamma = \{(f^k(c_i), f^k(c_j)) : i, j \in J, k \in \mathbb{N}\}, \quad \gamma \in \text{Quord}(A, f),$$

• $\alpha'_i = \theta(c_i, f^d(c_i)) \lor \alpha_i, i \in J$
 $\alpha' = \bigcup_{j \in J} \alpha'_i, \alpha' \in \text{Quord}(A, f) \text{ and } r_{\alpha'} = r_{\alpha},$
(example)

•
$$\gamma = \{(f^k(c_i), f^k(c_j)) : i, j \in J, k \in \mathbb{N}\}, \quad \gamma \in \text{Quord}(A, f),$$

• $\alpha'_i = \theta(c_i, f^d(c_i)) \lor \alpha_i, i \in J$
 $\alpha' = \bigcup_{j \in J} \alpha'_i, \alpha' \in \text{Quord}(A, f) \text{ and } r_{\alpha'} = r_{\alpha},$
(example)

By the previous results there exists

•
$$eta_i'$$
 ... a complement of $lpha_i'$ in $\mathrm{Quord}\,(A_i,f)$,

•
$$\gamma = \{(f^k(c_i), f^k(c_j)) : i, j \in J, k \in \mathbb{N}\}, \quad \gamma \in \text{Quord}(A, f),$$

• $\alpha'_i = \theta(c_i, f^d(c_i)) \lor \alpha_i, i \in J$
 $\alpha' = \bigcup_{j \in J} \alpha'_i, \alpha' \in \text{Quord}(A, f) \text{ and } r_{\alpha'} = r_{\alpha},$
(example)

By the previous results there exists

•
$$\beta'_i \dots$$
 a complement of α'_i in Quord (A_i, f) ,
• $\beta'_i \upharpoonright C_i = \theta(c_i, f^{\frac{n}{d}}(c_i))$, from construction.

(example)

Lemma

Let
$$i \in J$$
, $l, k \in \mathbb{N}$. Then $(f^l(c_i), f^k(c_i)) \in \alpha_i \lor \beta'_i$ if and only if $\frac{d_i}{d}/l - k$.

D. Jakubíková–Studenovská, M. Petrejčíková Complementary quasiorder lattices

$$\beta = \gamma \vee \bigvee_{j \in J} \beta'_j,$$

 $\beta \in {\rm Quord}\,(A,f).$

$$\beta = \gamma \lor \bigvee_{j \in J} \beta'_j,$$

 $\beta \in {\rm Quord}\,(A,f).$

(example)

?? β is a complement of α in Quord (A, f)??

Sufficient condition - general case

Meet

Lemma

If
$$(x, y) \in \alpha \land \beta$$
, then $x = y$.

Lemma

If $(x, y) \in \alpha \land \beta$, then x = y.

Proof:

Let $(x, y) \in \alpha \land \beta$, $x \neq y$; $\rightarrow (x, y) \in \alpha$, there is $i \in J$ such that $(x, y) \in \alpha'_i$ $(x, y \in A_i, (x, y) \in \alpha_i)$,

Lemma

If $(x, y) \in \alpha \land \beta$, then x = y.

Let
$$(x, y) \in \alpha \land \beta$$
, $x \neq y$;
 $\rightarrow (x, y) \in \alpha$, there is $i \in J$ such that $(x, y) \in \alpha'_i$
 $(x, y \in A_i, (x, y) \in \alpha_i)$,
 $\rightarrow (x, y) \in \beta$, $\beta = \gamma \lor \bigvee_{j \in J} \beta'_j$

Lemma

If $(x, y) \in \alpha \land \beta$, then x = y.

Let
$$(x, y) \in \alpha \land \beta$$
, $x \neq y$;
 $\rightarrow (x, y) \in \alpha$, there is $i \in J$ such that $(x, y) \in \alpha'_i$
 $(x, y \in A_i, (x, y) \in \alpha_i)$,
 $\rightarrow (x, y) \in \beta$, $\beta = \gamma \lor \bigvee_{j \in J} \beta'_j$
 $\searrow (x, y) \notin \beta'_i$, β'_i is a complement to α'_i
 $(\alpha_i \cap \beta'_i = \alpha'_i \cap \beta'_i$, + assumption $x \neq y$),

Lemma

If $(x, y) \in \alpha \land \beta$, then x = y.

Let
$$(x, y) \in \alpha \land \beta$$
, $x \neq y$;
 $\rightarrow (x, y) \in \alpha$, there is $i \in J$ such that $(x, y) \in \alpha'_i$
 $(x, y \in A_i, (x, y) \in \alpha_i)$,
 $\rightarrow (x, y) \in \beta, \beta = \gamma \lor \bigvee_{j \in J} \beta'_j$
 $\searrow (x, y) \notin \beta'_i, \quad \beta'_i \text{ is a complement to } \alpha'_i$
 $(\alpha_i \cap \beta'_i = \alpha'_i \cap \beta'_i, + \text{ assumption } x \neq y)$,
 \searrow there is the shortest chain $x = u_0, u_1, \dots, u_m = y, m > 1$;
either for any k , $(u_k, u_{k+1}) \in \gamma$ or $(u_k, u_{k+1}) \in \bigvee_{j \in J} \beta'_j$.

