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Introduction

A = (A, f)
a monounary algebra

α
quasiorder of A

a binary relation on A, which is reflexive, transitive and compatible with f

QuordA
all quasiorders of (A, f)

(Quord A,⊆)
lattice of all quasiorders of (A, f)

∆ = {(a, a) : a ∈A} . . . the smallest quasiorder

A2 . . . the greatest quasiorder
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Introduction

A = (A, f)
a monounary algebra

c ∈ A is cyclic if fk(c) = c for some k ∈ N ,

the set of all cyclic elements of some connected component of
(A, f) is a cycle of (A, f).
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Motivation

AIM

some conditions for
(Quord A,⊆) ⇐⇒ A = (A, f)

complementary lattice
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Motivation

necessary−−−−−−→
conditions for

(Quord A,⊆) A = (A, f)
complementary lattice

1. each connected component

of A contains a cycle,

2. there is n ∈ N such that

each cycle of A has n elements,

3. n is square-free,

4. for each a ∈ A,

the element f(a) is cyclic.

(picture)

sufficient←−−−−−−
|A/r| = 1;

r is an equivalence on A
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Motivation

HYPOTHESIS

necessary−−−−−−→ conditions for

(Quord A,⊆) A = (A, f)

complementary lattice
sufficient←−−−−−− 1. each connected component

of A contains a cycle,

2. there is n ∈ N such that

each cycle of A has n elements,

3. n is square-free,

4. for each a ∈ A,

the element f(a) is cyclic.
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Necessary condition

Assume: (A, f) . . . a monounary algebra 	
Quord (A, f) . . . complementary lattice

Lemma

Let (B, f) be a subalgebra of the algebra (A, f). Then the lattice
Quord (B, f) is complementary.

Lemma

If x ∈A, then there is m ∈ N such that fm+1(x) = f(x).

Lemma

All cycles of (A, f) have the same number of elements.

Lemma

If C is a cycle of (A, f) with n elements, then n = 1 or n is a product of
mutually distinct primes (square-free).
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Sufficient condition

Assume: (A, f) . . . a monounary algebra such that;

each connected component of A = (A, f) contains a cycle,

there is n ∈ N such that each cycle of A has n elements,

n is square-free,

for each a ∈ A, the element f(a) is cyclic.
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Sufficient condition - equivalence relations r

For α ∈ Quord (A, f), define α−1:

(b, a) ∈ α−1 ⇐⇒ (a, b) ∈ α.

For a ∈ A denote by C(a) the cycle, containing f(a).

Relation R: If B,D are cycles of (A, f), then B R D, if there
are k ∈ N , cycles B = C0, C1, . . . , Ck = D, elements
c0 ∈ C0, c1 ∈ C1, . . . , ck ∈ Ck such that for each
i ∈ {0, 1, . . . , k − 1}, (ci, ci+1) ∈ α ∪ α−1.

For a, b ∈ A, set

a r b⇐⇒ C(a) R C(b).

The relation r is an equivalence on A.

Lemma:

If a, b ∈ A belong to the same connected component, then a r b.
(example)
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Sufficient condition

A/r = {Aj : j ∈ J}

Theorem

Let α ∈ Quord (A, f), j ∈ J . Then there exists a complement βj
of αj = α � Aj in the lattice Quord (Aj , f).

Theorem

If α ∈ Quord (A, f) and |A/r| = 1, then the conditions

each connected component of (A, f) contains a cycle,

there is n ∈ N such that each cycle of (A, f) has n elements,

n is square-free,

for each a ∈ A, the element f(a) is cyclic

are necessary and sufficient for the existence of a complement of α
in the lattice Quord (A, f).
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Sufficient condition - auxiliary results

A/r = {Aj : j ∈ J}, |J | = 1

Let α ∈ Quord (A, f).
A′: all noncyclic elements x of A such that
(x, fn(x)) /∈ α and (fn(x), x) /∈ α.

