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e compatible with all fundamental operations of A

e common generalization of congruences and compatible partial
orders of an algebra

the lattice Quord .4 of all quasiorders of an algebra A
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an algebra A, g € Quord A,

gt ={(xy) € A:(y,x) €q}

1

go := g N g " is an equivalence on A

natural partial order g/qop on the factor set
A/qo = {[a]q, | @ € A} given by

([2]gos [blgo) € G/qo : == Fu € [a]g, v € [blg, : (u,v) € q

q is called quasilinear if g/qo is linear

the lattice
QLord A

of all quasilinear quasiorders of an algebra A
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e [ be a lattice
e u e L is A-irreducible if
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e monounary algebra (A, f), g € Quord (A, f)

e for x € A put A
f ([X]QO) = [f(X)]QO
e Then q/qo € Pord (A/qo, f) (compatible with )

Proposition

Let g € Quord (A, f).

q is A-irreducible in Quord (A, f) <
q/qo is N-irreducible in Quord (A/qo, zA‘)
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Monounary algebras

ASSUMPTION
e (A, f) is a finite monounary algebra
e (A, f) is connected

e (A, f) contains exactly one cyclic element, denoted by 0

AIM
e Characterize quasiorders on (A, f) which are
meet-irreducible in the lattice Quord (A, f) 77?7
e Find some necessary conditions under which a quasiorder on
(A, f) is meet-irreducible in the lattice Quord (A, f)
o Characterize quasilinear quasiorders on (A, f) which are
meet-irreducible in the lattice Quord (A, f)
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"Visible"” notions

monounary algebra (A, f), g € Quord (A, f), a,bec A

aSqb:
aZqb:
argb:
a<gb:
arqb:

iff (a,b) € q

iff (b,a) € q

iffaSqbandazg b

iffaSqg b, andaSqgcSqgb = a~gcorcnr~gb

iffazqgb, andazqgclqgb = a~gcorc~gb
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Necessary conditions

Let g € Quord (A, f) be A-irreducible
o if a~vyerr b, thena Sqgborazgb

o for a ~erf b ~kerr C,

aSqCcSqgb = a~gcorcrgb

® [Clker r consists of two disjoint sets
Ci, G (one of them can be empty):

forae G, be G, i,j€{1,2}

a<gb = i<
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Necessary conditions

©*aSq0Sgb = a~g0or0n~ghb

(Vx € A)( x Sq0) or (Vx e A)(x 24 0)
(@) (©)

Lemma
Assume ()

*azqf(a) = argf(a)~q0

e asgsf(a) = a=<,f(a)orar~gf(a)~40
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A-irreducible quasilinear quasiorders

Corollary

e g € QLord (A, f) be A-irreducible in Quord (A, f)
e xe A—{0}

() = x=qf(x)
(©) = f(x)=<qgx

Definition
A € Lord (A, f) is called an f-chain if either A or A1 is equal to
the transitive hull of f* U A.
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Theorem
A € Lord (A, f) is meet-irreducible in the lattice Quord (A, f) if
and only if \ is an f-chain.

Proof. Assume (&) f(0)=0

= n<xn—1<y:--<,2=<,1=<,0
x in A precedes the only element, it is f(x)
f(m)j=m—1form>0

= A linear, an f-chain = A={0,...,n},
f(m)j=m-—1form>0
ACqgeQuord(A, f)=3iSqj, i <j

i—i=f(i)Sqf(j)=J—1i, j—iSql
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