Sectional switching mappings in semilattices

I. Chajda, P. Emanovský

Department of Algebra and Geometry Palacký University Olomouc Czech Republic

> chajda@inf.upol.cz emanovsky@inf.upol.cz

I. Chajda, P. Emanovský

Sectional switching mappings in semilattices

< 🗇 🕨

Outline

- 2 Basic concepts
- Bounded lattices with sectional antitone involutions
- Semilattice with sectional switching mappings
- 5 The compatibility condition

Introduction

Basic concepts Bounded lattices with sectional antitone involutions Semilattice with sectional switching mappings The compatibility condition

Outline

- 2 Basic concepts
- Bounded lattices with sectional antitone involutions
- 4 Semilattice with sectional switching mappings
- 5 The compatibility condition

Introduction

It was shown in [Chajda I., Emanovský P.] that a certain algebra can be derived from a bounded lattice having an antitone involution on every section. More generally, consider a \vee -semilattice $\mathscr{S} = (S, \vee)$ with a greatest element 1. An interval [a, 1] for $a \in S$ is called a section. A mapping f of [a, 1] into itself is called a switching mapping if f(a) = 1, f(1) = a and for $x \in [a, 1], a \neq x \neq 1$ we have $a \neq f(x) \neq 1$. We study V-semilattices with switching mappings on all the sections. If for $p, q \in S, p \leq q$, the mapping on the section [q, 1] is determined by that of [p, 1], we say that the compatibility condition is satisfied. We will get conditions for antitony of switching mappings and a connection with complementation in sections will be shown.

▲冊▶ ▲ 耳▶ ▲ 耳▶ 三 目目 - の Q ()

Outline

3 Bounded lattices with sectional antitone involutions

Introduction

- 4 Semilattice with sectional switching mappings
- 5 The compatibility condition

Basic concepts

A mapping $f : A \rightarrow A$ is an **involution** whenever f(f(x)) = x for all $x \in A$.

A mapping *f* of an ordered set (A, \leq) into itself is **antitone** provided $x \leq y$ implies $f(y) \leq f(x)$.

Let $\mathscr{L} = (L, \lor, \land, 1)$ be a from above bounded lattice. For each $a \in L$ we call the interval [a, 1] a **section** of \mathscr{L} .

The lattice \mathscr{L} is called **sectionally involuted lattice** if for each $a \in L$ there exists an antitone involution $x \mapsto x^a$ on the section [a, 1].

Basic concepts

Remark.

(a) For each $a \in L$ the mapping $x \mapsto x^a$ is a dual isomorphism of the interval [a, 1]; thus, for all $x, y \in [a, 1]$, De Morgan laws

$$(x \lor y)^a = x^a \land y^a$$
 and $(x \land y)^a = x^a \lor y^a$

are satisfied,

(b) For each $a \in L$ we have $a^a = 1, 1^a = 1$,

(c) If \mathscr{L} is bounded, i.e. L = [0, 1], there exists an antitone involution $x \mapsto x^0$ on the whole \mathscr{L} and $0^0 = 1$ and $1^0 = 0$.

イロト イポト イヨト イヨト

Outline

- 2 Basic concepts
- Bounded lattices with sectional antitone involutions
 - 4 Semilattice with sectional switching mappings
- 5 The compatibility condition

Bounded lattices with sectional antitone involutions

Proposition

Let $\mathscr{L} = (L, \lor, \land, 0, 1)$ be a bounded sectionally involuted lattice and let $x \cdot y$ be defined by the rule $x \cdot y := (x \lor y)^y$. Then the following identities are satisfied for all $x, y, z \in L$:

(1)
$$1 \cdot x = x$$
, $x \cdot 1 = 1$, $0 \cdot x = 1$,

(2)
$$(x \cdot y) \cdot y = (y \cdot x) \cdot x$$
,

$$(3) (((x \cdot y) \cdot y) \cdot z) \cdot (x \cdot z) = 1.$$

・ 同 ト ・ ヨ ト ・ ヨ

Outline

- 2 Basic concepts
- Bounded lattices with sectional antitone involutions
- Semilattice with sectional switching mappings
- 5 The compatibility condition

Semilattice with sectional mappings

Let $\mathscr{S} = (S, \lor, 1)$ be a join-semilattice with the greatest element 1 where for each $a \in S$ there is a mapping on the section [a, 1]; such a structure will be called a **semilattice with sectional mappings.**

Let $\mathscr{S} = (S, \lor, 1)$ be a semilattice with sectional mappings. Define the so-called **induced operation** on *S* by the rule

 $x \cdot y = (x \vee y)^y$

Evidently, "." is everywhere defined binary operation on *S* since $x \lor y \in [y, 1]$ for any $x, y \in S$. Also conversely, if "." is induced on *S* then for each $a \in S$ and $x \in [a, 1]$ we have

$$x \cdot a = (x \vee a)^a = x^a$$

Semilattice with sectional mappings

Lemma

Let $\mathscr{S} = (S, \lor, \cdot, 1)$ be a semilattice with sectional involutions. The following conditions are equivalent for $a \in S$: (a) $x \mapsto x^a$ is antitone, (b) the section [a,1] is a lattice where $x \wedge_a y = (x^a \lor y^a)^a$ (De Morgan law).

