Quasiorders on monounary algebras

Danica Jakubíková-Studenovská, Košice Reinhard Pöschel, Dresden Sándor Radeleczki, Miskolc

> SSAOS, Stará Lesná 5.9.–11.9.2009

• an algebra ${\cal A}$

the lattice $\operatorname{Quord} \mathcal{A}$ of all quasiorders of an algebra \mathcal{A}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- an algebra ${\cal A}$
- quasiorder of $\mathcal{A} = a$ binary relation on \mathcal{A} , which is

the lattice $\operatorname{Quord} \mathcal{A}$ of all quasiorders of an algebra \mathcal{A}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- an algebra ${\cal A}$
- quasiorder of $\mathcal{A} = a$ binary relation on \mathcal{A} , which is
 - reflexive

the lattice $\operatorname{Quord} \mathcal{A}$ of all quasiorders of an algebra \mathcal{A}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- an algebra ${\cal A}$
- quasiorder of $\mathcal{A} = a$ binary relation on \mathcal{A} , which is
 - reflexive
 - transitive

the lattice $\operatorname{Quord} \mathcal{A}$ of all quasiorders of an algebra \mathcal{A}

- an algebra ${\cal A}$
- quasiorder of $\mathcal{A} = a$ binary relation on \mathcal{A} , which is
 - reflexive
 - transitive
 - compatible with all fundamental operations of ${\cal A}$

the lattice $\operatorname{Quord} \mathcal{A}$ of all quasiorders of an algebra \mathcal{A}

- an algebra ${\cal A}$
- quasiorder of $\mathcal{A} = a$ binary relation on \mathcal{A} , which is
 - reflexive
 - transitive
 - compatible with all fundamental operations of ${\cal A}$
- common generalization of congruences and compatible partial orders of an algebra

the lattice $\operatorname{Quord} \mathcal{A}$ of all quasiorders of an algebra \mathcal{A}

• an algebra
$$\mathcal{A}$$
, $q \in \operatorname{Quord} \mathcal{A}$,

$$q^{-1} := \{(x, y) \in A^2 : (y, x) \in q\}$$

• an algebra
$$\mathcal{A}$$
, $q \in \operatorname{Quord} \mathcal{A}$,

$$q^{-1} := \{(x, y) \in A^2 : (y, x) \in q\}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

• $q_0 := q \cap q^{-1}$ is an equivalence on A

• an algebra \mathcal{A} , $q \in \operatorname{Quord} \mathcal{A}$,

$$q^{-1} := \{(x,y) \in A^2 : (y,x) \in q\}$$

- $q_0 := q \cap q^{-1}$ is an equivalence on A
- natural partial order q/q₀ on the factor set
 A/q₀ := {[a]_{q₀} | a ∈ A} given by

 $([a]_{q_0}, [b]_{q_0}) \in q/q_0 : \iff \exists u \in [a]_{q_0} \exists v \in [b]_{q_0} : (u, v) \in q$

• an algebra \mathcal{A} , $q \in \operatorname{Quord} \mathcal{A}$,

$$q^{-1} := \{(x, y) \in A^2 : (y, x) \in q\}$$

- $q_0 := q \cap q^{-1}$ is an equivalence on A
- natural partial order q/q₀ on the factor set
 A/q₀ := {[a]_{q₀} | a ∈ A} given by

 $([a]_{q_0}, [b]_{q_0}) \in q/q_0 : \iff \exists u \in [a]_{q_0} \exists v \in [b]_{q_0} : (u, v) \in q$

(日) (同) (三) (三) (三) (○) (○)

• q is called **quasilinear** if q/q_0 is linear

• an algebra \mathcal{A} , $q \in \operatorname{Quord} \mathcal{A}$,

$$q^{-1} := \{(x, y) \in A^2 : (y, x) \in q\}$$

- $q_0 := q \cap q^{-1}$ is an equivalence on A
- natural partial order q/q₀ on the factor set
 A/q₀ := {[a]_{q₀} | a ∈ A} given by

 $([a]_{q_0}, [b]_{q_0}) \in q/q_0 : \iff \exists u \in [a]_{q_0} \exists v \in [b]_{q_0} : (u, v) \in q$

- q is called **quasilinear** if q/q_0 is linear
- the lattice

$\operatorname{QLord} \mathcal{A}$

of all quasilinear quasiorders of an algebra $\ensuremath{\mathcal{A}}$

• *L* be a lattice

- *L* be a lattice
- $u \in L$ is \wedge -irreducible if

$$u = v_1 \land v_2 \implies (u = v_1 \lor u = v_2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• monounary algebra (A, f), $q \in \text{Quord}(A, f)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- monounary algebra (A, f), $q \in \text{Quord}(A, f)$
- for $x\in A$ put \hat{f} $([x]_{q_0}):=[f(x)]_{q_0}$