ρ on A′: (a, b) ∈ ρ if a, b ∈ A′, f(a) = f(b) and there are
k ∈ N and a = u0, u1, . . . , uk = b elements of A′ such that
(∀i ∈ {0, . . . , k − 1})(f(a) = f(ui), (ui, ui+1) ∈ α ∪ α−1).

The relation ρ is an equivalence on A′.
Lemma:

For each D ∈ A′/ρ there are P (D) ⊆ D and p(D) ∈ P (D) such
that

1 (∀x ∈ D \ P (D))(∃y ∈ P (D))((x, y) ∈ α, (y, x) ∈ α);
2 (∀x, y ∈ P (D))((x, y) ∈ α⇒ (y, x) /∈ α).
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Sufficient condition - construction
β = βj , βj ∈ Quord (Aj , f)

Step (a). Let x, y belong to the same cycle C, y = fk(x),
α � C = θd, d/n and let e = n

d . We set (x, y) ∈ β if and only
if e/k.

Step (b). Let x ∈ C1, y ∈ C2, where C1 and C2 are distinct
cycles. We put (x, y) ∈ β if and only if there are a ∈ C1 and
b ∈ C2 with (b, a) ∈ α, (a, b) /∈ α.

Step (c). Suppose that x, y ∈ P (D) for some D ∈ A′/ρ.
Then (x, y) ∈ β if and only if and (y, x) ∈ α.
Step (d1). Suppose that x belongs to a cycle C, y is
noncyclic, C(y) = C. Further let α � C = θd, d/n, e = n

d . If
y /∈ A′, then (x, y) ∈ β if and only if
(fn(y), y) /∈ α, (y, fn(y)) ∈ α, x = fk(y), e/k.

(example)
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Step (b). Let x ∈ C1, y ∈ C2, where C1 and C2 are distinct
cycles. We put (x, y) ∈ β if and only if there are a ∈ C1 and
b ∈ C2 with (b, a) ∈ α, (a, b) /∈ α.

Step (c). Suppose that x, y ∈ P (D) for some D ∈ A′/ρ.
Then (x, y) ∈ β if and only if and (y, x) ∈ α.

Step (d1). Suppose that x belongs to a cycle C, y is
noncyclic, C(y) = C. Further let α � C = θd, d/n, e = n

d . If
y /∈ A′, then (x, y) ∈ β if and only if
(fn(y), y) /∈ α, (y, fn(y)) ∈ α, x = fk(y), e/k.

(example)
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Sufficient condition - construction

β = βj , βj ∈ Quord (Aj , f)

Step (d’1). Suppose that y belongs to a cycle C, x is
noncyclic, C(x) = C. Further let α � C = θd, d/n, e = n

d . If
x /∈ A′, then (x, y) ∈ β if and only if
(fn(x), x) ∈ α, (x, fn(x)) /∈ α, y = fk(x), e/k.
Step (d2). Suppose that x belongs to a cycle C, y is
noncyclic, C(y) = C. Further let α � C = θd, d/n, e = n

d . If
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that y ∈ P (D), x = fk(y), e/k and (y, p(D)) ∈ α.
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noncyclic, C(x) = C. Further let α � C = θd, d/n, e = n

d . If
x ∈ A′, then (x, y) ∈ β if and only if there is D ∈ A′/ρ such
that x ∈ P (D), y = fk(x), e/k and (x, p(D)) ∈ α.
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Sufficient condition - general case

Assumption and denotation

(A, f) is a monounary algebra;
each connected component of (A, f) contains a cycle,
there is n ∈ N such that each cycle of (A, f) has n elements,
n is square-free,
for each a ∈ A, the element f(a) is cyclic,

α ∈ Quord (A, f),

rα an equivalence r on A (as above) depends on α,
|J | > 1; A/rα = {Aj : j ∈ J} and for each i ∈ J :

ci a fixed cyclic element of chosen cycle Ci in Ai;
α � Ci . . . a congruence of the cycle Ci,
di ∈ N; α � Ci is the smallest congruence containing the pair
(ci, fdi(ci)),