Lemma

If $(x,y) \in \alpha \land \beta$, then x = y.

Let
$$(x, y) \in \alpha \land \beta$$
, $x \neq y$;
 $\rightarrow (x, y) \in \alpha$, there is $i \in J$ such that $(x, y) \in \alpha'_i$
 $(x, y \in A_i, (x, y) \in \alpha_i)$,
 $\rightarrow (x, y) \in \beta, \beta = \gamma \lor \bigvee_{j \in J} \beta'_j$
 $\searrow (x, y) \notin \beta'_i, \quad \beta'_i \text{ is a complement to } \alpha'_i$
 $(\alpha_i \cap \beta'_i = \alpha'_i \cap \beta'_i, + \text{ assumption } x \neq y)$,
 \searrow there is the shortest chain $x = u_0, u_1, \dots, u_m = y, m > 1$;
either for any k , $(u_k, u_{k+1}) \in \gamma$ or $(u_k, u_{k+1}) \in \bigvee_{j \in J} \beta'_j$.
Notice: u_0, u_1, \dots, u_m are distinct and if $(u_k, u_{k+1}) \in \gamma$,
then $(u_{k+1}, u_{k+2}) \in \bigvee_{j \in J} \beta'_j$ (similarly for the second possibility).

Sufficient condition - general case (meet)

$$\beta = \gamma \ \lor \ \bigvee_{j \in J} \beta'_j$$

For each k there is $\,i_k\in J\,$ with $\,u_k\in A_{i_k}.$ From the definition of $\beta\,$ we get:

$$(u_k, u_{k+1}) \in \gamma \Rightarrow u_k = f^{t_k}(c_{i_k}), u_{k+1} = f^{t_{k+1}}(c_{i_{k+1}}),$$

 $i_k \neq i_{k+1}, t_k = t_{k+1},$

$$(u_k, u_{k+1}) \in \beta'_j \implies i_k = i_{k+1},$$

$$u_{k} = f^{t_{k}}(c_{i_{k}}), u_{k+1} = f^{t_{k+1}}(c_{i_{k+1}}), (u_{k}, u_{k+1}) \in \beta'_{j} \Rightarrow i_{k} = j,$$
$$\frac{n}{d}/t_{k} - t_{k+1}.$$

We have either

$$x = u_0 \ \gamma \ u_1 \ \beta'_j \ u_2 \ \gamma \ u_3 \ \dots \quad or \quad x = u_0 \ \beta'_j \ u_1 \ \gamma \ u_2 \ \beta'_j \ u_3 \ \dots$$

Sufficient condition - general case (meet)

Assume $\ x = u_0 \ eta_j' \ u_1 \ \gamma \ u_2 \ eta_j' \ u_3 \ \dots$ and that

Sufficient condition - general case (meet)

Assume $x = u_0 \ \beta'_j \ u_1 \ \gamma \ u_2 \ \beta'_j \ u_3 \ \dots$ and that $u_{m-1} \in A_i$, m is odd. There exists a positive integer $\ t_k$;

$$u_k = f^{t_k}(c_{i_k}), \text{ for each } 0 < k \leq m$$
 (definition of γ)

 \diamond

In view of above,

$$t_1 = t_2, \ \frac{n}{d}/t_2 - t_3, \ t_3 = t_4, \ \frac{n}{d}/t_4 - t_5, \ \dots, \ t_{m-2} = t_{m-1}.$$

Then

$$\begin{split} \frac{n}{d}/(t_1-t_2) + (t_2-t_3) + (t_4-t_5) + \cdots + (t_{m-3}-t_{m-2}) + (t_{m-2}-t_{m-1}) &= \\ &= t_1 - t_{m-1}, \\ \text{hence } (u_1, u_{m-1}) \in \beta'_{i_0} \text{ and } (u_0, u_1) \in \beta'_{i_0}, (u_{m-1}, u_m) \in \beta'_{i_0} \\ &(x, y) = (u_0, u_m) \in \beta'_{i_0}, \text{ a contradiction.} \end{split}$$

Sufficient condition - general case

Join

Lemma	
$\alpha \lor \beta = A \times A.$	J

Sufficient condition - general case

Join

Lemma $\alpha \lor \beta = A \times A.$

Proof:

$$\ref{eq: constraints} (x,y) \in \alpha \lor \beta$$
 for every $x,y \in A$ $\ref{eq: constraints}$ i.e.