I. Chajda, P. Emanovský

Sectional switching mappings in semilattices

Switching mappings

We say that a mapping $x \mapsto x^a$ on the section [a, 1] is **weakly switching** if $a^a = 1$ and $1^a = a$. In other words, a weakly switching mapping "switch" the bound elements of the section.

Lemma

Let $\mathscr{S} = (S, \lor, \cdot, 1)$ be a semilattice with sectional mappings. (a) If for each $a \in S$ the sectional mapping $x \mapsto x^a$ is an involution then the induced operation satisfies the identity (I1) $(x \cdot y) \cdot y = (y \cdot x) \cdot x = x \lor y$ (b) If for each $a \in S$ the sectional mapping $x \mapsto x^a$ is weakly switching and the induced operation satisfies (I1) then every sectional mapping is an involution.

< ロ > < 同 > < 回 > < 回 > 三

Switching mappings

A weakly switching mapping $x \mapsto x^a$ will be called a **switching mapping** if $a \neq x^a \neq 1$ for each $x \in [a, 1]$ with $a \neq x \neq 1$. **Observation.** Every join-semilattice $\mathscr{S} = (S, \lor, 1)$ with a greatest element can be considered as a semilattice with sectional switching mappings. One can take for each $a \in S$ and every $x \in [a, 1]$ $a^a = 1$, $1^a = a$ and $x^a = x$ for $a \neq x \neq 1$. Hence, our concept is really universal and very natural for semilattices.

Lemma

Let $\mathscr{S} = (S, \lor, \cdot, 1)$ be a semilattice with sectional switching mappings, let \leq be its induced order. Then

$$x \leq y$$
 if and only if $x \cdot y = 1$.

◆ロ ▶ ◆帰 ▶ ◆ヨ ▶ ◆ヨ ▶ ● 目 やののの

Switching mappings

Lemma

Let $\mathscr{S} = (S, \lor, \cdot, 1)$ be a semilattice with sectional weakly switching mappings. Then \mathscr{S} satisfies the identities (I2) $x \cdot x = 1$, $1 \cdot x = x$, $x \cdot 1 = 1$.

Theorem

Let $\mathscr{S} = (S, \lor, \cdot, 1)$ be a semilattice with sectional switching mappings. (a) If \mathscr{S} satisfies the identity (I3) $(((x \cdot y) \cdot y) \cdot z) \cdot (x \cdot z) = 1$ then every switching mapping on \mathscr{S} is antitone. (b) If every sectional switching mapping on \mathscr{S} is an involution then it is antitone if and only if \mathscr{S} satisfies (I3).

Outline

- 2 Basic concepts
- 3 Bounded lattices with sectional antitone involutions
- 4 Semilattice with sectional switching mappings
- 5 The compatibility condition

The compatibility condition

We will consider a semilattice with sectional mappings where the mapping in a smaller section is determined by that of a bigger one. More precisely, we say that $\mathscr{S} = (S, \lor, \cdot, 1)$ satisfies the **compatibility condition** if

 $p \le q \le x$ implies $x^q = x^p \lor q$. (CC)

It is easy to verify that (CC) can be equivalently expressed as the following identity

$$(y \lor z) \cdot (x \lor y) = ((y \lor z) \cdot x) \lor (x \lor y).$$
(CCI)
since $x \le x \lor y \le x \lor y \lor z$ and
 $(y \lor z) \cdot (x \lor y) = (x \lor y \lor z)^{(x \lor y)}$
 $(y \lor z) \cdot x = (x \lor y \lor z)^x.$

.

The compatibility condition

Let us also note that the compatibility condition is satisfied for complementation in any boolean semilattice [Abbott J. C.] and in any orthomodular semilattice [Abbott J. C.], its modification holds also for semilattices with sectionally antitony involutions which are implication algebras for MV-algebras, see [Chajda I., Halaš R., Kühr J.]

We are going to show that (CC) does not imply neither antitony nor involutiveness of switching mappings.