- monounary algebra (A, f), $q \in \text{Quord}(A, f)$
- for $x \in A$ put $\hat{f}([x]_{q_0}) := [f(x)]_{q_0}$ • Then $q/q_0 \in \operatorname{Pord}(A/q_0, \hat{f})$ (compatible with \hat{f})

- monounary algebra (A, f), $q \in \text{Quord}(A, f)$
- for $x \in A$ put $\hat{f}([x]_{q_0}) := [f(x)]_{q_0}$ • Then $q/q_0 \in \operatorname{Pord}(A/q_0, \hat{f})$ (compatible with \hat{f})

• monounary algebra (A, f), $q \in \text{Quord}(A, f)$

• for
$$x \in A$$
 put \hat{f} $([x]_{q_0}) := [f(x)]_{q_0}$

• Then $q/q_0 \in \operatorname{Pord}\left(A/q_0, \hat{f}
ight)$ (compatible with \hat{f})

Proposition

Let $q \in$ Quord (A, f).

 $q \text{ is } \wedge \text{-irreducible in Quord}(A, f) \iff$

• monounary algebra (A, f), $q \in \text{Quord}(A, f)$

• for
$$x \in A$$
 put \hat{f} $([x]_{q_0}) := [f(x)]_{q_0}$

• Then $q/q_0 \in \operatorname{Pord}\left(A/q_0, \hat{f}
ight)$ (compatible with \hat{f})

Proposition

Let $q \in$ Quord (A, f).

 $q \text{ is } \wedge \text{-irreducible in } \operatorname{Quord}\left(A,f\right) \iff$

 q/q_0 is \wedge -irreducible in $\mathrm{Quord}\left(A/q_0, \hat{f}\right)$

ASSUMPTION

- (A, f) is a finite monounary algebra
- (A, f) is connected
- (A, f) contains exactly one cyclic element, denoted by 0

ASSUMPTION

- (A, f) is a finite monounary algebra
- (A, f) is connected
- (A, f) contains exactly one cyclic element, denoted by 0

AIM

• Characterize quasiorders on (A, f) which are **meet-irreducible** in the lattice Quord (A, f)

ASSUMPTION

- (A, f) is a finite monounary algebra
- (A, f) is connected
- (A, f) contains exactly one cyclic element, denoted by 0

AIM

• Characterize quasiorders on (A, f) which are **meet-irreducible** in the lattice Quord (A, f) ???

ASSUMPTION

- (A, f) is a finite monounary algebra
- (A, f) is connected
- (A, f) contains exactly one cyclic element, denoted by 0

AIM

- Characterize quasiorders on (A, f) which are meet-irreducible in the lattice Quord (A, f) ???
 - Find some **necessary conditions** under which a quasiorder on (A, f) is meet-irreducible in the lattice Quord(A, f)

ASSUMPTION

- (A, f) is a finite monounary algebra
- (A, f) is connected
- (A, f) contains exactly one cyclic element, denoted by 0

AIM

- Characterize quasiorders on (A, f) which are meet-irreducible in the lattice Quord (A, f) ???
 - Find some **necessary conditions** under which a quasiorder on (A, f) is meet-irreducible in the lattice Quord(A, f)

• Characterize **quasilinear** quasiorders on (*A*, *f*) which are meet-irreducible in the lattice Quord (*A*, *f*)

monounary algebra (A, f), $q \in \text{Quord}(A, f)$, $a, b \in A$

•
$$a \leq_q b$$
: iff $(a, b) \in q$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

monounary algebra (A, f), $q \in \text{Quord}(A, f)$, $a, b \in A$

•
$$a \lesssim_q b$$
: iff $(a, b) \in q$

• $a \gtrsim_q b$: iff $(b, a) \in q$

monounary algebra (A, f), $q \in \text{Quord}(A, f)$, $a, b \in A$

•
$$a \lesssim_q b$$
: iff $(a, b) \in q$

•
$$a\gtrsim_q b$$
: iff $(b,a)\in q$

• $a \sim_q b$: iff $a \lesssim_q b$ and $a \gtrsim_q b$

monounary algebra (A, f), $q \in \text{Quord}(A, f)$, $a, b \in A$

monounary algebra (A, f), $q \in$ Quord (A, f), $a, b \in A$

•
$$a \leq_q b$$
: iff $(a, b) \in q$
• $a \geq_q b$: iff $(b, a) \in q$
• $a \sim_q b$: iff $a \leq_q b$ and $a \geq_q b$
• $a \prec_q b$: iff $a \leq_q b$, and $a \leq_q c \leq_q b \implies a \sim_q c$ or $c \sim_q b$
• $a \succ_q b$: iff $a \geq_q b$, and $a \geq_q c \geq_q b \implies a \sim_q c$ or $c \sim_q b$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $q \in$ Quord (A, f) be \land -irreducible