?? there are $m \in \mathbb{N} \cup \{0\}$ and a chain of elements $x = u_0, u_1, u_2, \ldots$, $u_m = y \in A$ such that either $(u_k, u_{k+1}) \in \gamma$ or $(u_k, u_{k+1}) \in \alpha_j \lor \beta'_j$ for some $j \in J$ is valid for each $0 \le k < m$?? Assume that $x \ne y$. We will investigate:

$$1 x \in C_1, \ y = f(x),$$

$$2 i \in J, x, y \in C_i,$$

3)
$$i \in J, x \in A_i$$
, $y \in C_i$, (and symmetric case)

and we will use the previous cases for the proof of a new one.

HYPOTHESIS THEOREM

 $(\mathrm{Quord}\ \mathcal{A},\subseteq)$

complementary lattice

sufficient

necessary

conditions for $\mathcal{A} = (A, f)$

 each connected component of A contains a cycle,
 there is n ∈ N such that each cycle of A has n elements,
 n is square-free,
 for each a ∈ A,
 the element f(a) is cyclic.

Theorem

Let (A, f) be a monounary algebra. Then the conditions

- \bullet each connected component of (A,f) contains a cycle,
- there is $n \in \mathbb{N}$ such that each cycle of (A, f) has n elements,
- n is square-free,
- for each $a \in A$, the element f(a) is cyclic

are necessary and sufficient for the lattice Quord(A, f) to be complementary.

Theorem

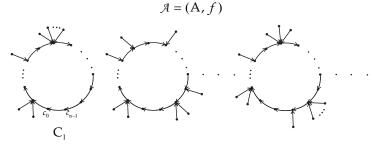
Let (A, f) be a monounary algebra. Then the conditions

- \bullet each connected component of (A,f) contains a cycle,
- there is $n \in \mathbb{N}$ such that each cycle of (A, f) has n elements,
- n is square-free,
- for each $a \in A$, the element f(a) is cyclic

are necessary and sufficient for the lattice Quord(A, f) to be complementary.

Theorem

Let (A, f) be a monounary algebra. The lattice Quord(A, f) is Boolean if and only if either $|A| \leq 2$ or (A, f) is connected with a cycle C of (A, f) such that $|A| \leq |C| + 1$ and |C| is square-free. The picture of a monounary algebra $\mathcal{A} = (A, f)$

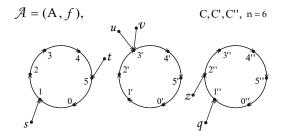


which satisfies conditions:

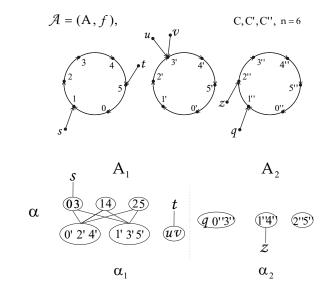
- 1. each connected component of A contains a cycle,
- 2. there is $n \in N$ such that each cycle of \mathcal{A} has n elements,

- 3. n is square-free,
- 4. for each $a \in A$, the element f(a) is cyclic.

Example

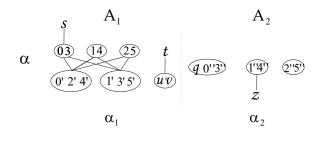


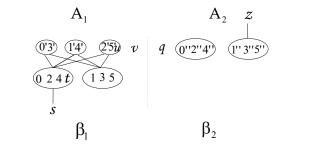
Example



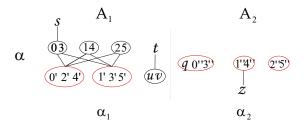
Q

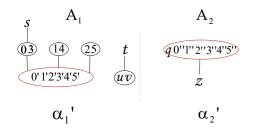
Example



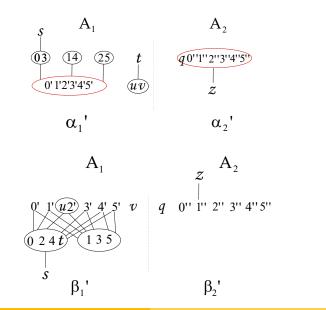


Example: $\alpha'_i = \theta(c_i, f^d(c_i)) \lor \alpha_i, i \in J$

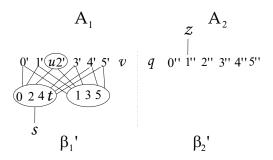




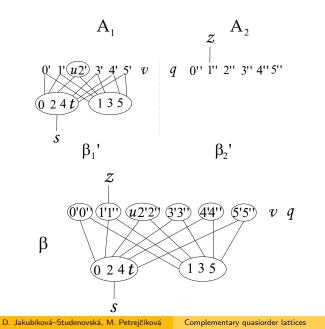
Example: α'_i and β'_i



Example: β'_i and β



Example: β'_i and β



Q

Example: β complement to the α