4 B 6 4 B 6

The compatibility condition

The compatibility condition

Example: Let $\mathscr{S} = (\{p, a, b, c, x, y, z, 1\}, \lor, \cdot, 1)$ be a semilattice where

 $x^{p} = a, v^{p} = c, z^{p} = b, a^{p} = x,$ $c^{p} = v, b^{p} = z, p^{p} = 1, 1^{p} = p,$ $x^{y} = a, a^{y} = x, v^{y} = 1, 1^{y} = v,$ $z^{c} = b, b^{c} = z, c^{c} = 1, 1^{c} = c$ $x^{x} = 1, 1^{x} = x.$ $a^{a} = 1$. $1^{a} = a$. $z^{z} = 1$. $1^{z} = z$, $b^{b} = 1, 1^{b} = b, 1^{1} = 1,$ The switching mappings satisfy (CC) but $v \mapsto v^p$ is not antitone since y < x but $x^p = a$, $y^p = c$ are incomparable.

The compatibility condition

Lemma

Let $\mathscr{S} = (S, \lor, \cdot, 1)$ be a semilattice with sectional mappings satisfying the compatibility condition. Then (a) $x \lor x^p = 1$ for each $p \in S$ and each $x \in [p, 1]$; (b) if $z \mapsto z^p$ is a switching mapping for $p \neq 1$ then $x^p \neq x$ and if x < y then $x^p \neq y^p$ for each $x, y \in [p, 1]$; (c) if all the sectional mappings are switching then no section of \mathscr{S} can be a chain with more than two elements.

< ロ > < 同 > < 回 > < 回 > 三

The compatibility condition

Let us recall that a join semilattice $\mathscr{S} = (S, \lor, 1)$ with 1 where for $p \in S$ the section [p, 1] is a lattice $([p, 1], \lor, \land_p)$ is called a **nearlattice** (the concept was introduced by [M. Sholander] in 1950-ies).

Theorem

Let $\mathscr{S} = (S, \lor, \cdot, 1)$ be a nearlattice with sectional switching mappings satisfying the compatibility condition. If $x \mapsto x^p$ is antitone on [p, 1] then x^p is a complement of x for each $x \in [p, 1]$.

▲□▶▲掃▶▲≡▶▲≡▶ Ξ|= ののの

The compatibility condition

Theorem

Let $\mathscr{S} = (S, \lor, \cdot, 1)$ be a semilattice with sectionally antitone involutions satisfying the compatibility condition. Then for each $p \in S$ the section [p, 1] is an orthomodular lattice where x^p is an orthocomplement of $x \in [p, 1]$.

Theorem

Let $\mathscr{S} = (S, \lor, \cdot, 1)$ be a semilattice with sectionally antitone involutions. If for $p \in S$ and each $x, y \in [p, 1]$ it holds $(x^p \lor y)^p \lor x^p = (y^p \lor x)^p \lor y^p$ (*) then $([p, 1], \lor, \land_p)$ is a Boolean algebra.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ④□ ● ●

References I

- 🌭 Cignoli R.L.O., D'Ottaviano I.M.L., Mundici D.: Algebraic Foundations of Many-Valued Reasoning, Kluwer Acad. Publ., Dordrecht-Boston-London, 2000,
- Abbott J.C.: Semi-boolean algebra, Matem. Vestnik **4**(1967), 177-198.
- Abbott J.C.: Orthoimplication algebras, Studia Logica 35 (1976), 173-177.
- Chajda I.: Lattices and semilattices having an antitone bijection in any upper interval, Comment.Math.Univ.Carolinae, 44(2003), 577-585.

伺 ト イ ヨ ト イ ヨ ト - ヨ

References II

- Chajda I., Eigenthaler G., Länger H.: *Congruence Classes in Universal Algebra*, Heldermann-Verlag, 2003.
- Chajda I., Emanovský P.: Bounded lattices with antitone involutions and properties of MV-algebras, Discuss.Math., General Algebra and Appl., 24(2004), 32-42.
- Chajda I., Emanovský P.: Sectional switching mappings in semilattices, Miskolc Mathematical Notes, 7(2006), 113-120.
- Chajda I., Halaš R., Kühr J.: Distributive lattices with sectionally antitone involutions, Acta Sci.Math (Szeged), 71(2005), 19-33.

References III

- Chajda I., Radeleczki S.: *Semilattices with sectionally antitone bijections*, Novi Sad Journal of Mathem., Submitted.
- Salij V.N.: Lattices with unique complements, Translations of Mathem. Monographs, Amer. Math. Soc., Providence, RI, 1988.
- Scholander M.: *Medians, lattices and trees*, Proc. Amer. Math. Soc., **5**(1954), 808-812.

Appendix

Thank you for your attention.

I. Chajda, P. Emanovský

Sectional switching mappings in semilattices

E ► ★ E ► E

-