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $q \in$ Quord (A, f) be \land -irreducible

• if $a \sim_{\ker f} b$, then $a \lesssim_q b$ or $a \gtrsim_q b$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $q \in$ Quord (A, f) be \land -irreducible

• if $a \sim_{\ker f} b$, then $a \lesssim_q b$ or $a \gtrsim_q b$

• for
$$a \sim_{\ker f} b \sim_{\ker f} c$$
,

$$a \lesssim_q c \lesssim_q b \implies a \sim_q c \text{ or } c \sim_q b$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $q \in$ Quord (A, f) be \land -irreducible

• if $a \sim_{\ker f} b$, then $a \lesssim_q b$ or $a \gtrsim_q b$

• for
$$a \sim_{\ker f} b \sim_{\ker f} c$$
,

$$a \lesssim_q c \lesssim_q b \implies a \sim_q c \text{ or } c \sim_q b$$

Let $q \in$ Quord (A, f) be \land -irreducible

• if $a \sim_{\ker f} b$, then $a \lesssim_q b$ or $a \gtrsim_q b$

• for
$$a\sim_{\ker f}b\sim_{\ker f}c$$
,

$$a \lesssim_q c \lesssim_q b \implies a \sim_q c \text{ or } c \sim_q b$$

• $[c]_{\text{ker } f}$ consists of two disjoint sets C_1 , C_2 (one of them can be empty):

Let $q \in$ Quord (A, f) be \land -irreducible

• if $a \sim_{\ker f} b$, then $a \lesssim_q b$ or $a \gtrsim_q b$

• for
$$a\sim_{\ker f}b\sim_{\ker f}c$$
,

$$a \lesssim_q c \lesssim_q b \implies a \sim_q c \text{ or } c \sim_q b$$

• $[c]_{\text{ker } f}$ consists of two disjoint sets C_1 , C_2 (one of them can be empty):

Let $q \in$ Quord (A, f) be \land -irreducible

• if $a \sim_{\ker f} b$, then $a \lesssim_q b$ or $a \gtrsim_q b$

• for
$$a \sim_{\ker f} b \sim_{\ker f} c$$
,

$$a \lesssim_q \mathit{c} \lesssim_q b \implies a \sim_q \mathit{c}$$
 or $\mathit{c} \sim_q b$

• [c]_{ker f} consists of two disjoint sets C₁, C₂ (one of them can be empty):

for $a \in C_i$, $b \in C_j$, $i, j \in \{1, 2\}$

$$a \lesssim_q b \iff i \leq j$$

• $a \lesssim_q 0 \lesssim_q b \implies a \sim_q 0$ or $0 \sim_q b$

•
$$a \lesssim_q 0 \lesssim_q b \implies a \sim_q 0$$
 or $0 \sim_q b$

$$(\forall x \in A)(x \leq_q 0) \text{ or } (\forall x \in A)(x \geq_q 0)$$

(a) (a)

•
$$a \lesssim_q 0 \lesssim_q b \implies a \sim_q 0$$
 or $0 \sim_q b$

$$(\forall x \in A)(x \leq_q 0) \text{ or } (\forall x \in A)(x \geq_q 0)$$

(a) (a)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

•
$$a \leq_q 0 \leq_q b \implies a \sim_q 0 \text{ or } 0 \sim_q b$$

• $(\forall x \in A)(x \leq_q 0) \text{ or } (\forall x \in A)(x \gtrsim_q 0)$
 $(\triangle) \qquad (\heartsuit)$

Lemma Assume (△)

•
$$a\gtrsim_q f(a) \implies a\sim_q f(a)\sim_q 0$$

•
$$a \leq_q 0 \leq_q b \implies a \sim_q 0 \text{ or } 0 \sim_q b$$

• $(\forall x \in A)(x \leq_q 0) \text{ or } (\forall x \in A)(x \gtrsim_q 0)$
 $(\triangle) \qquad (\heartsuit)$

Lemma Assume (△)