Berman: if n ∈ N, then θd is a congruence of an n-element cycle (C, f) ⇔ if there is

d ∈ N such that d/n. For each x ∈ C, θd is the smallest congruence containing the

pair (x, fd(x)).
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Sufficient condition - general case

Notice:

(x, f j(x)) ∈ α � Ci, for each x ∈ Ci, j ∈ N ⇔ di/j.

the set of all di is finite {d1, d2, . . . , ds} and let
{1, 2, . . . , s} ⊆ J ,

d the greatest common divisor of d1, d2, . . . , ds,
Notice:

(f l(ci), fk(ci)) ∈ θ(ci, fd(ci)), for d, l, k ∈ N ⇔ d/l − k.

Lemma

There exist positive integers q1, q2, . . . , qs and q such that

1 + qn = q1
d1

d
+ q2

d2

d
+ · · ·+ qs

ds
d
.
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Sufficient condition - general case

Denotation of complement β

γ = {(fk(ci), fk(cj)) : i, j ∈ J, k ∈ N}, γ ∈ Quord (A, f),

α′i = θ(ci, fd(ci)) ∨ αi, i ∈ J
α′ =

S
j∈J α

′
i, α

′ ∈ Quord (A, f) and rα′ = rα,

(example)

By the previous results there exists

β′i . . . a complement of α′i in Quord (Ai, f),

β′i � Ci = θ(ci, f
n
d (ci)), from construction.

(example)

Lemma

Let i ∈ J , l, k ∈ N. Then (f l(ci), fk(ci)) ∈ αi ∨ β′i if and only if
di
d /l − k.
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Sufficient condition - general case

Denotation of complement β

β = γ ∨
∨
j∈J

β′j,

β ∈ Quord (A, f).
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Sufficient condition - general case

Meet

Lemma

If (x, y) ∈ α ∧ β, then x = y.

Proof:

Let (x, y) ∈ α ∧ β, x 6= y;
→ (x, y) ∈ α, there is i ∈ J such that (x, y) ∈ α′i

(x, y ∈ Ai, (x, y) ∈ αi),
→ (x, y) ∈ β, β = γ ∨

∨
j∈J β

′
j

↘ (x, y) /∈ β′i, β′i is a complement to α′i
(αi ∩ β′i = α′i ∩ β′i, + assumption x 6= y),

↘ there is the shortest chain x = u0, u1, . . . , um = y, m > 1;

either for any k, (uk, uk+1) ∈ γ or (uk, uk+1) ∈
∨
j∈J β

′
j .

Notice: u0, u1, . . . , um are distinct and if (uk, uk+1) ∈ γ,

then (uk+1, uk+2) ∈
W
j∈J β

′
j (similarly for the second possibility).
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Sufficient condition - general case

Meet

Lemma

If (x, y) ∈ α ∧ β, then x = y.

Proof:

Let (x, y) ∈ α ∧ β, x 6= y;
→ (x, y) ∈ α, there is i ∈ J such that (x, y) ∈ α′i

(x, y ∈ Ai, (x, y) ∈ αi),
→ (x, y) ∈ β, β = γ ∨

∨
j∈J β

′
j

↘ (x, y) /∈ β′i, β′i is a complement to α′i
(αi ∩ β′i = α′i ∩ β′i, + assumption x 6= y),

↘ there is the shortest chain x = u0, u1, . . . , um = y, m > 1;

either for any k, (uk, uk+1) ∈ γ or (uk, uk+1) ∈
∨
j∈J β

′
j .

Notice: u0, u1, . . . , um are distinct and if (uk, uk+1) ∈ γ,

then (uk+1, uk+2) ∈
W
j∈J β

′
j (similarly for the second possibility).
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∨
j∈J β

′
j .

Notice: u0, u1, . . . , um are distinct and if (uk, uk+1) ∈ γ,

then (uk+1, uk+2) ∈
W
j∈J β

′
j (similarly for the second possibility).
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Sufficient condition - general case

Meet

Lemma

If (x, y) ∈ α ∧ β, then x = y.