•
$$a\gtrsim_q f(a) \implies a\sim_q f(a)\sim_q 0$$

•
$$a \lesssim_q f(a) \implies a \prec_q f(a) \text{ or } a \sim_q f(a) \sim_q 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Corollary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Corollary

• $q \in \operatorname{QLord}(A, f)$ be \wedge -irreducible in $\operatorname{Quord}(A, f)$

Corollary

- $q \in \operatorname{QLord}(A, f)$ be \wedge -irreducible in $\operatorname{Quord}(A, f)$
- $x \in A \{0\}$

Corollary

- $q \in \operatorname{QLord}(A, f)$ be \wedge -irreducible in $\operatorname{Quord}(A, f)$
- $x \in A \{0\}$

Corollary

- $q \in \operatorname{QLord}(A, f)$ be \wedge -irreducible in $\operatorname{Quord}(A, f)$
- $x \in A \{0\}$

Corollary

- $q \in \operatorname{QLord}(A, f)$ be \wedge -irreducible in $\operatorname{Quord}(A, f)$
- $x \in A \{0\}$

Definition

 $\lambda \in \text{Lord}(A, f)$ is called an *f*-chain if either λ or λ^{-1} is equal to the transitive hull of $f^{\bullet} \cup \Delta$.

Theorem

 $\lambda \in \text{Lord}(A, f)$ is meet-irreducible in the lattice Quord(A, f) if and only if λ is an f-chain.

Theorem

 $\lambda \in \text{Lord}(A, f)$ is meet-irreducible in the lattice Quord(A, f) if and only if λ is an f-chain.

Proof. Assume (a) f(0) = 0

Theorem

 $\lambda \in \text{Lord}(A, f)$ is meet-irreducible in the lattice Quord(A, f) if and only if λ is an f-chain.

$$\Rightarrow \qquad n \prec_{\lambda} n - 1 \prec_{\lambda} \cdots \prec_{\lambda} 2 \prec_{\lambda} 1 \prec_{\lambda} 0$$

x in λ precedes the only element, it is $f(x)$
 $f(m) = m - 1$ for $m > 0$

Theorem

 $\lambda \in \text{Lord}(A, f)$ is meet-irreducible in the lattice Quord(A, f) if and only if λ is an f-chain.

$$\Rightarrow \qquad n \prec_{\lambda} n - 1 \prec_{\lambda} \cdots \prec_{\lambda} 2 \prec_{\lambda} 1 \prec_{\lambda} 0$$

x in λ precedes the only element, it is $f(x)$
 $f(m) = m - 1$ for $m > 0$

$$\leftarrow \quad \lambda \text{ linear, an } f\text{-chain } \Rightarrow A = \{0, \dots, n\}, \\ f(m) = m - 1 \text{ for } m > 0$$

Theorem

 $\lambda \in \text{Lord}(A, f)$ is meet-irreducible in the lattice Quord(A, f) if and only if λ is an f-chain.

$$\Rightarrow \qquad n \prec_{\lambda} n - 1 \prec_{\lambda} \cdots \prec_{\lambda} 2 \prec_{\lambda} 1 \prec_{\lambda} 0$$

x in λ precedes the only element, it is $f(x)$
 $f(m) = m - 1$ for $m > 0$

$$\begin{array}{ll} \Leftarrow & \lambda \text{ linear, an } f\text{-chain } \Rightarrow A = \{0, \dots, n\}, \\ & f(m) = m - 1 \text{ for } m > 0 \\ & \lambda \subset q \in \operatorname{Quord}\left(A, f\right) \Rightarrow \exists i \lesssim_q j, \ i < j \end{array}$$

Theorem

 $\lambda \in \text{Lord}(A, f)$ is meet-irreducible in the lattice Quord(A, f) if and only if λ is an f-chain.

$$\Rightarrow \qquad n \prec_{\lambda} n - 1 \prec_{\lambda} \cdots \prec_{\lambda} 2 \prec_{\lambda} 1 \prec_{\lambda} 0$$

x in λ precedes the only element, it is $f(x)$
 $f(m) = m - 1$ for $m > 0$

$$\begin{array}{ll} \Leftarrow & \lambda \text{ linear, an } f\text{-chain } \Rightarrow A = \{0, \dots, n\}, \\ f(m) = m - 1 \text{ for } m > 0 \\ & \lambda \subset q \in \text{Quord} (A, f) \Rightarrow \exists i \lesssim_q j, \ i < j \\ & i - i = f^i(i) \lesssim_q f^i(j) = j - i, \ j - i \lesssim_q 1 \\ & 0 \lesssim_q 1 \quad \Box \end{array}$$