Proof:
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′
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Sufficient condition - general case (meet)

β = γ ∨
∨
j∈J β

′
j

For each k there is ik ∈ J with uk ∈ Aik . From the definition of β we get:

(uk, uk+1) ∈ γ ⇒ uk = f tk(cik), uk+1 = f tk+1(cik+1
),

ik 6= ik+1, tk = tk+1,

(uk, uk+1) ∈ β′j =⇒ ik = ik+1,

uk = f tk(cik), uk+1 = f tk+1(cik+1
), (uk, uk+1) ∈ β′j ⇒ ik = j,

n

d
/tk − tk+1.

We have either

x = u0 γ u1 β
′
j u2 γ u3 . . . or x = u0 β

′
j u1 γ u2 β

′
j u3 . . . .
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Sufficient condition - general case (meet)

Assume x = u0 β
′
j u1 γ u2 β

′
j u3 . . . and that

um−1 ∈ Ai, m is odd.

There exists a positive integer tk;

uk = f tk(cik), for each 0 < k 5 m
(definition of γ)

In view of above,

t1 = t2, n
d/t2 − t3, t3 = t4, n

d/t4 − t5, . . . , tm−2 = tm−1.

Then

n

d
/(t1−t2)+(t2−t3)+(t4−t5)+· · ·+(tm−3−tm−2)+(tm−2−tm−1) =

= t1 − tm−1,

hence (u1, um−1) ∈ β′i0 and (u0, u1) ∈ β′i0 ,(um−1, um) ∈ β′i0

(x, y) = (u0, um) ∈ β′i0 , a contradiction.

�
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Sufficient condition - general case

Join
Lemma

α ∨ β = A×A.

Proof:
?? (x, y) ∈ α ∨ β for every x, y ∈ A ?? i.e.

?? there are m ∈ N ∪ {0} and a chain of elements x = u0, u1, u2, . . . ,

um = y ∈ A such that either (uk, uk+1) ∈ γ or (uk, uk+1) ∈ αj ∨ β′
j for

some j ∈ J is valid for each 0 ≤ k < m ??
Assume that x 6= y. We will investigate:

1 x ∈ C1, y = f(x),

2 i ∈ J, x, y ∈ Ci,

3 i ∈ J, x ∈ Ai, y ∈ Ci, (and symmetric case)

4 i, j ∈ J, x ∈ Ai, y ∈ Aj .

and we will use the previous cases for the proof of a new one.
�
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Complementarity - main result

———————-HYPOTHESIS
THEOREM

necessary−−−−−−→ conditions for

(Quord A,⊆) A = (A, f)

complementary lattice
sufficient←−−−−−− 1. each connected component

of A contains a cycle,

2. there is n ∈ N such that

each cycle of A has n elements,

3. n is square-free,

4. for each a ∈ A,

the element f(a) is cyclic.
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Complementarity - main result

Theorem

Let (A, f) be a monounary algebra. Then the conditions

each connected component of (A, f) contains a cycle,

there is n ∈ N such that each cycle of (A, f) has n elements,

n is square-free,

for each a ∈ A, the element f(a) is cyclic

are necessary and sufficient for the lattice Quord (A, f) to be
complementary.

Theorem

Let (A, f) be a monounary algebra. The lattice Quord (A, f) is
Boolean if and only if either |A| ≤ 2 or (A, f) is connected with
a cycle C of (A, f) such that |A| ≤ |C|+ 1 and |C| is square-free.
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The picture of a monounary algebra A = (A, f)

which satisfies conditions:

1. each connected component of A contains a cycle,
2. there is n ∈ N such that each cycle of A has n elements,
3. n is square-free,
4. for each a ∈ A, the element f(a) is cyclic.
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Example
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Example: α′i = θ(ci, f
d(ci)) ∨ αi, i ∈ J
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Example: α′i and β′i
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Example: β′i and β
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Example: β′i and β
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Example: β complement to the α
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